
Turku Centre for Computer Science

TUCS Dissertations
No 255, September 2020

Joonatan Jalonen

On Some One-Sided Dynamics
of Cellular Automata

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/347180774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On Some One-Sided Dynamics of
Cellular Automata

Joonatan Jalonen

To be presented, with the permission of the Faculty of Mathematics and
Statistics of the University of Turku, for public criticism in Natura IX on

September 4, 2020, at 12 noon.

University of Turku
Department of Mathematics and Statistics

FI-20014 Turku, Finland

2020

Supervisor

Professor Jarkko Kari
Department of Mathematics and Statistics
University of Turku
FI-20014 Turku
Finland

Reviewers

Professor Luciano Margara
Department of Computer Science and Engineering
University of Bologna
Via dell’Università 50, Cesena
Italy

Professor Anahi Gajardo
Department of Mathematical Engineering
University of Concepción
Casilla 160-C, Concepción
Chile

Opponent

Professor Guillaume Theyssier
Department of Mathematics
University of Aix-Marseille
13288 Marseille Cedex 9
France

The originality of this thesis has been checked in accordance with the University

of Turku quality assurance system using Turnitin OriginalityCheck service.

ISBN 978-952-12-3964-9
ISSN 1239-1883

Abstract

A dynamical system consists of a space of all possible world states and
a transformation of said space. Cellular automata are dynamical systems
where the space is a set of one- or two-way infinite symbol sequences and
the transformation is defined by a homogenous local rule. In the setting of
cellular automata, the geometry of the underlying space allows one to define
one-sided variants of some dynamical properties; this thesis considers some
such one-sided dynamics of cellular automata.

One main topic are the dynamical concepts of expansivity and that of
pseudo-orbit tracing property. Expansivity is a strong form of sensitivity
to the initial conditions while pseudo-orbit tracing property is a type of
approximability. For cellular automata we define one-sided variants of both
of these concepts. We give some examples of cellular automata with these
properties and prove, for example, that right-expansive cellular automata
are chain-mixing. We also show that left-sided pseudo-orbit tracing property
together with right-sided expansivity imply that a cellular automaton has
the pseudo-orbit tracing property.

Another main topic is conjugacy. Two dynamical systems are conju-
gate if, in a dynamical sense, they are the same system. We show that for
one-sided cellular automata conjugacy is undecidable. In fact the result is
stronger and shows that the relations of being a factor or a susbsystem are
undecidable, too.

i

ii

Tiivistelmä

Dynaaminen systeemi muodostuu kaikkien maailmantilojen tila-avaruudesta
ja tämän avaruuden transformaatiosta. Soluautomaatit ovat dynaamisia
systeemejä, joiden tila-avaruus muodostuu yhteen tai kahteen suuntaan ää-
rettömistä symbolien jonoista, ja joiden transformaation määrittelee ho-
mogeeninen paikallinen sääntö. Avaruuden geometriasta johtuen soluau-
tomaateille voidaan joistain dynaamisista ominaisuuksista määritellä yk-
sipuoleisia versioita; tässä väitöskirjassa tarkastellaan soluautomaattien yk-
sipuoleista dynamiikkaa.

Yksi väitöskirjan pääteemoista ovat ekspansiivisuuden ja pseudorato-
jen jäljitysominaisuuden dynaamiset käsitteet. Ekspansiivisuus kuvaa sys-
teemin voimakasta herkkyyttä muutoksiin alkutilassa. Pseudoratojen jälji-
tysominaisuus taas kuvaa systeemin tiettyä apporksimoitavuutta. Väitöskir-
jassa näistä ominaisuuksista määritellään yksipuoleiset versiot. Esitämme
joitain esimerkkejä soluautomaateista, joilla nämä ominaisuudet ovat, ja
todistamme muun maussa, että oikealle ekspansiiviset soluautomaatit ovat
ketjusekoittavia. Näytämme myös, että soluautomaatilla jolla on vasen
pseudoratojen jäljitysominaisuus ja oikea ekspansiviisuus on itse asiassa ta-
vanomainen pseudoratojen jäljitysominaisuus.

Toinen pääteema on konjugaattisuus. Dynaamiset systeemit ovat kon-
jugaatteja, jos ne ovat dynaamisessa mielessä sama systeemi. Näytämme,
että yksipuoleisille soluautomaateille konjugaattisuus on ratkeamaton omi-
naisuus. Itse asiassa tulos on vahvempi ja näyttää samalla, että on ratkea-
matonta onko soluautomaatti toisen tekijä tai alisysteemi.

iii

iv

Acknowledgements

PhD studies: I thank Luciano Margara and Anahi Gajardo for reviewing
my thesis, and Guillaume Theyssier for agreeing to act as my opponent,
all in the midst of the coronavirus pandemic. I also thank Jarkko Kari for
supervising my PhD studies. His influence on this work is undisputed – see
the list of original publications. I admire the clarity and ingenuity of his
thinking. He’s also an ok orienteer.
Before PhD studies: I am a people person, and as such, was properly
drawn to mathematics by the interesting, sincere, and characterful lecturers
at the university. Timo Neuvonen gave lectures which I found particularly
enticing. Alongside Timo other lecturers such as Juha Honkala, Markku
Koppinen (also the supervisor of my Master’s thesis), and Petri Rosendahl,
made the first years of university intriguing and memorable.
Colleagues: I thank Anni Hakanen, Jarkko Peltomäki, and Ville Junnula
for their sense of humour which I desperately needed especially towards the
end of my studies, and which I will surely sorely miss. Markus Whiteland,
if you’re ever done with mathematics I think another training session or
two and our blues duo would be ready for gigging. I would praise Mikhail
Barash next, but there is no room to do it properly.

Michal Szabados, Etienne Moutot, and Johan Kopra: You’re welcome.
Friends: Without Topi Hurtig I had never even begun my PhD studies
(thanks?). You’ve been a great friend and understand better than anyone
where I’m at. Andi, Karri, Marie, Sami, Tanja, . . . and many others, your
friendship has meant more to me than you probably know, but there’s only
so much space one can use for acknowledgements.
Family: My fondest memories are from Naantali with my father, Joni, and
brothers, Aleksi and Miio – the discussions around the dining room table
were so funny, genuine, and every now and then even just a little bit smart,
I dare say. But is it a paradox that I admire my father greatly yet feel
somewhat terrified when I realize just how much I resemble him?
Riikka: Rakkaus on pikku juttu, se mahtuu väliin rivien; kuin ohimennen,
niin itsestäänselvää – kuten kappaaleessa sanotaan.

the 12th of August, 2020 Joonatan Samuel Jalonen

v

vi

List of original publications

1. J. Jalonen, J. Kari. “Conjugacy of One-Dimensional One-Sided Cellu-
lar Automata is Undecidable”. In: SOFSEM 2018: Theory and Prac-
tice of Computer Science - 44th International Conference on Current
Trends in Theory and Practice of Computer Science, Krems, Austria,
January 29 - February 2 (2018) pp. 227–238.

2. J. Jalonen, J. Kari. “On Dynamical Complexity of Surjective Ulti-
mately Right-Expansive Cellular Automata”. In: AUTOMATA 2018:
Cellular Automata and Discrete Complex Systems - 24th IFIP WG 1.5
International Workshop, AUTOMATA 2018, Ghent, Belgium, June
20-22 (2018) pp. 57–71.

3. J. Jalonen, J. Kari: “On Expansivity and Pseudo-Orbit Tracing Prop-
erty for Cellular Automata”. Fundamenta Informaticae 171:1–4 (2020)
pp. 239–259

4. J. Jalonen, J. Kari: “On the Conjugacy Problem of Cellular Au-
tomata”. Information and Computation (2020) 104531, doi: 10.1016/
j.ic.2020.104531

vii

https://doi.org/10.1016/j.ic.2020.104531
https://doi.org/10.1016/j.ic.2020.104531

viii

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Basic Notations . 7

2.2 Automata, Languages, and Graphs 8

2.3 Topological Dynamics . 9

2.4 Symbolic Dynamics and Cellular Automata 10

2.4.1 Shift Spaces . 10

2.4.2 Cellular Automata . 13

2.4.3 Subshifts and Cellular Automata as Topological Dy-
namical Systems . 13

2.4.4 Higher-Dimensional Symbolic Dynamics 25

2.4.5 Computability . 27

3 Stripe Shifts 29

3.1 Definition and the Stripe Lemma 30

3.2 Characterization of Sofic Stripe Shifts 33

3.3 An Uncountable Stripe Shift 35

4 Reversible One-Sided Cellular Automata 41

4.1 Reversible One-Sided Cellular Automata 42

4.1.1 Elementary ROCA’s as Products of Involutions 45

4.2 Examples . 47

4.3 Periodicity and the Diagonal Cellular Automata 55

5 One-Sided Ultimate Expansivity and One-Sided Pseudo-Orbit
Tracing Property 65

5.1 Ultimate One-Sided Expansivity 66

5.1.1 One-Sided Pseudo-Orbit Tracing Property 69

5.1.2 Right-Expansivity Implies Chain-Mixingness 71

5.2 Left-POTP and Ultimate Right-Expansive Cellular Automata
Have POTP . 74

5.3 Right-Expansive Cellular Automaton with Non-Sofic Traces . 77

ix

5.4 Left-POTP Cellular Automaton with Non-Sofic Traces 79

6 Conjugacy 83
6.1 One-Dimensional Case . 84

6.1.1 Conjugacy of One-Dimensional One-Sided Cellular Au-
tomata Is Undecidable 84

6.1.2 Restricted Cases . 88
6.1.3 Short Note on Conjugacy of Subshifts 89

6.2 Two-Dimensional Case . 90
6.2.1 Conjugacy of Reversible Two-Dimensional Cellular Au-

tomata . 90
6.3 Fixing the Alphabet . 96

6.3.1 Fixing the Alphabet for One-Dimensional Cellular Au-
tomata . 96

6.3.2 Fixing the Alphabet for Two-Dimensional Cellular Au-
tomata . 98

7 Open Problems 101

x

Chapter 1

Introduction

We start with an informal introduction to the topic, proper mathematical
rigour shall make its way into the thesis starting from the beginning of the
next chapter. For now it shall be good enough to consider that we are
studying infinite sequences of states (or symbols), such as this one

· · · 0000111010000101000 · · · .

A sequence like this is called a configuration; we are interested in the set of all
configurations. We usually have more states that just two (though always
only finitely many), and even though we mostly use numbers as states,
the numerical value is not important, and we could just as well define all
configurations using, for example, letters or colours. A cellular automaton
is a function that maps configurations to configurations in a special way:
Every position updates its state into a new state uniquely, based on its own
state and the states of its neighbors. Positions are called cells and in every
cell we have a simple automaton determining its behaviour, hence the name
cellular automaton. An example should make things clearer. Consider all
infinite sequences of zeroes and ones. Update every position as follows: Add
the value in the cell and in its immediate right and left neighbors together
modulo two, so that the next value is 0 if the three consequent cells contain
even number of ones and 1 otherwise. So, for example, the configuration
above updates as follows

· · · 0000111010000101000 · · ·
· · · 0001010011001101100 · · ·
· · · 0011011100110000010 · · ·
· · · 0100001011001000111 · · ·

where we have assumed that the state of every non-visible cell is zero. Fig-
ures 1.1 and 1.2 present some space-time diagrams of this cellular automa-

1

Figure 1.1: Running rule 150
from · · · 00100 · · · . Time ad-
vances downwards, as it will in ev-
ery figure of this thesis.

Figure 1.2: Running rule 150 from
a random initial configuration.

ton. This cellular automaton is known as rule 150 based on the numbering
scheme deviced by Stephen Wolfram [63].

From the example above, let us try to infer some abstract reasons that
make cellular automata worth studying. Notice that locally a cellular au-
tomaton is very simple. In fact, those in the know will recognize that locally
a cellular automaton is defined by what is called a finite state automaton, a
machine which is known to be computationally quite restricted. Notice also
that this local behaviour is not only simple, it is also homogenous in the
sense that the same rule is applied everywhere. John von Neumann, who
originally presented cellular automata [59], was interested in a mathematical
model that resembles natural computation. The usual model of computa-
tion, that is, Turing machines resemble an artificial computational device (a
computer) in that it has two separate parts: A complex part that is respon-
sible for carrying out the computation (think of the CPU of a computer)
and a static memory that the complex part can access and modify. In a
natural compuational device (such as a brain) complexity arises from paral-
lelism rather than having a centralized computational unit, in other words,
natural computational devices are locally simple, at least when compared
to their global behaviour (neurons are relatively simple when compared to
the very complex behaviour their parallel interaction gives raise to). Cellu-
lar automata attempts to mimic this natural phenomenon: Locally simple,
globally complex.

Cellular automata can simulate arbitrary Turing machines; this com-
putational universality was shown for two-dimensional cellular automata
by von Neumann [59], for one-dimensional cellular automata by Alvy Rey
Smith III [57], and for reversible one-dimensional cellular automata by Ke-
nichi Morita and Masateru Harao [49]. These are theoretically important
in the sense that they show that cellular automata are capable of carrying
out complex computations. However, it is somewhat unsatisfactory that

2

these constructions explicitly set the cellular automaton up to implement
a known computationally universal machine rather than the complexity to
arise more “naturally”. In this regard the computational universality of
the famous Game of Life and that of the rule 110 (in the aforementioned
Wolfram’s numbering scheme) are interesting as these are both very simple
cellular automata neither of which was tailor made for the purpose. Game
of Life was proven computationally universal by Elwyn Berlekamp, John
Conway, and Richard Guy [5], and rule 110 was proven computationally
universal by Matthew Cook [13].

It is worth noting that none of the constructions of cellular automata
cabable of universal computing benefit from the parallellism in any way, but
rather work against it. The constructions are set up so that most of the
configuration is in idle state while the computation is carried out in small
portion of the space at any given time. This also leads to only consider-
ing certain suitable configurations, since most configurations are not valid
encondings of the simulated machine (if one is directly simulating a Turing
machine, then one does not, for example, want multiple Turing machine
heads in one configuration). This leads one to ask whether we can study
cellular automata more as a whole: What kind of behaviour they exhibit?
What are their dynamics? The vagueness of these questions already points
out that we are lacking a proper language to have this discussion. The neces-
sary tools and language is provided by topological dynamics; this study was
intiated by Gustav Hedlund [26]. To get a feel of how the viewpoint may
change when we consider cellular automata as dynamical systems rather
than just computational devices, consider undecidability results. Asking
whether running a given cellular automaton from some fixed initial configu-
ration produces some specific state in the zeroth coordinate seems reasonable
from the computational point-of-view we started with, but feels unrelated
to the dynamical systems point-of-view. On the other hand, asking for a
fixed cellular automaton, if it is decidable whether a given a configuration is
periodic, is somewhere in between, since this is a dynamical property but,
on the other hand, considers only the behaviour of a single configuration.
Asking whether it is decidable if all configurations are periodic would be
even more natural decision problem from dynamical point-of-view. There
are plenty of undecidability results about cellular automata as dynamical
systems, for example, it is known that entropy (a certain complexity mea-
sure) is uncomputable (Lyman P. Hurd, Jarkko Kari, and Karel Culik [29]),
that all non-trivial properties of the limit set (meaning the set of configu-
rations that can appear arbitrarily late) are undecidable (Jarkko Kari [36]),
and the aforementioned periodicity is also undecidable (Jarkko Kari and
Nicholas Ollinger [38]), to mention a few.

Everything said thus far hopefully gives a rough feel of the field this
thesis belongs to. Let us next go through the structure of the thesis and

3

explain what is accomplished. In order to keep this exposition light, we will
not go into too much details.

In Chapter 2 we ground our notations and mention known results that
will be useful in the later chapters. Our notations and terminology are stan-
dard where standards exist. Most of the work goes into presenting geomet-
rical interpretations of various dynamical properties for cellular automata.

In Chapter 3 we present the notion of stripe shifts. Stripe shifts are
obtained when configurations appearing in time-evolutions of a cellular au-
tomaton are required to satisfy certain spatial homogenity. This is an in-
teresting topic, but largely independent from the rest of the thesis (we only
use one result about stripe shifts in a novel way in Chapter 5), thus we will
not aim to explain stripe shifts further here.

A dynamical system consists of a space and a transformation of this
space. When cellular automaton is interpreted as a dynamical system, the
set of configurations is the space and the map defined by a local rule is
the transformation of this space. Most of the concepts we consider in this
thesis are general concepts of dynamical systems (for example, expansivity,
pseudo-orbit tracing property, and conjugacy). However, the geometry of
cellular automata allows considering also one-sided variants of some dynami-
cal properties which cannot be defined for general dynamical systems. From
Chapter 4 onwards word “one-sided” appears frequently.

In all simplicity one-sided refers to the fact that the configurations as
described above were infinite both to the left and to the right, and then we
may consider certain properties only for one of these directions. First of all,
we can define one-sided cellular automata: This is nothing more than same
kind of local rules as above, but now over configurations which are infinite
only to the right, such as

0111010000101000 · · · .

Notice that now the local rule must also be one-sided, since if the rule
needs to look left, then we cannot define our map at the zeroth coordinate
(for example, the rule described above is not one-sided, and we could not
determine whether the first 0 should map to 0 or 1). In Chapter 4 we
study cellular automata which are one-sided and reversible, i.e. there exists
another one-sided cellular automaton which reverts its action.

Expansivity means strong sensitivity to the initial conditions, more specif-
ically it states that every pair of points, no matter how close to each other
they are, will at some point be far away from each other. For cellular
automata this can be interpreted as horizontal determinsm in the space-
time diagrams, i.e. a cellular automaton is expansive if and only if a large
enough vertical slice of a space-time diagram determines the entire space-
time diagram. Pseudo-orbit tracing property means that if the system is

4

simulated in high-enough precision one cannot distinguish this simulation
from reality. For cellular automata this can be interpreted by saying that
a cellular automaton has pseudo-orbit tracing property if and only if even
if one is allowed to make arbitrary changes to the configuration far enough
from the zeroth cell on every time step, the sequence observed in the ze-
roth coordinate is a sequence appearing in some actual space-time diagram.
In Chapter 5 we study expansivity and pseudo-orbit tracing property for
cellular automata. Again the geometry allows us to define one-sided vari-
ants of these concepts. We prove that a cellular automaton which has left
pseudo-orbit tracing property and is right-expansive actually has to have
pseudo-orbit tracing property (not only one-sided).

In Chapter 6 we turn to conjugacy. Conjugacy of dynamical systems is
a natural notion of “sameness”; dynamical systems that are conjugate are
in topological dynamical sense the same system. First we prove that for
one-sided cellular automata conjugacy is undecidable, i.e. there does not
exist an algorithm that would take two cellular automata and output “yes”
if they are conjugate and “no” if not. Then we prove this for reversible two-
dimensional cellular automata. In fact we prove more general results which
imply that some other common dynamical relations are also undecidable.

In Chapter 7 we wrap things up by stating some open problems.
For most parts the contents of this thesis have appeared in [31, 32, 33, 30].

Contents of Chapters 3 and 5 can be found in [32] and [33] with the exception
of an example of an uncountable stripe shift, which has not been published
before. Some quite simple reversible one-sided cellular automata are used
in constructions of all of the aforementioned publications, and for this sake
we have included here a slightly longer discussion about them than was
possible in any of these publications; this is done in Chapter 4. The main
undecidability results regarding conjugacy in Chapter 6 have appeared in
[31] and [30], though the fixed alphabet variants presented here are new.

5

6

Chapter 2

Preliminaries

In this chapter we present notations, some basic definitions, and some well-
known, or at least simple, results about symoblic dynamics and cellular
automata in particular. Mainly we want to interpret topological dynamical
concepts in the setting of symbolic dynamics; various properties tend to have
nice visual interpretations in the setting of cellular automata. We assume
that the reader is familiar with large portions of this chapter and in many
topics we will only mention our conventions without going into more details.

The book [42] by Douglas Lind and Brian Marcus is a good comprehen-
sive introduction to symbolic dynamics (and coding), and we will pick a few
results from there. For an introduction to topological dynamical point of
view to symbolic dynamics see, e.g, Petr Kůrka’s book [40].

2.1 Basic Notations

We denote by N,Z and R the sets of natural number, integers and reals,
respectively. In order to avoid some repetition, we use M to denote when
both N and Z may be used. For us, 0 ∈ N. Let i, j ∈ Z such that i ≤ j,
then we denote by [i, j] = [i, j+1) = (i−1, j] = {i, i+1, . . . , j}. Let X,Y, Z
be sets. We denote by Y X the set of all functions X → Y . For f ∈ Y X

and g ∈ ZY the composition of functions is written as gf and defined by
gf(x) = g(f(x)) for all x ∈ X. For a function f : X → Y and a subset
X ′ ⊆ X, the restriction of f to X ′ is denoted by f |X′ or, in some cases,
simply by fX′ . We denote the cardinality of a set X by |X|.

If we need to use superscripts as indices, we write the index in parenthesis
to separate indices from exponents, i.e. x(i) denotes an element indexed by
i while xi denotes the ith power of x.

7

2.2 Automata, Languages, and Graphs

Let A be, as it always will be in this thesis, a finite non-empty set. In the
context of languages the set A is often called an alphabet and its elements
symbols or letters, we will call them also states. A word of length n ∈ N
over the alphabet A is an n-element sequence of letters from A. The word of
length 0 is called the empty word. The empty word is often given a special
symbol, but we will not need one. The set of all words of length n ∈ N over
A is denoted by An. We also denote A∗ =

⋃
n∈NA

n and A+ =
⋃
n∈N\{0}A

n.
The length of a word u ∈ A∗ is denoted by |u|. Any subset L ⊆ A∗ is called
a language. If L is finite, the language is a finite language. If the language
L is recognized by a finite state automaton (as defined, for example, in [28,
§2.2.1]), it is a regular language.

A (labeled directed) graph is a quintuple G = (V,E, s, t, λ) where V is
a finite set of vertices, E is a finite set of edges or arrows, s and t are
functions E → V which should be understood as specifying the source and
the terminal vertices of the edges, i.e. e ∈ E is an arrow from s(e) to t(e),
and λ is a labeling function E → A where A is some finite alphabet. We
are not actually ever again going to bother being this formal and instead
will define graphs as triplets (V,E, λ) and consider E ⊆ V × V , but then
E actually would need to be a multiset to allow multiple edges between
same vertices. In practice no confusion should arise. We denote by v

a→ v′

that there are vertices v, v′ ∈ V and an edge e ∈ E such that s(e) = v
and t(e) = v′ and λ(e) = a, we may leave the label out if it is not relevant
for the considerations at hand. Note that loops, i.e. edges from a vertex
to itself, are allowed. We extract two languages from a graph. First is a
language over V of sequences of vertices that can follow each other in the
graph, i.e. v = v0v1 · · · vn−1 ∈ V ∗ is in this language if and only if there is
a directed path v0 → v1 → · · · → vn−1 in the graph (note that the labels
play no role here). The other one is defined by the labels of paths, i.e. a
word u = u0u1 · · ·un−1 ∈ A∗ is in this language if and only if there exists a

path v0
u0→ v1

u1→ · · · un−1→ vn, where ui = λ((vi, vi+1)), is in the graph. These
are, of course, regular languages. One can define an “edge language” in the
same way we defined “vertex language”, but we will not use this notion.

Graph is called connected if it is possible to reach any vertex from any
other vertex by traversing along edges, irregardless of the direction of the
edges (i.e. one is allowed to go from vertex v0 to v1 if there is an edge v1 → v2

or an edge v2 → v1). Graph is called strongly connected if there is a directed
path from every vertex to every other vertex. A connected component is
a maximal connected subgraph and a strongly connected component is a
maximal strongly connected subgraph.

8

2.3 Topological Dynamics

A (topological) dynamical system is a pair (X,φ) where X is a compact
metric space and f a continuous map X → X. Let (X,φ) and (Y, ϕ) be two
dynamical systems. A continuous map ψ : X → Y is a homomorphism if
ψφ = ϕψ. If ψ is surjective, it is a factor map, and (Y, ϕ) is a factor of (X,φ).
If ψ is injective, it is an embedding, and (X,φ) is a subsystem of (Y, ϕ). If
ψ is a bijection, it is a conjugacy, and (X,φ) and (Y, ϕ) are conjugate.
Conjugacy of (X,φ) and (Y, ϕ) is denoted by (X,φ) ∼= (Y, ϕ) or just φ ∼=
ϕ. Homomorphisms from (X,φ) to itself are called endomorphisms, and
bijective homomorphisms (which are homeomorphisms, as the underlying
space is compact and metric) from (X,φ) to itself are called automorphisms.
A dynamical system (X,φ) is called reversible if φ is a homeomorphism. Let
dist : X×X → R+∪{0} be the metric considered. A sequence (xi)i∈Z ∈ XZ

is a (two-way) orbit of φ if φ(xi) = xi+1 for every i ∈ Z. Let x, y ∈
X. There is an ε-chain from x to y if there exists n > 0 and a sequence
x = x0, x1, . . . , xn = y ∈ X such that dist(φ(xi), xi+1) < ε, for all i ∈
{0, 1, . . . , n− 1}. Two-way infinite ε-chains are called ε-pseudo-orbits.

Let (X,φ) be a dynamical system.

• (X,φ) is recurrent if for every non-empty open set U there exists n > 0
such that φn(U) ∩ U 6= ∅.

• (X,φ) is transitive if for all non-empty open sets U, V there exists
n > 0 such that φn(U) ∩ V 6= ∅.

• (X,φ) is mixing if for all non-empty open sets U, V there exists N > 0
such that for all n ≥ N it holds that φn(U) ∩ V 6= ∅.

• (X,φ) is chain-recurrent if for all x ∈ X and ε > 0 there exists an
ε-chain from x to x.

• (X,φ) is chain-transitive if for all x, y ∈ X and ε > 0 there exists an
ε-chain from x to y.

• (X,φ) is chain-mixing if for all x, y ∈ X and ε > 0 there exists N > 0
such that for all n ≥ N there exists an ε-chain x = x0, x1, . . . , xn = y
from x to y.

• (X,φ) has the pseudo-orbit tracing property (POTP), often also called
the shadowing property, if for all ε > 0 there exists δ > 0 such that
for any δ-pseudo-orbit (xi)i∈Z there exists an orbit (yi)i∈Z such that
dist(xi, yi) < ε for all i ∈ Z.

• (X,φ) is positively expansive if φ is surjective and there exists ε >
0 such that for all x, y ∈ X it holds that x 6= y =⇒ ∃n ∈ N :
dist(φn(x), φn(y)) > ε. Such an ε is called an expansivity constant.

9

• (X,φ) is expansive if φ is reversible and there exists ε > 0 such that for
all x, y ∈ X it holds that x 6= y =⇒ ∃n ∈ Z : dist(φn(x), φn(y)) > ε.
Such an ε is called an expansivity constant.

A point x ∈ X is φ-periodic if there exists n ∈ N\{0} such that φn(x) =
x. The set of all φ-periodic points is denoted by Perφ(X).

A point x ∈ X is an equicontinuity point of (X,φ) if for all ε > 0 there
exists δ > 0 such that for all y ∈ X it holds that dist(x, y) < δ =⇒
dist(φn(x), φn(y)) < ε for every n ≥ 1. A dynamical system is equicontinu-
ous if every point is an equicontinuity point.

2.4 Symbolic Dynamics and Cellular Automata

General dynamical systems are not the object of study of this thesis, rather
we are interested in specific kinds of dynamical systems, namely, to some
degree, subshifts and, especially, cellular automata. In this section we give an
overview of these topics picking important, mostly very well-known, results
from the literature, and also give interpretations for the various topological
dynamical properties defined in the previous section.

Vast majority of this thesis considers one-dimensional cellular automata,
and to accomodate this we first discuss one-dimensional symbolic dynam-
ics. However, two-dimensional symbolic dynamics plays a minor role in two
ways: First, the space-time diagrams of one-dimensional cellular automata
are two-dimensional objects, and so some concepts of two-dimensional sym-
bolic dynamics can aid understanding. Second, and more direct, way is the
last chapter of the thesis, where we discuss conjugacy of two-dimensional
cellular automata. Thus we end this section by defining higher-dimensional
subshifts and cellular automata.

2.4.1 Shift Spaces

Let A, again, be a finite nonempty set. In this context we may also call A a
set of colours. The set AM is called the full (A-)shift. An element c ∈ AM is
called a configuration. In all the definitions we add the word two-sided when
we want that M = Z and the word one-sided when we want that M = N.
The ith element (or the color of the cell i), is usually denoted by ci = c(i).
In pictures and in mental images the configurations are usually sequences of
symbols such as

· · · 01210.11020 · · ·

where the first letter to the right of the decimal point, is the zeroth element.
We leave this decimal point out when knowing the zeroth cell is not impor-
tant. For one-sided configurations marking the zeroth letter is unnecessary,

10

so it is left out:
01221001 · · · .

We could also present these as colorings of rows of squares; the numbers
here are considered solely as symbols, and their numerical value has no
relevance. For a finite word u ∈ An we denote uω ∈ AN the configuration
defined by uωi = ui mod n. Similarly we denote ωuω ∈ AZ. We can also
do concatenations such as ωuvwω which is understood as a configuration
· · ·uuuvwww · · · , and if the zeroth element is important, we denote it with
a decimal point as above, for example, ωu.vwω. If the configuration is given
using letters, we use brackets to denote which part is to be repeated, for
example,

ω(01)2(010)ω = · · · 0101012010010010 · · · .

The word shift appears in the name of the full shift because of the
importance of the following simple function: The map σ : AM → AM defined
by σ(c)i = ci+1 for every i ∈ M is called the shift map. Here is an example
of the shift map σ applied to a two-sided configuration

· · · 01210.11020 · · ·
· · · 12101.10200 · · ·
· · · 21011.02001 · · ·

and to a one-sided configuration

01221001 · · ·
12210010 · · ·
22100100 · · · .

