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Abstract
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1. Introduction

An MIMD machine with common shared memory basically contains three parts:

processor elements (PE's), memory modules (MM's), and the interconnection network

(IN) between PE's and MM's. The interconnection network is crucial for the perfor-

mance of such a system. One important class of interconnection networks is known

as multistage interconnection networks (MIN's) [1]. Since MIN's have a good balance

between low cost, short communication time, blocking probability, and require a sim-

ple routing strategy, they have received a large amount of attention and have been

studied for more than two decades [2]. A current active research problem in this area

is the analysis and design of fault-tolerant, or reliable, MIN's.

Many different types of fault-tolerant MIN's such as the extra stage cube [3] and

the multipath omega [4] have been proposed and analyzed. These fault-tolerant

MIN's are very different from each other by appearance, and are derived from

different methods. One objective of this paper is to find a common principle behind

these different designs so that we can obtain a more general design methodology and

have a better understanding of the structure of these MIN's.

To study a MIN, the conventional approach begins by specifying its

configuration in the plane, and then analyzes its topological properties and describes

some control scheme so that the given MIN can achieve the desired function [2]. In

this paper, we adopt a completely different point of view. Our approach first specifies

the desired function. In order to achieve this function, an appropriate network
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topology is constructed, from which various MIN configurations in the plane can be

derived. Hence, our approach is from a synthetic point of view while the conven-

tional approach is primarily from an analytic point of view.

Our design procedure can be briefly stated as follows. First, the function of a

MIN is described by a switching model specified by a state transition process. Then,

a buddy-type network is constructed to support the switching model. All topological

information of a MIN is included in its buddy-type network. However, if we want to

obtain a MIN in conventional form, i.e. the planar configuration, the layout of its

buddy-type network in the plane has to be considered finally. The above procedure

not only provides a systematic way to MIN design but also helps us understand the

topological properties of MIN's better.

In Section 2, we describe a design procedure for MIN's which have a unique-path

between each PE and each MM. By this procedure, we can derive the banyan network

[5], the omega network [6], the flip network [7], and the indirect binary n-cube net-

work [8] in a unified framework. Although the topological equivalence of the above

MIN's is well known [9] [10] [11], we show the same result from a synthetic point of

view.

The design procedure is generalized to multiple-path, or fault-tolerant, MIN's in

Section 3. The generalization is primarily achieved by introducing extra intermediate

states into the state transition process. The corresponding buddy-type network and

its layout can be obtained from the modified state transition process in a
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straightforward way. We use two important fault-tolerant MIN's, i.e. the extra stage

cube and the multipath omega, as examples to show how to apply our systematic

design procedure. These two MIN's are chosen since they have been examined more

thoroughly than others and since they will be used in real machines. The extra stage

cube is the interconnection network of the PASM prototype machine [12] while the

multipath omega is proposed for the Cedar supercomputer [13].

Conclusions and extensions are given in Section 4.
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2. A Systematic Approach to Unique-Path MIN Design

The conventional approach used to study MIN's includes two steps: First, to

characterize the network configuration in the plane by graphic or algebraic tools;

second, to analyze its topological properties and to design routing schemes based on

the given network configuration. One graphic tool is the switching diagram formed

by switching boxes and links. Although the graphic tool is easy to understand, some

important information is hidden behind it. For example, it is well known that some

MIN's whose graphic representations look very different are in fact topologically

equivalent. The algebraic tool is some kind of permutation function describing the

interconnection pattern between two consecutive switching stages. For example,

"shuffle", "bit reversal", "butterfly", "exchange", "cube", and "PM2I" can all be pre-

cisely defined [10] [14]. Hence, one MIN can be completely characterized by its number

of stages, the sizes of the switching boxes at each stage, and the interconnection pat-

terns between consecutive stages described by algebraic tools. There is a one-to-one

correspondence between graphic and algebraic tools and both are commonly used to

describe MIN's. That is, the graphic tool is used for illustration while the algebraic

tool is used for manipulation.

There are some disadvantages with the conventional approach. First, this

approach does not suggest a way to synthesize a network topology. Hence, it is only

used as an analytical tool. Second, the tools used to describe one MIN primarily con-

centrate on its interconnection patterns between two consecutive stages since they
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appear to be the most complicated part of the entire MIN. However, it will be shown

later that the interconnection pattern is only a direct consequence of different kind of

arrangement of switching boxes so that the complication can be avoided.

To overcome the above two disadvantages, we develop a systematic approach to

MIN design, which includes three steps: the specification of a switching model by a

state transition process, the realization of the switching model by a buddy-type net-

work, and the layout of the buddy-type network in the plane. In this section, we dis-

cuss the design procedure for unique-path MIN's.

2.1 Specification of a Switching Model By a State Transition Process

We use N=--{0,1,2..., N-1} and M=-0,1,2,..., M-1} to

denote the sets of inputs and outputs. Each member of N is called an input state

and each member of M is called an output state. Then, we can use a state transition

process to model the switching between N and M. The state transition process is

defined to be the set formed by all state transition paths from any input state to any

output state. If every input state can transit to any output state in one step, there

are NIM! different state transition paths. Therefore, the state transition process is

SCB ={(n , m ) n N,m M} 

The input set N, the output set M, and the state transition process SCB form a

switching model. For convenience, we use a simplified notation

XCB = ( n - m )

to denote this model. XCB is in fact the switching model for an N X M crossbar.
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Assume N and M can be represented as products of K positive integers, i.e.

