2,574 research outputs found

    Programs as Polypeptides

    Full text link
    We describe a visual programming language for defining behaviors manifested by reified actors in a 2D virtual world that can be compiled into programs comprised of sequences of combinators that are themselves reified as actors. This makes it possible to build programs that build programs from components of a few fixed types delivered by diffusion using processes that resemble chemistry as much as computation.Comment: in European Conference on Artificial Life (ECAL '15), York, UK, 201

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Computational composition strategies in audiovisual laptop performance

    Get PDF
    We live in a cultural environment in which computer based musical performances have become ubiquitous. Particularly the use of laptops as instruments is a thriving practice in many genres and subcultures. The opportunity to command the most intricate level of control on the smallest of time scales in music composition and computer graphics introduces a number of complexities and dilemmas for the performer working with algorithms. Writing computer code to create audiovisuals offers abundant opportunities for discovering new ways of expression in live performance while simultaneously introducing challenges and presenting the user with difficult choices. There are a host of computational strategies that can be employed in live situations to assist the performer, including artificially intelligent performance agents who operate according to predefined algorithmic rules. This thesis describes four software systems for real time multimodal improvisation and composition in which a number of computational strategies for audiovisual laptop performances is explored and which were used in creation of a portfolio of accompanying audiovisual compositions

    On some one-sided dynamics of cellular automata

    Get PDF
    A dynamical system consists of a space of all possible world states and a transformation of said space. Cellular automata are dynamical systems where the space is a set of one- or two-way infinite symbol sequences and the transformation is defined by a homogenous local rule. In the setting of cellular automata, the geometry of the underlying space allows one to define one-sided variants of some dynamical properties; this thesis considers some such one-sided dynamics of cellular automata. One main topic are the dynamical concepts of expansivity and that of pseudo-orbit tracing property. Expansivity is a strong form of sensitivity to the initial conditions while pseudo-orbit tracing property is a type of approximability. For cellular automata we define one-sided variants of both of these concepts. We give some examples of cellular automata with these properties and prove, for example, that right-expansive cellular automata are chain-mixing. We also show that left-sided pseudo-orbit tracing property together with right-sided expansivity imply that a cellular automaton has the pseudo-orbit tracing property. Another main topic is conjugacy. Two dynamical systems are conjugate if, in a dynamical sense, they are the same system. We show that for one-sided cellular automata conjugacy is undecidable. In fact the result is stronger and shows that the relations of being a factor or a susbsystem are undecidable, too
    • …
    corecore