Already at this point one may remark an important difference: the shift
map is a bijection over AZ but not over AN (in the non-trivial case when
|A| > 1).

So far we have defined only full shifts; we would like to have other shift
spaces too. Let X ⊆ AM. We say that a word u ∈ An appears in X if
there exists c ∈ X and i ∈ M such that c[i,i+n) = u. Now the language
of X is the set of all words that appear in some configuration of X, i.e.
L(X) = {u ∈ A∗ | ∃c ∈ X : ∃i ∈ M : c[i,i+|u|) = u}. What we want from
our shift spaces is that they are defined by their languages, i.e. we say that
X ⊆ AM is a shift space or a subshift if for every c ∈ AM it holds that if
L(c) ⊆ L(X) then c ∈ X. We want this since it gives us two important
properties. First of all, X is then shift invariant, i.e. if c ∈ X then also
σi(c) ∈ X for all i ∈ M, since clearly L(σi(c)) ⊆ L(c) for all i ∈ M. Second
one is a compactness property: for any configuration c ∈ AM \ X there is
always a finite segment c[i,i+n) for some i ∈ M, n ∈ N \ {0} from which

11

01 2

Figure 2.1: Example of a graph
defining an 2-SFT, where every
second letter is 0 and every sec-
ond is either 1 or 2.

0

10

1

Figure 2.2: A graph defining
a proper sofic shift: For any
k, for example, the configura-
tion ω102k+11ω illustrates that the
subshift defined is not an k-SFT

we see that c /∈ X, i.e. c[i,i+n) /∈ L(X). Thus we cannot have a subshift

X ∈ {0, 1}Z which would contain ω010ω but would not contain ω0ω since
L(ω0ω) = 0∗ ⊆ L(ω010ω).

A subshift X is called one-sided if X ⊆ AN and two-sided if X ⊆ AZ.
As was mentioned before, the important difference is whether the shift map
is reversible or not.

We denote by Ln(X) = L(X)∩An, i.e. the words of length n that appear
in X. For n ∈ N \ {0} we say that the subshift X is an n-degree subshift
of finite type (n-SFT) if it is sufficient to check the words of length n that
appear in c to determine whether it belongs to X or not, or more formally,
X is an n-SFT if

Ln(c) ⊆ Ln(X) =⇒ c ∈ X.

A subshift X is an subshift of finite type (SFT) if it is an n-SFT for some
n ∈ N\{0}. The 2-SFT’s can be conveniently expressed as (directed) graphs
(V,E) where the set of vertices V = A is the alphabet and there is an edge
(a, b) ∈ E ⊆ V × V if and only if ab ∈ L2(X) (see Figure 2.1). The subshift
X is a sofic shift if L(X) is a regular language, and thus sofic shifts can
be expressed as labels of edges of (labeled directed) graphs (by using finite
state automata). The sofic shift defined by the graph (automaton) of Figure
2.2 illustrates that sofic shifts need not be SFT’s, such sofic shifts are called
proper sofic if the distinction is important.

We call an n-SFT approximation of a subshift X the smallest n-SFT that
contains X, and this is denoted by SFTn(X). In other words, c ∈ SFTn(X)
if and only if Ln(c) ⊆ Ln(X). For example 3-SFT approximation for the
subshift defined by the graph of Figure 2.2 is a subshift where 101 and 010
are forbidden.

Subshifts can equally well be defined using forbidden words, i.e. by saying
that X is a subshift if and only if there exists a lanugage F (of forbidden
words) such that c ∈ X if and only if for every i, j ∈M such that i < j holds
that c[i,j) /∈ F . A subshift is an SFT if and only if the language of forbidden
words can be chosen finite and sofic if and only if the language of forbidden
words can be chosen regular. A subshift defined by forbidding language F

12

is denoted by XF . See [42, §1.3] for details.

2.4.2 Cellular Automata

Let X ⊆ AM be a subshift, B an alphabet, and a,m ∈ N (if M = N then
we require that m = 0). Let Floc : Lm+a+1(X) → B be a map which we
call a local rule. Local rule defines a sliding block map F : X → BM by
F (c)i = f(c[i−m,i+a]); it is called a sliding block map since we can consider
it as sliding a window of size m+ a+ 1 over the configuration and applying
Floc in each position to get a new configuration. Here m and a are memory
and anticipation of the sliding block map, and r = max{m, a} is its radius.
The smallest possible radius that can be used to define the sliding block map
F is denoted by r(F). Mostly we discuss specific kind of sliding block maps,
where we in addition require that F (X) ⊆ X, such maps we call cellular
automata. A cellular automaton over X ⊆ AN is called one-sided and a
cellular automaton over X ⊆ AZ is called two-sided.

As an example, notice that the SFT of Figure 2.1 maps to the sofic
shift of Figure 2.2 by a sliding block map defined by the local rule Floc :
{01, 10, 02, 20} ⊆ A{0,1} → {0, 1} where 01, 10 7→ 0 and 02, 20 7→ 1, for
example,

F (0101020102020 · · ·) = 000011001111 · · · .

If m = 0 we can interpret the sliding block map over both one- and two-
sided subshifts. If m > 0 then, of course, the sliding block map can only be
considered over a two-sided subshift.

Let (X,F) be a cellular automaton with radius r = r(F). Then the
local rule can be applied to any word that is at least 2r+ 1 letters long. We
will denote the maps that cellular automata induce on finite words by lower
case letters, i.e. f for F . So f :

⋃
k∈N L2r+k+1(X) → L(X) is defined by

f(u[0,2r+k]) = Floc(u[0,2r])Floc(u[1,2r+1]) · · ·Floc(u[k,2r+k]).

2.4.3 Subshifts and Cellular Automata as Topological Dy-
namical Systems

Next we want to put subshifts and cellular automata into a topological
dynamical setting and then interpret topological dynamical properties for
them. After this section the general topological definitions will play only a
minor role, if even that.

First we turn full shifts into compact metric spaces. This is achieved by
defining metric dist : AM → R+ ∪ {0} by setting

dist(c, e) =

{
2−i, if i = min{|k| | ck 6= ek} exists

0, if c = e

13

for all c, e ∈ AM. It is well-known that this turns AM into a compact metric
space. Let D ⊆ M be a finite subset and u ∈ AD some finite pattern, then
the set [u] = {c ∈ AM | cD = u} is called a cylinder. Cylinder sets form a
countable clopen (closed and open) basis for the topology induced by the
metric dist.

Now that AM has been interpreted as a compact metric space we could
study dynamical systems (AM, φ) where φ : AM → AM is a continuous map.
These are, however, not necessarily cellular automata, as for example the
map T : AZ → AZ defined by T (c)i = c−i for all i ∈ Z can easily be seen
continuous, yet cannot be defined by a sliding block map. The issue is that
while cellular automata are spatially homogenous the metric we defined gives
a special emphasis to the zeroth cell. Spatial homogenity can be imposed
by requiring that the maps commute with the shift map, i.e. we are going
to study dynamical systems (AM, F) where σF = Fσ. Equivalently we
can say we are studying the endomorphisms of (AM, σ), as (AM, σ) is itself a
dynamical system (σ is easily seen to be continuous). We can then also study
subsystems, i.e. endomorphisms of (X,σ) where we obviously want that X
is compact (i.e. closed) and shift invariant (i.e. σi(X) ⊆ X for all i ∈ M).
Classical results state that these are precisely the correct requirements to
consider subshifts and cellular automata as dynamical systems.

Proposition 2.4.1 ([40, Proposition 3.12]). Let X ⊆ AM. Then X is a
subshift if and only if X is closed and σi(X) ⊆ X for all i ∈M.

Theorem 2.4.2 (Curtis-Hedlund-Lyndon [26, Theorem 3.4]). Let X be a
shift space. Cellular automata on X are precisely the endomorphisms of
(X,σ).

The shift map is usually only implicitly present, though we may talk
about shift-dynamical system (X,σ) if we want to emphasize that we are
considering the subshift as a dynamical system itself, not just as the un-
derlying space. The above results will be used as alternative definitions for
subshifts and cellular automata (i.e. we may, for example, prove that a set is
a subshift by showing that it is closed and shift-invariant without referring
to the proposition above).

Remark 2.4.3. Since the systems we study, i.e. cellular automata, are spa-
tially homogenous but the metric gives an emphasis to the zeroth coordinate,
one may ask whether this is a good choice of metric. Indeed it can seem
questionable at first that points ω0ω, ω0.10ω ∈ {0, 1}Z are far away from
each other even though these points are the same in almost every cell, and
we are considering systems which treat every position equally. In this sense
one could say that this is not a good intrinsic metric; it does not capture
what is relevant about the space for the dynamical system itself. However,
we consider cellular automata as computational devices, and use topological

14

dynamics for their study. From this point-of-view the metric above is justi-
fiable, for if we consider cellular automaton as a system someone is actually
observing, then this observer cannot observe the entire system and is forced
to give some cell a special role of being the central cell. One could call this
metric an observer’s metric. For this outside observer it is natural to con-
sider that configurations which are different far from the, abritrarily chosen,
central cell are close to each other. We refer to the article of Gianpiero
Cattaneo, Enrico Formenti, Luciano Margara, and Jacques Mazoyer [11] for
a candidate for better intrinsic (pseudo-)metric.

A cellular automaton (X,F) is called reversible if there exists another
cellular automaton (X,G) such that FG = GF = id, where id is the identity
map (which itself is clearly a cellular automaton). It turns out that it is suf-
ficient to assume that F is bijective: Clearly the inverse is shift-commuting,
and since X is a compact metric space, the inverse of F is also continuous,
and then by the Curtis-Hedlund-Lyndon Theorem the inverse is a cellular
automaton. For cellular automata over full shifts the following holds by
John Myhill [50].

Proposition 2.4.4 ([50]). Let (AM, F) be a cellular automaton. If F is
injective, it is surjective, and thus bijective, and so also reversible.

We will use this in Chapter 6, but notice that this does not hold for cellu-
lar automata over arbitrary subshifts; see an example by Tullio Ceccherini-
Silberstein and Michel Coortnaert in their arXiv paper [12, Example 7.13].

Let (X,F) be a cellular automaton. In this setting we call orbits space-
time diagrams. The set of all two-way space-time diagrams of (X,F) is
denoted by

stZ(X,F) = {(c(i))i∈Z ∈ XZ | ∀i ∈ Z : F (c(i)) = c(i+1)}.

Naturally we then denote the set of one-way space-time diagrams of (X,F)
by

stN(X,F) = {(c(i))i∈N ∈ XN | ∀i ∈ N : F (c(i)) = c(i+1)}.

We may also short-hand these notations to stZ(F) and stN(F) if there is no
risk of confusion. Instead of a sequence of configurations we usually visualize
these as labeled or coloured square lattices where each row represents a
configuration and time advances downwards. The words left, right, up, and
down should be understood accordingly. Considering the two-way infinite
space-time diagrams means in practice that the space-time diagrams are
considered over the limit set Λ(X,F) =

⋂
i∈N F

i(X). Of course for surjective
cellular automata Λ(X,F) = X.

An (two-sided) n-trace of a cellular automaton (X,F) where X ⊆ AM is

τZ,n(X,F) = {t ∈ (An)Z | ∃(c(i))i∈Z ∈ stZ(F) : ∀i ∈ Z : c
(i)
[0,n) = ti}.

15

Similarly we define τN,n(X,F). If the context allows, we may write this just
as τn(F), and trust that both the space and whether we are considering
one- or two-sided traces is clear from the context. Traces are just vertical
slices of space-time diagrams, and easily seen to be subshifts. For two-sided
cellular automata it is in some sense more natural to consider n-traces to be
centralized around the zeroth cell, but in practice this makes no real differ-
ence, and thus we will choose the indexing of the trace subshift’s alphabet
by whatever is most convenient in any given context.

Entropy can be defined for an arbitrary dynamical system, but we settle
for defining it only for one-dimensional cellular automata. Let (X,F) be a
cellular automaton. Then entropy of (X,F) is

h(X,F) = lim
m→∞

lim
n→∞

1

n
log2|Ln(τm(X,F))|.

For a shift-dynamical system (X,σ) we have that |Ln(τm+1)| ≤ |A|·|Ln(τm)|
so we have that

h(X,σ) = lim
n→∞

1

n
log2|Ln(τ1(X,σ))| = lim

n→∞

1

n
log2|Ln(X)|

and thus we can also write for a cellular automaton (X,F) that

h(X,F) = lim
m→∞

h(τm(X,F)).

Let us state some known results about entropy.

Proposition 2.4.5 ([40, Propositions 5.71 and 5.72]). Let (X,F) be a cel-
lular automaton where X ⊆ AM and r(F) = r.

1. h(X,F) ≤ 2r · log2|A|.

2. If M = N then h(X,F) = h(τr(X,F)).

The following generalization is due to Keywon Koh Park, and says that
analogous result to point 2 of the previous proposition holds in fact also for
two-sided cellular automata.

Proposition 2.4.6 ([54, Lemma 1]). Let X ⊆ AZ and let (X,F) be a
cellular automaton. Then h(X,F) = h(τ2r(X,F)).

The most important thing about entropy is that it is a conjugacy invari-
ant.

Proposition 2.4.7 ([42, Proposition 4.1.9 and Corollary 4.1.10]). Let (X,F)
be a cellular automaton and (Y,G) its factor. Then h(Y,G) ≤ h(X,F).
In particular this implies that if (X,F) and (Y,G) are conjugate, then
h(X,F) = h(Y,G).

16

For transitive sofic shifts the following holds.

Proposition 2.4.8 ([42, Corollary 4.4.9]). Let X be a transitive sofic shift
and Y ⊆ X a subshift. If h(Y, σ) = h(X,σ), then X = Y .

The following proposition is used in Chapter 6 to obtain arbitrarily high
entropy cellular automata from some positive entropy cellular automaton.

Proposition 2.4.9. Let (X,F) and (Y,G) be two cellular automata. Then
h(X × Y, F ×G) = h(X,F) + h(Y,G), and h(X,Fn) = n · h(X,F).

In practice it is impossible to observe entirety of an infinite system, and
traces can be considered as representing the finite precision that the observer
can manage. This makes sense for observing, but not for simulating since
we would need complete knowledge of the systems state in order to run the
simulation for abritrarily long. This viewpoint of simulating a system is
captured by pseudo-orbits. Let X ⊆ AZ be a two-sided subshift. Let (X,F)
be a cellular automaton with radius r. For every m ∈ N \ {0} we define a
(directed labeled multi-)graph Gm(X,F) = (Vm, Em, λm) as follows:

• The set of vertices is Vm = Lm(X).

• For every u ∈ Vm and x, y ∈ Lr(X) such that xuy ∈ Ln+2r(X) there is
an edge (u, f(xuy)) whose label is λm((u, f(xuy))) = xy. We express

this by saying that u
xy−→ f(xuy) is in Em.

The graph Gm(X,F) defines an SFT POm(X,F) such that τm(X,F) ⊆
POm(X,F) ⊆ (Am)Z where (u, v) ∈ (Am)2 is forbidden if there is no edge
u −→ v in the graph Gm(X,F). The points of

⋃
i∈N\{0} POi(X,F) are es-

sentially the pseudo-orbits of (X,F). As per usual, we may simplify the no-
tations by leaving the underlying space out of them. We could, again, define
one- and two-way variants, but at no point in this thesis are we interested in
one-way pseudo-orbits, so we will save ourselves the trouble of introducing
notations that would go unused anyway. One can consider pseudo-orbits
to represent simulations that only keep track of what is happening inside
a window of width m and on each step of the simulation outside of this
window arbitrary changes can occur. For one-sided cellular automata simi-
lar definitions can be made, but then naturally edges are labeled by Lr(X)
instead; however, we use the same notations for one-sided cellular automata
too.

The n-pseudo-orbits for a shift-dynamical system are easy to describe.

Proposition 2.4.10. Let X ⊆ AZ be a subshift. The set of n-pseudo-orbits
POn(X,σ) is naturally conjugate to SFTn+1(X).

Proof. It is easy to check that φ : SFTn+1(X)→ POn(X) defined by φ(c)i =
c[i,i+n) defines a conjugacy between POn(X) and SFTn+1(X).

17

0

2

1 1 0

Figure 2.3: Example of a non-
transitive sofic shift.

0 1 2

Figure 2.4: This is not mixing.

Similar result holds also for one-sided subshifts as long as one then con-
siders only forward infinite pseudo-orbits, which we just promised we would
not do at any point of this thesis.

Let us state some characterizations of topological properties for shift
spaces.

Proposition 2.4.11. Let X ⊆ AM be a subshift.

1. X is recurrent if and only if for every u ∈ L(X) there exists w ∈ L(X)
such that uwu ∈ L(X).

2. X is transitive if and only if for every u, v ∈ L(X) there exists w ∈
L(X) such that uwv ∈ L(X).

3. X is mixing if and only if for every u, v ∈ L(X) there exists N > 0 such
that for every n ≥ N there exists w ∈ Ln(X) such that uwv ∈ L(X).

4. X is chain-recurrent if and only if SFTn(X) is recurrent for every
n ∈ N.

5. X is chain-transitive if and only if SFTn(X) is transitive for every
n ∈ N.

6. X is chain-mixing if and only if SFTn(X) is mixing for every n ∈ N.

Proof. It is enough to consider cylinder sets since these form a basis of the
topology. Cylinder sets are in a correspondence with (finite sets of) finite
words. These observations make the claims rather obvious.

From the previous proposition we see that for SFT’s chain-recurrence,
chain-transitivity, and chain-mixingess are equivalent to recurrence, transi-
tivity, and mixingness (resp.). For sofic shifts this is not the case. For exam-
ple, the graph in Figure 2.3 defines a proper sofic shift which is not transitive
but is chain-transitive. Figure 2.4 shows its 2-SFT, i.e. the 1-pseudo-orbits,

18

0

2

1 0 1

Figure 2.5: Another example of a
non-transitive sofic shift.

0 1 2

Figure 2.6: This is a mixing SFT.

which shows that this sofic shift is not chain-mixing. Similarly Figures 2.5
and 2.6 show that a non-transitive sofic shift can be chain-mixing (the lat-
ter figure only illustrates that 2-SFT’s are mixing, and one should of course
check that all n-SFT’s are mixing). Similar examples were presented by
Enrico Formenti and Petr Kůrka [22].

Let (X,σ) where X ⊆ AM be a shift-dynamical system. For any k ∈
N \ {0} the kth power (X,σk) is a dynamical system which is naturally
conjugate to the shift-dynamical system (X(k), σ) whereX(k) = {c ∈ (Ak)M |
∃e ∈ AM : ∀i ∈ M : ci = e[ik,(i+1)k)}. Based on this we will call (X,σk) a
shift-dynamical system itself. The following proposition allows reducing a
problem about transitive SFT’s to a problem about mixing SFT’s in certain
situations (this is used in Chapter 5).

Proposition 2.4.12 ([42, §4.5]). Let (X,σ) be a transitive SFT. There
exists k ∈ N such that (X,σk) is a finite union of disjoint mixing SFT’s.

Let us characterize subshifts which have POTP.

Proposition 2.4.13. Subshift X ⊆ AM has POTP if and only if X is an
SFT.

Proof. This is clear by using Proposition 2.4.10; this fact that for subshifts
POTP is equivalent to being an SFT was originally proved by Peter Walters
[60].

Next proposition is well-known and says that all subshifts are expansive.

Proposition 2.4.14. Every two-sided subshift is expansive and every one-
sided subshift is positively expansive.

Proof. Let c, e ∈ AM. If c 6= e then there exists i ∈M such that ci 6= ei and
so dist(σi(c), σi(e)) = 1.

The following gives a topological characterization of sofic shifts; we con-
sider it as an alternative definition.

19

Proposition 2.4.15 ([42, Theorem 3.2.1]). Let X ⊆ AM, Y ⊆ BM be shift
spaces and let F : X → Y be a sliding block code, i.e. a factor map. If X
is an SFT, then F (X) is a sofic shift. If X is a sofic shift, so is F (X). In
fact, sofic shifts are precisely the factors of SFT’s.

Next we interpret topological dynamical concepts for cellular automata.

Proposition 2.4.16. Let X ⊆ AM be a subshift and (X,F) a cellular au-
tomaton.

1. (X,F) is recurrent if and only if for every n ∈ N \ {0} the n-trace
τn,N(X,F) is recurrent.

2. (X,F) is transitive if and only if for every n ∈ N \ {0} the n-trace
τn,N(X,F) is transitive.

3. (X,F) is mixing if and only if for every n ∈ N \ {0} the n-trace
τn,N(X,F) is mixing.

4. (X,F) is chain-recurrent if and only if for every n ∈ N\{0} the subshift
POn(X,F) is recurrent, or equivalently, if for every n ∈ N \ {0} there
exists a directed path from each vertex of Gn(X,F) back to itself.

5. (X,F) is chain-transitive if and only if for every n ∈ N \ {0} the
subshift POn(X,F) is transitive, or equivalently, if for every n ∈ N \
{0} there exists a directed path from every vertex of Gn(X,F) to every
other vertex of Gn(X,F).

6. (X,F) is chain-mixing if and only if for every n ∈ N \ {0} the subshift
POn(X,F) is mixing, or equivalently, if there exists N ∈ N such that
for every n > N there exists a path of length n from every vertex of
Gn(X,F) to every other vertex of Gn(X,F).

Proof. It is enough to consider cylinder sets, since these form a basis of the
topology.

1. Let (X,F) be such that τn,N(X,F) is recurrent for all n ∈ N \ {0}.
Let u ∈ L(X); we need to show that there exists n ∈ N \ {0} such that
Fn([u]) ∩ [u] 6= ∅. According to the first point of Proposition 2.4.11 there
exists w ∈ L(τ|u|(X,F)) such that uwu ∈ L(τ|u|(X,F)). But this already
proves that (X,F) is recurrent.

Suppose next that (X,F) is recurrent. Let n ∈ N \ {0} and ū =
(u(i))i∈[0,m) ∈ L(τn,N(X,F)) be arbitrary. We need to show that there exists

w̄ = (w(i))i∈[0,k) ∈ L(τn,N(X,F)) such that z̄ = ūw̄ū ∈ L(τn(X,F)). Since

ū ∈ τn,N(X,F) there exists c ∈ X such that F i(c)[0,n) = u(i) for all i ∈ [0,m).
Let r = r(F) and consider the cylinder [c[−mr,n+mr)] ⊆ X. By recurrence,

20

there exists k such that F k([c[−mr,n+mr)]) ∩ c[−mr,n+mr) 6= ∅, which proves
the claim.

The points 2. and 3. are similar.
4. This is a simple matter of rewriting the definitions.

(X,F) is chain-recurrent

⇐⇒ ∀ε > 0 : ∀c ∈ X : ∃c = c(0), . . . , c(n) = c ∈ X : dist(F (c(i)), c(i+1)) < ε

⇐⇒ ∀k ∈ N : ∀c ∈ X : ∃c = c(0), . . . , c(n) = c ∈ X : F (c(i))[−k,k] = (c(i+1))[−k,k]

⇐⇒ ∀k ∈ N : there is a directed path from each vertex of Gk(F) to itself

⇐⇒ ∀k ∈ N : POk(F) is recurrent.

Points 5. and 6. are similar.

Let (X,F) be a cellular automaton. A word u ∈ L[−m,m]∩M(X) is called
a blocking word (for (X,F)) if for every c, e ∈ X it holds that

c[−m,m]∩M = u = e[−m,m]∩M =⇒ ∀i ∈ N : F i(c)0 = F i(e)0.
1

The following is due to Petr Kůrka.

Proposition 2.4.17 ([39, Theorem 4]). A cellular automaton (X,F) is
equicontinuous if and only if there exists M ∈ N such that all words in
L[−M,M]∩M(X) are blocking words. This is also equivalent to the existence
of p, n ∈ N such that for all c ∈ X it holds that Fn+p(c) = Fn(c).

A cellular automaton (X,F) is periodic if there exists p such that F p(c) =
c for every c ∈ X; of course periodic cellular automata are reversible. From
the previous proposition it follows that if (X,F) is reversible then it is
equicontinuous if and only if it is periodic.

Let us introduce some natural projections. For any i, j ∈ [0, n) where i ≤
j we denote by pri : An → A and pr[i,j] : An → Aj−i+1 the projections de-
fined by pri(a0a1 · · · an−1) = ai and pr[i,j](a0a1 · · · an−1) = aiai+1 · · · aj . We

overload the notation and also denote by pri and pr[i,j] the maps (An)M →
AM and (An)M → (Aj−i+1)M which are defined cellwise by pri and pr[i,j].

Let (X,F) be a cellular automaton and POm(X,F) its m-pseudo-orbits.

We denote by iΣ
(m)
j (X,F) = pr[i,i+m)(POn(X,F)) where n = i+ j +m; it

is natural to call these pseudo-traces. We may denote iΣ
(m)
j = iΣ

(m)
j (X,F)

if there is no risk of confusion in the air. The pseudo-traces are factors of
pseudo-orbits, and since pseudo-orbits are SFTs, the pseudo-traces are sofic

shifts. One way to think of pseudo-traces iΣ
(m)
j is as the set of stripes of

1In the standard terminology this u would be called a 1-blocking word with offset m,
see [40, Definition 5.11].

21

m

τm(F)

Figure 2.7: Traces are vertical
stripes of space-time diagrams.

mi j

iΣ
(m)
j

POn(F)

Figure 2.8: Pseudo-orbits are con-
figurations where outside of the
stripes of width n we allow any-
thing. Pseudo-traces are factors
of pseudo-orbits in a natural way.

width m which can be extended i columns to the left and j columns to the
right without introducing violations of the local rule of F . See Figures 2.7
and 2.8 for visualizations of traces, pseudo-orbits, and pseudo-traces.

Since pseudo-traces are non-empty and i+1Σ
(m)
j ⊆ iΣ

(m)
j we have, by the

finite intersection property, that ∞Σ
(m)
j =

⋂
k∈N kΣ

(m)
j is non-empty. Since

∞Σ
(m)
j is also closed and shift-invariant it is a subshift. In similar fashion

we define subshifts iΣ
(m)
∞ =

⋂
k∈N iΣ

(m)
k and ∞Σ

(m)
∞ =

⋂
k∈N kΣ

(m)
k . The

following proposition shows that in the limit, pseudo-traces coincide with
traces.

Proposition 2.4.18. Let (X,F) be a cellular automaton. Then for every

m ∈ N \ {0} it holds that τm(F) = ∞Σ
(m)
∞ .

Proof. Let (X,F) be a cellular automaton with radius r and let m ∈ N\{0}
be arbitrary.

“⊆”: If t ∈ τm(F) then any space-time diagram that contains t shows

that t ∈ kΣ
(m)
k for every k ∈ N.

“⊇”: It is enough to show that L
(⋂

k∈N kΣ
(m)
k

)
⊆ L(τm(F)). Suppose

not, i.e. that there exists u ∈ Ln(
⋂
k∈N kΣ

(m)
k) \ Ln(τm(F)) for some n ∈ N.

Let

U = {(v, w) ∈ Anr ×Anr |vu0w ∈ L2nr+m(X) and if we consider vu0w

as an element of A[−nr,m+nr) then

f i(vu0w)[0,m) = ui for all i ∈ {0, . . . , n− 1}}.

Since u ∈ L(nrΣ
(m)
nr) the set U is non-empty. Since u /∈ Ln(τm(F)) we have

that for all (v, w) ∈ U it holds that vu0w /∈ L(Λ(X,F)) (the language of the

22

limit set of F). By compactness there exists l ∈ N such that vu0w for every

(v, w) ∈ U is already forbidden in F l(X). But since u ∈ L
(

(n+l)rΣ
(m)
(n+l)r

)
there has to exist (v, w) ∈ U such that vu0w ∈ L1

(
lrΣ

(m+2nr)
lr

)
so that it

does appear in F l(X), thus reaching a contradiction.

We will return to pseudo-orbits and -traces in Chapter 5.

Next we show that a cellular automaton has POTP if and only if already
finite precision pseudo-traces coincide with the traces.

Proposition 2.4.19. Let (X,F) be a cellular automaton. The following are
equivalent:

i. F has POTP.

ii. For every m ∈ N \ {0} there exists n ∈ N such that τm(F) = nΣ
(m)
n .

Proof. “i. ⇒ ii.”: The POTP immediately implies that there exists n ∈ N
such that the middle columns of POm+2n(F) are τm(F), i.e. that nΣ

(m)
n =

τm(F).

“ii. ⇒ i.”: If τm(F) = nΣ
(m)
n then for pseudo-orbit x ∈ PO2n+m(F)

there exists an orbit (c(i))i∈Z such that (π[n,n+m)(c
(i)))i∈Z = π[n,n+m)(x).

From this it follows that if (X,F) has POTP then τn(F) is sofic for every
n, and that if τn(F) is an SFT for every n then (X,F) has POTP. These
were already proved by Kůrka in [39] where also counterexamples for the
converses were provided.

Cellular automaton (X,F) is weak-mixing if (X × X,F × F) is transi-
tive; clearly mixing implies weak-mixing which implies transitivity. In his
doctoral dissertation Subrahmonian Moothathu proved that for a cellular
automata over mixing subshifts weak mixing and tranisitivity are equiva-
lent [48, Proposition 2.5.1]. It is an open problem whether transitivity and
mixingness are equivalent for cellular automata. The following proposition
allows us to show that chain-mixing and chain-transitivity are equivalent for
cellular automata over mixing subshifts.