N = NiXN 2X XNK and M = M1 XM 2 X '.. XMK.

Let

Nk ={0, 1, 2 .,N k-1} k =1,2,..., K,

Mk =-{0, 1,2,..., Mk-1} k =1,2,..., K.

Then, their Cartesian products, i.e.

I =N1XN 2 X ... XNK and O =MlXM 2X . . XMK (2.1)

give a K-dimensional input space I and a K-dimensional output space 0. Since

I I = IN and 10I = IM 1, there exist one-to-one mappings from N to I and

from M to O respectively. In other words, states in the one-dimensional spaces N

and M are mapped into states in the K-dimensional spaces I and 0.

We define the k-th step input space I k and output space Ok as

Ik _ M1 X M 2 X . X Mk_-1 X Nk X Nk+ X ... X NK , (2.2a)

Ok M X X X M X MkX Nk+lX ... X NK. (2.2b)

It is easy to check that

V11 I, O k -= I k +l for k =1 ,2,... . ., oK = 1

Given an arbitrary input state q0 = (nl,n2,' ,,nK) C I and any output state qK

= (m 1,m 2, . ,mK) E 0, consider the following state transition process,

SMIN =_{(qO, . ... qk. ,qK) I qO E , qk COk 1<k<K}. (2.3)

The state transition process SMIN is obtained by dividing the state transition from

q0 to qK into K steps whereby only one index can change at one step. Hence, the
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input state q0 has to go through K-I intermediate states, i.e.

qk =_( ml, ' ' , ink , nk+1 , '' , nK ), k --= 1, 2,...7 K-1

before it accesses the output state qK. Equations (2.1), (2.2), and (2.3) form a switch-

ing model denoted by

XMMIN =(nl n l; ; n k -m mk ; ''' ; nK - mK ), (2.4)

and the k-th state transition step is denoted by

qk-I qk or n k -- mk

Another convenient tool to describe the above switching model is the state transition

graph, in which we use a circle to denote a state and a directed link to denote a state

transition step. The state transition graph corresponding to (2.4) is given in Figure

1. XMIN is a switching model of a K-stage MIN.

To summarize, the switching model X of a network consists of its input space I,

output space 0, and a state transition process S which is a set formed by specified

state transition paths. Design parameters for specifying the switching model include

the dimension of input and output spaces (K), the size of each dimension (Nk and

Mk), and the state transition sequence in the state transition process S.

2.2 Buddy-type Network Realization

The switching model is only a mathematical description of how the input and

output spaces are divided and how the sequence of state transition is performed.

However, a network is made of hardware which supports all required state transition

paths. In this section, a constructive procedure is given so that we can associate the



switching model with a certain topology. This procedure is called the realization of a

switching model.

The realization of the switching model XCB of a crossbar is straightforward.

Elements of input set N and output set M are realized as input and output termi-

nals. Each state transition path is realized by a switching link which connects the

corresponding input and output terminals.

The realization of the switching model XMIN of a MIN given by (2.4) can be

divided into two parts.

(1) Switching Links and Switching boxes

Consider the k-th switching step qk-l_+qk, where 1l<k_<K. Elements of input

set I k and output set Ok are realized as input and output terminals at stage k.

However, unlike the crossbar network, not every input state qk-l can transit to every

output state qk. To build appropriate switching links between input and output ter-

minals, the key observation is that the elements of I k and Ok can be grouped in such

a way that the state transition only occurs within each individual small group.

Consider the following set

U _ Im X M2 X X kl X X ... XNK,

which is a (K-1)-dimensional subspace of I k and O k with cardinality

uk = -Uk = M M 2 X . Mk-1 X Nk+. X ... X NK.

The K-dimensional space I k can be viewed as the Cartesian product of the (K-i)-

dimensional space Uk and the 1-dimensional space Nk,



Ikm = k 

Similarly, ok can be viewed as

ok = Ukx

Since the state transition at stage k only changes the k-th coordinate, elements of

the space U k remain the same at this stage. This means that there is no state transi-

tion from the elements of I k to the elements of O k, if they have different values in

the space Uk. Therefore, we can divide elements of Ik and Ok into Uk disjoint

groups, each of which is characterized by an index uk E Uk, Within each group,

there are Nk inputs and Mk outputs which have to be fully connected. Hence, an

(Nk X Mk)-crossbar, formed by Nk Mk switching links, can be used to realize each

individual group. Totally, Uk such crossbars are needed for stage k. A switching

box with fan-in N k and fan-out Mk is used to represent such a crossbar in switching

diagrams.

In addition to the switching link (or intra-box link), we need another kind of link

called the interconnection link (or inter-box link). The switching link is used to real-

ize a state transition step whereby its front and rear ends represent two different

states. In contrast, the interconnection link is used to connect the output of the

switching boxes at stage k and the input of the switching boxes at stage k +1, which

are of the same state. Hence, an interconnection link and its both ends all represent

the same intermediate state in the switching model. Conventionally, an appropriate

group of switching links is symbolized by a switching box, and only interconnection

links are drawn in switching diagrams. We described above how to construct
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switching links and switching boxes. Next, we examine how to construct interconnec-

tion links between switching boxes of two consecutive stages.

(2) Buddy-type Interconnection

Although there exist different interconnection schemes, we are primarily

interested in the most natural and popular one, i.e. the buddy-type interconnection

[11]. The resulting network is called the buddy-type network. Most MIN's discussed

in the literature are buddy-type networks.

Consider two consecutive stages k and k +1. The output set of stage k is Ok

and the input set of stage k +1 is Ik+I, which can be represented as

o =Uk XMk =( V'k"-' x Nk+,) .XMk,

Ik+1 =Uk+l xNk, =( k X Mk ) XNk+l,,

where

V7kk +_ M1 X M2 X Nk +2 XXN ... X XNK,

with cardinality

Vk,k+1= I vk' k+ l I =M X M 2 X " X Mk-1 X Nk+2 X ... X NK 

An intermediate state qk = (ml, . . .,mk,nk+l, .. ,nK) is realized as both an out-

put terminal m k of the switching box with index ( v kk+ ; nk l ) at stage k and an

input terminal nk1 of the switching box with index ( v k ,k + ; mk ) at stage k+1,

where vk,k+l C k,k+1. Since these two terminals represent the same state, an inter-

connection link is used to connect these two terminals.



In order to build appropriate interconnection links, we have to classify switching

boxes at stages k and k +1 into groups. That is, the switching boxes at stage k with

the same index v kk+ l E Vk,k+1 should be grouped together whereby each group has

Nk+1 switching boxes. Similarly, the switching boxes at stage k-+1 with the same

index v k,k+l G k,k+l should be grouped together whereby each group has Mk

switching boxes. Then, the interconnection rule is that the Nk+1 switching boxes at

stage k with group index v k ,k l+ should be fully connected to the Mk switching boxes

at stage kl+1 with the same group index v k ik+l . It is easy to see that no links are

needed between groups with different index v k,kl, since the output of stage k can-

not be the same state as the input of stage k +1 among these groups. For groups

with the same index vk,kl, the output terminal mk of the box with index nk+1 at

stage k corresponds to the same state as the input terminal nk+1 of the box with

index mk at stage k +1. Therefore, for groups with the same index, the switching

boxes at stage k should be fully connected to the switching boxes at stage k +1, and

there are Mk Nk l interconnection links. By repeating the above constructive pro-

cedure for k = 1, 2, ... , K-1, we can obtain a buddy-type network.

If the switching model (2.4) is realized by a buddy-type network, the uniqueness

of its physical path between a given input-output pair, say from input terminal

(n 1, . . ., nK) to output terminal (m , . . ., inK), can be easily checked. Its switching

link at stage k is uniquely determined by input terminal (m, ,mk_,nk, , nK)

and output terminal (ml, .. ,mkn,nkl,' ',nK), and its interconnection link
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between stages k and k +1 is uniquely determined by switching box

(m 1 , ,mkl,nk +1, ,nK) at stage k and switching box

(m l, ,mk,nk+2, ,',nK) at stage k+1. The topology of one MIN means the

incidence relationship among its switching boxes and interconnection links. Then, the

buddy-type network obtained from the above procedure completely characterizes its

topology.

The difference between a MIN and a crossbar can be compared as follows. For

an (N X M)-crossbar, we need NM switching links, each of which is a dedicated

path for an input-output pair. In contrast, for a buddy-type MIN corresponding to

K K-1
(2.4), .UkNkMk switching links and Z7 Vk'k+lMkNk+l interconnection links are

k=1 k=1

required. Consider a special case where N = Mf = 2 K and N -- Mi = 2, 1<i <K.

Then, there are N 2 switching links in a crossbar while there are 2NlogN switching

links and NlogN-N interconnection links in a MIN. Hence, hardware complexity for

a crossbar and a MIN is O(N 2 ) and 0 (NlogN) respectively.

Though fewer links are required in a MIN, each link has to be shared by several

input-output paths. A switching link at stage k is determined by two intermediate

states, qk-l=(ml ,mkl,nk, ' ^ , nK) and qk=(ml ,mk,nkl, ,nK), so

it is shared by all paths from input states (n . nkl-,k, ,nK) ) to output

states (m 1, .. ,mk,m k+l . ,m K), where nl i C Ni, 1 < i < k-1 and

m j C Mj, k4+1 < j <K. There are totally N 1 ... Nk-1 Mk+l MK paths

sharing this switching link. An interconnection link between stages k and k +1
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represents an intermediate state qk = (mi n . , mklnk+l, ,nK) which is an inter-

mediate state for all state transition paths from input states

(nil, · ,1,nk+l, ,nK) to output states (ml, ',,m 'k+1 , mK), where

n'i C Ni, 1 < i < k and mrn'j My, k +1 < j <K. Therefore, all these paths

share this common interconnection link and there are totally

N 1 ... Nk Mk+1 ... MK such paths. Since different paths share the same link

in MIN's, hardware complexity is reduced. Nevertheless, it results in a nonzero block

probability.