Proposition 2.4.20 ([42, Proposition 10]). Let X ⊂ AM be a transitive
but non-mixing 2-SFT. Then there exists a partition {Pi}i∈[0,k) of A where
k > 1 such that for all ab ∈ L2(X) holds that if a ∈ Pi then b ∈ Pi+1 mod k.

Proposition 2.4.21. Let X be a mixing subshift. A chain-transitive cellular
automaton (X,F) is chain-mixing.

Proof. Let (X,F) be a chain-transitive cellular automaton. Suppose for
contradiction that for some n ∈ N\{0} the subshift POn(F) is not mixing; it
is, however, transitive. Then, by Proposition 2.4.20, there exists a partition

23

{Li}i∈{0,1,...,k−1} of Ln(X) where k > 1 and if (u, v) ∈ L2(POn(F)) and
u ∈ Li then v ∈ Li+1 mod k. Now let u, v ∈ L0 and w ∈ L1. Since X is
mixing there exists l ∈ N and x, y ∈ Ll(X) such that uxv, uyw ∈ L2n+l(X).
But now PO2n+l(F) cannot be transitive, since uyw cannot be reached from
uxv since u, v will cycle through the partition {Li}i∈{0,1,...,k−1} so if one can
reach uy′w′ from uxv then w′ ∈ L0 also.

This cannot be generalized to cover cellular automata over transitive sub-
shifts, since, for example, any transitive non-mixing SFT is chain-transitive
but not chain-mixing.

Let (X,F) be a reversible cellular automaton where X ⊆ AM. It is
expansive if and only if there exists n ∈ N such that for all space-time
diagrams (c(i))i∈Z, (e

(i))i∈Z ∈ stZ(F) it holds that

c(0) 6= e(0) =⇒
(
∃k ∈ Z : c

(k)
[−n,n]∩M 6= e

(k)
[−n,n]∩M

)
.

Similarly, (X,F) is positively expansive if and only if there exists n ∈ N
such that for all space-time diagrams (c(i))i∈N, (e

(i))i∈N ∈ stN(F) it holds
that

c(0) 6= e(0) =⇒
(
∃k ∈ N : c

(k)
[−n,n]∩M 6= e

(k)
[−n,n]∩M

)
.

For any cellular automaton (X,F) let φm : X → τM,m(F) be the map
defined by φm(c)i = F i(c)[0,m) for all i ∈ M (where M = N if (X,F) is not
reversible).

Proposition 2.4.22. Let (X,F) be a reversible (surjective) cellular au-
tomaton. Then (X,F) is expansive (positively expansive) if and only if there
exists m ∈ N \ {0} such that φm is a conjugacy between (X,F) and τZ,m(F)
(τN,m(F)).

Proof. We prove the case that (X,F) is reversible. Clearly φm is continuous
and surjective for all m. Since the spaces at hand are compact and metric,
it is sufficient to show that there exists m such that φm is injective if and
only if (X,F) is expansive. But the claim is rather clear: If some φm is
injective, this means that any difference is seen within a window of width
m, i.e. all configurations, no matter how close to each other they are, have
been or will be a fixed distance away from each other at some moment. On
the other hand, if φm is non-injective for every m, we have pairs of points
which are different but have always been and will always be arbitrarily close
to each other.

For cellular automata the following characterization provides a useful
visualization of expansivity.

24

Proposition 2.4.23. A reversible cellular automaton (X,F) is expansive
if and only if there exists n ∈ N such that for all configurations c, e ∈ X the
following holds

(∀i ∈ [−n, n] : F i(c)[−n,n]∩M = F i(e)[−n,n]∩M)

=⇒ c[−n−1,n+1]∩M = e[−n−1,n+1]∩M.
(2.1)

Proof. We prove the case M = N; the case M = Z goes similarly.

Suppose the claim does not hold and let (c(i))i∈N, (e
(i))i∈N ∈ XN be two

sequences such that for any n ∈ N the pair (c(n), e(n)) satisfies F i(c(n))[0,n] =

F (i)(e(n))[0,n] for every i ∈ [−n, n] and c
(n)
n+1 6= e

(n)
n+1. Let ε > 0 be the expan-

sivity constant. There exists nε ∈ N such that dist(σk(c(nε+k)), σk(e(nε+k))) <
ε for all k ∈ N. Now, by compactness, there exists an infinite index set
I ⊆ N such that both sequences (σk(c(nε+k)))k∈I and (σk(e(nε+k)))k∈I con-
verge, say, to points c ∈ X and e ∈ X (respectively). But now we have a
contradiction: c 6= e since cnε+1 6= enε+1, but dist(F i(c), F i(e)) < ε for all
i ∈ Z.

Similar result holds for positive expansivity.

Proposition 2.4.24. A surjective cellular automaton (X,F) is positively
expansive if and only if there exists n ∈ N such that for all configurations
c, e ∈ X the following holds

(∀i ∈ [0, n] : F i(c)[−n,n]∩M = F i(e)[−n,n]∩M)

=⇒ c[−n−1,n+1]∩M = e[−n−1,n+1]∩M.
(2.2)

2.4.4 Higher-Dimensional Symbolic Dynamics

Symbolic dynamics can also be considered in higher dimensions. As we
mostly consider one-dimensional symbolic dynamics, we have no need for
a very long introduction to multidimensional symbolic dynamics. Since we
are, however, going to prove some results about multidimensional cellu-
lar automata in Chapter 6, and since considering one-dimensional cellular
automata as certain kinds of two-dimensional subshifts can be helpful for
intuition, it is worth saying at least a few words.

Multidimensional (more specifically d-dimensional) symbolic dynamics

considers the set AZd
where d ∈ N \ {0, 1}. There has been very little study

of one-sided multidimensional symbolic dynamics, i.e. of the set ANd
. We

are also not going to consider these, but will point out some open problems
in one-sided multidimensional symbolic dynamics.

25

First we give AZd
a metric; it is a generalization of the metric given for

AZ. Let dist : AZd ×AZd → R be defined by

dist(c, e) =

{
1
2i

where i = min{||x|| | cx 6= ex}
0 if c = e

,

where ||x|| =
∑d

i=1|xi| for x = (x1, x2, . . . , xd) ∈ Zd. With this metric, AZd

is a compact metric space. For finite D ⊆ Zd the set [u] = {c ∈ AZd | cD =
u} for any u ∈ AD is again called a cylinder.

For every x ∈ Zd we denote by σx the shift map defined by σx(c)y =
cx+y. We generalize the topological characterization of subshifts to a def-

inition of multidimensional subshifts: A set X ⊆ AZd
is a (d-dimensional)

subshift if X is closed and σx(X) ⊆ X for all x ∈ Zd. Let Cn = {x =
(x1, x2, . . . , xd) ∈ Zd | ∀i ∈ [1, d] : |xi| ≤ n}. Denote by L(X) = {c|Cn | c ∈
X} the hypercubic patterns that appear in X. As in one-dimensional case,
X is an SFT if it is sufficient to check validity of configurations through
some finite window, i.e. if there exists n ∈ N such that(

∀x ∈ Zd : σx(c)|Cn ∈ L(X)
)

=⇒ x ∈ X.

A d-dimensional cellular automaton is a dynamical system (X,F) where

X ⊆ AZd
such that F commutes with the shift maps, i.e. Fσx = σxF for

all x ∈ Zd. The Curtis-Hedlund-Lyndon Theorem holds in higher dimen-
sions too, and so we could have equivalently defined d-dimensional cellular
automata using local rules.

Notice that if X ⊆ AZ is an k-SFT and (X,F) is a (one-dimensional)
cellular automaton, then stZ(X,F) is a two-dimensional SFT. Indeed, if
r = r(F), then s ∈ AZ2

is in stZ(X,F) if and only if for all x ∈ Zd it holds
that

σx(s)|{(0,0),(0,1),...,(0,k−1)} ∈ Lk(X)

and

f(sx+{(−r,0),(−r+1,0),...,(0,0),...,(r−1,0),(r,0)}) = sx+(0,1).

Now comparing the second condition with expansivity, in particular with the
geometrical interpretation of Proposition 2.4.23, we see that the condition is
very similar; contents of a finite rectangle uniquely determines the content of
a cell next to it. Both of these describe determinsm in some direction for the
SFT, vertically by the local rule and horizontally by expansivity. Then one
can also consider determinsm in other directions, indeed, we could shift our
perspective and overall just consider two-dimensional SFT’s with different
deterministic directions. This point-of-view was initiated by Mike Boyle and
Douglas Lind [10].

26

2.4.5 Computability

We do not define Turing machines, and incidentally we are going to discuss
computability questions only in informal terms. The reason we do this
is that even a short exposition would end up being quite long, and since
our results are based on high-level Turing reductions we do not actually
need to discuss Turing machines directly. Any introductory textbook on
automata and formal language theory should cover everything necessary for
our considerations, for example, [28, Chapters 8 and 9] by John Hopcroft,
Rajeev Motwani, and Jeffrey Ullman. To emphasize: Rest of this section
should be considered informal.

In computability related questions we are going to consider only cellular
automata over full shifts, so we may as well use them as examples. A
decision problem about cellular automata is a “yes” or “no” question that
asks whether a given cellular automaton posesses some given property or
not. For example, whether a cellular automaton is periodic. Here cellular
automata are the instances of the decision problem, as they are the items for
which the problem is asked. An instance is called a positive instance if it does
have the property and a negative instance if it does not. A decision problem
is decidable if there exists an algorithm that solves it, i.e. a program that
for every instance will answer corretly either “yes” or “no” in finite time.
Otherwise a decision problem is called undecidable. A problem is semi-
decidable if there exists an algorithm that will answer “yes” in finite time
for every positive instance, but for negative instances it may run forever
(however, it must not answer incorretly “yes” for any negative instances).

Any decision problem that has only finite set of instances is decidable,
since then there are only finitely many functions from the set of instances
to the set {“yes”, “no”} and then one of these functions is an algorithm
for the problem. This means that very difficult problems can be trivial
as decision problems, for example, any existing conjecture in mathematics
yields a trivial decision problem “Does conjecture C hold?”, though it can
be tricky to say which of the two possible algorithms is correct.

With proper definitions and a short explanation it would be apparent
that undecidable problems exist since, informally, there are more problems
than algorithms. This is, however, a nonconstructive fact, i.e. it does not
provide examples of undecidable problems, it simply states that some ex-
ist. Famously, Alan Turing proved that the explicit problem of deciding
whether a Turing machine (or in this informal setting, a computer program)
halts is undecidable. Knowing one undecidable problem one can prove other
problems undecidable using what are called Turing reductions. The idea of
Turing reductions is simple and goes as follows. Let P be a problem that
is known to be undecidable and Q be a problem that we want to show is
undecidable. Instead of directly showing that Q is undecidable we do the

27

contrapositive and assume that Q is decidable, i.e. that there exists an al-
gorithm that solves Q. Now we use this hypothetical algorithm for Q as a
black box and solve P . If we can do this, it shows that our assumption was
wrong and Q must instead be undecidable since we know that P is.

The above described method of Turing reductions (which we will call
also just reductions) is what allows us to be informal in this section. We are
not going to need explicit constructions using Turing machines but rather
just reduce existing undecidable problems to our problems.

Lastly we define (informally) recursive inseparability as this is the form
in which our main results in Chapter 6 are stated. Let I be a set of instances
(for example, the set of all cellular automata). Formally, any subset of I
is called a property of I, but often one rather considers that a property
defines a subset (for example, the set of all periodic cellular automata would
formally be a property, but one tends to consider that the property of being
periodic defines a subset). Let p1, p2 ⊆ I be two disjoint properties of I,
i.e. p1 ∩ p2 = ∅. Now these properties are recursively inseparable if it is
undecidable whether i ∈ I is in p1. Alternatively one can consider that for
any partition I = I1 ∪ I2 such that p1 ⊆ I1 and p2 ⊆ I2 it is undecidable
whether i ∈ I is in I1.

28

Chapter 3

Stripe Shifts

In this short and relatively independent chapter we introduce stripe shifts.
Stripe shift is obtained by restricting a cellular automaton to a subshift
on which the cellular automaton obeys certain spatial homogenity; we do
not require the strictest spatial homogenity, i.e. that all cells have the
same symbol, but a looser one where all cells of a configuration are required
to contain elements from the same part of some prefixed partition of the
alphabet. This forces each row of a space-time diagram to be constant if the
elements are projected with respect to said partition (see Figure 3.1). We
aim to study what kind of “stripes” can be obtained this way.

This relates to the study of projective subdynamics that we mentioned
in the preliminaries. Nathalie Aubrun and Mathieu Sablik [4], and Bruno
Durand, Andrei Romashchenko, and Alexander Shen [19] proved indepene-
dently that given any effective one-dimensional subshift X ⊆ AZ one can
define a two-dimensional SFT Y ⊆ BZ2

which has the following properties:
There is a map ι : B → A such that ι(c(i,j)) = ι(c(i+1,j)) for all c ∈ Y and

i, j ∈ Z, and by extending ι to BZ2
cell-wise, it holds that ι(Y) = X (since

rows of ι(Y) are constant, ι(Y) can be considered as a one-dimensional sub-
shift). These improve result by Michael Hochman [27] where effective one-
dimensional subshifts are obtained in the same way from three dimensional
SFT’s. In his doctoral dissertation Charalampos Zinoviadis [64] studied ex-
tremely expansive SFT’s, i.e. SFT’s where all but one direction are expansive
and asks whether all effective subshifts can be obtained from an extremely
expansive SFT in this projective way. Our result can be seen as comple-
mentary to this question, as it states that for SFT’s which are deterministic
perpendicular to the direction of the stripes that draw the one-dimensional
subshift, the above result definitely does not hold.

While in the above sense the study of stripe shifts may prove interensting
in its own right, for us the main purpose of this chapter is, however, that
there is a novel way in which we use the stripe shifts (or more precisely the

29

ι pri

c
(3)
−3

c
(2)
−3

c
(1)
−3

c
(0)
−3

c
(3)
−2

c
(2)
−2

c
(1)
−2

c
(0)
−2

c
(3)
−1

c
(2)
−1

c
(1)
−1

c
(0)
−1

c
(3)
0

c
(2)
0

c
(1)
0

c
(0)
0

c
(3)
1

c
(2)
1

c
(1)
1

c
(0)
1

c
(3)
2

c
(2)
2

c
(1)
2

c
(0)
2

a(3)

a(2)

a(1)

a(0)

a(3)

a(2)

a(1)

a(0)

a(3)

a(2)

a(1)

a(0)

a(3)

a(2)

a(1)

a(0)

a(3)

a(2)

a(1)

a(0)

a(3)

a(2)

a(1)

a(0)

a(3)

a(2)

a(1)

a(0)

Figure 3.1: For stripe shifts we consider cellular automaton only on those
configurations that on every time-step contain letters from only one part of
a prefixed partition. Then projecting according to said partition (ι denotes
this projection in the figure) leaves every row constant. These “stripes” can
be considered as one-dimensional configurations, since projecting with any
pri leads to the same configuration.

fact that certain kinds of stripe shifts do not exist) when we prove one of
the main results in Chapter 5.

3.1 Definition and the Stripe Lemma

Let A be a finite set, and visualize this set as a set of colours. Now consider
that some colours appear in different shades, say that our alphabet is A =
∪i∈[0,k)Ai where P = {Ai}i∈[0,k) is a partition of A, and each Ai contains

only different shades of the same color. Let (AZ, F) be a cellular automaton.
We say that F respects P at c ∈ AZ if for every time step the configuration
F i(c) contains only different shades of the same color, i.e. if for every i ∈ N
there exists j ∈ [0, k) such that F i(c) ∈ AZ

j . Let R denote the set of all
configurations where F respects P . Clearly R is a subshift, since it is easily
seen to be closed and shift-invariant, and (R,F) is a cellular automaton since
F (R) ⊆ R. Now each horizontal row of every forward orbit s ∈ stN(R,F)
has only different shades of the same color. If we forget the shades, these
rows become constant, and the forward orbits can be considered as a one-
dimensional one-sided subshift. Now we ask: Which subshifts can arise this
way?

To be more exact, let (AZ, F) be a cellular automaton and P = {Ai}i∈[0,k)

a partition of A. Let ι : A → [0, k) be the projection defined by ι(a) = j if
a ∈ Aj . Now the stripe shift defined by (AZ, F) and P is

ΞP (F) = {t ∈ [0, k)N | ∃c ∈ AZ : ∀i ∈ N : ∀j ∈ Z : ι(F i(c)j) = ti}.

A one-sided subshift X is called a stripe shift if there exists a cellular au-
tomaton (AZ, F) and a partition P of A such that ΞP (F) = X. Let us
illustrate with a simple example that there are at least some stripe shifts.

30

Example 3.1.1. Two natural places to start are the trivial partitions, either
P = {A0} where A0 = A or P = {Ai}i∈[0,|A|) where each Ai is a singleton set.
The first one defines a one-point subshift {0ω}, so it is deeply uninteresting.
The second case is at least somewhat more interesting, as it also leads to
a general fact about stripe shifts. So let (AZ, F) be a cellular automaton
and let P = {{a} | a ∈ A}. Let R be the set of points where F respects
P . Clearly c ∈ R implies that for all i, j ∈ Z it holds that ci = cj , i.e.
that c = ωaω for some a ∈ A. Since F maps constant configurations to
constant configurations this is also sufficient property, and so we have that
R = {ωaω | a ∈ A}. We see that ΞP (F) ⊆ AN (here the projection ι can be
ignored) is an 2-SFT defined by ab ∈ L2(ΞP (F)) if and only if F (ωaω) = ωbω.
This is of course eventually periodic, i.e. there exists k, p ∈ N such that
σk+p(s) = σk(s) for every s ∈ ΞP (F).

The previous example leads to the following observation.

Proposition 3.1.2. Let (AZ, F) be a cellular automaton and P = {Ai}i∈[0,k)

a partition of A. The stripe shift ΞP (F) is non-empty.

Proof. The cellular automaton F respects P at ωaω for any a ∈ A. This
proves the claim.

So we have seen that stripe shifts are always non-empty, and that at
least some very simple shifts are stripe shifts. Let us now state the first
intersting fact about stripe shifts.

Lemma 3.1.3 (Stripe Lemma). The binary full shift {0, 1}N is not a stripe
shift.

Proof. We can simplify the situation and assume that the local rule of F
is a function A[0,1] → A by composing F with a suitable power of the shift
map and using a suitable grouping map grn : AZ → (An)Z, (grn(c))i =
cincin+1 · · · cin+n−1. This can be done since shifting does not change the
stripe shift and if the original cellular automaton would give the full shift
as stripe shift, definitely we could partition the grouped alphabet so that it
would also give the full shift.

Suppose there exists a cellular automaton (AZ, F) and a partition P =
{A0, A1} such that ΞP (F) = {0, 1}N. Let R be the set of configurations
that respect the partition {A0, A1}. For every l ∈ N \ {0} and u ∈ {0, 1}l
we denote

Ru = {v ∈ Ll(R) | F j(v)0 ∈ Auj for all j ∈ [0, l)}.

Since the stripe shift is the full shift, all of these Ru sets must be non-empty.
Let |A| = k. We show that no matter how large k is, it will not be large
enough.

31

Let u, v ∈ {0, 1}l for some l ∈ N \ {0}. Now consider a word w ∈ Ruv.
Let w = w′w′′ where w′, w′′ ∈ Al. From the definition of Ruv we have that
both w′ and w′′ must be in Ru, so we have Ruv ⊆ RuRu and so⋃

v∈{0,1}l
Ruv ⊆ RuRu.

From this we get the inequality
∑

v∈{0,1}l |Ruv| ≤ |Ru|2, and then we have
that

min
v∈{0,1}l

|Ruv| ≤
|Ru|2

2l
. (3.1)

From this we get an upper bound for the size of the smallest set Ru1···u2n
for every n ∈ N:

min
u1u2···u2n∈{0,1}2

n
|Ru1u2···u2n | ≤ zn,

where zn is defined by the recursive formula

zn+1 =
z2
n

22n
, z0 =

k

2
.

We get this from the fact that min{|R0|, |R1|} ≤ k
2 , and then using inequality

(3.1). Solving this recursion yields

zn =
k2n

22n+n·2n−1 .

But now we see that the sequence (zn)n∈N converges to zero, and so for some
N ∈ N and u ∈ {0, 1}N we have that Ru = ∅ reaching a contradiction and
proving the claim.

Before we move onwards let us point something out. Instead of consid-
ering one-dimensional cellular automata (AZ, F) we could consider higher-

dimensional cellular automata (AZd
, F) where d > 1. We can still define

stripe shifts in a similar fashion:

ΞP (F) = {t ∈ [0, k)N | ∃c ∈ AZd
: ∀i ∈ N : ∀j ∈ Zd : ι(F i(c)j) = ti},

where P = {Ai}i∈[0,k) is a partition of A. Now, perhaps surprisingly, the
proof of the Stripe Lemma, mutatis mutandis, does not work anymore. Go-
ing through a similar reasoning one is led to a recursive formula

zn+1 =
z4
n

22n
, z0 =

k

2
.

(We have used such grouping and shifting that our neighborhood has four
cells.) Solving this leads to

zn =
k22n

222n+(2n−1)·2n−1

but this sequence does not converge!

32

Question 3.1.4. Does Stripe Lemma hold for higher-dimensional cellular
automata?

3.2 Characterization of Sofic Stripe Shifts

The fact that stripe shifts are closed under union will be useful when char-
acterizing sofic stripe shifts, and is an interesting fact by itself.

Proposition 3.2.1. Let X1, . . . , Xl be stripe shifts. Then X = ∪li=1Xi is a
stripe shift.

Proof. It is enough to show that the union of two stripe shifts is a stripe
shift. Let X and Y be stripe shifts and assume that X ∪ Y ⊆ [0, n)N and
L1(X ∪ Y) = [0, n). Let (AZ, F) be a cellular automaton and {Ai}i∈[0,n)

a collection of subsets of A such that PA = {Ai | i ∈ [0, n), Ai 6= ∅} is a
partition of A such that ΞPA

(F) = X. Let (BZ, G), {Bi}i∈[0,n) and PB be
defined in a similar way so that ΞPB

(G) = Y . We can assume that A and
B are disjoint. Now let P = {Ai ∪ Bi}i∈[0,n), which is a partition of A ∪ B
(Ai and Bi cannot both be empty for any i ∈ [0, n) since all letters appear
in X ∪ Y). Our goal is to define a cellular automaton ((A ∪ B)Z, H) such
that ΞP (H) = X ∪ Y . We can assume that the local rules of (AZ, F) and
(BZ, G) both have neighborhood [−r, r] for some r ∈ N. Let a0 ∈ A0 ∪ B0

and a1 ∈ A1 ∪ B1 be some letters. The local rule h of H is the map
(A ∪B)[−r,r] → A ∪B defined by

h(x−r · · ·x−1x0x1 · · ·xr) =

f(x−r · · ·xr), if x−r · · ·xr ∈ A[−r,r]

g(x−r · · ·xr), if x−r · · ·xr ∈ B[−r,r]

a0, if x0 ∈ A and x−1 or x1 in B

a1, otherwise

Clearly, from the first two lines, we have that X∪Y ⊆ ΞP (H). On the other
hand, if a configuration c ∈ (A ∪ B)Z contains letters from both A and B
then the third and fourth lines guarantee that H(c) contains a0 and a1 so
that H does not respect P at c. Thus ΞP (H) = X ∪ Y .

Natural question arises.

Question 3.2.2. Are stripe shifts closed under intersection?

We have seen that at least every finite subshift is a stripe shift; this
follows from Example 3.1.1 using the fact that finite subshifts are those
where every point is eventually periodic (i.e. of form uvω for some finite
words u, v). On the other hand we saw that the full shift is not a stripe
shift. We are facing a risk that stripe shifts are so trivial that they are
simply not interesting at all. The following example shows that at least a
bit more complex stripe shifts exist.

33

Example 3.2.3. The infinite firing squad cellular automaton (BZ, G) pre-
sented by Jarkko Kari [35] has the following property: There exists f ∈ B
and (c(i))i∈Z ∈ stZ(G) such that c(0) = ωfω and for all i ∈ Z \ {0} and

j ∈ Z we have that c
(i)
j 6= f . Now we use P = {{f}, B \ {f}} as the par-

tition of B and see that the sunny side up subshift X≤1 = {c ∈ {0, 1}N |
c has at most one 1} is a stripe shift (it is obvious that X≤1 ⊆ ΞP (G) and
easy to see that ΞP (G) ⊆ X≤1, though the latter requires one to look up
the actual definition of the firing squad cellular automaton from [35]).

Now we can characterize which sofic shifts are stripe shifts. Stripe
Lemma allows us to show that positive entropy sofic shifts are not stripe
shifts, and for any zero entropy sofic shift we can, with the help of the fir-
ing squad cellular automaton, construct a cellular automaton which using a
suitable partition defines said subshift.

Proposition 3.2.4. Let X be a sofic shift. If X has positive entropy then
no stripe shift can contain it, and complementarily, if X has zero entropy
then it is a stripe shift.

Proof. For sofic shifts, having positive entropy is equivalent to being un-
countable. Let the number of letters that appear in X be n.

Suppose that X is an uncountable sofic shift and that (AZ, F) is a cellular
automaton and P = {Ai}i[0,n) a partition such that X ⊆ ΞP (F). Then there

exists u, v ∈ L(X) such that u0 6= v0 and {u, v}N ⊆ X. Let ũ = uv and
ṽ = vu, so that |ũ| = |ṽ|. Of course also {ũ, ṽ}N ⊆ X. Now let P ′ = {A′0, A′1}
be a partition of A such that P is a refinement of P ′ and ι−1(u0) ⊆ A′0 and
ι−1(v0) ⊆ A′1 (where ι is the projection A→ [0, n) according to the partition
P). Now the stripe shift defined by F |ũ| and P ′ is {0, 1}N contradicting
Lemma 3.1.3.

Next let X be a countable sofic shift and let G be a labeled directed
graph such that the labels of the one-way infinite paths of G are the points
of X. According to Ronnie Pavlov and Michael Schraudner [56, Lemma 4.8.]
we can assume that the connected components of G consist of some number
of (directed) cycles C(1), . . . , C(k) and (directed) paths P (1), . . . , P (k − 1)
such that P (i) is a path from C(i) to C(i + 1). According to Proposition
3.2.1 we can assume that there is only one connected component.

Denote the edge set of G by EG and define F1 : EG → EG so that if
e has a unique follower edge in G then F1(e) is that edge, otherwise F1(e)
is the follower edge which is on the same cycle as e (the only edges where
the follower is not unique are the ones on cycles where there is a choice to
either continue along the cycle or start along the path connecting to the
next cycle). Similarly we define F2 : EG → EG but F2 does the opposite
choice than F1 in the edges where there are two possible ways to continue.
Let (BZ, G) be the firing squad cellular automaton of Example 3.2.3. We

34

define a cellular automaton ((EG ×B × · · · ×B)Z, F), where we have k − 1
copies of B, by F (c, e(1), . . . , e(k−1)) = (c′, G(e(1)), . . . , G(e(k−1))) where

c′i =

{
F1(ci) if e

(j)
i 6= f for every j ∈ {1, 2, . . . , k − 1}

F2(ci) if e
(j)
i = f for some j ∈ {1, 2, . . . , k − 1}

.

Let P = {Ex×B×· · ·×B}x∈L1(X) where Ex = {a ∈ EG | label of a is x}.
We claim that X = ΞP (F).

“⊇”: Let c ∈ ΞP (F). By definitions, there exists t ∈ τN,1(F) such that
λ(πE(t)) = c where λ is the labeling function of G (applied cellwise) and
πE is the natural projection (EG × B × · · · × B)N → EN

G . The definition
of F using F1 and F2 guarantees that the EG-layer of every column of any
space-time diagram describes a directed path on G, and so c ∈ X.

“⊆”: For every i ∈ N let g(i) ∈ BZ denote a configuration such that
Gi(g(i)) = ωfω and Gj(g(i)) ∈ (B\{f})Z for all j ∈ N\{i}, and let g(∞) ∈ BZ

denote a configuration such that for all j ∈ N it holds that Gj(g(∞)) ∈
(B \ {f})Z. Let c ∈ X and q = (qi)i∈N ∈ EN

G such that λ(q) = c. For
every i ∈ [1, k) let P (i)1 denote the first edge on the path P (i), and let
I = {ij}j∈[1,l) ⊂ N be the set of indices such that q is just about to start the
tranistion from one cycle to the next one, i.e. ql+1 ∈ {P (i)1 | i ∈ [1, k)} if and
only if l ∈ I; it must be that l ≤ k. Now, by definitions, the configuration
(ωqω0 , g

(i1), g(i2), . . . , g(il), g(∞), . . . , g(∞)) shows that c ∈ ΞP (F).

As remarked in the beginning of the proof, we could equally well for-
mulate the above proposition with the condition of X being uncountable.
We used the entropy condition instead since in the next section we show
that uncountability in general is possible for stripe shifts and, on the other
hand, it seems at the very least plausible that positive entropy in general is
impossible for stripe shifts.

3.3 An Uncountable Stripe Shift

In the first section of this stripe shift themed chapter we saw finite examples
of stripe shifts. In the previous section the firing squad cellular automaton
provided an infinite stripe shift which, however, was only countable. In this
section we construct an uncountable stripe shift. This example relies heavily
upon the firing squad cellular automaton.

The cellular automaton which we describe here has three layers called the
firing squad -layer, the Toeplitz -layer, and the signal -layer. First we describe
each of these layers individually and then we fit them together. Note that
we are only trying to prove that there exists an uncountable stripe shift,
this allows us to leave out some details about the cellular automaton, since
it is sufficient to describe how the cellular automaton works on the set of

35

configurations that provides uncountably many points to our stripe shift,
and on the other configurations the cellular automaton can act arbitrarily
since it definitely will not decrease the size of the stripe shift.

First we describe the relevant properties of the infinite firing squad cel-
lular automaton, henceforth known just as the firing squad. We have to
do very minor modifications to the original one in order to get our timings
right. Based on the original firing squad defined in [35] it is clear that we
can define cellular automaton (AZ, F) which has the following properties
(for details we refer to [35]):

1. The alphabet A contains a state called a blank, state # called a
general, states f1, f2 called reloading states, and f called a firing state.
These are not the only states, but the only ones we give names. (When
the original cellular automaton from [35] goes to the firing state, our
cellular automaton goes to f1.)

• Denote by #i the configuration c ∈ AZ such that cj = # if i | j
and cj = otherwise.

2. For all i > 1 it holds that F 2i(#2i) = #2i−1 , and also F 2(#2) = ωfω1 .
Furthermore, the states f1, f2, and f do not appear in F k(#2i) for any
i ≥ 1, k ∈ {0, . . . , 2i − 1}.

3. It holds that F (ωfω1) = ωfω2 and F (ωfω2) = ωfω. (The states f2 and f
are the new states compared to the firing squad of [35]; for technical
reasons we need to prolong the firing.)

• Notice that for any i ≥ 1 we have that F 2i+1
(#2i) = ωfω, and f

does not appear in the space-time diagram before this. This is
the property we use, and the only thing about the firing squad
we refer to below.

In our construction below we use the cellular automaton ((A ∪ Ã)Z,F)
where Ã = {ã | a ∈ A \ { }} ∪ { } (in other words a copy of A, except we
have the same blank symbol in both alphabets), and F behaves as the firing
squad for any configuration which is in AZ ∪ ÃZ. We do not care how F
behaves on configurations that are not valid, i.e. which do not appear in
a space-time diagram for some shift of some #2i or #̃2i . This will be the
firing squad -layer

Let ({0, 1, a, b, }Z, t) be the identity cellular automaton. Denote the
state set by T = {0, 1, a, b}. This will be the Toeplitz-layer.

Let ({ x←, x←w,
x↔y, x↔y

w,
y→, y→w, | x, y ∈ {1, a}}Z, s) be the cellular

automaton that moves speed half signals to the left and to the right. These
signals also carry a name, either 1 or a. Denote the state set by S. The label
w tells that the signal is waiting. Again, it is enough to describe how the

36

cellular automaton works on configurations that we consider valid. In this
case we may restrict to configurations where either every arrow is waiting or
none of them are. If the arrows are waiting, then s simply erases the w-labels.
If the arrows are not waiting, then they are moved one cell to the direction
they are pointing at and w-labels are added to every arrow; naturally arrows
pointing to both directions send an arrow to both directions, and if there is
an incoming arrow from the left and from the right, then they are morphed
into an arrow pointing to both directions (with the label w). The name 1
or a of the signal is carried on unchanged. This will be the signal-layer.

Our example cellular automaton is of the form (((A ∪ Ã)× T × S)Z,G).
Let c = (cf , ct, cs) ∈ (((A ∪ Ã) × T × S)Z. Next we describe layer by layer
when c is considered to be a valid initial configuration (though the validity
of the signal-layer depends on the Toeplitz-layer).

The configuration c has a valid initial firing squad -layer if cf = ωfω1 or
cf = ωf̃ω1 .

The configuration c has a valid initial Toeplitz-layer if ct is a Toeplitz
sequence obtained as follows: First construct a configuration t′ as the limit
of the following (non-deterministic) procedure:

1. Start with the configuration t′ = ω∗ω. The symbol ∗ is a placeholder.
Set a counter K to 1.

2. Let x be either 1 or a. Set t′i ←− x if 2K | (i − (2K−1 − 1)) and set
K ←− K + 1.

3. Let x be either 0 or b. Set t′i ←− x if 2K | (i − (2K−1 − 1)) and set
K ←− K + 1.

4. Return to step 2.

So, for example, the choices 1, b, a, 0, and 1 yields (here gray denotes the−1th

element and the red ones are the new symbols written on each iteration):

· · · ∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ · · ·
· · · 1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1 · · ·
· · · 1 b 1∗1 b 1∗1 b 1∗1 b 1∗1 b 1∗1 b 1∗1 b 1∗1 b 1∗1 · · ·
· · · 1 b 1a1 b 1∗1 b 1a1 b 1∗1 b 1a1 b 1∗1 b 1a1 b 1∗1 · · ·
· · · 1 b 1a1 b 1 0 1 b 1a1 b 1∗1 b 1a1 b 1 0 1 b 1a1 b 1∗1 · · ·
· · · 1 b 1a1 b 1 0 1 b 1a1 b 1∗1 b 1a1 b 1 0 1 b 1a1 b 1 1 1 · · ·

This procedure leaves a single ∗ to the cell −1. A valid initial configuration ct
is obtained from t′ by setting 0, a, 1, or b to the cell −1. For any ct mapping
b’s to 0’s and a’s to 1’s yields the so-called period doubling sequence and we,
indeed, use this layer to double a certain period.

Finally, the configuration c has a valid initial signal-layer if cs(i) = 1↔1
w

if ct(i) = 1, cs(i) = a↔a
w if ct(i) = a, and cs(i) = otherwise.

37

1 b 1 a 1 b 1 1 1 b 1 a 1 b 1 0 1 b 1 ωfω1
ωfω2
ωfω

#2

ωfω1
ωfω2
ωfω

#̃4

#̃2

ωf̃ω1
ωf̃ω2
ωf̃ω

#̃8

a b a 0 a b a 1 a

a 1 a 0

0 1

Figure 3.2: An example of G on a valid initial configuration. For readability
the Toeplitz-layer is only written when it changes and the firing squad -layer
(up to shifting) has a separate column on the right. The red lines represent
signals carrying a 1 and the blue lines represent signals carrying an a. Only
when the firing squad shoots do the layers depend on each other: Where
ever two signals cross, the Toeplitz-layer flips its value (0 ↔ 1, a ↔ b) and
either # or #̃ is set on the firing squad -layer depending on whether the
crossing signals are red or blue, and everything else on these layers is set
to the blank state. Lastly, the signal layer is reset according to the new
Toeplitz-layer.

38

Now we are ready to describe how G works on the valid configurations,
meaning the configurations that appear in space-time diagrams of valid ini-
tial configurations (reader may want to refer to Figure 3.2). If the firing
squad -layer is not firing, i.e. the local rule sees no occurances of f or f̃ ,
then G(cf , ct, cs) = (F(cf), t(ct), s(cs)), so that the layers are completely in-
dependent of each other. If the firing squad -layer is firing, i.e. an occurance
of f or f̃ is seen (remember that we are only considering a certain subset of
configurations, and within this set f or f̃ appears in some cell if and only if
it appears in every cell), then (c′f , c

′
t, c
′
s) = G(cf , ct, cs) is defined as follows:

• The firing squad -layer is defined as follows: If cs(i) = 1↔1
w then

c′f (i) = #, if cs(i) = a↔a
w then c′f (i) = #̃, otherwise c′f (i) = .

• The Toeplitz-layer is defined as follows: If cs(i) = x↔x
w where x ∈

{1, a}, then c′t(i) = 0 if ct(i) = 1 and c′t(i) = 1 if ct(i) = 0, and
similarly c′t(i) = b if ct(i) = a and c′t(i) = a if ct(i) = b, in other words
we flip 0’s and 1’s, and a’s and b’s. If cs(i) 6= x↔x

w, then c′t(i) = .

• The signal-layer is defined as follows: If c′t(i) = 1 then c′s(i) = 1↔1
w, if

c′t(i) = a then c′s(i) = a↔a
w, and otherwise c′s(i) = .

Now let us partition (((A ∪ Ã)× T × S) as follows: P1 = {(f, x, y) | x ∈
T, y ∈ S}, P2 = {(f̃ , x, y) | x ∈ T, y ∈ S}, and P0 = ((A∪ Ã)×T ×S)\ (P1∪
P2). Call this partition P . By construction it holds that for any sequence
(ai)i∈N ∈ {1, 2}N we have that

∏
i∈N
(
02i+1

ai
)
∈ ΞP (G). In particular ΞP (G)

is uncountable.
This is all we know about stripe shifts. Obviously questions remain. For

example the following.

Question 3.3.1. Do stripe shifts always have zero entropy?

Notice that the minimal subshifts of every stripe shift we have presented
are periodic.

Question 3.3.2. Can a stripe shift contain a non-periodic minimal subshift?

We could also restrict to reversible cellular automata, in which case it is
natural to consider two-sided stripe shifts (it may be reasonable to consider
two-sided stripe shifts for non-reversible cellular automata too).

Question 3.3.3. What are the stripe shifts of reversible cellular automata?

To this last question we can remark that still, obviously, full shifts are
impossible. Further, we can say that sofic shifts can be handled similarly
since there exists a reversible variant of the firing squad cellular automaton
by Ville Lukkarila [44]. However, the construction of an uncountable stripe
shift cannot in any obvious way be turned into a reversible one.

39

40

Chapter 4

Reversible One-Sided
Cellular Automata

In this chapter we study reversible one-sided cellular automata over full
shifts. It is well-known that reversible two-sided cellular automata are com-
putationally complex (Kenichi Morita and Masateru Harao showed that re-
versible cellular automata can simulate Turing machines [49]). Some of
this known complexity can be, quite literally, shifted to one-sided cellular
automata since composing a two-sided cellular automaton with a suitable
power of the shift map yields a one-sided cellular automaton. However, it
is usually not possible to compose a reversible two-sided cellular automaton
with a power of the shift map in such a way that the result would be a
reversible one-sided cellular automaton.

Informally, one of the difficulties in constructing examples of reversible
one-sided cellular automata is that one cannot employ signals. We will
not attempt to formalize the concept of signals, they are simply something
that carry information through space over time. The reason that signals
are impossible in reversible one-sided cellular automata is that if a signal
would exist and would carry information, say, from right to left, it would
eventually reach the zeroth coordinate and then vanish, but then we would
have lost information and reversibility would be impossible! In [16] Martin
Delacourt and Nicholas Ollinger proved that reversible one-sided cellular
automata are cabable of universal computing, which can be considered an
one-sided analogue of Dubacq’s result mentioned above, though there are no
similarities between the constructions. Delacourt and Ollinger also proved
the first undecidability results about reversible one-sided cellular automata;
they showed that given a reversible one-sided cellular automaton and a con-
figuration with a simple description, it is undecidable whether the said con-
figuration is periodic or not. The problem of not having usual signals is
circumvented by, in some sense, exchanging the roles of space and time; the

41

vertical stripes contain the state of the computation on a given moment and
time (of the computation) increases as one goes left in the space-time dia-
gram. They also conjecture that the periodicity problem is undecidable for
reversible one-sided cellular automata (this is known for two-sided cellular
automata by Jarkko Kari and Nicholas Ollinger [38]).

For computational questions it is sufficient to consider only such re-
versible one-sided cellular automata that both the cellular automaton itself
and its inverse have radius one, which we call elementary reversible one-sided
cellular automata. This can be done since the inverse rule is computable (ac-
cording to Serafino Amoroso, and Yale Patt [3]) and then we can use the
grouping of cells to obtain an elementary reversible one-sided cellular au-
tomaton which is conjugate to the original one.

We start this chapter by doing some combinatorial considerations on
elementary reversible one-sided cellular automata; these are largely the
same considerations that Pablo Dartnell, Alejandro Maass, and Fernando
Schwartz have done [15]. We show that every elementary reversible one-
sided cellular automaton is a product of at most four involutive elementary
reversible one-sided cellular automata. Next we present some examples,
most importantly an elementary reversible one-sided cellular automaton we
have named the zot cellular automaton; this is important for us since it is
useful in constructions in Chapters 5 and 6. We conclude by some consider-
ations on the periodicity of reversible one-sided cellular automata. We give
a necessary condition for a reversible one-sided cellular automaton to be
periodic, and show with an example that this, however, is unfortunately not
a sufficient condition, providing only a new semi-algorithm for periodicity
(and there of course exists a trivial semi-algorithm for testing periodicity).

4.1 Reversible One-Sided Cellular Automata

For one-sided cellular automata and reversible one-sided cellular automata
we shall use the acronyms OCA and ROCA, respectively. In this chapter
we consider cellular automata only over full shifts.

Let (AN, F) be an OCA, where |A| = n and r(F) = 1, i.e. the local rule
is a function Floc : A[0,1] → A. This local rule can be viewed as a set of n
maps defined by fx : A → A where fx(a) = Floc(ax). Reminder: For cellu-
lar automata over full shifts, injectivity and reversibility are equivalent by
Proposition 2.4.4. Now a necessary requirement for (AN, F) to be reversible
is that for every x the function fx is a permutation, since if fx(a) = fx(b)
for some a, b ∈ A where a 6= b, then F (axω) = F (bxω). We write πa = fa for
all a ∈ A when all the functions fa are permutations. Let ({0, 1}N, xor) be
an OCA defined by permutations π0(0) = 0, π0(1) = 1, π1(0) = 1, π1(1) = 0.
Now xor(0ω) = xor(1ω), and we see that it is not sufficient for reversibility

42

that all the defining maps are permutations. However, if all the defining
maps are permutations, then the OCA is surjective, as is well-known and
easy to prove.

Proposition 4.1.1. Let (AN, F) be an OCA with r(F) = 1. Then (AN, F)
is surjective if and only if the functions fa for a ∈ A defining it are all
permutations.

Proof. Let c ∈ AN and a ∈ A be arbitrary and assume that fa = πa are
permutations for all a ∈ A. Consider the sequence (e(i))i∈N ∈ (AN)N where

e
(i)
j = a for j > i and the rest of e(i) is defined recursively by starting from

the ith cell and advancing towards zero using e
(i)
k = π−1

e
(i)
k+1

(ck) for every k ∈

{0, 1, . . . , i}. By compactness, this sequence has a converging subsequence
(e(i))i∈I where I ⊆ N is some infinite set. Let e be the limit of this sequence.
By continuity (F (e(i)))i∈I converges to F (e) and, on the other hand, by
definition it also converges to c. Thus F (e) = c, proving the claim.

We call (AN, F) an elementary ROCA if it is reversible and r(F) =
r(F−1) = 1. Of course for an elementary ROCA the inverse cellular automa-
ton (AN, F−1) must also be defined by permutations. The permutations of
the forward rule F we denote by πa for a ∈ A, and the permutations of the
inverse rule we denote by ρa for a ∈ A. We represent the local rule of F as a
two-dimensional array [xij]i,j∈A where xi,j = πi(j). We also denote this ar-
ray by [πa]a∈A. In the same fashion we denote permutation π : [0, k)→ [0, k)
by [π(0)π(1) . . . π(k − 1)] (see Example 4.1.4 for the notations).

Let (AN, F) be an elementary ROCA defined by [πa]a∈A, then there is a
simple way to obtain permutations [ρa]a∈A defining the inverse elementary
ROCA (AN, F−1).

Proposition 4.1.2. Let (AN, F) be an elementary ROCA defined by [πa]a∈A
and (AN, F−1) its inverse defined by [ρa]a∈A. Then

ρa = π−1

π−1
b (a)

for every a, b ∈ A.

Proof. Let x, y, z ∈ A. Applying f to xyz yields πy(x)πz(y). Applying the
local rule of F−1 to this gives ρπz(y)(πy(x)) = x since F−1F = id. From

this we get that πy(x) = ρ−1
πz(y)(x) for every x, and so πy = ρ−1

πz(y), i.e.

ρπz(y) = π−1
y for any y, z ∈ A. Let a = πz(y). Then y = π−1

z (a) and we

have ρa = π−1

π−1
z (a)

. Here a goes through all values of A as y goes through all

values of A since πz is a permutation. This proves the claim.

43

In [15] Dartnell, Maass, and Schwartz gave the following simple descrip-
tion of elementary ROCA’s.

Proposition 4.1.3. Let (AN, F) be an OCA with r(F) = 1 defined by
[πa]a∈A. Then (AN, F) is an elementary ROCA if and only if it holds that

πx(a) = πy(b) =⇒ πa = πb

for every x, y, a, b ∈ A.

Proof. Let (AN, F) be an elementary ROCA. For contradiction, suppose
that there exists x, y, a, b ∈ A such that πx(a) = πy(b) and πa 6= πb. Let
z = πx(a) = πy(b). By Proposition 4.1.2 we have that ρz = π−1

π−1
w (z)

for every

w ∈ A. In particular ρz = π−1

π−1
x (z)

= π−1
a and ρz = π−1

π−1
y (z)

= π−1
b which is a

contradiction since πa 6= πb.
For the other direction, assume that πx(a) = πy(b) =⇒ πa = πb for

all x, y, a, b ∈ A. For every z ∈ A define ρz = π−1

π−1
x (z)

for some x ∈ A.

Notice that any choice of x leads to the same permutation since even if
a = π−1

x (z) 6= π−1
y (z) = b, we have that πx(a) = πy(b) and so πa = πb, and

also π−1
a = π−1

b . As was seen in Proposition 4.1.2, this defines the inverse of
(AN, F).

Example 4.1.4. Let π0 be the permutation π0 : {0, 1, 2} → {0, 1, 2} defined
by π0(0) = 0, π0(1) = 2, π0(2) = 1 which we denote by π0 = [021]. Let
π1 = [120] and π2 = π0. These define an OCA π0

π1

π2

 =

 0 2 1
1 2 0
0 2 1

 .
From this notation it is easy to check that the permutations define an ele-
mentary ROCA; according to Proposition 4.1.3 it is sufficient to check that
if some columns contain the same element, then the corresponding rows are
the same. In this example zeroth and second column contain 0, and thus
we need to check that π0 = π2, as they are. It is also easy to produce the
inverse rule (once it has been verified that the rule defines an elementary
ROCA): 0 2 1

1 2 0
0 2 1

 reorder−→

 0 2 1
0 2 1
1 2 0

 invert−→

 0 2 1
0 2 1
2 0 1

.

First we reorder the rows using any of the permutations πa, and then we
invert every permutation. If the original OCA is not an elementary ROCA,
then the result of this procedure depends on which permutation is used in
the reordering of the rows.

44

Example 4.1.5. Of course an OCA may be reversible without being an
elementary ROCA. For example the cellular automaton (AN, F) defined by
π0 = [0213] = π2, π1 = [1203], and π3 = [0123] is reversible with inverse
radius r(F−1) = 2.

4.1.1 Elementary ROCA’s as Products of Involutions

Next we show that every elementary ROCA can be written as a composi-
tion of at most four involutions. This is a corollary to Dartnell, Maass, and
Schwartz’s result [15, Proposition 3.1], though we prove everything neces-
sary.

Let (AN, F) be an elementary ROCA. Let k = |{πa}a∈A|. Let us define
permutation partition of A as the partition ppF (A) = {Ii}i∈[1,k] of A defined
by

1. a, b ∈ Ii implies that πa = πb and

2. for i 6= j it holds that a ∈ Ii and b ∈ Ij implies that πa 6= πb.

Lemma 4.1.6. Let (AN, F) be an elementary ROCA. Let ppF (A) = {I}i∈[1,k]

and ppF−1(A) = {J }i∈[1,k] where k = |{πa}a∈A| (which is also the number
of permutations for F−1). Then for every a ∈ A and i ∈ {1, 2, . . . , k} there
exists a unique j ∈ {1, 2, . . . , k} such that πa(Ii) = Jj.

Proof. Suppose for contradiction that for some a ∈ A there exists Ii such
that there are i1, i2 ∈ Ii such that πa(i1) = j1 ∈ Jj and πa(i2) = j2 ∈ Jj′
where j 6= j′. Then ρj1 6= ρj2 , i.e. π−1

π−1
a (j1)

6= π−1

π−1
a (j2)

. But then π−1
i1
6= π−1

i2

and so πi1 6= πi2 which is a contradiction as i1, i2 ∈ Ii.

So we have that πa(ppF (A)) = ppF−1(A) for any a ∈ A. We can prove
the following sufficient condition for periodicity.

Proposition 4.1.7. Let (AN, F) be an elementary ROCA. If ppF (A) =
ppF−1(A) then F is periodic.

Proof. Assume that ppF (A) = ppF−1(A). Suppose that there are a, b ∈ A
such that πa(Ii) 6= πb(Ii) for some i. This means that for x ∈ Ii we
have that ππa(x) 6= ππb(x). But since ppF (A) = ppF−1(A), this implies that
ρπa(x) 6= ρπb(x). But this implies that πx 6= πx, which is a contradiction.
Thus we must have that πa(Ii) = πb(Ii) for all a, b ∈ A. But this means
that all words of length two are blocking, since each permutation determines
which permutation it becomes in the next time step.

The previous proposition gives, for example, the following corollary.

45

Corollary 4.1.8. Let (AN, F) be an elementary ROCA. If for every a ∈ A
there exists b ∈ A such that πb(a) = a, then (AN, F) is periodic.

Proof. Let a ∈ A be arbitrary. We know that there exists b ∈ A such that
πb(a) = a. Now we have ρa = π−1

π−1
b (a)

= π−1
a . But then ppF (A) = ppF−1(A)

and the claim follows.

As a special case of the above corollary we have that if (AN, F) is an ele-
mentary ROCA such that πa = id for some a ∈ A, then the said elementary
ROCA is periodic. We also immediately get the following.

Corollary 4.1.9. [15, Proposition 3.1] Any elementary ROCA is a compo-
sition of two periodic elementary ROCA’s, and the other one can be chosen
to be a symbol permutation.

Proof. For example F = π0 ◦F1 (here π0 is understood as extended cell-wise
to a function AN → AN) where F1 is defined by [π−1

0 πa]a∈A. Since F is
an elementary ROCA, so is F1. Clearly πx is periodic and F1 is periodic
according to Corollary 4.1.8.

Following lemma is well-known.

Lemma 4.1.10. Let A be a finite set and π : A→ A a permutation. Then
π can be written as a composition of two involutions.

Proof. It is enough to show that any cyclic permutation can be written as a
composition of two involutions. Let π : {0, 1, . . . , n−1} → {0, 1, . . . , n−1} be
a cyclic permutation defined by π(i) = i+ 1 mod n. Define two involutions
δ1 and δ2 as follows: δ1(i) = (n−1)− i for i ∈ {0, 1 . . . , n−1} and δ2(0) = 0
and δ2(i) = n− i for i ∈ {1, 2, . . . , n− 1}. Now δ2δ1(i) = δ2(n− 1− i) which
is 0 if i = n− 1 and n− (n− 1− i) = i+ 1 otherwise, i.e. π = δ2δ1.

Corollary 4.1.11. Every elementary ROCA can be written as a composition
of at most four involutive elementary ROCA’s.

Proof. According to Corollary 4.1.9 and Lemma 4.1.10 it is sufficient to show
that an elementary ROCA (AN, F) defined by [πa]a∈A where π0 = id can be
written as a composition of two involutive elementary ROCA’s.

Let δa,1 and δa,2 be involutions such that πa = δa,2δa,1, and we also
assume that these involutions are such that if δa,l(b) = c (l ∈ {1, 2}) then for
some k it holds that πka(b) = c and if πa = πb then also the corresponding
involutions are the same. Now we claim that Fl = (δa,l)a∈A (l ∈ {1, 2})
define elementary ROCA’s such that F = F2F1. The fact that these are
elementary ROCA’s follows from the fact that π0 = id and the additional
assumption we posed on the involutions δa,l: If δx,l(a) = δy,l(b) then there

46

exists kx and ky such that πkxx (a) = π
ky
y (b), but since π0 = id we have that

πw = ππz(w) for any z, w ∈ A so this implies that πa = πb and so δa,l = δb,l.
This proves that Fl’s are elementary ROCA’s by Proposition 4.1.3. Now for
F = F2F1 we want to show that

δδy,1(x),2 ◦ δx,1 = πx.

It is sufficient to show that πδy,1(x) = πx. Again, if δy,1(x) = z then there

exists k such that πky (x) = z and since π0 = id we have that πz = πx, which
proves the claim.

It is known that some elementary ROCA’s cannot be written as a prod-
uct of two involutions [23, Theorem 2], which raises the question: Are all
elementary ROCA’s compositions of at most three involutions?

4.2 Examples

Next we present some examples of elementary ROCA’s. Most of the focus
is put on the zot cellular automaton which is useful in chapters to come.

Trivial Examples

Over alphabets of size 1 or 2 there are only trivial elementary ROCA’s (ac-
tually only trivial ROCA’s as proved by Gustav Hedlund in [26, Theorem
6.9.]). Trivial here means that they have radius zero. These are the elemen-
tary ROCA’s where every letter defines the same permutation.

Example by Hedlund

This is perhaps the first elementary ROCA to appear in the literature; it was
presented by Gustav Hedlund in the paper [26] which laid significant ground-
work for stuying cellular automata as dynamical systems. In [26, Theorem
6.9] Hedlund proves that there are only trivial reversible one-sided cellular
automata over the binary alphabet. The following elementary ROCA is then
given as an example, that this claim holds true no more, if the alphabet size
is increased: π0

π1

π2

 =

 0 1 2
2 1 0
0 1 2

 .
By Proposition 4.1.3 this is an elementary ROCA and since π0 = id we know
by Corollary 4.1.8 that this defines a periodic cellular automaton. In fact
one easily sees that this cellular automaton is an involution.

47

A Less Trivial Periodic Elementary Cellular Automaton

Let (AN, F) be an elementary ROCA defined by
π0

π1

π2

π3

 =

3 2 0 1
3 2 0 1
2 3 0 1
2 3 0 1

 whose inverse is

ρ0

ρ1

ρ2

ρ3

 =

2 3 0 1
2 3 0 1
2 3 1 0
2 3 1 0

 .
We see that ppF (A) = ppF−1(A) so that according to Proposition 4.1.7 the
cellular automaton must be periodic. The trivial cellular automata with ra-
dius zero are periodic since every letter uniquely determines which letter will
follow it. Periodicity of cellular automata with ppF (A) = ppF−1(A) is due to
similar reason; while now letter does not uniquely define the following letter,
each permutation uniquely determines which permutation follows it. In this
example permutation π0 (which both 0 and 1 define) is always followed by
permutation π2 (since π3 = π2), and similarly π2 is always followed by π0.
This means that every column in the space-time diagram is, if we forget the
actual letters and focus only on which permutation they define, a repetition
of π0π2. Since π2π0 = [1023] we have that (π2π0)2 = id and we see that
F 4 = id.

Periodic but ppF (A) 6= ppF−1(A)

According to Proposition 4.1.7 it holds that if ppF (A) = ppF−1(A) then F
is periodic, which we used in the previous example. Next examples shows
that this is, however, not a necessary condition.

Let A = {0, 1, 2, 3, 4} and define (AN, F) by
π0

π1

π2

π3

π4

 =

0 1 2 4 3
0 1 2 4 3
0 1 3 4 2
1 0 3 4 2
0 1 3 4 2

 .
Here π0(ppF (A)) 6= ppF (A) so ppF (A) 6= ppF−1(A). However, F is periodic.
This can be seen by observing that every word of length three (or more) is a
blocking word: Let abc ∈ A3. Since letters 0 and 1 can only map to letters
0 and 1, and these define the same permutation, we have that if b ∈ {0, 1}
or c ∈ {0, 1} then abc is a blocking word. But if b, c ∈ {2, 3, 4} then already
bc is a blocking word since 2, 3 and 4 can only map to 2, 3 and 4 and these
define the same permutation when restricted to the set {2, 3, 4}.

As a sidenote we remark that this cellular automaton has period 12, and
this is the largest period amongst the elementary ROCA’s over an alphabet
of size five (which the reader may verify on his/hers leisure time by going
through all such elementary ROCA’s).

48

The Zot Cellular Automaton

In intuitive terms a question arises: Since ROCAs cannot move informa-
tion through space, does this mean that perhaps they are all periodic?
(Un)fortunately this is not the case. The cellular automaton we present
next was first considered by Pablo Dartnell, Alejandro Maass, and Fernando
Schwartz in [15, §4.1] (at least as far as we know, but due to the simplicity
of this example anyone considering reversible one-sided cellular automata is
likely to end up considering it).

Since this cellular automaton is useful in some constructions to come,
we give it a name and call it the zot cellular automaton. It is the cellular
automaton (AN,Z) where A = {0, 1, 2} defined by π0

π1

π2

 =

 0 2 1
1 2 0
0 2 1

 .
We compute the trace of this elementary ROCA, which turns out to be a
proper sofic shift, and also gives us the entropy of zot. We also show that
zot is chain-transitive and thus, by Proposition 2.4.21, also chain-mixing,
but not transitive (since, as proved in [15], it has blocking words). Lastly
we point out that zot does not have POTP.

According to Proposition 4.1.2 the inverse of zot is defined by ρ0

ρ1

ρ2

 =

 0 2 1
0 2 1
2 0 1

 .
Drawing some space-time diagrams of zot suggests some of its dynamics;

Figure 4.1 hints that zot is not periodic,. However, Figure 4.2 suggests that
there exists some equicontinuity points. These facts are explicitly proven
in [15, §4.1]. Before computing zot’s trace we prove the following simple
lemma.

Lemma 4.2.1. Let (AN,Z) be the zot cellular automaton.

• Let s ∈ stZ(AN,Z) and a = a1a2 = si,jsi,j+1,b = b1b2 = si,j+2si,j+3, c =
c1c2 = si+1,j+1, si+1,j+2. Then the following hold:

1. If a = 00 and b = 00 then c = 00.

2. If a = 00 and b = 12 then c = 12.

3. If a = 12 and b = 00 then c = 12.

4. If a = 12 and b = 12 then c ∈ {00, 01, 20, 21}, and all of these
are possible.

49

Figure 4.1: Running zot from
ω010ω.