2.3 Two-dimensional Layout and Topological Equivalence

Strictly speaking, the topological design of a MIN only requires the above two

steps, the specification of a switching model and the realization of the model by a

buddy-type network. The third step, i.e. the two-dimensional layout, is introduced

primarily for two reasons. First, we want to relate the buddy-type network to con-

ventional MIN's. Second, the layout of a MIN in the plane becomes necessary, if it is

implemented by the printing circuit board (PC board) or the integrated circuit (IC)

technology.

Conventionally, switching diagrams of MIN's are drawn in the plane, where the

horizontal dimension is used to arrange the switching sequences, or stages, and the

vertical dimension is used to order input terminals, output terminals, and switching

boxes at each stage. For such switching diagrams, there essentially exist one-

dimensional orderings between input terminals, between output terminals, and
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between switching boxes at every stage. In other words, instead of applying indices

with multidimensional coordinates, the conventional approach uses indices with

one-dimensional coordinate for inputs, outputs, and switching boxes.

For a given buddy-type network, we can layout many different configurations in

the plane. Consider a K-stage buddy-type network, input and output terminals of

which are characterized by K-dimensional indices n and m, and switching boxes of

which are characterized by a (K-1)-dimensional index u k. To layout a MIN in the

plane is equivalent to finding a one-to-one mapping which maps K-dimensional or

(K-1)-dimensional indices into 1-dimensional indices. There are totally

K
N!M! 1I Uk! mappings, since there are N, M, and Uk elements in the input set I,

k=1

the output set 0, and the space Uk respectively. As to the terminals ( u k; nk ) (the

terminals ( u k; mk )) which are associated with switching box u k and do not belong

to the set of input terminals (output terminals), they are conventionally ordered by

the remaining index nk (ink) along the input (output) side of box u k

Some particular mappings give familiar types of MIN's such as the omega net-

work and the SW banyan network. Nevertheless, these MIN's are all topologically

equivalent since the mappings do not change the incidence relationship among switch-

ing boxes and interconnection links.

2.4 An Example
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We use an example to demonstrate the design of various unique-path MIN's by

the above approach. Suppose we want to design a 4-stage interconnection network

with 16 inputs and 16 outputs.

2.4.1 Specification of the Switching Model

Consider the following decompositions:

N =-16 = 2 X 2 X 2 X 2, and M=16=--2 X 2 X 2 X 2

Then, we have

Ni =M = 0,1), 1 - 1,2,3,4 ,

I= (nl,n 2 ,n 3,n 4 ) I ni ENi , where i = 1,2,3,4},

0 =(m , m 2 , m 3, m 4) m Ei Mi , where i =-1, 2,3,4),

and a typical state transition process is given by

S ={ (qO°, , qk ,. q4) [ qOEI qk E Ok 1<k<4),

where

Ok M1 M X X Mk-1 X Mk X Nk+l X ... X NK.

So, the switching model is

X = ( nl - m l; n2 - m 2; n 3 - m 3 ; n 4 - m 4) . (2.5)

2.4.2 Buddy-type Network Realization

Based on the switching model (2.5), we can construct a buddy-type network

which has 16 input terminals, 16 output terminals, and 4 stages. The input and out-

put terminals are with indices n and m,
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n = ( n1 n 2 n 3 , n 4 ) ,

m = (m, 2, m, m 4 ) .

At stage k, there are eight switching boxes with indices u

u ( n2, n3, n4),

u2 =( ml, n3 , n4 ),

u3=(ml, m2, n4),

U4=( m 2, n3 ) m

Each switching box is a 2 X 2 crossbar; that is, there are 4 switching links within a

box. As to the interconnection links, the interconnection rule is:

(1) u 1 and u 2 are connected if they have the same values for both n 3 and n 4;

(2) u 2 and U3 are connected if they have the same values for both m 1 and n 4;

(3) u 3 and u 4 are connected if they have the same values for both m 1 and m 2.

2.4.3 Two-dimensional Layout

The one-to-one mapping from n, m, and u k, to one-dimensional indices can be

denoted by

( al , a2 , a3 , a4 ) -+a 4a 3a 2al,

where ai is either 0 or 1 and a 4a 3a 2a 1 = 8a 4+4a 3+2a 2 +a 1 is a binary representa-

tion. We show how six well known MIN's can be obtained by different mappings in

Table 1. Their corresponding switching diagrams are given in Figure 2. They are all

topologically equivalent since they are derived from the same buddy-type network.
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The complicated interconnection patterns of interconnection links shown in Fig-

ure 2 have been the main focus in the literature on the topology of MIN's and these

patterns are also used to classify different types of MIN's. However, from our point

of view, the complication is simply due to the effect of layout in the two-dimensional

plane. The distinction between them disappears when we go to the original buddy-

type network.