Figure 4.2: Running zot from a
random initial configuration.

• If 20k1 ∈ L(τ1(Z)), then k is even.

• Let s ∈ AN×Z. Let D = {(0, 0), (0, 1)}. If for every (i, j) ∈ N×Z where
i, j are either both odd or both even it holds that sD+(i,j) ∈ {00, 12}
and sD+(i,j) ⊕ sD+(i,j+2) = sD+(i+1,j+1) where 00 is interpreted as
0, 12 is interpreted as 1, and ⊕ denotes addition modulo two, then
s ∈ stZ(AN, F).

Proof.

• (See Figure 4.3) These can be checked simply by going through all
possibilities. For example consider the first case where a = 00 and
b = 00. Now we have that πc1(0) = 0 and ρc1(0) = 0 which leave only
the option that c1 = 0 possible.

• (See Figure 4.4) We see that 201 /∈ L(τ1(AN,Z)) since πx(0) = 1
implies x = 1 but ρ1(0) = 0 6= 1. Let k > 1 and consider 20k1.
Suppose this appears in τ1(AN,Z). Let s ∈ stZ(AN,Z) such that
s0,0s0,1 · · · s0,k+1 = 20k1. Then the first property foces s1,1s1,2 · · · s1,k =
20k−21. If k was odd, we could repeat this until we obtained 201 which,
as we saw, cannot be in L(τ1(AN,Z)).

• (See Figure 4.5) According to the first point such a configuration has
no violations of the local rule of Z, and thus it must be a valid space-
time diagram.

50

b

a

c

Figure 4.3: If the pat-
tern formed by a,b
and c is a valid pat-
tern in stZ(Z) and two
of the three a,b, c are
in {00, 12}, but ab 6=
1212, then also the
third is in {00, 12} and
it is determined by a⊕
b = c where we iden-
tify 00 with 0 and 12
with 1, and ⊕ is ad-
dition modulo two. In
case ab = 1212 then
c = 00 gives a pat-
tern that appears in
stZ(Z), but there are
also other valid ways
to choose c.

2

1

0

0

0

0

0

2

1

2

1

0

0

0

2

1

2

1

0

2

1

Figure 4.4: The traces
of Z cannot have a
word 20n1 where n is
odd. This can be
seen by applying the
modulo two addition
as described in Figure
4.3, which leads to the
word 201, which is in-
valid since since only
π1(0) = 1 but ρ1(0) 6=
2.

0

0

0

0

2

1

2

1

0

0

2

1

0

0

2

1

2

1

0

0

Figure 4.5: Fill the
leftmost column in an
arbitrary way using
the blocks 00 and 12.
Fill the next column
using the modulo two
addition as described
in Figure 4.3. Notice
that we get no viola-
tions of the local rule
of Z doing this. Re-
peat.

51

0

10

2

Figure 4.6: Graph defining τ1(Z).

Next we compute τ1(Z).

Proposition 4.2.2. Let (AN,Z) be the zot cellular automaton. Then τ1(Z) =
XF where F = {02, 10, 11, 22} ∪ {202k+11 | k ∈ N}. This is the proper sofic
shift defined by the graph of Figure 4.6.

Proof. Notice that every configuration in XF is a concatenation of words 00
and 12 and all concatenations of 00 and 12 are in XF (we are being vague
about the origin).

Take an arbitrary configuration t(0) ∈ XF . Inductively define t(i) ∈
{00, 12}Z using the modulo two addition to t(i−1) as in Lemma 4.2.1 (inter-
preting 00 as 0 and 12 as 1, and shifting t(i) so that the two-cell rectangles
are not aligned, see Figure 4.5). Then the configuration s ∈ AN×Z where

sx,y = t
(x)
y is in stZ(AN,Z) according to the third point of Lemma 4.2.1.

Thus XF ⊆ τ1(Z). On the other hand the second point of Lemma 4.2.1
forbids 202k+11, so that we have τ1(Z) = XF .

Previous proposition and Proposition 2.4.5 allows us to compute zot’s
entropy.

Proposition 4.2.3. The entropy of (AN,Z) is h(AN,Z) = 1
2 .

Proof. According to Proposition 4.2.2 we have that |L2n(τ1(Z))| = 3 ·2n−1.
By Proposition 2.4.5 we have that h({0, 1, 2}N,Z) = h(τ1(Z)) = 1

2 .

It turns out that if we restrict Z to finite words in {0, 1, 2}n in such a
way that in the rightmost cell, in which we cannot use the local rule of Z,
we instead always use π1, then this defines a cyclic permutation of {0, 1, 2}n.
This gives an unconventional way to enumerate finite words of length n.

Proposition 4.2.4. Let A = {0, 1, 2} and (AN,Z) be the zot cellular au-
tomaton as above. Let π be the map⋃

n∈N\{0}

An
π−→

⋃
n∈N\{0}

An

a0 · · · an−1 7−→ πa1(a0) · · ·π1(an−1).

Then for every n ∈ N \ {0} the restriction π|An is a cyclic permutation of
An.

52

Proof. Proof goes by induction on n: For n = 1 the claim is clear as π1 is a
cyclic permutation of A.

Suppose that the claim holds for some n ∈ N \ {0}. It is enough to show
that the map x 7→ π3n(x0n)0 is a cyclic permutation of A.

Notice that in (πi(x0n))i∈Z patterns of form of Figure 4.3 are valid, i.e.
do not violate the local rule of Z. Clearly for every j ∈ {1, . . . , n} the
configuration tj = (πi(x0n)j)i∈Z is periodic. Applying π to 0n−j+1 until
we return back to 0n−j+1 it is straightforward to see that a word of form
0n−j+1t′j0

n−j , for some finite word t′j , is a smallest period in tj . We claim

that the words t′j cannot contain words 20k1 where k is odd. Suppose that
such a word does exist. If k ≥ 2(n − j) + 1 then using the argument in
Figure 4.3 we see that this was not the smallest period as we have returned
to 0n−j+1. If k < 2(n − j) + 1 then using the same argument we reach a
contradiction with the observation that the patterns of Figure 4.3 are valid
in (πi(x0n))i∈Z. It is also clear that t′j starts with 1 and ends with 2.

Now let x = 0. Let t = (πi(0n+1)0)i∈[0,3n−n). By the observations of the
previous paragraph we know that the vertical word to the right of t is 0nt′1
where t′1 ∈ {00, 12}+ (understood here as a word over alphabet {0, 1, 2}).
Then t is determined by repeatedly applying the reasoning in Figure 4.3. By
the induction hypothesis we know that all words of length n appear exactly
once in (πi(0n))i∈[0,3n). This means that in the right side of t there will be
1 exactly 3n−1 times. In particular this is an odd number of times. Every
time we see 1 the modulo two addition will swap t between a stream of 00’s
and a stream of 12’s. Since we start with 00 and swap for odd number of
times, we must end in 12. So we have that if n is even, then π3n(00n)0 = 1,
and if n is odd, then π3n(00n)0 = 2. It is now enough that we show that if
n is even, then π3n(10n)0 = 2, and if n is odd, then π3n(20n)0 = 1.

Suppose that n is even and x = 1. The only way the stream of 12’s in t
(defined as before) swaps to a stream of 00’s is if 2 in t is aligned with a 1
in t′1. Before t′1 starts we have n times a 0 which map 1 to 2 and 2 back to
1. As we noted, t′1 ∈ {00, 12}+ and begins with 1, so since n is even we see
that 2 is never aligned with 1 and thus t will only swap between 1 and 2 for
3n steps. Since we do this odd number of times, we end up with a 2.

The case n is odd and x = 2 goes similarly.

From the inverse rule of zot, the elementary ROCA defined by
ρ0

ρ1
...
ρ2k

ρ2k+1

 =

0 2 1 4 3 . . . 2k 2k − 1
0 2 1 4 3 . . . 2k 2k − 1

...
...

0 2 1 4 3 . . . 2k 2k − 1
2k 0 1 2 3 . . . 2k − 2 2k − 1

53

can be considered a generalization of the inverse of zot to higher odd sized
alphabets. From small computer simulations it seems like these may possess
similar property as described above, i.e. that using local rule of the cellular
automaton where possible and ρ2k−1 in the last symbol enumerates all words
in {0, 1, . . . , 2k − 1}n for any n ∈ N \ {0}. Elementary ROCAs defined by

π0

π1
...
π2k

π2k+1

 =

2k 0 1 . . . 2k − 3 2k − 2 2k − 1
2k 2k − 1 2k − 2 . . . 2 1 0
2k 2k − 1 2k − 2 . . . 2 1 0

...
...

2k 2k − 1 2k − 2 . . . 2 1 0

also seem to have this property for permutation π0.

Question 4.2.5. Does analogous result to Proposition 4.2.4 hold for any
cellular automata over an alphabet of even size?

From what we have seen so far it is easy now to deduce the following
properties of zot.

Proposition 4.2.6. The zot cellular automaton is chain-mixing, but not
transitive, and does not have POTP.

Proof. Let (AN,Z) be the zot cellular automaton.
Zot is chain-mixing: According to Proposition 2.4.21 it is sufficient to

show that zot is chain-transitive. Clearly zot is chain-transitive according
to Proposition 4.2.4.

Zot is not transitive: This holds since zot has blocking words, such
as 11.

Zot does not have POTP: Not having POTP can be seen by observing
that when one starts applying π and π−1 to 0n the word 202n−11 appears
to the leftmost column, so 202n−11 ∈ L(0Σ1

n) and since, according to the
third point of Lemma 4.2.1, word 202n−11 is not in L(τ1(Z)) we have that
zot does not have POTP.

An Expansive Elementary ROCA

The zot cellular automaton is not expansive since it has blocking words. Let
us now present a simple expansive elementary ROCA.

Let (AN, F) be an elementary ROCA defined by
π0

π1

π2

π3

 =

0 2 3 1
1 3 2 0
1 3 2 0
0 2 3 1

 .
54

The inverse of this is
ρ0

ρ1

ρ2

ρ3

 =

0 3 1 2
0 3 1 2
3 0 2 1
3 0 2 1

 .
This is expansive since for any abc ∈ τ1(F) it holds that |{x ∈ A | πx(b) =
c and ρx(b) = a}| = 1, and then by Proposition 2.4.23 we have that (AN, F)
is expansive. This cellular automaton has POTP, in fact every expansive
ROCA has POTP as was proven by Masakazu Nasu [52]; a result we are
going to reprove in Chapter 5

4.3 Periodicity and the Diagonal Cellular Automata

We already saw that ppF (A) = ppF−1(A) implies periodicity, but this is
a very specific case. In this section we provide a new necessary and suf-
ficient condition for a (elementary) ROCA to be periodic. This condition
is described as an procedure which starts repeating itself only for periodic
cellular automata. Further more, if it runs only finitely long, the cellular
automaton at hand is not periodic. The hope was that this could perhaps
provide an algorithm for periodicity if it turned out that the procedure is
finite for all non-periodic elementary ROCA’s. However, we end this section
by giving an example that this is not the case.

If (AN, F) is periodic, then according to Proposition 2.4.17 there exists
M ∈ N such that every word of length n > M is a blocking word; using the
language of Dartnell, Maass, and Schwartz we call the smallest such M the
equicontinuity constant of (AN, F). In [15] Darntell, Maass, and Schwartz
gave a characterization of periodic elementary ROCA’s with equicontinuity
constant equal to one (i.e. all words of length two are blocking). Their
justification for considering only equicontinuity constant one is that any
equicontinuous cellular automaton is conjugate to an equicontinuous cellu-
lar automaton with equicontinuity constant one via the usual grouping of
cells; the same argument that allows reducing much of the considerations
of ROCAs to considering elementary ROCAs. However, if one is interested
in algorithmic questions about one-sided cellular automata, then the latter
grouping is justified while the first one is not, as we do not know whether
there exists any computable bound on the equicontinuity constant (as we do
not know whether periodicity is decidable). This is the reason we consider
arbitrary equicontinuity constants.

Remark 4.3.1. Let (AN, F) be a cellular automaton. Then (AN, F) is peri-
odic if and only if (AZ, F) is periodic. This is sometimes useful when we
want to argue that (AN, F) is not periodic, as this is sometimes easy to do

55

F∆(c)0

c0 F∆(c)1

π−1
c1 (c0) c1 F∆(c)2

π−1
c2 (c1) c2

F∆(c)

c

F∆′(c)

Figure 4.7: Diagonal cellular automaton F∆ is defined only if the upwards
going cellular automaton F∆′ is reversible.

by noticing that there exists c ∈ AZ such that F i(c) 6= c for all i ∈ N.
The reason that considering one-sided configurations as witnesses of non-
periodicity is less convenient is that every configuration of form uvω ∈ AN

for any u, v ∈ A+ is periodic for any ROCA.

Let (AN, F) be an elementary ROCA defined by permutations [πa]a∈A
and with an inverse rule defined by [ρa]a∈A. We define, when possible, the
diagonal cellular automaton of (AN, F) as follows: First define an auxiliary
cellular automaton as (AN, F∆′) by [π−1

a]a∈A. Since f(xa) = πa(x) this
(AN, F∆′) cellular automaton simply does the local inverse of F , and thus
it maps southwest-northeast diagonals upwards (see Figure 4.7). Now if
(AN, F∆′) happens to be a ROCA (not necessarily elementary) then the
diagonal cellular automaton of (AN, F) is defined as (AN, F∆) where F∆ =
F−1

∆′ . We observe the following.

Proposition 4.3.2. Elementary ROCA (AN, F) is periodic if and only if
(AN, F∆) exists and is periodic. Furthermore, in this case (AN, F) and
(AN, F∆) have the same equicontinuity constant.

Proof. The case that (AN, F∆) is not defined has a nice visual interpretation.
That (AN, F∆′) is not reversible means that there has to exist configurations
c, e ∈ AN such that c 6= e and F∆′(c) = F∆′(e). Suppose ci 6= ei. Then since
F∆′(c)i = F∆′(e)i we have that ci+1 6= ei+1 since otherwise ci+1 and ei+1

would define the same permutation and could not map the different letters
ci and ei to the same letter. Thus cj 6= ej for all j ≥ i. Thus we may assume
that ci 6= ei for all i ∈ N by taking a shifted version of c and e if necessary.
This means that for all n ∈ N there exists a pair (x(n), y(n)) ∈ AN × AN

56

=

=

=
6=

6=
=

=

=
6=

6=
6=
6=
6== =

=
forces

Figure 4.8: If r(F∆) = 3 there has to be words of length 4 which agree
on the first three letters but differ on the fourth such that their images
differ also (the left image). The local rule of F demands that the equalities
spread above and the differences move along the diagonal (since the same
permutation cannot map the same letter differently).

such that x
(n)
[0,n) = y

(n)
[0,n) and Fn(x(n))0 6= Fn(y(n))0, which is the fastest

possible speed for a perturbation to advance for an elementary ROCA. We
have seen that these “speed-of-light” perturbations exist if and only if F∆

is not defined.

The claim itself is clear: The cellular automaton (AN, F) is periodic if
and only if there exists p ∈ N such that for every s ∈ stZ(F) and i ∈ N, j ∈ Z
it holds that si,j = si,j+p. The same holds for (AN, F∆). The claim about
the equicontinuity constant is also clear, for if there exists a word u ∈ An
which is not a blocking word for (AN, F) then one finds a word v ∈ An which
is not a blocking word for (AN, F∆), i.e. for example vi = Fn−i−1(uaω)i for
any a ∈ A. Similarly for the other direction.

Let us state a simple lemma here.

Lemma 4.3.3. If (AN, F) is an equicontinuous elementary ROCA, then
M ≥ r(F∆) where M is the equicontinuity constant.

Proof. The radius of F∆ immediately implies the existence of a word of
length r which is not blocking (see Figure 4.8).

In [15, Theorem 3.5] a characterization of elementary ROCA’s with
equicontinuity constant M = 1 is given. The following proposition gives
a characterization of these cellular automata using the diagonal cellular au-
tomaton.

Proposition 4.3.4. Let (AN, F) be an elementary ROCA. If the diagonal
cellular automaton has radius ≤ 1 then it is an elementary ROCA and can
be diagonalized itself. The elementary cellular automaton (AN, F) is periodic
with equicontinuity constant M = 1 if and only if this diagonalization process
can be repeated indefinitely.

57

Proof. If the diagonalization process cannot be repeated indefinitely then
either at some point the diagonal cellular automaton is not defined, and
then, by Proposition 4.3.2, the original cellular automaton is not periodic,
or the radius of some diagonal cellular automaton is larger than 1 and then
by, Proposition 4.3.3, there are words of length 2 which are not blocking.

Suppose next that the diagonalization process can be repeated indefi-
nitely. This means that for any a, b ∈ A and c ∈ AN we can determine
Fn(abc)0 from ab alone, since F (abc)0 = πb(a), F 2(abc)0 = π∆1

b (πb(a)),

F 3(abc)0 = π∆2
b (π∆1

b (πb(a))), and so on, where π∆i
b denotes the permutation

defined by b for the ith diagonal cellular automata. In other words, every
word of length two is a blocking word.

Since there are only finitely many elementary ROCAs over a fixed alpha-
bet the above procedure either ends or starts repeating itself. The following
example shows that, unsurprisingly, F∆ may be an elementary ROCA even
if F is not periodic.

Example 4.3.5. Let (AN, F) be the elementary ROCA defined by

π0

π1

π2

π3

π4

 =

2 3 0 4 1 5
2 3 0 4 1 5
3 2 1 5 0 4
3 2 1 5 0 4
3 2 1 5 0 4
3 2 1 5 0 4

 .

Then F∆′ is defined by

3 2 1 5 0 4
3 2 1 5 0 4
2 3 0 4 1 5
3 2 1 5 0 4
2 3 0 4 1 5
3 2 1 5 0 4

which is an

elementary ROCA
so its inverse, F∆,

is defined by:

3 2 1 5 0 4
3 2 1 5 0 4
2 3 0 4 1 5
3 2 1 5 0 4
2 3 0 4 1 5
3 2 1 5 0 4

 .

However, (AN, F) is not periodic. (It is easy to check that the two-sided
configuration ω(430)0ω is not periodic.)

Time to generalize: Let (AN, F) be an elementary ROCA. Suppose that
the diagonal cellular automaton (AN, F∆) exists but has r(F∆) = r > 1.
Then we can group the cells into supercells of size r and this new cellular
automaton is an elementary ROCA (the inverse of F∆ has radius 1 so we do
not need to worry about that when we do the grouping). Now we can diag-
onalize this grouped version of F∆. As long as the diagonal cellular automa-
ton, after grouping, is again diagonalizable we can repeat this procedure. Let

58

F∆(i) denote the nth diagonal cellular automaton (before grouping the cells).
Let us define the diagonal-sequence of (AN, F) as ∆(AN, F) = (r(F∆(i)))i∈I
where I ∈ {∅} ∪

(⋃
k∈N\{0}{[1, k]}

)
∪ {N \ {0}} depending on how many

times the described procedure can be done starting from (AN, F). Using
this sequence we can characterize all periodic elementary ROCA’s.

Proposition 4.3.6. An elementary ROCA (AN, F) is periodic if and only
if ∆(AN, F) is in NN\{0} and has only finitely many non-1 entries.

Proof. ”⇐”: Let (AN, F) be an elementary ROCA. According to Proposition
4.3.2, it is sufficient to show that if ∆(AN, F) = (1, 1, 1, . . .) then (AN, F) is
periodic. But then the claim follows from Proposition 4.3.4.

”⇒”: For contradiction, suppose that (AN, F) is a periodic elementary
ROCA such that ∆(AN, F) is not eventually (1, 1, 1, . . .) (we do, however,
assume it is infinite, since otherwise the first part of the proof of Proposition
4.3.2 gives the claim). Since ∆(AN, F) is not eventually (1, 1, 1, . . .) we
have that the alphabet will get arbitrarily large as we keep repeating the
diagonalization. But then, essentially by Proposition 4.3.3, we have that
(AN, F) is not periodic.

In particular, the proposition above says that if ∆(AN, F) is finite, then
(AN, F) is not periodic. Since finiteness of ∆(AN, F) is clearly semi-decidable
and so is periodicity of (AN, F), it is worth pointing out that there are
non-periodic elementary ROCA’s with infinite diagonal-sequences. Exam-
ple 4.3.7 below has ∆(AN, F) = ∆(AN, F−1) = (2, 2, 2, . . .) and |A| = 7;
over an alphabet of size 6 one can find a non-periodic elementary ROCA
(AN, F) such that ∆(AN, F) is infinite, but not such that both ∆(AN, F) and
∆(AN, F−1) are infinite, and over an alphabet of size 5 or less infiniteness
of ∆(AN, F) is equivalent to periodicity.

Example 4.3.7. In this example it is important to keep in mind, that in
our drawings vertical-axis increases downwards, meaning that whenever we
“go downwards” in a space-time diagram, the y-coordinate increases.

Let A = {0, 1, 2, 3, 4,#1,#2}. Let (AN, F) be the elementary ROCA
defined by

π0

π1

π2

π3

π4

π#1

π#2

=

0 2 3 4 1 #2 #1

0 2 3 4 1 #2 #1

1 2 3 4 0 #2 #1

0 2 3 4 1 #2 #1

0 2 3 4 1 #2 #1

0 2 3 4 1 #2 #1

2 1 3 0 4 #2 #1

.

59

We claim that ∆(AN, F) = ∆(AN, F−1) = (2, 2, 2, . . .). It is sufficient to
prove that ∆(AN, F) = (2, 2, 2, . . .) since renaming the alphabet A according
to 2↔ 3, 1↔ 4,#1 ↔ #2 actually gives the inverse rule, and thus the same
proof works in both cases.

Let us denote by

Cn = {(x,−y) | x ∈ {0, 1, . . . , 2n−1 − 1}, y =

∞∑
i=0

b x
2i
c} ⊂ Z2.

Assuming our claim is true, this is the form of one cell of the nth diagonal
cellular automata (see Figure 4.9). Now what we need to show is that for
every n the following claims hold for the space-time diagrams of (AN, F):

1. The contents of Cn and Cn+(2n−1,−2n+1) do not uniquely determine
the content of Cn + (0, 1), i.e. that F∆(n) is not an elementary ROCA.

2. The contents of Cn, Cn + (2n−1,−2n + 1) and Cn + (2n,−2n+1 + 2)
do determine uniquely the contents of Cn + (0, 1), i.e. that F∆(n) is
actually defined and has radius 2.

It is useful to notice that Cn ∪
(
Cn + (2n−1,−2n + 1)

)
= Cn+1

Proof of 1): To see this, consider the space-time diagram of c = ω0#20ω

(this is two-sided, but the conclusions will still be valid) where c1 = #2.
The right side of #2 is irrelevant for us; it will just remain 0ω and affects
the left side in no way since #2 blocks its influence. Now we prove that if
we position Cn+1 where n ≥ 1 so that the rightmost cell is at (0, 0) then we
see only zeroes through the window of shape Cn+1, but if we lower the left
half of Cn+1 (which has the shape of Cn) with one cell, then it contains a
1. This proves 1. since the space-time diagram of ω0ω is all-zero, and thus
there are two different ways all-zero configuration should be mapped by the
diagonal cellular automaton. See Figure 4.9 for visual aid.

Let us denote by s ∈ stZ(AZ, F) the space-time diagram generated by c =
ω0#20ω, i.e. we have that s(i, j) = F j(c)i. First we note that the sequence
(s(−k, 2k))k∈N is (0, 1, 1, 1, . . .) and that (s(−k, 2k − 1))k∈N = (0, 0, 0, . . .).
These can be seen as follows. By definition of F we have that (s(1, i))i∈N =
(#2#1)ω and #2 does not appear in any cell s(x, y) where x < 1. Again
by definition (s(0, i))i∈N = (023)ω. Now for the rest of the columns it is
sufficient to observe from the local rule that π0(0) = 0, π2(0) = 1, π1(0) = 0,
and πx(1) = 2 for all x 6= #2; using these one sees by starting from cell
(0, 0) and repeatedly moving one step left and two steps down that “stairs”
of 12’s appear where to the left of the stairs everything is zero (see Figure
4.9 again). Now position Cn+1 so that rightmost cell is at (0, 0), i.e. consider
the set D = Cn+1 − (2n − 1,−2n+1 + n+ 2). Since

∞∑
i=0

⌊ x
2i

⌋
<

∞∑
i=0

x

2i
= 2x

60

0 0 2 4 2 0 2 0 0 0 2 2 #1 0
0 0 1 3 1 0 1 0 0 0 1 0 #2 0
0 0 0 2 4 0 4 0 0 0 4 0 #1 0
0 0 0 1 3 0 3 0 0 0 3 3 #2 0
0 0 0 0 2 4 2 0 0 4 2 2 #1 0
0 0 0 0 1 3 1 0 0 3 1 0 #2 0
0 0 0 0 0 2 4 0 4 2 4 0 #1 0
0 0 0 0 0 1 3 0 3 1 3 3 #2 0
0 0 0 0 0 0 2 4 2 0 2 2 #1 0
0 0 0 0 0 0 1 3 1 0 1 0 #2 0
0 0 0 0 0 0 0 2 4 0 4 0 #1 0
0 0 0 0 0 0 0 1 3 0 3 3 #2 0
0 0 0 0 0 0 0 0 2 4 2 2 #1 0
0 0 0 0 0 0 0 0 1 3 1 0 #2 0
0 0 0 0 0 0 0 0 0 2 4 3 #1 0
0 0 0 0 0 0 0 0 0 1 3 2 #2 0
0 0 0 0 0 0 0 0 0 0 2 0 #1 0
0 0 0 0 0 0 0 0 0 0 1 3 #2 0
0 0 0 0 0 0 0 0 0 0 0 2 #1 0
0 0 0 0 0 0 0 0 0 0 0 0 #2 0
0 0 0 0 0 0 0 0 0 0 0 0 #1 0

Figure 4.9: Colors highlight the supercells of F∆(3) . Four cells form one
supercell of F∆(3) . Taking only two supercells does not uniquely determine
the next time step, as is illustrated by the supercell highlighted with blue;
all-zero neighborhood would have to map both to 0001 and to 0000. With
red is highlighted that the issue disappears when we take three supercells,
though this, of course, only shows that the issue disappears in this instance;
Figure 4.10 aims to explain why three supercells is, indeed, enough.

we see that sD is an all-zero word. Now consider the rightmost cell of the
left half of D, i.e. the cell whose first component is −2n−1. If we lower this
cell by one, its second component becomes

−
∞∑
i=0

b2
n−1

2i
c+ (2n+1 − n− 2) + 1 = 2n,

i.e. it is the cell (−2n−1, 2n), and we have seen that s(−2n−1, 2n) = 1. This
concludes the proof of 1).

Proof of 2): For this proof, viewing Figure 4.10 may be useful.

First we prove a small lemma: Let (BZ, G) be a cellular automaton
defined by B = {0, 1, 2, 3, 4} and G = F |{0,1,2,3,4}N . It is easy to check that

61

(BZ, G) is an elementary ROCA and that G∆ is also an elementary ROCA.
We claim that from this it follows that in the space-time diagrams of (BZ, G)
the contents of Cn and Cn+(2n−1,−2n+1) uniquely determine the content of
Cn+(0, 1). The proof goes by induction. When n = 1 the claim holds as G∆

is an elementary ROCA. Now assume that the claim holds for n. We claim
that the content of Cn+1 ∪

(
Cn+1 + (2n,−2n+1 + 1)

)
uniquely determines

the content of Cn+1 + (0, 1). Now Cn+1 = Cn ∪
(
Cn + (2n−1,−2n + 1)

)
as

was remarked above. Then, by induction hypothesis, the content of Cn+1 +
(2n,−2n+1 + 1) determines the content of Cn + (2n,−2n+1 + 2). Now we
know the contents of Cn+1 ∪

(
Cn + (2n,−2n+1 + 2)

)
and according to the

induction hypothesis this determines the content of Cn+1 + (0, 1), which
conlcudes the proof of this lemma.

Now let

Dn = Cn ∪
(
Cn + (2n−1,−2n + 1)

)
∪
(
Cn + (2n,−2n+1 + 2)

)
,

its width is 3 ·2n−1. The claim is that the content of Dn determnies the con-
tent of Cn + (0, 1) for space-time diagrams stZ(AZ, F). Let s ∈ stZ(AZ, F).

Let us consider three cases: 1) There is a cell (x, y) ∈ Dn such that
x ∈ [2n−1, 3 · 2n−1) and s(x, y) ∈ {#1,#2}. 2) For all (x, y) ∈ Dn it holds
that s(x, y) /∈ {#1,#2}. 3) There is a cell (x, y) ∈ Dn such that x ∈ [0, 2n−1)
and s(x, y) ∈ {#1,#2}. The order of these cases may seem odd, but after
proving the claim for 1) and 2), case 3) will be obvious.

1) Now suppose that sDn contains either #1 or #2 in, say, the cell
(x, y) ∈ Dn where x ∈ [2n−1, 3 · 2n−1). Then we know the entire column
(s(x, y′))y′∈Z since #1 always maps to #2 and vice versa. And so we will
actually know the entire stripe (s(x′, y′))x′∈{0,1,...,x},y′∈Z. Thus the claim
holds in this case.

2) Suppose sDn does not contain #1 or #2. Consider the triangular
shape T = {(x, y) | x ∈ [0, 3 · 2n−1), y ∈ (−3 · 2n−1 + x, 3 · 2n−1 − x)}.
Notice that s{(x,0)|x∈[0,3·2n−1)} determines sT . Notice also that the shape(
Cn ∪

(
Cn + (2n−1,−2n + 1)

)
∪ (Cn + (0, 1))

)
+ (0, 3 · 2n−1 − 2) is entirely

within T . Since sT by our assumption cannot contain any occurences of
symbols #1 or #2 we know that the same pattern sT appears also in
stZ(BN, G). But above we saw that in stZ(BN, G) the content of Cn ∪(
Cn + (2n−1,−2n + 1)

)
determines the content of Cn + (0, 1) which proves

the claim.
3) At this point this should be obvious.