Baseline Reverse Data Regular Omega Flip
Baseline Manipulator SW Banyan

input n 4 n 3 n 2nl n 4 n 3n 2n1 n 2 n 3 //4 n 1 n 4n 3n 2 n1 nln2 n3 n4 n4 n3 n2 n1

stage 1 n 4 n 3n 2 n 4n 3 n2 2 n 3n 4 n 4n 3 n2 n2 n3 n 4 n4 n 3 n2

stage 2 mln4 n3 n4 n3 m 1l mln3 n 4 n4 n 3m1 n 3 n 4 m 1 mln 4n 3

stage 3 m l m 2n 4 n4 mlm2 mlrm2n 4 n 4m 2m 1 n 4 mlm2 m 2 mln 4

stage 4 mlm 2m 3 mlm 2m3 mlm 2m 3 m 3 m 2 m 1 mlm 2m 3 m 3 m 2 m1

output [mlm 2m 3 m 4 ml m 2 m3 m 4 mlm 2 n 3m 4 m 3 m 2mlm4 m 1m 2m 3 m 4 m 4m 3m 2m 1

_ I __ I _ _ _ _ _ _ _ _ __ __

Table 1. Several isomorphic MINs



There exist nonbuddy-type networks. One example is the CC banyan network

[5]. The 4-stage CC banyan, which is shown in Figure 3, is not isomorphic to the six

MIN's given in Figure 2. Although characterized by the same switching model (2.5), it

cannot be realized by the buddy-type interconnection scheme described in Section 2.2.

2.4.4 The Self-Routing Scheme

The routing scheme for a buddy-type network is very simple, which is usually

called the self-routing scheme, and can be done distributedly. Each request from an

input terminal only has to contain the address of the output terminal coded as a

routing tag, say ( ml m 2 ... mK ). At stage k, the k-th index mk can be used to

make the switching decision. Used indices can be thrown away, since they are not

used any more. It is easy to see that the routing scheme depends on the switching

model X only. As a consequence, when we specify the switching model, the routing

scheme for the network is determined at the same time.



3. A Systematic Approach to Multiple-Path MIN Design

In Section 2, we developed a systematic approach to unique-path MIN design. In

this section, we generalize this approach to multiple-path, or fault-tolerant, MIN

design.

3.1 The Extra Intermediate State Method

The uniqueness of the path between every input-output pair of a buddy-type

network comes from the fact that there exists a unique state transition path from

every input state to every output state in the switching model. By the extra inter-

mediate state method, we provide some extra intermediate states in the state transi-

tion process so that there exist some distinct state transition paths from an input

state to an output state. These extra intermediate states can be characterized by the

extra index.

Suppose we treat all input-output pairs in the same fashion so that we can focus

on a typical pair, say from input (nl, - - ' nk, ° · ,nK) to output

(m l, ' ' ,mk, K ,imK). A unique-path switching model is given by

X = (nl- mI; ; nk -+mk; ... ; nK -- inmK )

Now, we add an extra index rk { 0 , 1 } so that transition in the k-th coordinate is

composed of two steps: first, from a state with input index nk to a state with extra

index rk; then, from a state with extra index rk to a state with output index mk.

These two transition steps are denoted by nk -- rk and rk -- m k respectively.

Unlike nk and mk, which are uniquely specified by the input and output states, the



- 20 -

extra index rk can take two different values. Hence, we obtain two distinct state tran-

sition paths.

There exists a natural constraint for the two transition steps in the k-th coordi-

nate. That is, nk -* rk should proceed before rk -- mk. Although it is allowable

that the transition rk -i mk follows directly the transition nk -+ rk, it is not a

good fault-tolerant design. It is usually preferable to put these two transition steps

apart as far as possible, which will be discussed in detail in Section 3.2.

Several examples are given below to illustrate the extra intermediate state

method. Let

I = N 1 X N 2 X N 3 , O = M 1 X M 2 X M 3 , (3.1)
where N i = M i ={0, 1}, i -- 1,2,3. Three extra indices rl, r 2 and t1 are

introduced, where r 1 , r 2 { , 1 } and t { 0, 1,2}. Several multiple-path

switching models are given by

Model A: XA = ( nl-+r1 ; rl--m1 ; n 2-+r 2 ; n 3 m 3 ; r 2-+m 2 ) , (3.2a)

Model B XB = ( nl-+r1 ; n 2--+r2 ; n 3 -- m3 ; r 2-m2; rl--m1 ), (3.2b)

MAodel C: X C = ( n 1-rl ; n 2 *r 2 ; n 3-- m 2 ; r 1-*-ml ; r 2-*m 2 ) , (3.2c)

Model D: XD = ( nl--r ; rl-+t1 ; 2--+m; ; n 3-m 3; t 1-ml ), (3.2d)

Model E: XE = ( nl--(rl,tl); n 2-m 2 ; n 3--; n 3 ; (r l,t l)-ml ) . (3.2e)

Their state transition graphs are depicted in Figure 5 (a)-(e), where typical directed

links are labeled by their corresponding state transition steps and nodes are labeled

by their corresponding extra indices. From these switching models, we can write
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down their k-th step input space Ik and output space Ok easily. We do not allow

the extra indices rl, r 2, and tj to appear in the input and output states, since we are

primarily concerned with the redundancy of communication resources (networks) and

not the redundancy of input and output resources (processor elements and memory

modules).

There are some easy ways to manipulate switching models. Two state transition

steps al -. b1 and a 2 -+ b2 are called independent, if a 1, a 2, b1, and b2 are different

from each other. The combination of two or more consecutive independent state

transition steps, say

( ... ; a -2- b 2; e2 -+b2 ) (3.3)
into one state transition step, say

( ° ;(a1,a2) (bl,b2); '- ) (3.4)

is called compression. On the other hand, the decomposition of a state transition

step into two or more state transition steps is called expansion. For example, the

first and last two state transition steps of model XB are independent of each other.

By compression, we can combine them respectively and obtain a new switching model

Model F : XF = ( (n l,n 2)-(r 1,r 2) ; n 3-m 3 (r 2,rl)-(m 2 ,m 1) ) (3.5)

We can also view that model XB is obtained from model XF by expansion. Notice

that the switching model XMIN of a unique-path MIN is in fact an expansion of the

switching model XCB of a crossbar.
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3.2 Optimal Design of Multiple-Path Switching Models

The fault-tolerant property of a multiple-path switching model can be easily

understood by examining its state transition graph. Since a state corresponds to a

node and a state transition step corresponds to a directed link, a fault in a state and

a state transition step is equivalent to the removal of a node and a directed link in

the state transition graph respectively.

The state transition graph is a special type of digraph [151. Recall that the dis-

tance from node a to node b is the number of directed links of any shortest path

from a and b. Then, the following lemma characterizes the special property of the

state transition graph.

Lemma 1: Nodes at the same distance from the input node are characterized by the
same set of indices. If this set contains extra indices, the number of these nodes is
equal to the number of different possible values assumed by the extra indices. Other-
wise, it is 1.

Proof: Since there is a one-to-one correspondence between a switching model and a

state transition graph, if two nodes are at the same distance from the input node,

then their corresponding states are obtained from the input state through the same

number of state transition steps. Hence, they are characterized by the same set of

indices. The number of these nodes is the same as that of all possible intermediate

states determined by the set of indices. If the set does not contain any extra index,

there exists a unique intermediate state specified by input and output indices. If the
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set contains some extra indices, the number of intermediate states is that of different

possible values assumed by these extra indices.

Q.E.D.

The node-connectivity ( link-connectivity ) of a state transition graph is the

minimum number of nodes ( links ) whose removal disconnects the output state node

from the input state node. Since the effect of removing a node is the same as that of

removing all its incident links, the node connectivity of a state transition graph can

never exceed its link connectivity. Therefore, we say a state transition graph is C-

connected if its node connectivity is C. It is easy to see that the state transition

graph A is 1-connected, the state transition graphs B, C, D are 2-connected, and

the state transition graph E is 6-connected. If the number of nodes at distance d

from the the input node is denoted by N(d), we have

C = min N(d) (3.6)
0 <d <D

where C is the node connectivity and D is the distance between the input and output

nodes.

State transition paths are called disjoint, if they have no links and no nodes

other than the input and output nodes in common. The relationship between the

node connectivity and the number of disjoint state transition paths is stated in

Lemma 2.
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Lemma 2: The node connectivity of a state transition graph is the same as the
number of its disjoint state transition paths from the input node to the output node.

Proof: Suppose the node connectivity of a given state transition graph is C and the

number of its disjoint state transition paths is C'. By definition, the removal of C

appropriate nodes from this state transition graph disconnects the input node from

the output node, so it cannot have more than C disjoint state transition paths, i.e.

C' < C. On the other hand, from the structure of the switching model and (3.6), we

can construct at least C disjoint state transition paths from the input to the output.

Hence, C' > C. Combining the above arguments, we have C' = C

Q.E.D.

The main result is that, in order to increase the connectivity of a state transition

graph by introducing a set of extra indices, the best design is to bring them to the

state vector as early as possible and remove them as late as possible. We summarize

it below.

Theorem 3: For all state transition graphs given by switching models which con-
tain a set of extra indices { rl , , rp }, the state transition graph corresponding
to the switching model

Xop t -= (maxIm(rum nub ,o no1(rl, ;2 2 n K --c m K ; (r1, '' ,rp) v m)

has the maximum number of node connectivity.
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Proof: It is easy to see that X op t gives the largest number of disjoint state transition

paths in its state transition graph. Hence, by Lemma 2, we know the graph has the

maximum number of node connectivity.

Q.E.D.

From Lemmas 1 and 2, we know that the compression of a switching model does

not change the number of disjoint paths in its state transition graph. Therefore, any

switching model obtained by compressing Xopt also has the maximum number of

node connectivity.

A R-path switching model is a model whose state transition graph has R dis-

joint state transition paths. A R-path switching model can at least tolerate R-1

faults since its state transition graph is R-connected by Lemma 2. To design a R-

path switching model, the simplest scheme is to use one extra index

rl C{ 0, 1 1 - R-1 } and to use the switching model:

X =( n 1- rl ; n 2 m2 n; ' - ; n k - m k ; . . ; n K -+ m K ; rl -- + m ) (3.7)

By compressing (3.7), we can obtain many other R-path switching models.

3.3 Realization, Layout, and Routing for Multiple-path Buddy-type MIN's

According to the constructive procedure described in Section 2.2, the realization

of the R-path switching model (3.7) by a buddy-type network is straightforward.

The realization procedure can be summarized as:

(1) the unchanged indices at stage k can be used as indices for switching boxes, and

the input and output terminals are fully connected within each switching box;
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(2) the unchanged indices at stages k-1 and k can be used as indices for groups

formed by switching boxes at these two stages, and the switching boxes at stage k-1

are fully connected to the switching boxes at stage k by interconnection links if they

have the same group indices.