62

cell (0, 0)

cell (0, 3 · 2n−1 − 1)

cell (0,−3 · 2n−1 + 1)

cell (3 · 2n−1 − 1, 0)

Figure 4.10: This illustrates the situation for n = 3. If any of the cells
highlighted with black contain #1 or #2 then the entire space-time diagram
to the left of this cell is determined by the contents of the black cells, since
#1 and #2 are blocking words. If the black cells contain neither #1’s nor
#2’s then the entire red triangle contains no #1’s or #2’s and so the red
triangle appears in a space-time diagram for the restrited cellular automaton
(BN, G) and thus, by the lemma proved for the restriction of (BN, G), we
know that the contents of black cells within the red triangle determine the
contents of the blue cells.

63

64

Chapter 5

One-Sided Ultimate
Expansivity and One-Sided
Pseudo-Orbit Tracing
Property

In this chapter we further discuss expansivity and pseudo-orbit tracing prop-
erty. In Chapter 2 we defined expansivity as a strong sensitivity to initial
conditions, but so that expansivity was defined only for reversible cellular
automata and positive expansivity only for surjective cellular automata. In
this chapter we consider a more general notion of expansivity which we call
ultimate expansivity (but which some, for example Masakazu Nasu, have
called just expansivity; the terminology regarding expansivity is not quite
standardized). Further, we define one-sided variants of ultimate expansivity,
which correspond to perturbations spreading possibly only to one direction.
All of the expansivity concepts can be considered as certain determinstic
directions in the space-time diagrams.

First main result of this chapter says that ultimately right-expansive
cellular automaton over a mixing sofic shift is chain-mixing. This improves
Mike Boyle’s result [7, Corollary 4.3] which states that expansive cellular au-
tomata (in the sense of Chapter 2) over a mixing sofic shift are chain-mixing.
Then we use this to prove the second main result which states that ulti-
mately right-expansive surjective cellular automata with left pseudo-orbit
tracing property over a transitive SFT have the pseudo-orbit tracing prop-
erty. This result has been proved before by Masakazu Nasu [53, Theorem
6.3] with the additional assumption of chain-recurrence. Nasu proves his
results by using his textile system theory, which is an alternative approach
to two-dimensional symbolic dynamics. Note that one can get rid of the
chain-recurrence assumption in the following way: Nasu remarks that “It

65

is an open problem whether an onto endomorphism φ of a mixing SFT has
φ-periodic points dense [...]. If the answer is affirmative, then the chain re-
currence condition on φ in Theorem 6.3 and that on φ̃ in Corollary 6.4 can
be removed.” [53, pp. 185], but there is no need to solve this longstand-
ing open problem as denseness of recurrent points implies chain-recurrence,
and this follows from the Poincaré recurrence theorem. Alternatively, the
first half of the proof of our Theorem 5.1.12 proves exactly what Nasu uses
chain-recurrence to prove.

After we have proved that left pseudo-orbit tracing property and ulti-
mate right-expansivity together imply soficness of the trace subshifts, we
illustrate with examples that neither ultimate right-expansivity nor left
pseudo-orbit tracing property alone is enough to guarantee soficness of the
trace subshfits.

5.1 Ultimate One-Sided Expansivity

In Chapter 2 we introduced the notions of expansivity and positive expansiv-
ity. In Proposition 2.4.23 we saw that for cellular automata these properties
can equivalently be defined as determinism in the horizontal direction of the
space-time diagrams. For two-sided cellular automata the usual definition
of expansivity leads to determinism both to the left and to the right. Next
we define one-sided expansivity where perturbations need to propagate only
to one direction; geometrically this corresponds to having determinism only
in one direction for the space-time diagrams. Let us simultaneously also
generalize our definition to cover all cellular automata (not just reversible
for expansive, and surjective for positively expansive); this is achieved by
considering only two-way infinite orbits.

A cellular automaton (X,F) is ultimately right-expansive if there exists
ε > 0 such that for all space-time diagrams (c(i))i∈Z, (e

(i))i∈Z ∈ stZ(F) it
holds that

(∃i > 0 : c
(0)
i 6= e

(0)
i

)
=⇒

(
∃n ∈ Z : d(Fn(c), Fn(e)) > ε

)
. (5.1)

Ultimately left-expansive is defined by replacing “∃i > 0” with “∃i < 0”. A
cellular automaton is ultimately expansive if it is both ultimately left- and
ultimately right-expansive. Ultimate expansivity can be generalized for ar-
bitrary dynamical systems: Dynamical system (X,φ) is ultimately expansive
if there exists ε > 0 such that for all oribts (x(i))i∈Z and (y(i))i∈Z of (X,φ)
it holds that

x(0) 6= y(0) =⇒ ∃i ∈ Z : dist(x(i), y(i)) > ε.

By definition, positively expansive cellular automata and expansive cel-
lular automata are ultimately expansive. Next examples show that ultimate
expansivity covers cases which expansivity and positive expansivity do not.

66

Example 5.1.1. A cellular automaton (AZ, F) is nilpotent if there exists
q ∈ A and n ∈ N such that for every c ∈ AZ we have that Fn(c) = ωqω. Then
stZ(F) is a singleton and it follows that (AZ, F) is ultimately expansive.

Notice that since nilpotency is undecidable (Jarkko Kari [34]) it easily
follows that so is ultimate expansivity. Though more interesting question is
whether ultimate expansivity is undecidable for surjective cellular automata.

Since ultimate expansivity only considers two-way infinite orbits, it con-
siders only configurations in the limit set Λ(X,F) =

⋂
i∈N F

i(X) of the
cellular automaton. As all cellular automata are surjective over their limit
sets, it would be reasonable to define ultimate expansivity only for surjec-
tive cellular automata. In this sense also the above example does not diverge
from the usual definition, since it describes a cellular automaton which is
expansive (and positively expansive, too) when restricted to the limit set.
Notice also that there cannot be a reversible cellular automaton that would
be ultimately expansive but not expansive, as ultimate expansivity and re-
versibility together are equivalent to expansivity. However, there are surjec-
tive ultimately expansive cellular automata which are neither expansive nor
positively expansive, as the following examples illustrate.

Example 5.1.2. Let A = {0, 1}, σ : AZ → AZ be the shift map and
XN : AZ → AZ be the one-sided XOR -cellular automaton, that is, the
cellular automaton defined by XN,loc : A[0,1] → A, XN,loc(ab) = a⊕ b, where
⊕ denotes addition modulo 2. Consider the cellular automaton (AZ, σXN).
This is not reversible and thus not expansive. This is also not positively
expansive since all c, e ∈ AZ such that ci = ei for all i > −n have that
dist(F k(c), F k(e)) ≤ 1

2n for all k ∈ N. This cellular automaton is, however,
ultimately expansive: Take any t ∈ τZ,2(σX) and let s ∈ stZ(σX) be a
space-time diagram such that for all i ∈ Z we have that ti = s(0, i)s(1, i).
Then this s is actually uniquely determined by t since s(i− 1, j) = s(i, j −
1)⊕ s(i+ 1, j − 1) meaning t determines the space-time diagram to the left,
and also s(i + 1, j) = s(i − 1, j + 1) ⊕ s(i, j) so that t also determines the
space-time diagram to the right. (Any positively right-expansive cellular
automaton can be composed with a suitable power of the shift map to yield
an ultimately expansive cellular automaton which is neither expansive nor
positively expansive.)

Example 5.1.3. Let A = {0, 1} , σ : AZ → AZ be the shift map and
XZ : AZ → AZ be the two-sided XOR -cellular automaton, that is, the
cellular automaton defined by XZ,loc : A[−1,1] → A, XZ,loc(abc) = a ⊕ c.
The shift map σ is expansive, and so also ultimately expansive. The XOR
-cellular automaton cannot be expansive as it is not reversible. However, it
is positively expansive, and so also ultimately expansive. Consider the direct
product of these, that is the cellular automaton σ×XZ : AZ×AZ → AZ×AZ

67

defined by (σ × XZ)(c, e) = (σ(c),XZ(e)). This is neither expansive (not
even reversible) nor positively expansive (since σ is not). However, σ × XZ
is ultimately expansive.

The following proposition is a one-sided variant of Proposition 2.4.23,
i.e. it states that ultimate right-expansivity means determinism from left to
right in the space-time diagrams.

Proposition 5.1.4. A cellular automaton (X,F) is ultimately right-expansive
if and only if there exists m,n ∈ N such that for all space-time diagrams
(c(j))j∈Z and (e(j))j∈Z the following holds(

∀j ∈ {0, . . . , 2n} : c
(j)
[0,m) = e

(j)
[0,m)

)
=⇒ c(n)

m = e(n)
m . (5.2)

It is worth being slightly careful when discussing expansivity in context
where cellular automata may be one- or two-sided. In the following we
denote by XN and XZ the one- and two-sided subshifts which are otherwise
essentially the same. We require that σ(XN) = XN in order to avoid the
ambiguity that examples such as XN = {10ω, 0ω} cause.

Proposition 5.1.5. Let Floc be a memoryless local rule and X a subshift
such that σ(XN) = XN. If (XN, F) is expansive (ultimately expansive),
then (XZ, F) is right-expansive (ultimately right-expansive) but usually not
expansive (ultimately expansive). If (XZ, F) is ultimately expansive, then
(XN, F) is ultimately expansive.

Notice that if (AN, F) is expansive and |A| > 1 then (AZ, F) is right-
expansive but never expansive (though the cellular automaton ({0ω}, F) is
expansive and so is ({ω0ω}, F)). In [2] Luigi Acerbi, Alberto Dennunzio and
Enrico Formenti consider how certain properties are affected when com-
paring memoryless two-sided cellular automaton with the one-sided cellular
automaton defined by the same local rule.

Let (X,F) be an ultimately right-expansive cellular automaton. Then
Proposition 5.1.4 says that for all large enoughm ∈ N we can define a cellular

automaton (τm(F),
−→
Fm) such that for every t ∈ τm(F) we have that

−→
Fm(t) ∈

τm(F) is the unique configuration such that π[1,m)(t) = π[0,m−1)(
−→
Fm(t)) and

the last column of
−→
Fm(t) is the column defined by (5.2) (Figure 5.1). Then

{(π0(
−→
F i
m(t)))i∈N | t ∈ τm(F)} is the set of right halves of stZ(F).

Notice that if F is surjective and ultimately expansive then (X,F) is a
factor of (τm(F), σ). On the other hand, let ψ : (Am)Z → (Am)N be the
map defined by ψ(· · · c−1c0c1 · · ·) = c0c1 · · · . Then (ψ(τm(F)), σ) is a factor
of (X,F). If (X,F) is expansive, it is conjugate to (τm(F), σ). If (X,F) is
positively expansive, it is conjugate to (ψ(τm(F)), σ).

68

m

Figure 5.1: An ultimately right-expansive cellular automaton defines a cel-

lular automaton
−→
Fm which draws the (right halves) of the space-time dia-

grams. The figure illustrates how
−→
Fm is defined; assuming that the grid has

a valid space-time diagram of F , then
−→
Fm maps the pattern in the light gray

rectangle to the pattern in the dark gray rectangle.

5.1.1 One-Sided Pseudo-Orbit Tracing Property

Let us recall some definitions from Chapter 2. Let (X,F) be a cellular
automaton with radius r, where X ⊆ AZ. We defined (labeled multi-)graphs
Gm(X,F) = (Vm, Em, λm) by

• The set of vertices is Vm = Lm(X).

• For every u ∈ Vm and x, y ∈ Lr(X) such that xuy ∈ Ln+2r(X) there is
an edge (u, f(xuy)) whose label is λm((u, f(xuy))) = xy. We express

this compactly by saying that u
xy−→ f(xuy) is in Em.

The set of infinite paths of this graph were denoted by POm(X,F), and
these correspond to the pseudo-orbits of (X,F). Pseudo-traces of (X,F)

were defined as iΣ
(m)
j (X,F) = pr[i,i+m)(POn(X,F)) where n = i + j + m.

As usual, we may drop “X” or “(X,F)” entirely from the notations, if it

does not cause confusion. We also defined ∞Σ
(m)
j =

⋂
k∈N kΣ

(m)
j which is

non-empty by the finite intersection property. In similar fashion we defined

subshifts iΣ
(m)
∞ =

⋂
k∈N iΣ

(m)
k and ∞Σ

(m)
∞ =

⋂
k∈N kΣ

(m)
k .

Let us now define one-sided variant of POTP.
According to Propositions 2.4.18 and 2.4.19 we have that (X,F) has

POTP if and only if for every m ∈ N \ {0} there exists n ∈ N such that

nΣ
(m)
n = ∞Σ

(m)
∞ . This leads to a natural definition of one-sided POTP: We

69

say that F has the left pseudo-orbit tracing property (left-POTP) if for every
m there exists i, j

iΣ
(m)
j = ∞Σ

(m)
j .

The right pseudo-orbit tracing property (right-POTP) is defined analogously.
We see that for cellular automata over SFT’s this definition behaves as one-
sided variants are expected to:

Proposition 5.1.6. Let X be an SFT and (X,F) a cellular automaton.
Then (X,F) has POTP if and only if (X,F) has left- and right-POTP.

Proof. “⇒”: Immediate from Propositions 2.4.18 and 2.4.19.
“⇐”: It is enough to show that for large enough m it holds that there

exists n such that τm(F) = nΣ
(m)
n . Let l be large enough so that there exists

a set of forbidden words S ⊆ Al such that X = XS and let m ≥ max{l, 2r}
where r = r(F). Then left- and right-POTP say that we have n such that

∞Σ
(m)
n = nΣ

(m)
n = nΣ

(m)
∞ . Now consider t ∈ nΣ

(m)
n . It can be extended

infinitely to the left without introducing violations of the local rule of F ,
and also to the right. If we take any valid extension to the left and glue it
together with any valid extension to the right, we have a valid space-time
diagram since m was chosen large enough so that the patterns checking the
validity of the space-time diagram cannot see both sides of the stripe of

width m. Thus nΣ
(m)
n = τm(F) and by Proposition 2.4.19 we are done.

The following proposition shows that memorylessness is a special case of
left-POTP.

Lemma 5.1.7. Let X be an SFT and (X,F) be a memoryless cellular au-
tomaton. Then there exists m0 ∈ N such that for all m ≥ m0 and for all

n ∈ N it holds that 0Σ
(n)
m = ∞Σ

(n)
m .

Proof. Let X be an SFT and l ∈ N such that there exists S ⊆ Al such that
X = XS . Let (X,F) be a cellular automaton with neighborhood [0, r] where
r ∈ N. Let m ≥ m0 = max{l, r}. Take any configuration t ∈ POm(F) and
a sequence (ai)i∈Z ∈ AZ such that aiti ∈ Lm+1(X) for all i ∈ Z. There is no
reason why (aiti)i∈Z should be in POm+1(F). However, we can construct a

valid extension as follows: For every j ∈ N define a new sequence (a
(j)
i)i∈Z

by setting a
(j)
i = ai for i < −j and the rest of the sequence is defined

inductively by

a
(j)
−j = a−j and a

(j)
k+1 = f(a

(j)
k tk)0 for k ≥ −j.

Notice that by the choice of m we have that if x, y ∈ A, u, v ∈ Am, w ∈ Ar
such that xu ∈ Lm+1(X), uw ∈ Lm+r(X) and F (xu)0 = y, F (uw) = v,
then xuw ∈ Lm+r+1(X) (since m ≥ l) and F (xuw) = yv (since m ≥

70

r). Thus the configuration (a
(j)
i ti)i∈Z looks like a valid configuration of

POm+1(F) for all i ≥ −j. By compactness the sequence ((a
(j)
i)i∈Z)j∈N

has a converging subsequence, say ((a
(j)
i)i∈Z)j∈I where I ⊆ N is an infinite

subset. Let (bi)i∈Z be the limit of this subsequence. Now the configuration
(biti)i∈Z ∈ POm+1(F) shows that t can be extended to the left with one
column. We can repeat the process and extend t to the left as much as we

will. This shows that for every n ∈ N we have that 0Σ
(n)
m = ∞Σ

(n)
m .

We get the following corollaries.

Corollary 5.1.8. Let X be an SFT and (X,F) be a memoryless cellular
automaton. Then (X,F) has left-POTP.

Proof. Immediate from Lemma 5.1.7.

Corollary 5.1.9. Let X be an SFT. If (X,F) is memoryless, then τm(F) =⋂
i∈N 0Σ

(m)
i .

Proof. From Lemma 5.1.7 it follows that for large enough n we have 0Σ
(m)
n =

nΣ
(m)
n , and so the claim follows from Proposition 2.4.18.

When discussing expansivity one needs to be careful whether the under-
lying space is assumed one- or two-sided. For POTP one does not need to
worry as much.

Proposition 5.1.10. Let Floc be a memoryless local rule and X a subshift
such that σ(XN) = XN. Then (XN, F) has POTP if and only if (XZ, F) has
POTP.

Proof. This is clear: Since σ(XN) = XN we have that τm(XN, F) = τm(XZ, F).

5.1.2 Right-Expansivity Implies Chain-Mixingness

Let (X,F) be a cellular automaton. We call a set U ⊆ X inward if F (U) ⊆
U .

Next we want to show that an ultimately right-expansive surjective cel-
lular automaton (X,F) over a mixing sofic shift X is chain-mixing. Propo-
sition 2.4.21 states that chain-mixing is equivalent to chain-transitivity in
this setting, thus it is sufficient to prove chain-transitivity. This means that
we want to show that the graphs Gn(F) are transitive (Proposition 2.4.16).
We are one auxiliary result away from having all the necessary compon-
tents for our proof; we still need to show that for (X,F) it holds that if a
clopen set U is inward, then F (U) = U = F−1(U). This states that con-
nected components of Gn(F) are strongly connected. Using this our proof

71

n
F

−→
Fn

Figure 5.2: If F is not chain-transitive, then for some n graph Gn(F) is not
strongly connected, and then, by Proposition 5.1.11, not even connected.
Then F draws stripes (illustrated with gray and black), since columns of
width n in stZ(F) must be configurations of the shift defined by Gn(F).
Since X is a mixing sofic shift we can draw complex configurations with

these vertical stripes. This leads to a contradiction, since
−→
Fn could now

draw a stripe shift which is more complex than Proposition 3.2.4 allows.

goes, intuitively, as follows (see Figure 5.2). Suppose Gn(F) is not transi-
tive. Then there are two disjoint strongly connected components in Gn(F).
This means that F draws vertical stripes. Since X is mixing sofic shift
we can draw quite complex configurations with these vertical stripes. But
this contradicts our main result about stripe shifts (Proposition 3.2.4), since
now right-expansivity would define a cellular automaton that would be able
to draw complex horizontal stripes (the vertical stripes of F are horizontal

stripes for
−→
Fm).

In [32] we proved these results for cellular automata over full shifts, and
then the required property that F (U) = U = F−1(U) for inward clopen
sets follows easily from the classical balancedness property proved by Akira
Maruoka and Masayuki Kimura [45]. In [33] we generalized the results over
mixing sofic shifts, and needed a replacement for this result. This more
general version hinges on results from ergodic theory.

Proposition 5.1.11. Let X be a mixing sofic shift. Then (X,F) is surjec-
tive if and only if for every clopen set U ⊆ X it holds that if U is inward
then F (U) = U = F−1(U).

Proof. “ ⇐= ” The whole space X is itself clopen, and clearly F (X) ⊆ X.
Then F (X) = X, i.e. F is surjective.

“ =⇒ ” This direction requires some ergodic theory. As ergodic theory
plays no further role, we will not go into details. The following outlines
known results that can be used to conclude the claim:

72

According to Benjamin Weiss [61], X has a unique σ-invariant measure
of maximal entropy µ (known as the Parry measure, originally presented in
[55] for SFT’s by Bill Parry). From the definition one sees that µ(U) > 0
for every non-empty open set U ⊆ X.

The push-forward measure of µ under F is defined by setting F (µ)(U) =
µ(F−1(U)) for any clopen set U ⊆ X. According to [46, Theorem 3.3.] every
σ-invariant measure of maximal entropy is the push-forward measure under
F of some σ-invariant measure of maximal entropy. Since µ is the unique
σ-invariant measure of maximal entropy, we have that F (µ) = µ.

Now suppose that F (U) ⊆ U for some clopen set U ⊆ X. Then U ⊆
F−1(U). Now we have that µ(F−1(U) \ U) = µ(F−1(U)) − µ(U) = 0, and
since F−1(U) \ U is open we get that F−1(U) \ U = ∅. So we have that
F−1(U) ⊆ U , and thus F−1(U) = U . Since F is surjective we also have that
F (U) = U .

Following result is a generalization of Mike Boyle’s result [7, Corollary
4.3] where the cellular automaton is assumed to be expansive rather than
ultimately right-expansive.

Theorem 5.1.12. Let X be a mixing sofic shift. A surjective ultimately
right-expansive cellular automaton (X,F) is chain-mixing.

Proof. Let us show that (X,F) is chain-transitive. For contradiction, sup-
pose that (X,F) is not chain-transitive. Then, by Proposition 2.4.16, there
exists m such that Gm(F) is not strongly connected. We may assume that m

is large enough so that we have a cellular automaton (τm(F),
−→
Fm) as defined

by Proposition 5.1.4. Let Gm(F)1, . . . ,Gm(F)k be the strongly connected
components of Gm(F). There has to exist a strongly connected component
which has no arrows to other strongly connected components (if every con-
nected component could be left, there would have to exist a cycle which
would visit two different connected components, which is a contradiction);
we may assume that Gm(F)1 is such. Let V1 ⊆ Lm(X) be the vertex set of
Gm(F)1 and V c

1 = Lm(X)\V1. We denote with V1 and V c
1 also the clopen sets

of X which the vertex sets naturally define. Since V1 has no arrows pointing
outwards, we have that F (V1) ⊆ V1. Then according to Proposition 5.1.11
we have that F (V1) = V1 and F−1(V1) = V1. According to F−1(V1) = V1

there are no arrows pointing from V c
1 to V1 and so F (V c

1) ⊆ V c
1 . Again, by

Proposition 5.1.11, we have that F (V c
1) = V c

1 .

Define a partition P of Am as follows:

P1 = V1

P0 = Am \ V1,

73

and let ι : Am → {0, 1} be the projection defined by this partition. Of
course V c

1 ⊆ P0. As we saw above POm(F) ⊆ PZ
0 ∪ PZ

1 . Then we also
must have that τm(F) ⊆ PZ

0 ∪ PZ
1 . Take one vertex u ∈ V1 = P1 and one

v ∈ V c
1 ⊆ P0. Since X is a mixing sofic shift, we have K ∈ N and words

wuu, wuv, wvv, wvu ∈ AK such that

Y = {· · ·x−1wx−1x0x0wx0x1x1 · · · | xi ∈ {u, v} for all i ∈ Z} ⊆ X.

Now extend (τm(F),
−→
Fm) arbitrarily into a cellular automaton ((Am)Z,

−→
F ′m).

But now the stripe shift defined by
−→
F ′m and P would contain an uncount-

able sofic shift: For x, y ∈ {u, v} define zx,y ∈ {0, 1}|u|+K−1 as zx,y =
ι
(
(xwxyy)[0,m)

)
ι
(
(xwxyy)[1,m+1)

)
· · · ι

(
(xwxyy)[|u|+K−1,m+|u|+K)

)
, then

{i0zx0,y0i1zx1,y1 · · · |ij ∈ {0, 1} and ι(xj) = ij and

ι(yj) = ij+1 for all i, j ∈ N} ⊆ ΞP (
−→
F ′m).

This contradicts the Stripe Lemma (more specifically its corollary, Proposi-
tion 3.2.4).

Now, by Proposition 2.4.21, (X,F) is chain-mixing.

Remark 5.1.13. In Theorem 5.1.12 mixing sofic shiftX cannot be replaced by
a transitive sofic shift X: Take two (reversible) expansive cellular automata
(AM, F) and (BM, G) where M = N or M = Z, and A and B are disjoint. For
convenience assume that the local neighborhood is {−1, 0, 1} ∩M. Let X ⊆
(A ∪B)M be a transitive SFT defined by the set of forbidden patterns F =
{xy | x, y ∈ A}∪{xy | x, y ∈ B}. Now define a cellular automaton (X,H) by
a local rule with neighborhood {−2, 0, 2}∩M. Within this neighborhood the
local rule sees letters only from A or only from B. This local neighborhood is
mapped according to F or G depending on whether the local rule sees letters
from A or from B. This (X,H) is expansive since (AM, F) and (BM, G) are,
but not chain-transitive.

Theorem 5.1.12 has the following immediate corollary.

Corollary 5.1.14. Let X be a mixing sofic shift and let (X,F) be a surjec-

tive ultimately right-expansive cellular automaton. Then iΣ
(m)
j is a mixing

sofic shift for every i, j ∈ N,m ∈ N \ {0}.

Proof. The pseudo-traces iΣ
(m)
j are mixing sofic shifts as factors of mixing

SFT’s.

5.2 Left-POTP and Ultimate Right-Expansive Cel-
lular Automata Have POTP

Let (X,F) be a ultimately right-expansive cellular automaton where X ⊆
AZ. Let m be large enough so that ultimate right-expansivity defines a

74

iΣ
(m)
j

iΣ
(m)
j−1 i+1Σ

(m)
j−1

Fm⊆

⊇

Figure 5.3: For large enough
i, j,m ∈ N this diagram holds.

L+1Σ
(m)
L+1

LΣ
(m)
L L+1Σ

(m)
L L+2Σ

(m)
L

Fm⊆Fm

Figure 5.4: The bottom row are
equal due to left-POTP for large
enough L.

cellular automaton (τm(F),
−→
Fm) and r = r(

−→
Fm). For all i, j ∈ N let X

(j)
i

denote the SFT of (Aj)Z defined by forbidding (Aj)i \ Li(τj(F)). Now
−→
Fm

can be extended to X
(m)
2r+1 by using the same local rule of radius r; Let Fm

denote the extension of
−→
Fm to X

(m)
2r+1. It does not necessarily hold that

Fm(X
(m)
2r+1) ⊆ X(m)

2r+1 so this is not necessarily a cellular automaton but it is
a sliding block map.

Let us prove a simple lemma.

Lemma 5.2.1 (Figure 5.3). Let (X,F) be a surjective right-expansive cel-
lular automaton. Let m ∈ N be large enough so that expansivity defines a

cellular automaton (τm(F),
−→
Fm). Let r = r(F) and r′ = r(

−→
F), then

∀i, j ∈ N : i ≥ 2r′r ∧ j ≥ 2r′r + 1 =⇒ Fm
(
iΣ

(m)
j

)
= i+1Σ

(m)
j−1.

Proof. Let r = r(F) and r′ = r(
−→
Fm). Now 2r′rΣ

(m+1)
2r′r is the set of m + 1

wide middle columns of PO4r′r+m+1(F). Due to the width and surjectivity

we have that L2r′+1

(
2r′rΣ

(m+1)
2r′r

)
= L2r′+1(τm+1(F)). But then we have

that
Fm

(
2r′rΣ

(m)
2r′r+1

)
= 2r′r+1Σ

(m)
2r′r

which proves the claim.

We can now prove that surjective ultimately right-expansive cellular au-
tomaton with left-POTP has POTP. Our proof is inspired by Siamak Taati’s
proof that a cellular automaton (over the full shift) which is reversible over
its limit set is stable [58], i.e. reaches the limit set in finite time. The anal-
ogy is that left-POTP corresponds to the forward rule, the trace subshift
τm(F) corresponds to the limit set, and the map defined by right-expansivity
corresponds to the inverse rule defined on the limit set.

Theorem 5.2.2. Let X ⊆ AZ be a transitive SFT and let (X,F) be a sur-
jective ultimately right-expansive cellular automaton with left-POTP. Then
F has POTP and τk(F) is a sofic shift for every k. If F is memoryless, then

75

τm(F) is an SFT for every large enough m. Also, if X is a mixing SFT,
then τk(F) is mixing for every k.

Proof. By Proposition 2.4.12 there exists n such that (X,σn) is a finite union
of disjoint mixing SFT’s. As (X,F) is a surjective cellular automaton, some
power of F is a cellular automaton when restricted to any of these mixing
SFT’s. If this power of F has POTP on each of these disjoint mixing SFT’s
then the original cellular automaton also has POTP. This is why it is enough
to prove the claim with the additional assumption of X being a mixing SFT.
This same argument has already been made by Nasu [53, end of Section 2]
and also by Boyle [7, proof of Theorem 5.5].

Let (X,F) be a surjective ultimately right-expansive cellular automaton
where X is a mixing SFT. We will show that for all large enough L,m ∈ N
it holds that τm(F) = LΣ

(m)
L sot that (X,F) has POTP.

Let m be large enough so that ultimate right-expansivity defines a cellu-

lar automaton (τm(F),
−→
Fm). Let l be large enough so that left-POTP says

that lΣ
(m)
l = ∞Σ

(m)
l . Let r be a radius of F and let r′ be a radius of

−→
Fm.

Notice that since F is surjective we have that Lk(krΣ
(m)
kr) = Lk(τm(F)) for

every k ∈ N. In particular l′Σ
(m)
l′ ⊆ X

(m)
2r+1 for every l′ ≥ (2r′ + 1)r. Let

L ≥ max{l, (2r′ + 1)r}.
Now we claim that Fm(L+1Σ

(m)
L+1) = LΣ

(m)
L . According to Lemma 5.2.1

we have that Fm(L+1Σ
(m)
L+1) = L+2Σ

(m)
L and, by left-POTP, L+2Σ

(m)
L = LΣ

(m)
L

(see Figure 5.4), which together prove this claim.