By mapping the multidimensional indices to the one-dimensional indices, we can

layout the buddy-type network in the two-dimensional plane. The details can be

found in Section 2.3.

A simple routing scheme for the above R-path network is similar to that for the

unique-path network, except that we have to generate a random number from the set

{ 0, 1 , ... R-1 } for the extra index r 1 so that we can choose one of R disjoint

paths between every input-output pair under the fault-free condition. Suppose a sin-

gle fault is detected and it is known which path is disconnected, we still can ran-

domly choose one of the R-1 remaining fault-free paths. It seems feasible to use

more complicated routing schemes to determine a "good" path among all redundant

paths to avoid congestion occurring in some spots of the network. However, we will

not go to the issue in this paper.

3.4 Two Design Examples

Let us consider the design of a R-path MIN with N inputs and M outputs. We

can use the above systematic approach to derive the extra stage cube and the mul-

tipath omega networks.
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3.4.1 Extra Stage Cube

Step 1: Suppose we can factorize N and M as follows:

N = N 1 X N 2 X ... X NK , M = M 1 X M 2 X X M K .

According to the discussion in Section 3.2, we choose the switching model

XESC = ( n 1--rl ; n 2-- m 2 ; ; nk-+mk .. ; nK--mK r 1-- m 1 ), (3.8)

where nk C {O, ,Nk--1}, mk CE{ ,. ,Mk--1}, and rl E{ , ,R-1}.

Step 2: We use a (K +1)-stage buddy-type network to realize XESC. Switching boxes

at stages k are characterized by indices u k

u = ( n2,, nK ), (3.9a)

u =k ( rl, 2, , mk-l, nk-il,... , MnK ), 2 < k < K (3.9b)

u+* = ( m2,, .. nK ) (3.9c)

where switching box u I is a (N 1 X R)-crossbar, switching box u k k -= 2, , K

is a (Nk X Mk)-crossbar, and switching box uK+l is a (R X Ml)-crossbar. Switch-

ing boxes at two consecutive stages have K-2 indices in common, and they should

be connected if they have the same values for all these common indices.

Step 3: To obtain the cube-type configuration in the plane, we use the following map-

ping,

= ( n,., n K ) -- n2n3 .. . nKnKn

u ( n2, . .. , nK ) n2n3 .. . nK-lnK ,

uk =( rl, m 2 ·, mrnk-_l , nk+l, · · , nK ) -- rlm2 ... mk-lnk+l . . nK 
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2 < k < K+i,

1 ( m 2 , o. . mK ) mrn2m3 mKlmK

m = ( rn, . . mK ) --+ Mn2m3 ' mK-lmKml

Nevertheless, the third step is not crucial in the above design procedure.

Since we can eliminate the extra index r1 in (3.8) and realize it with a K-stage

unique-path network, and since the cube-type configuration is chosen in step 3, the

resulting network is called the extra stage cube. It is easy to see that from any input

to any output there are R disjoint state transition paths characterized by

r = 0, - -- , R-1. From (3.9), we know that two disjoint state transition paths

do not share common switching boxes except at stages 1 and K +1. They neither

share a common interconnection link since each interconnection link is uniquely

specified by switching boxes at its both ends. So, they are also physically disjoint.

The extra stage cube can tolerate at least R-1 faults, provided that the first and last

stages are fault-free.

Since all redundant paths for a given input-output pair are contained in the

same switching boxes at the first and last stages, one single fault in the switching

boxes of these two stages can disconnect the path for this input-output pair. As a

consequence, we have to increase the reliability of the components of these two stages

by some schemes. For example, the extra stage cube uses some multiplexing scheme

so that the message can bypass faulty switching boxes at these two stages [3].
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3.4.2 Multipath Omega

Step 1: Suppose we can factorize N and M as follows:

N-=(N 1 X .. XNb )X (Nb+l1X ... X N2b )X ...

'' X (N(p-l)b+l X ... X Npb )(Npb X (Npb q ),

M =(M 1 X . X Mb ) X (Mb+1 X ... X M2b ) X ...

''- X ( M(p-l)b X +lX .. X Mpb )X (Mpb+l X .. X Mpbp )+q

R =R 1 X .. X Rb -q.

Then, we choose the switching model

XMfP = ( (n 1,n 2, · ,nb) -+ (rl,r2, ,rb -qmb _q +1· , mb) ;

(nbSl - n2b) - , * , 2b)) m; . ;

(n(p-l)b 1, * o ,npb ) (m(p-1)b, . .* ,mpb) ;

(np- ' * ° . . ,rnpb qrl, ' '* ,rb _q) - (mpb +1, .',mpb+ q, lI 7 , mb _ q) ) . (3.10)

where nk { , * * ,Nk-1 }, mk E {0, · ' ' ,Mk-1 }, and rk E { , · ,Rk-1 }.

Step 2: XMPO is realized by a (p +1)-stage buddy-type network.

Step 3. By some appropriate mapping, we obtain the modified multipath omega net-

work described in [4].