Now we have that LΣ
(m)
L is a factor of L+1Σ

(m)
L+1, so the entropy of LΣ

(m)
L

is at most the entropy of L+1Σ
(m)
L+1 (Proposition 2.4.7). But we also have

that L+1Σ
(m)
L+1 ⊆ LΣ

(m)
L , and so L+1Σ

(m)
L+1 and LΣ

(m)
L have the same entropy.

According to Proposition 2.4.8 we have that L+1Σ
(m)
L+1 = LΣ

(m)
L , since LΣ

(m)
L

is transitive (Corollary 5.1.14), and so LΣ
(m)
L = ∞Σ

(m)
∞ . Now (X,F) has

POTP according to Proposition 2.4.19, and POTP always implies soficness
of the trace subshifts.

Next let F be memoryless, i.e. it has a local neighborhood [0, r]. Accord-

ing to Lemma 5.1.7 we now have that 0Σ
(m)
d = τm(F) for some d. Let x ∈

X
(m)
2r′d+2 be arbitrary and y ∈ (Am+d)Z be the unique configuration defined by

π[i,i+m)(y) = Fim(x) for all i ∈ {0, 1, . . . , d}. Now π[0,m+1)(y) ∈ X(m+1)
2r′(d−1)+2

since x = π[0,m)(y) ∈ X
(m)
2r′d+2 and π[1,m)(y) is defined using the local rule

of
−→
Fm. We can repeat this for d times and we get that y ∈ X

(m+d)
2 , i.e.

y ∈ POm+d(F). But then, since 0Σ
(m)
d = τm(F), we have that x ∈ τm(F).

Of course τm(F) ⊆ X
(m)
2r′d+2 and so we are done. This reasoning holds for

any m large enough so that
−→
Fm is defined.

76

Lastly, if X is mixing, then by Corollary 5.1.14 also τk(F) is mixing (we
can skip the first paragraph of this proof).

Remark 5.2.3. Theorem 5.2.2 implies the following:

• If (AN, F) is surjective and positively expansive, then τm(F) is an SFT
for all large enough m (proved by Francois Blanchard, and Alejandro
Maass in [6, Theorem 3.3], and by Mike Boyle, Doris Fiebig, and Ulf-
Reiner Fiebig in [8]).

• If (AN, F) is reversible and expansive, then τm(F) is an SFT for all
large enough m (by Masakazu Nasu [52, Theorem 1.3])

• If (X,F), where X ⊆ AZ is a transitive SFT, is surjective, ulti-
mately right-expansive, memoryless, and chain-recurrent, then (X,F)
has POTP (by Masakazu Nasu [53, Theorem 6.3 (i)], the last assump-
tion is not actually needed, see introduction of this chapter or the
theorem above).

It is also known that if (AZ, F) is positively expansive, then τm(F) is
conjugate to a full shift (proved independently by Petr Kůrka [39], Masakazu
Nasu [51], and Fabio Fagnani and Luciano Margara [21]).

5.3 Right-Expansive Cellular Automaton with Non-
Sofic Traces

Next we show that while it might be possible to replace the assumption of
left-POTP in Theorem 5.2.2 with a weaker assumption, it cannot be dropped
entirely. Using the construction by Jarkko Kari and Ville Lukkarila [37] we
give an example of a right-expansive cellular automaton that has a non-
sofic trace. The next paragraphs summarize what we need, but for a more
detailed presentation we refer the reader to [37, 34, 43].

A set of Wang tiles T is a set of squares with each edge coloured using
finite colour set A. Let us fix that (x, y, z, w) ∈ A4 is a Wang tile such that
the colours are presented in the order W-N-E-S (west-north-east-south). A
tiling by T is an assignment Z2 → T . A tiling is valid if the adjacent edges
have the same colour. The set T is called NW-deterministic if for all a, b ∈ A
we have that |

(
{a} × {b} × A × A

)
∩ T | ≤ 1. Other XY-determinism’s are

defined analogously. If T is both NW- and SE-deterministic, then T is called
two-way deterministic. Any two-way deterministic tile set can be completed
in the sense that we can add tiles TC so that for all a, b ∈ A holds that
|
(
{a} × {b} ×A×A

)
∩ (T ∪ TC)| = 1 = |

(
A×A× {a} × {b}

)
∩ (T ∪ TC)|.

This can be done since we must be missing the same number of NW- and
SE-pairs; in TC we just match these arbitrarily. This means that a two-way

77

a b a b

ab a⊕ b b⊕ 1

Figure 5.5: Here a, b ∈ {0, 1}, the light gray represents a tiling error, and
⊕ denotes addition modulo 2. The label of the arrow pointing to the lower
left corner is the first bit and the label of the arrow pointing to the lower
right corner is the second bit.

deterministic set of Wang tiles T can be used to define a reversible cellular
automaton FT : (T ∪ TC)Z → (T ∪ TC)Z where configurations represent
SW-NE-diagonals of valid tilings with T ∪ TC .

A tiling c by a Wang tile set T is periodic if there exits (x, y) ∈ Z2 \
{(0, 0)} such that for every (i, j) ∈ Z2 we have that ci,j = ci+x,j+y. A
Wang tile set T is aperiodic if it admits a valid tiling, but none of the valid
tilings is periodic. We need the fact that there exists an aperiodic two-way
deterministic Wang tile set. Such do exist: The Wang tile set derived from
Amman’s aperiodic tile set [25] is such, and the tile set constructed in [43]
is even 4-way deterministic. Details of the chosen tile set are irrelevant for
us.

Proposition 5.3.1. There exists a right-expansive cellular automaton over
a full shift such that for all m ≥ 2r it holds that m-trace is a non-sofic shift,
where r is a radius of the cellular automaton.

Proof. Following paragraph shortly describes what we get from a construc-
tion in [37]:

Let T be a two-way deterministic aperiodic set of Wang tiles. Define
FT : (T ∪ TC) → (T ∪ TC) as above; the tiles in TC are considered to be
tiling errors. For large enough k it holds that σkFT is expansive. Denote
F = σkFT . Next signals are added: Let G : ((T ∪ TC) × {0, 1}2)Z →
((T ∪ TC)× {0, 1}2)Z where the tiling-layer is mapped by F and the signal
layer is mapped as illustrated by Figure 5.5. As noted in [37] this G is
right-expansive and further has the property that if there is a tiling error
somewhere, then every column right of the tiling error contains both zero-
and one-signals.

Let r be the radius of G and suppose that τm(G) is sofic for some m ≥ 2r.
Take a space-time diagram which on the tiling-layer contains only states from
T and on the signal-layer all the signals are zeroes. Such exists as T admits

78

valid tilings and then setting every signal to zero gives a suitable space-time
diagram. Let t ∈ τm(G) be a vertical stripe of this space-time diagram. By
soficness it follows that there exists i ∈ Z, n ∈ N such that u = t[i,i+n) is
such that · · ·uuu · · · ∈ τm(G). Now since the tiling-layer is expansive, this
implies that in the space-time diagram that has · · ·uuu · · · as a column, the
tiling layer must be periodic. But since T is an aperiodic tile set, it then
has to be that there are tiling errors densely; that is to say that there exists
k ∈ N such that every k × k square in the space-time diagram has a cell
whose tiling-layer is in a state from TC . In particular there has to be tiling
errors left of the column · · ·uuu · · · . But this is a contradiction, since if
there is a tiling error left of the column, then the column’s signal-layer has
both zeroes and ones, but · · ·uuu · · · has only zeroes.

5.4 Left-POTP Cellular Automaton with Non-Sofic
Traces

Next we give an example of a reversible cellular automaton over one-sided
full shift with non-sofic traces, and so a reversible cellular automaton with
left-POTP and with non-sofic traces.

Let X ⊆ AZ be a subshift. The set of isolated points of X is

Iso(X) = {c ∈ X | ∃n ∈ N : [c−n · · · cn] ∩X = {c}}.

Sofic shifts have only finitely many isolated periodic points.

Lemma 5.4.1. If X ⊆ AZ is a sofic shift, then |Iso(X) ∩ Perσ(X)| <∞.

Proof. Suppose X is sofic but the intersection of its isolated and periodic
points is infinite. Let G be (labeled directed) graph that defines X; we
can assume that every vertex has both incoming and outgoing edges. Let
{ci}i∈N ⊆ Iso(X) ∩Perσ(X) be an infinite subset such that if i 6= j then for
all k it holds that σk(ci) 6= cj . For every i ∈ N let ui be the shortest word
such that ci = ωuωi . Since for every i any repetition of ui appears, there
has to exist a cycle in G whose labels read ui some number of times. Let
i, j ∈ N be arbitrary but different. Let Gi and Gj be cycles in G whose labels
read ui and uj (resp.) some number of times. The cycles Gi and Gj must be
separate in the sense that there cannot be a directed path from Gi to Gj or
from Gj to Gi, since otherwise there would exist a word w ∈ A+ such that
ωuiwu

ω
j or ωujwu

ω
i would be in X contradicting the isolation of ci. Having

an own separate cycle for infinitely many points contradicts the finiteness of
G.

Now we are ready to present a reversible one-sided cellular automaton
with non-sofic traces.

79

Proposition 5.4.2. There exists a reversible one-sided cellular automaton
whose traces are non-sofic.

Proof. Let (AN, F) be an elementary ROCA where A = {0, 1, 2, 3} and
π0

π1

π2

π3

 =

0 2 1 3
1 2 0 3
0 2 1 3
1 2 0 3

 .
We will show that τ1(F) is non-sofic, it is then easy to see that also τm(F)
for any m > 1 is non-sofic.

First notice that 3 is always mapped to 3 so that every c ∈ τ1(F) is
either ω3ω or has no appearances of the letter 3. Notice also that if there
is a column ω3ω in a space-time diagram of (AN, F) then every column to
the left of it has to be periodic. This can be seen, for example, by noticing
that π3 can be extended into a permutation π3,n : An → An for any n by
π3,n(u) = F (u3) where u ∈ An. Now since 3 is fixed, the two-way infinite
sequences (πi3,n(u))i∈Z are precisely the elements of τn(F) obtained by fixing
3 into the cell n. Now the order of the permutation π3,n gives an upper bound
for the period of the nth column to the left of ω3ω.

Notice that
(
{0, 1, 2}N, F |{0,1,2}N

)
is the zot cellular automaton defined

in Chapter 5, Section 4.2. According to Proposition 4.2.2 we know that
202k+11 cannot appear as a vertical word in any space-time diagram that
does not contain 3’s. We also know, by Lemma 4.2.1, that if the word
202k+11 appears in τ(AN, F) then it forces an appearance of 202k−11 to the
right of it. Eventually this leads to the word 201. This was the reason why
202k+11 cannot appear in the trace of the zot cellular automaton, as the
only letter that maps 0 to 1 is 1, but 1 does not map 0 to 2 when going
backwards in time. However, the added letter 3 does exactly this: π3(0) = 1
and ρ3(0) = 2. The letter 3 itself is fixed, and we see that 202k+11 does
appear in τ1(F), and for each k it defines an isolated periodic point (see
Figure 5.6). According to Lemma 5.4.1 this shows that τ1(F) cannot be
sofic and concludes the proof.

Since any memoryless cellular automaton over a full shift has left-POTP
(Lemma 5.1.7) we have the following.

Corollary 5.4.3. There exists a reversible cellular automaton over a full
shift with left-POTP whose traces are non-sofic.

80

2

0

0

0

1

2

0

1

3

1

0

2

2k + 1

3’s

3’s

Figure 5.6: Word 202k+11 forces the word 202k−11 next to it. Eventually
this leads to the word 201. Next to this there can only be a 3. Since 3’s
are fixed, the whole column is a constant 3. This uniquely determines the
column containing 202k+11 and forces it to be periodic.

81

82

Chapter 6

Conjugacy

All cellular automata in this chapter are over full shifts.

As a last topic of this thesis we study conjugacy of cellular automata.
Dynamical systems that are (topologically) conjugate share the same (topo-
logical dynamical) properties. This can often help in the study of dynamical
systems, as we may freely use conjugacies to transform system we are study-
ing into another one which may be easier to analyze. While discussing one-
sided cellular automata in Chapter 4 we used this fact to justify studying
cellular automata with radius one, as the grouping of cells is a conjugacy.

Naturally it could be useful to have an algorithm that would decide
whether given two cellular automata are conjugate or not. In this chapter
we show that such algorithm does not exist. First we prove this for one-sided
one-dimensional cellular automata. In fact we prove a more general insepara-
bility result which concerns stronger form of conjugacy (where the conjugacy
map itself is also required to be shift-commuting) and immediately also gives
that being a factor or being a subsystem are also undecidable properties.
Then we prove the same inseparability result for reversible two-dimensional
two-sided cellular automata. There are some obvious holes in the knowledge
even after we are done: What about reversible one-dimensional (either one-
or two-sided) cellular automata? or reversible two-dimensional one-sided
cellular automata?

The first proofs we give for the above results use arbitrarily large alpha-
bets. In the last section we improve these results by fixing the alphabet size.
These can be considered as algebraic variants of the undecidability results
as the set of all cellular automata over a fixed full shift form a monoid while
reversible cellular automata over a fixed full shift form a group.

83

6.1 One-Dimensional Case

In his doctoral dissertation [20], Jeremias Epperlein proved that the con-
jugacy of periodic one-dimensional cellular automata is decidable. He also
conjectured that for general one-dimensional cellular automata conjugacy is
undecidable [20, Conjecture 5.19]. In this section we prove this conjecture.
Actually we prove a result that is stronger in a couple of ways: We prove
a recursive inseparability result which immediately implies that conjugacy,
being a factor, being a subsystem, and the shift-commuting variants of all of
these are undecidable for both one- and two-sided one-dimensional cellular
automata. After the main result we mention some related problems.

6.1.1 Conjugacy of One-Dimensional One-Sided Cellular Au-
tomata Is Undecidable

Let (AMd
, F) and (AMd

, G) be two cellular automata. Let H : AMd → BMd

be a conjugacy between (AMd
, F) and (BMd

, G) such that H also commutes
with the shift maps. In papers [31] and [30], in which most of the results of
this chapter originally appeared, we called such conjugacy a strong conju-
gacy. Since this is not a very descriptive term, we will change the terminol-
ogy in this matter and call shift-commuting conjugacies, shift-commuting
factor maps, and shift-commuting embeddings, block conjugacies, block fac-
tor maps, and block embeddings, respectively. If (AMd

, F) and (AMd
, G) are

block conjugate, we denote this by (AMd
, F) ∼=b (BMd

, G) or shortly just
F ∼=b G.

We give the following definitions and results for one-sided cellular au-
tomata, as we do not need the two-sided variants (which do exist).

For a cellular automaton (AN, F) a state q ∈ A is quiescent if F (qω) = qω.
A cellular automaton is nilpotent if there exists a quiescent state q such that
for every c ∈ AN there exists n ∈ N such that Fn(c) = qω. It is known that
for cellular automata nilpotency implies uniform nilpotency.

Proposition 6.1.1. ([14]) Let (AN, F) be a nilpotent cellular automaton.
Then there exists n ∈ N such that for all c ∈ AN it holds that Fn(c) = qω.

Let (AN, F) be a cellular automaton whose local neighborhood contains
cells 0 and 1. Then a state s ∈ A is spreading if the local rule maps every
neighborhood containing s to s. Such a state spreads in the sense that if
ci = s for some c ∈ AN and i ∈ N \ {0} then F (c)i = s and F (c)i−1 = s.
Clearly a spreading state is quiescent. We need the following result, which
follows from a simple compactness argument.

Proposition 6.1.2. Let (AN, F) be a cellular automaton that is not nilpo-
tent, and let s ∈ A be a spreading state. Then there exists c ∈ AN such that
F i(c)j 6= s for all i, j ∈ N.

84

Proof. For every n ∈ N there exists c(n) ∈ AN such that F i(c(n))j 6= s for
every (i, j) ∈ {(x, y) ∈ N2 | x, y ≤ n}, since otherwise the appearing states
s would spread and F would be nilpotent. By compactness the sequence
(c(n))n∈N has a converging subsequence (c(i))i∈I , and the limit of this se-
quence, say c, has that F i(c)j 6= s for all i, j ∈ N as was claimed.

Our proof relies on the following undecidability result.

Theorem 6.1.3. ([34],[1]) Nilpotency of one-dimensional one-sided cellular
automata with a spreading state and radius 1 is undecidable.

We are ready to prove the following inseparability result.

Theorem 6.1.4. The following two sets of pairs of one-dimensional one-
sided cellular automata are recursively inseparable:

(i) pairs where the first cellular automaton has strictly higher entropy than
the second one, and

(ii) pairs that are block conjugate and both have zero topological entropy.

Proof. We reduce the decision problem of Theorem 6.1.3 to this problem,
which proves our claim.

Let (BN, H) be an arbitrary given one-sided cellular automaton with
neighborhood radius 1 and a spreading quiescent state q ∈ B. Let k ∈ N be
such that k > log2(|B|), (AN,Z2k) be the 2k-fold cartesian product of zot
cellular automaton Z from Chapter 5 Section 4.2, so that A = {0, 1, 2}2k.
This choice is done to have high enough entropy down the line. Now we are
ready to define cellular automata F and G such that

H is not nilpotent =⇒ h(F) > h(G)

H is nilpotent =⇒ F ∼=b G and h(F) = h(G) = 0.

Both of these new cellular automata work on two tracks F ,G : (A×B)N →
(A×B)N. The cellular automaton G is simply idA ×H, i.e.

G((a0, b0)(a1, b1)) = (a0, H(b0b1)),

for all a0, a1 ∈ A, b0, b1 ∈ B. The cellular automaton F also acts as H on
the B-track. On the A-track F acts as Z2k when the B-track is not q, and
as idA when the B-track is q, i.e.

Floc((a0, b0)(a1, b1)) =

{
(Z2k,loc(a0a1), Hloc(b0b1)), if b0 6= q

(a0, q), if b0 = q,

for all a0, a1 ∈ A, b0, b1 ∈ B.

85

(i) Suppose that H is not nilpotent. The entropy of G is

h
(

(A×B)N ,G
)

= h
(
AN, idA

)
+ h

(
BN, H

)
= h

(
BN, H

)
,

since G = idA ×H. On the other hand, by Proposition 6.1.2, there exists a
configuration e ∈ BZ such that for all i, j ∈ N we have that H i(c)j 6= q. But
then we have that

h
(

(A×B)N ,F
)
≥ h

(
AN,Z2k

)
> log2(|B|) ≥ h

(
BN, H

)
,

according to Proposition 4.2.3 and the choice of k. Overall we have that

h
(

(A×B)N ,F
)
> h

(
(A×B)N ,G

)
,

as was claimed.
(ii) Suppose that H is nilpotent. Let us first explain informally

why we now have that F ∼=b G. Both F and G behave identically on the
B-track, so the conjugacy maps this track simply by identity. Nilpotency of
H guarantees that for all configurations the B-track will be qω after some
constant time n (Proposition 6.1.1). By the definition of F this means that
after n steps F does nothing on the A-track. Since G never does anything
on the A-track, we can use this fact to define the conjugacy on the A-
track simply with Fn. That this is in fact a conjugacy follows since F is,
informally, reversible on the A-layer for a fixed B-layer.

Let us be exact. First we will define a continuous map φ : (A× B)N →
(A×B)N such that φF = Gφ. This φ will be a cellular automaton. Then we
show that φ is injective, which implies reversibility (by Proposition 2.4.4),
and so we will have ((A×B)N,F) ∼=b ((A×B)N,G).

Let πA : AN × BN → AN be the projection πA(c, e) = c for all c ∈ AN

and e ∈ BN. Define πB : AN ×BN → BN similarly.
Let n ∈ N be a number such that for all c ∈ BN we have Hn(c) = qω.

Such n exists according to Proposition 6.1.1, since H is nilpotent. Because
F and G act identically on the B-track, φ maps this layer simply by identity,
i.e.

πBφ(c, e) = e,

for all c ∈ AN, e ∈ BN. After n steps F does nothing on the A-track, i.e.
acts the same way as G does. Because of this we define

πAφ = πAFn.

Now φ is a cellular automaton, since it is continuous and shift-commuting.
Let us show that φ is a homomorphism. Of course we have that

φF = Gφ ⇐⇒
(
πAφF = πAGφ and πBφF = πBGφ

)
.

86

It is immediate from the definitions that πBφF = πBGφ. For the equality
on the A-layer notice first that πAG = πA, and then compute:

πAφF
def.
= (πAFn)F
= πAFFn || after n steps F
= πAGFn behaves as G
= πAFn

def.
= πAφ

= πAGφ.

So we have that φF = Gφ.

To prove that φ is a block conjugacy it is enough to show that φ is an
injection. As the B-layer is mapped by identity, we only need to show that
for a fixed e ∈ BN we have that for all c ∈ AN there exists a unique c′ ∈ AN

such that φ(c′, e) = (c, e). By the definition of φ this holds if

πAFn(, e) : AN −→ AN

c 7−→ πAFn(c, e)

is a bijection for every e ∈ BN. This holds if the map

πAF(, e) : AN −→ AN

c 7−→ πAF(c, e)

is a bijection for every e ∈ BN. Let x ∈ AN be arbitrary. Define configuration
c as follows:

• If ei = q, then ci = xi.

• If ei 6= q but ei+1 = q, then ci = π−1
xi+1

(xi) (here πxi+1 is defined by the
permutations of zot when extended in a natural way for Z2k).

• If ei 6= q and ei+1 6= q, then ci = Z−1
2k (x)i.

Now F(c, e) = (x,H(e)) and so the map above is surjective. On the other
hand, it is clear from the definition of F that this is the only possible preim-
age.

To complete the proof we observe that

h(F) = h(G) = h(idA) + h(H) = 0,

since F ∼=b G = idA ×H, and H is nilpotent.

87

Since Theorem 6.1.4 can be reduced to the two-sided case, also the two-
sided variant is undecidable. We also get the following corollary.

Corollary 6.1.5. Let M = N or M = Z. Let (AM, F) and (AM, G) be two
given cellular automata. Then the following hold:

1. It is undecidable whether F and G are (block) conjugate.

2. It is undecidable whether F is a (block) factor of G.

3. It is undecidable whether F is a (block) subsystem of G.

Proof. 1. The pairs in the set (i) of Theorem 6.1.4 cannot be (block) con-
jugate, and the pairs in (ii) have to be. Thus deciding (block) conjugacy
would separate these sets.

2. One of the cellular automata in the pair from the set (i) has strictly
higher entropy than the other, so it cannot be a (block) factor of the other.
On the other hand cellular automata of pairs from the set (ii) are (block)
factors of each other. So checking whether both cellular automata of a pair
is a (block) factor of the other would separate the sets of Theorem 6.1.4.

3. In a similar way, since a subsystem cannot have higher entropy.

6.1.2 Restricted Cases

We have seen that (block) conjugacy is undecidable in general for one-
dimensional cellular automata. A natural follow-up question is whether
(block) conjugacy remains undecidable even if we restrict to some natural
subsets of cellular automata. When restricted to periodic cellular automata,
the following is known by Jeremias Epperlein.

Theorem 6.1.6. ([20, Corollary 5.17.]) Conjugacy of periodic cellular au-
tomata on one- or two-sided subshifts of finite type is decidable.

Periodic cellular automata are the least sensitive to changes in the ini-
tial configuration, and are precisely the reversible equicontinuous cellular
automata. Naturally one could ask what happens if the requirement of
reversibility is dropped, i.e. is conjugacy of eventually periodic cellular au-
tomata decidable ([20, Question 8.6.]), or the block conjugacy of either.

In the other end of the sensitivity scale are the cellular automata that
are the most sensitive to initial conditions, i.e. positively expansive ones.
Positively expansive cellular automata are quite extensively studied which
allows us to deduce the following result.

Proposition 6.1.7. Conjugacy of positively expansive cellular automata on
one- or two-sided full shifts is decidable.

88

Proof. Let (AM, F) and (BM, G) be two positively expansive cellular au-
tomata. Due to the positive expansivity, F and G are conjugate to τN,k(F)
and τN,k(G) (resp.) for large enough k. These subshifts are conjugate to
subshifts of finite type (see Mike Boyle and Bruce Kitchens [9] for one-sided
case, and Masakazu Nasu [51] for two-sided case). According to Pietro di
Lena [17, Theorem 36] we can effectively compute these subshifts. The claim
follows, as the conjugacy of one-sided subshifts of finite type is decidable by
Robert Williams [62].

We know, for example, that expansive one-sided cellular automata are
conjugate to two-sided SFT’s (these were discussed in Chapter 5), yet the
above proof fails since it is not known whether conjugacy of two-sided SFT’s
is decidable. Though perhaps more interesting questions to start with is
whether expansivity of one-sided cellular automata is decidable.

6.1.3 Short Note on Conjugacy of Subshifts

Let X ⊆ AM, Y ⊆ BM be two subshifts. Some well-known open problems in
symbolic dynamics consider conjugacy of subshifts. Conjugacy of one-sided
subshifts of finite type is known to be decidable (Robert Williams [62], we
used this in the previous section), but the same problem for two-sided sub-
shifts of finite type and for one- and two-sided sofic shifts is unknown. From
the undecidability of block conjugacy we get the following undecidability
result regrading (even one-sided) subshifts of finite type.

Proposition 6.1.8. Let X,Y ⊆ (A × A)M be two subshifts of finite type,
both conjugate to AM. It is undecidable whether X and Y are conjugate via
a conjugacy of the form φ× φ.

Proof. The proof is a direct reduction from the undecidability of block
conjugacy of cellular automata. Suppose it is decidable whether X,Y ⊆
(A × A)M that are both conjugate to AM are conjugate via a conjugacy of
the form φ × φ. Let (AM, F) and (AM, G) be two cellular automata. Let
X = {(c, F (c)) | c ∈ AM} and Y = {(c,G(c)) | c ∈ AM}. Clearly these
subshifts are conjugate to AM. Now X and Y are conjugate via a conjugacy
of form φ× φ if and only if (AM, F) ∼=b (AM, G):

Suppose X and Y are conjugate via some φ × φ: There exists a
conjugacy φ × φ : X → Y . Then φ commutes with the shift and for every
c ∈ AM we have that (φ(c), φF (c)) = (e,G(e)), where e has to be φ(c), and
so φF (c) = Gφ(c) for all c ∈ AM. In other words φ is a block conjugacy of
(AM, F) and (AM, G).

Suppose (AM, F) ∼=b (AM, G): Let φ be a block conjugacy from (AM, F)
to (AM, G). Then φ× φ is a conjugacy between X and Y .

89

6.2 Two-Dimensional Case

We have seen that conjugacy is undecidable for cellular automata, and one
immediate follow-up question is to ask whether this still holds when restriced
to reversible cellular automata. We are unable to answer this question in
one-dimensional case and for this reason turn to two-dimensional cellular
automata. We prove that for two-dimensional two-sided reversible cellular
automata conjugacy, being a factor, being a subsystem, and the “block”
variants of all of these are undecidable. The fact that conjugacy is undecid-
able was already proved by Jeremias Epperlein [20] even when restricted to
periodic cellular automata with period two.

Notice that in this section we will only consider two-sided cellular au-
tomata, and simply call them cellular automata. There has not been much
study on the one-sided cellular automata beyond the one-dimensional case.
Our proof borrows a lot from the proof that reversibility is undecidable for
two-dimensional cellular automata, but whether this is true for one-sided
two-dimensional cellular automata is not known. Notice, however, that for
example surjectivity is undecidable also for one-sided two-dimensional cel-
lular automata as this follows from the two-sided case.

6.2.1 Conjugacy of Reversible Two-Dimensional Cellular Au-
tomata

Denote Cn = [0, n)2. Let A ⊆ ACn be a set of patterns, considered here to be
valid, and define a direction function δ : A→ {(±1, 0), (0,±1)}. A sequence
(p1, p2, . . . , pk) ∈ (Z2)k is a δ-path on c ∈ AZ2

if pi+1 = pi + δ(cpi) for all
i ∈ {1, · · · , k − 1}. A δ-path (p1, . . . , pk) is (A-)valid if

1. for every i ∈ {1, . . . , k} we have that σpi(c)Cn ∈ A, and

2. for all q ∈ Z2 we have that

pi + δ(cpi) = q + δ(q) =⇒ q = pi.

In other words, a path is valid if every pattern along the path is valid and
the path does not branch backwards. A position p ∈ Z2 is valid if it is part
of a valid path and invalid otherwise. A pair (A, δ) is an orientation on
the full shift AZ2

. An orientation (A, δ) is acyclic if every A-valid δ-path
contains no cycles. Let c ∈ AZ2

and p ∈ Z2 be a valid position. Then p
is a beginning of a valid path if (q, p) is not a valid path for any q ∈ Z2.
Similarly, p is an end of a valid path if (p, q) is not a valid path for any
q ∈ Z2. Lastly p is in the middle of a valid path if it is neither an end nor a
beginning of a path. Notice that being an end, a beginning, or in the middle
of a valid path is a local property. Directly from [35] we get the following
result.

90

Proposition 6.2.1 ([35]). Given an acyclic orientation (A, δ) on AZ2
, it is

undecidable whether there exists an infinite A-valid δ-path.

Notice that, by compactness, we have that if all valid paths are finite,
then there is a global bound on the length of the valid paths.

Using similar notations as Tom Meyerovitch in [47] we write I(c) for the
maximal number of pairwise disjoint infinite valid paths in c, and for an
orientation (A, δ) we denote I(A, δ) = sup

c∈AZ2 I(c). Considerations of [47,
Section 4] say that only a bounded number of infinite valid paths that the
acyclic orientation in [35] defines can fit in any one configuration. Combining
this with Proposition 6.2.1 above we get the following.