The motivation for selecting the switching model (3.10) can be intuitively given

as follows. Suppose N = M =- 2 K and only one standard type of switching box

with size 2b X 2 b, where 1 < < < K, is used to implement the network. In order to

fully utilize this type of switching box, we have to merge b input or output binary

indices into a single vector index. In general, the relationship between K and b can
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be related by

K =p b +q

where p and q are integer, p > 0, and b > q > 0. If K happens to be multiples of

b, then q is zero and we can divide the input and output coordinates into p groups,

each of which contains b binary indices. Then, a unique-path network made of p-

stage (2b X 26)-switching boxes can be obtained. If q is nonzero, we can divide the

original K binary indices into p +1 groups, where p groups contain b binary indices

and one group contains q binary indices. For those groups containing b binary

indices, they can make full use of the given (2b X 2 )-switching boxes. For the group

which has q binary indices, it only uses part of the given switching box with 2 b-q

input terminals and 2 b-q output terminals left. Therefore, we can introduce b-q

extra binary indices rl , r2, ' , rb-q to fully utilize the unused portion.

The modified omega network is a uniform network which contains only one type

of switching boxes. However, it is also feasible to design nonuniform multipath omega.

networks which have several types of switching boxes [4]. We can derive these vari-

ous types of multipath omega by the same procedure described above.

3.4.3 Comparison

We can use a simple example, i.e. a 2-path MIIN with 8 inputs and 8 outputs to

illustrate the above two designs. The switching model of the extra stage cube is

XESC =( nl -- rl ; n 2 -+ m 2; n 3-+ m 3 ; rl - m ) . (3.11a)

Its corresponding state transition graph and switching diagram is given in Figure 5.
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The switching model of the multipath omega is

XMpO = ( (n 1,nt2 ) - (r1 ,m 2 ) ; (n 3 ,r1) -- ( 3 ,m 1) ) (3.11b)

Its corresponding state transition graph and switching diagram is given in Figure 6.

If we examine their buddy-type networks or their two-dimensional layouts, the

extra stage cube and the multipath appear quite differently. However, comparing

their switching models (3.11a) and (3.11b), we find that the difference is basically in

different implementation of the first and the last two switching steps. The sequential

implementation gives the extra stage cube while the parallel implementation gives the

multipath omega. They are an expansion/compression pair.

Detailed cost and performance analysis of these two designs is beyond the scope

of this paper. Roughly speaking, a MIN using larger switching boxes has lower block

probability and requires less access time from the input to the output. This can be

easily understood by examining the extreme cases, i.e. the (2 K X 2 K )-crossbar and

the K-stage MIN. The tradeoff for better performance is higher hardware complex-

ity.



-32-

4. Conclusions and Extensions

We proposed a systematic approach to the topological design of reliable MIN's in

this paper. This approach decomposes the design procedure into three steps: the

specification of a switching model, the buddy-type network realization, and the two-

dimensional layout.

Both cost and performance have to be considered in selecting an appropriate

switching model. Since hardware cost has been reduced tremendously due to the

'VLSI technology, there is a new tradeoff between cost and performance. In order to

get better performance, MIN's with larger switching boxes and fewer number of

stages may be preferred. However, more quantitative analysis is still required. The

performance analysis, comparison, and simulation of MIN's are all current research

problems.

In terms of network realization, it seems reasonable to stick to the buddy-type

network unless there is a reason in favor of some particular nonbuddy-type network.

A systematic procedure for constructing buddy-type networks is clearly given here.

However, how to realize a switching model by a nonbuddy-type network systemati-

cally is still an open question.

If switching boxes are connected by wires, there is no layout problem. However,

since MIN's are often implemented either on PC board or with IC technology, the

layout is an important issue in practice. On one hand, we want to minimize the lay-

out area. On the other hand, the interconnection pattern should be as regular as
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possible to simplify the layout. For example, in terms of the regularity between

stages, both the omega and the flip networks have the same type of interconnection

pattern between any two consecutive stages (See Figure 2). Nevertheless, they con-

sume more area compared to the other four types of MIN's given in Figure 2. A more

detailed study in the layout problem is required.
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Figure Captions

Figure 1: The state transition graph for XMIN.

Figure 2: A class of isomorphic MINs: (a) baseline, (b) reverse baseline, (c) data mani-

pulator, (d) regular SW banyan, (e) omega, and (f) flip MINs.

Figure 3: The switching diagram of a CC banyan network.

Figure 4: State transition graphs for Equation (3.2)

Figure 5: The extra stage cube: (a) switching diagram, and (b) state transition graph.

Figure 6: The multipath omega: (a) switching diagram, and (b) state transition

graph.
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Figure 1: The state transition graph of XMIN
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Figure 2: A class of isomorphic MINs: (a) baseline, (b) reverse baseline

Figure 2' A class of isomorphic MINs: (a) baseline, (b) reverse baseline-, (c) data manipulator,



- 39 -

-89-'

S S
I I

(d) D D

S S(e)~~~~~~~~L

D DBE - - ~E
1~~~~~~~~~~~~~

S S~~~~~~~~~~~~I I~~~~~~~I(e) I .IP ! I

D D

EB E

2

Figure 2 (Cont.): (d) regular SW banyan, (e) omega, and (f) flip MINs.
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Figure 3: The switching diagram of a CC banyan network.
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Figure 4 (Cont.): State transition graphs of Equation (3.2)
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Figure 5: The extra stage cube (a) switching diagram (b) state transition graph.
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Figure 6: The multipath omega (a) switching diagram (b) state transition graph.