Proposition 6.2.2. Given an acyclic orientation (A, δ) on AZ2
such that

I(A, δ) <∞, it is undecidable whether I(A, δ) = 0 or not.

Now we proceed to defining cellular automata by adding a layer on top
of AZ2

in a similar fashion as in [35] and [47]. For an acyclic orientation
(A, δ) with I(A, δ) <∞ we want to define two reversible cellular automata
such that if I(A, δ) = 0 then the cellular automata are block conjugate and
have zero entropy, and if I(A, δ) 6= 0, then one of the cellular automata has
strictly larger entropy than the other one.

On top of AZ2
we put another layer BZ2

on which we simulate one-
dimensional cellular automata BZ → BZ on the valid paths of AZ2

. We
want to simulate the shift map σ. However, the simple shift map alone
leads to non-reversible cellular automata on finite valid paths as information
is either lost or has to be made up at the beginnings and ends of valid paths.
To avoid this we take B to be B1 × B1 for some finite set B1 and the map
σ̂ : BZ → BZ that shifts the first track to the left and the second one to
the right, i.e. σ̂(c, e)i = (ci+1, ei−1) for all (c, e) ∈ BZ = (B1 ×B1)Z. In the
beginnings and ends of valid paths we simply move the content from one
track to the other forming a cycle. For technical reasons we further take
that B1 = B2 × B2 for a finite set B2 with at least two elements. Now our
one-dimensional cellular automaton is a map (B4

2)Z → (B4
2)Z but this really

should be considered as one two-track tape, one track moving to left and
the other to right. The choice B1 = B2×B2 is done so that we can give two
different ways to restrict σ̂ to the finite valid paths.

We define two maps, ν and µ, on finite words (B2 ×B2)+ as follows:

ν

(
u0 u1 · · · un−2 un−1

v0 v1 · · · vn−2 vn−1

)
=

(
u1 u2 · · · un−1 u0

v1 v2 · · · vn−1 v0

)
,

and µ as

µ

(
u0 u1 · · · un−2 un−1

v0 v1 · · · vn−2 vn−1

)
=

(
u1 u2 · · · un−1 v0

v1 v2 · · · vn−1 u0

)
,

91

v0

u0

v1

u1

v2

u2

vn−1

un−1

Figure 6.1: Illustration of ν.

v0

u0

v1

u1

v2

u2

vn−1

un−1

Figure 6.2: Illustration of µ.

where ui
vi
∈ B2 × B2 for all i ∈ {0, 1, . . . , n− 1}. The map ν is obtained by

taking a finite word, gluing the ends together, and applying the shift map
σ : (B2 × B2)Z → (B2 × B2)Z locally (Figure 6.1). One can also consider µ
to be obtained from σ by gluing the ends of finite words together, but this
time the tape is also flipped to form a Möbius strip (Figure 6.2). Notice
that if we restrict ν and µ to the words of even length 2n, then we have a
bijection φ such that ν = φ−1µ2φ, namely

φ

(
u0 u1 · · · u2n−2 u2n−1

v0 v1 · · · v2n−2 v2n−1

)
=

(
u0 v0 · · · un−1 vn−1

un vn · · · u2n−1 v2n−1

)
.

(6.1)

Let (A, δ) be an acyclic orientation of AZ2
with I(A, δ) <∞. We define

two cellular automata Fν , Fµ : (A×B)Z
2 → (A×B)Z

2
where B = (B2×B2)2

as was defined above. Both map the A-layer by identity. On the B-layer we
use ν for Fν and µ for Fµ. To be more exact: Let c ∈ AZ2

, e ∈ BZ2
, p1 ∈ Z2,

and ep1 = (a1, b1, x1, y1). We define Fν and Fµ in cases:

• If p1 is not part of a valid path in c, then

Fν(c, e)p1 = Fµ(c, e)p1 = (c, e)p1 .

• If p1 is a beginning of a valid path, and there exists p2 ∈ Z2 such that
(p1, p2) is valid (so that p1 is not also an end), and let ep2 = (a2, b2, x2, y2),
then

Fν(c, e)p1 = Fµ(c, e)p1 = (cp1 , (a2, b2, a1, b1)).

• If p1 is in the middle of a valid path, say (p0, p1, p2) is valid, and ep0 =
(a0, b0, x0, y0), ep2 = (a2, b2, x2, y2), then

Fν(c, e)p1 = Fµ(c, e)p1 = (cp1 , (a2, b2, x0, y0)).

We are left with the cases where Fν and Fµ behave differently, namely,
at the ends of valid paths.

• If p1 is an end of a valid path, p0 ∈ Z such that (p0, p1) is valid, and ep0 =
(a0, b0, x0, y0), then

Fν(c, e)p1 = (cp1 , (x1, y1, x0, y0)) and Fµ(c, e)p1 = (cp1 , (y1, x1, x0, y0)).

92

• If p1 is both the beginning and the end of a valid path, then

Fν(c, e)p1 = (cp1 , (x1, y1, a1, b1)) and Fµ(c, e)p1 = (cp1 , (y1, x1, a1, b1)).

All this is to say that Fν and Fµ simulate ν and µ (resp.) on the valid
paths. Notice that F 2

µ simulates µ2 on the valid paths, so it is natural to
define Fµ2 = F 2

µ .

We are ready to prove the following result.

Theorem 6.2.3. The following two sets of pairs of reversible two-dimensional
cellular automata are recursively inseparable:

(i) pairs where the first cellular automaton has strictly higher entropy than
the second one, and

(ii) pairs that are block conjugate and both have zero entropy.

Proof. Suppose these sets are separable, we use this to decide the decision
problem of Proposition 6.2.2.

Let (A, δ) be a given acyclic orientation on AZ2
such that I(A, δ) <

∞. Construct cellular automata ((A × B)Z
2
, Fν) and ((A × B)Z

2
, Fµ2) as

desrcibed above. We claim that

I(A, δ) > 0 =⇒ h(Fµ2) > h(Fν)

I(A, δ) = 0 =⇒ Fν ∼=b Fµ2 and h(Fν) = h(Fν2) = 0.

Suppose that 0 < I(A, δ) <∞: The claim follows from the reasoning
of Tom Meyerovitch [47, Lemma 3.2., Lemma 3.3., Theorem 3.4.]; let us
outline this reasoning. Consider the cellular automaton ((A×B)Z

2
, Fν) (the

same reasoning applies to ((A× B)Z
2
, Fµ2)). Let d ∈ AZ2

be arbitrary and

define Cd = {(c, e) ∈ (A × B)Z
2 | c = d} ⊆ (A × B)Z

2
, i.e. the configura-

tions with a fixed background. Clearly Cd is closed, and thus compact, and
also clearly Fν(Cd) ⊆ Cd, i.e. (Cd, Fν) is a dynamical system (not necessar-
ily a cellular automaton though, since Cd is not in general shift-invariant).
In other words ((A × B)Z

2
, Fν) is a disjoint union of dynamical systems⋃

d∈AZ2 (Cd, Fν). Then we have that h((A×B)Z
2
, Fν) = sup

d∈AZ2{h(Cd, Fν)}
according to T. N. T. Goodman [24, Corollary 1] (this is a corollary to the
famous variational principle which relates topological and measure theo-
retical entropies). Now the entropy of any (Cd, Fν) is directly tied to the
entropy of ν as Fν simulates ν on the valid paths. Notice that since the
one-dimensional cellular automata we simulate are two-sided unlike the one-
sided cellular automata simulated by Meyerovitch, an explicit formula for
the entropy of Fν is not necessary exactly as in [47]. However, it is ob-
vious that h(Cd, Fν) > 0 for some d ∈ AZ2

, and if h(Cd, Fν) > 0 then

93

h(Cd, Fν) < h(Cd, Fµ2), and if d′ ∈ AZ2
is such that h(Cd′ , Fν) > h(Cd, Fν)

then also h(Cd′ , Fµ2) > h(Cd, Fµ2), and these are enough to conclude that

h((A×B)Z
2
, Fν) < h((A×B)Z

2
, Fµ2).

Suppose that I(A, δ) = 0: Now there can be only finite valid paths.
By compactness we have a global bound M ∈ N such that for any valid
path (p1, p2, . . . , pk) it holds that k < M . Of course there then also exists
m ∈ N such that any valid path fits inside a suitably positioned Cm. We
define a block conjugacy Hφ of ((A×B)Z

2
, Fν) and ((A×B)Z

2
, Fµ2) based

on the map φ defined by (6.1) above. The local rule of Hφ has domain

(A × B)[−m,m+n]2 where n is such that A ⊆ ACn . This domain guarantees
that for any c ∈ (A × B)Z

2
and p ∈ Z2 we can recognize the entire valid

path that p is part of. Let (c, e) ∈ (A × B)Z
2
. We define Hφ(c, e)p for an

arbitrary p ∈ Z2. If p is not part of a valid path, then Hφ(c, e)p = (c, e)p.
Suppose p is part of a valid path and let (p1, p2, . . . pk) be the valid path
such that p1 is the beginning of the path, pk the end of the path, and p = pi
for some i ∈ {1, . . . , k}. As pointed out, the local neighborhood is large
enough so that the local rule sees this entire valid path and can verify its
validity on each position of the valid path. Denote epj = (aj , bj , xj , yj) for
all j ∈ {1, . . . , k}. Now we define

Hφ(c, e)p =

(
cp,

(
φ

(
xk · · · x1 a1 · · · ak
yk · · · y1 b1 · · · bk

)
k+i−1

,

φ

(
xk · · · x1 a1 · · · ak
yk · · · y1 b1 · · · bk

)
i−1

))
.

Since φ is a bijection on words of even length we get that ((A×B)Z
2
, Fν) ∼=b

((A × B)Z
2
, Fµ2). Since there are only finite valid paths, Fν and Fµ2 are

periodic, and so they have zero entropy.

The same way we got Corollary 6.1.5 from Theorem 6.1.4, we now get
the following corollary.

Corollary 6.2.4. Let (AZ2
, F) and (AZ2

, G) be two reversible cellular au-
tomata. Then the following hold:

1. It is undecidable whether F and G are (block) conjugate.

2. It is undecidable whether F is a (block) factor of G.

3. It is undecidable whether F is a (block) subsystem of G.

94

Remark 6.2.5. Here is an alternative construction which uses one-sided re-
versible cellular automata, which allows using the construction and argu-
ments of [47] more directly. Let Z : {0, 1, 2}N → {0, 1, 2}N be the zot cellular
automaton, and AZ2

a full shift with an orientation (A, δ). We simulate Z
on valid paths as we did ν and µ. Since Z is one-sided, we do not need
multiple tracks in this construction. More precisely FZ : (A×{0, 1, 2})Z2 →
(A×{0, 1, 2})Z2

is defined by FZ((c, e))p = (cp,Z(epep+δ(cp))) on beginnings
and middle points of valid paths, and by identity on invalid positions. We
still have to define FZ on the ends of valid paths: the value at the end of
a valid path is permuted by π1. In other words, FZ uses the map π from
Proposition 4.2.4 on finite (or left-infinite) paths.

Suppose there exists only finite valid paths. Then there is an upper
bound n ∈ N for the length of the valid paths. By Proposition 4.2.4 we
know that on a finite path of length k ≤ n the cellular automaton FZ
enumerates all finite words in {0, 1, 2}k. The same holds also for F 2

Z since

3n is odd. Now we can define a conjugacy φ which fixes the AZ2
-layer and

all letters on invalid paths on the {0, 1, 2}Z2
-layer, and, slightly informally,

on valid paths of length k we define φ : {0, 1, 2}k → {0, 1, 2}k by setting
φ(πi(0k)) = π2i(0k) for all i ∈ {0, 1, . . . , 3k − 1}. This shows that FZ and
F 2
Z are block conjugate.

Suppose there exists infinite valid paths. Notice that in this construction
we should let I(A, δ) denote the maximal number of forward infinite paths
(as in [47]), since only the forward infinite paths contribute to the entropy.
Then F 2

Z has larger entropy than FZ since Z2 has higher entropy than Z.
This concludes the proof.

From this remark we get the following variant.

Corollary 6.2.6. The following sets of two-dimensional reversible cellular
automata are recursively inseparable:

(i) cellular automata (AZ2
, F) such that F 2 has strictly higher entropy

than F , and

(ii) cellular automata (AZ2
, F) such that F ∼=b F

2, and h(AZ2
, F) = 0.

Notice that Epperlein’s result [20, Corollary 5.19.] says that conjugacy is
undecidable even among two-periodic cellular automata, while all our results
restrict only to reversible cellular automata. Strengthening the undecidabil-
ity of block conjugacy to periodic cellular automata seems plausible using
the cellular automata from [20, Example 7.6.] in our construction instead
of ν and µ. Example [20, Example 7.6.] presents two one-dimensional cellu-
lar automata which are (temporally) periodic and conjugate on (spatially)
periodic configurations but not conjugate in general, and thus not block
conjugate either. Using these we would still have that if all valid paths are

95

finite then the constructed cellular automata are conjugate. However, the
entropy argument does not work in the case that also infinite valid paths
exist, since the entropy of a periodic cellular automaton is zero. It is not
clear that even though the one-dimensional cellular automata simulated are
not conjugate that the two-dimensional cellular automata could not be.

Lastly we note that in [47, Question 6.1.] Meyerovitch asked whether
for d > 1 there exists an injective d-dimensional cellular automaton which
has finite non-zero entropy. Either of the constructions given above ex-
plicitly gives a positive answer to this question for d = 2. Simulating
the one-dimensional cellular automata presented here on Meyerovitch’s d-
dimensional oriented full shifts, one also gets a positive answer for any larger
d.

Proposition 6.2.7. For any d ∈ N \ {0} there exists a reversible cellular

automaton (AZd
, F) such that 0 < h(AZd

, F) <∞.

6.3 Fixing the Alphabet

In the previous section we proved some undecidability results for cellular
automata as dynamical systems. A small change in the point of view leads
to asking algebraic variants of these questions. More specifically, cellular
automata over a fixed alphabet form a monoid while reversible cellular au-
tomata over a fixed alphabet form a group (function composition as the
product). However, the undecidability results of the previous sections uti-
lized arbitrarily large alphabets in order to achieve the undecidability results.
In this section we show that the main results of the previous sections remain
true even over fixed alphabets.

6.3.1 Fixing the Alphabet for One-Dimensional Cellular Au-
tomata

Looking at the proof of Theorem 6.1.4 one notices that there are two places
where we used arbitrarily large alphabets: The underlying alphabet of the
cellular automaton whose nilpotency we wanted to decide, and the alphabet
of Z2k which was used to increase the entropy. Since we are no longer
allowed to increase the size of the alphabet we want to replace these by
instead increasing the size of the neighborhood. We use the fixed alphabet
variant of nilpotency problem proved by Bruno Durand, Enrico Formenti,
and Georges Varouchas [18], and instead of cartesian product we take powers
of Z, which also increases the entropy.

Our proof relies on the following result.

Theorem 6.3.1. [18, Proposition 2.4] Given a cellular automaton ({0, 1}N, F)

96

such that r(F) = 2t for some t ∈ N, and if 0t appears in u ∈ {0, 1}2t+1 then
Floc(u) = 0, it is undecidable whether F is nilpotent or not.

Using this we can prove the following fixed alphabet version of Theorem
6.1.4.

Theorem 6.3.2. The following two sets of pairs of one-dimensional one-
sided cellular automata over the alphabet {0, 1, 2} × {0, 1} are recursively
inseparable:

(i) pairs where the first cellular automaton has strictly higher entropy than
the second one, and

(ii) pairs that are strongly conjugate and both have zero topological entropy.

Proof. Let ({0, 1}N, H) be an instance of the decision problem of Theorem
6.3.1 with some t ∈ N. Let (AN,Z) be the zot cellular automaton. The
cellular automaton ({0, 1}N, H) will again draw the background and zot
will be drawn on top of this, as long as the long sequences of zeroes which
represent quiescent states do not appear. Again, we need the zot-layer to
overpower the background layer in regards of entropy. This time, however,
we cannot use the cartesian product trick, since it would increase the size
of the alphabet. Instead, we use the fact that h(AN,Zk) = k · h(AN,Z); it
is sufficient to take k to be larger than 4t.

We define cellular automata ((A × {0, 1})N,F) and ((A × {0, 1})N,G).
Again, ((A × {0, 1})N,G) is just the cartesian product G = id ×H. Before
defining ((A×{0, 1})N,F) let us introduce a notation. For any u ∈ A∗, a ∈ A
let Zk(uȧ) ∈ A|u|+1 denote the word which is obtained by applying Z for
k times to u with a fixed a in the end, i.e. it is defined as Zk(uȧ) =
z(z(· · · (z(ua)a) · · ·)a)a where z is the restriction of Z to finite words. Now
let (c, e) ∈ (A× {0, 1})N and define

F(c, e)0 =

{
(Zk(c)0, H(e)0), if e[0,2k+t] does not contain 0t

(Zk(c0 · · · ċi)0, H(e)0), i = min{j | j ∈ [0, 2k], e[j,j+t) = 0t}
.

(i) Suppose ({0, 1}N, H) is not nilpotent. Entropy of ((A×{0, 1})N,G)
is

h((A× {0, 1})N,G) = h({0, 1}N, H) + h(AN, id) = h({0, 1}N, H).

There exists a configuration c ∈ {0, 1}N such that no appearances of
0t occur in the space-time diagram of c under H. On this background
((A × {0, 1})N,F) simulates the kth power of zot on the A-layer. Thus we
have

h((A× {0, 1})N,F) ≥ h(AN,Zk) =
k

2
> 2t ≥ h({0, 1}N, H).

97

This proves the claim.
(ii) Suppose ({0, 1}N, H) is nilpotent: We do as in the proof of Theo-

rem 6.1.4. Only point that deserves to be reconsidered in this fixed alphabet
variant is that the map

πAFn(, e) : AN −→ AN

c 7−→ πAFn(c, e)

is again a bijection for every e ∈ {0, 1}N. Again, it is enough that AN →
AN, c 7→ πAF(c, e) is a bijection for an arbitrary e ∈ BN. Notice that
θ : An → An defined by θ(ua) = Zk(uȧ) is a bijection. Let x ∈ AN and
define c as follows:

• If there exists j ∈ [i, i + 2k] such that e[j,j+t) = 0t then let ci =
θ−1(x[i,j])0.

• If 0t does not appear in e[i,i+2k+t] then let ci = Z−1(x)i.

Again it is clear that this is a preimage of x under the map defined above,
and also that no other preimages can exist.

6.3.2 Fixing the Alphabet for Two-Dimensional Cellular Au-
tomata

In the proof of Theorem 6.2.3, the two-dimensional inseparability result,
obtaining a difference in entropy did not require increasing the size of the
alphabet. However, the original proof of Proposition 6.2.2 (whether an acylic
orientation with I(A, δ) <∞ has any infinite valid paths at all) has instances
with arbitrarily large alphabets. This can be turned into a binary version,
as is done in the following proof (we simultaneously embed the simulations
of Z to the binary encoding, so that overall we only need a binary alphabet).

Theorem 6.3.3. The following sets of two-dimensional reversible cellular
automata are recursively inseparable:

(i) cellular automata ({0, 1}Z2
, F) such that ({0, 1}Z2

, F 2) has strictly higher
entropy than ({0, 1}Z2

, F), and

(ii) cellular automata ({0, 1}Z2
, F) such that ({0, 1}Z2

, F) ∼=b ({0, 1}Z2
, F 2),

and h({0, 1}Z2
, F) = 0.

Proof. Suppose these sets are separable; we reduce the decision problem of
Proposition 6.2.2 to this problem. Let (A, δ) be a given acyclic orientation on
AZ2

such that I(A, δ) <∞. Let l > log2(|A|) and let ι1 : {0, 1, 2} → {0, 1}2
and ι2 : A→ {0, 1}l be injections (the map ι1 is used to embed the ternary

98

(a, x)

ι1(x) ι2(a)

1 1 1 1 1 1 1 1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

Figure 6.3: Substitution s in the case that l = 3.

alphabet of the zot cellular automaton, and ι2 is used to embed the alphabet
A). Let D = [0, l + 5) × [0, 4) and define a map s : A × {0, 1, 2} → {0, 1}D
by

s(a, x)(i,j) = 1, if i = 0 or j = 0

s(a, x)(i,j) = 0, if i 6= 0 and j 6= 0 and (i, j) /∈ [2, l + 4)× {2}
s(a, x)(i,j) = ι1(x)i−2, if (i, j) ∈ {(2, 2), (3, 2)}
s(a, x)(i,j) = ι2(a)i−4, if (i, j) ∈ [4, l + 4)× {2}.

for all a ∈ A (see Figure 6.3). We extend the definition of s to any finite
rectangle: For arbitrary w,w′, h, h′ ∈ N, where w < w′, h < h′, we have
that s defines a map (A×{0, 1, 2})[w,w′)×[h,h′) → {0, 1}[w(l+5),w′(l+5))×[4h,4h′)

so that the element in position (i, j) in the original pattern is mapped to a
pattern on [i(l + 5), (i + 1)(l + 5)) × [4j, 4(j + 1)). Since s is an injection
we can define a map sinv on the image of s such that sinvs(c) = c for all
c ∈ (A × {0, 1, 2})[w,w′)×[h,h′). For convenience we extend sinv into a map
{0, 1}[w(l+5),w′(l+5))×[4h,4h′) → (A × {0, 1, 2} ∪ {#})[w,w′)×[h,h′) where any
invalid encoding is mapped to #.

Let FZ be as in Remark 6.2.5 and let n ∈ N be such that FZ,loc is a

map (A × {0, 1, 2})[−n,n]2 → A × {0, 1, 2}. We define a new cellular au-
tomaton ({0, 1}Z2

, GZ) which simulates FZ over a binary alphabet. Let
P ∈ {0, 1}[−n(l+5),(n+1)(l+5))×[−4n,5n) so that sinv(P) ∈ (A × {0, 1, 2} ∪
{#})[−n,n]×[−n,n]. First GZ,loc maps the pattern P to sinv(P). If no symbols
appear, GZ,loc proceeds by mapping sinv(P) to FZ,loc(sinv(P)), and then
back to the binary alphabet, i.e. to s(FZ,loc(sinv(P))). Here we described
how GZ,loc replaces the [0, l + 5)× [0, 4) rectangle, but this can clearly also
be done locally since any cell can recognize locally both whether it is part
of a pattern which sinv maps to a pattern containing no symbols # and
also which cell in the central rectangle it is. If # does appear, local rule is
identity.

Now we have that ({0, 1}Z2
, GZ) ∼=b ({0, 1}Z2

, G2
Z) if and only if ((A ×

{0, 1, 2})Z2
, FZ) ∼=b ((A× {0, 1, 2})Z2

, F 2
Z).

99

100

Chapter 7

Open Problems

In Chapter 3 we defined stripe shifts and proved some preliminary results
about them; for example, we proved that sofic stripe shifts are exactly the
zero entropy sofic shifts. We also saw that there are uncountable (non-sofic)
stripe shifts. Many questions were left open, we mention the following which
could be quite attainable.

Question 7.0.1. Do stripe shifts have zero entropy? Can the higher-than-
one-dimensional cellular automata draw full shift as stripes?

In Chapter 4 we considered reversible one-sided one-dimensional cellular
automata over full shifts (ROCA’s). There are no known undecidability
results regarding the dynamics of ROCA’s.

Question 7.0.2. Is expansivity, pseudo-orbit tracing property (POTP), or
periodicity decidable for ROCA’s?

Periodicity was conjectured to be undecidable for ROCA’s by Delacourt
and Ollinger [16]. Notice that if POTP is decidable then so are periodic-
ity and expansivity, since both periodic and expansive ROCA’s have POTP
(this is obvious for any periodic cellular automaton, and follows from The-
orem 5.2.2 for expansive ROCA’s), and amongst ROCA’s with POTP peri-
odicity and expansivity are decidable.

About the topics of Chapter 5 the following question is the obvious one
to state; this question has been raised before, even as a conjecture by Kůrka
[41].

Question 7.0.3. Do expansive two-sided cellular automata (over full shifts)
have POTP or equivalently are they conjugate to SFT’s?

We do not have an example of a right-expansive cellular automaton which
would not have right-POTP. Such an example would be intersting, since
if right-expansivity implies right-POTP then the above problem would be
positively answered. This can be formulated also in the following way.

101

Question 7.0.4. Let (AM, F) be a right-expansive cellular automaton (it
makes sense to start with the full shifts). Does there exists i ∈ N,m ∈ N
such that Fm

(
iΣ

(m)
i

)
⊆ iΣ

(m)
i ?

Main results of Chapter 6 were that block conjugacy of one-dimensional
one-sided cellular automata is undecidable as is also the block conjugacy
of reversible two-dimensional two-sided cellular automata. There are some
obvious questions that arise.

Question 7.0.5. Is conjugacy of reversible one-dimensional (one- or two-
sided) cellular automata undecidable? What about conjugacy of reversible
two-dimensional one-sided cellular automata?

Our proof that conjugacy of reversible two-dimensional cellular automata
is undecidable used key parts from the proof of undecidability of reversibility
of two-dimensional cellular automata, the same question is unkown for two-
dimensional one-sided cellular automata

Question 7.0.6. Is reversibility undecidable for two-dimensional one-sided
cellular automata?

102

Bibliography

[1] Aanderaa, S. and Lewis, H. (1974). Linear sampling and the case of the
decision problem. The Journal of Symbolic Logic, 39:519–548.

[2] Acerbi, L., Dennunzio, A., and Formenti, E. (2007). Shifting and lifting
of cellular automata. In Computability in Europe, volume 4497 of Lecture
Notes in Computer Science, pages 1–10.

[3] Amoroso, S. and Patt, Y. (1972). Decision procedures for surjectivity and
injecivity of parallel maps for tessalation structures. Journal of Computer
and System Sciences, 6:448–464.

[4] Aubrun, N. and Sablik, M. (2013). Simulation of effective subshifts by
two-dimensional subshifts of finite type. Acta Applicandae Mathematicae,
126:35–63.

[5] Berlekamp, E., Conway, J., and Guy, R. (1982). Winning ways for your
mathematical plays II. Academic Press, New York.

[6] Blanchard, F. and Maass, A. (1997). Dynamical properties of expansive
one-sided cellular automata. Israel Journal of Mathematics, 99:149–174.

[7] Boyle, M. (2004). Some sofic shifts cannot commute with nonwandering
shifts of finite type. Illinois Journal of Mathematics, 48(4):1267–1277.

[8] Boyle, M., Fiebig, D., and Fiebig, U.-R. (1997). A dimension group for
local homeomorphisms and endomorphisms of one-sided shifts of finite
type. Journal für die reine und angewandte Mathematik, 487:27–59.

[9] Boyle, M. and Kitchens, B. (1999). Periodic points for onto cellular
automata. Indagationes Mathematicae, 10(4):483–493.

[10] Boyle, M. and Lind, D. (1997). Expansive subdynamics. Transactions
of the American Mathematical Society, 349(1):55–102.

[11] Cattaneo, G., Formenti, E., Margara, L., and Mazoyer, J. (1997). A
shift-invariant metric on SZ inducing a non-trivial topology. Mathematical
Foundations of Computer Science, 1295:179–188.

103

[12] Ceccherini-Silberstein, T. and Coornaert, M. (2018). The garden of
Eden theorem: old and new. arXiv:1707.08898v3.

[13] Cook, M. (2004). Universality in elementary cellular automata. Com-
plex Systems, 15:1–40.

[14] Culik II, K., Pachl, J., and Yu, S. (1989). On the limit sets of cellular
automata. SIAM Journal on Computing, 18(4):831–842.

[15] Dartnell, P., Maass, A., and Schwartz, F. (2003). Combinatorial con-
structions associated to the dynamics of one-sided cellular automata. The-
oretical Computer Science, 304:485–497.

[16] Delacourt, M. and Ollinger, N. (2017). Permutive one-way cellular au-
tomata and the finiteness problem for automaton groups. In Computabil-
ity in Europe, volume 10307 of Lecture Notes in Computer Science, pages
234–245.

[17] Di Lena, P. (2007). Decidable and Computational Properties of Cellular
Automata. Phd thesis, Department of Computer Science, University of
Bologna.

[18] Durand, B., Formenti, E., and Varouchas, G. (2003). On undecidability
of equicontinuity classification for cellular automata. In Discrete Models
for Complex Systems, DMCS’03, Lyon, France, June 16-19, 2003, pages
117–128.

[19] Durand, B., Romashchenko, A., and Shen, A. (2012). Fixed-point tile
sets and their applications. Journal of Computer and System Sciences,
78:731–764.

[20] Epperlein, J. (2017). Topological Conjugacies Between Cellular Au-
tomata. Phd thesis, Fakultät Mathematik und Naturwissenschaften der
Technischen Universität Dresden.

[21] Fagnani, F. and Margara, L. (1998). Expansivity, permutivity, and
chaos for cellular automata. Theory of Computing Systems, 31:663 – 677.

[22] Formenti, E. and Kůrka, P. (2006). Subshift attractors of cellular au-
tomata. Nonlinearity, 20(1):105–117.

[23] Gajardo, A., Kari, J., and Moreira, A. (2012). On time-symmetry in
cellular automata. Journal of Computer and System Sciences, 78:1115–
1126.

[24] Goodman, T. N. T. (1971). Relating topological and measure entropy.
Bulletin of the London Mathematical Society, 3:176–180.

104

[25] Grunbaüm, B. and Shephard, G. (1986). Tilings and Patterns. W. H.
Freeman & Co. New York.

[26] Hedlund, G. A. (1969). Endomorphisms and automorphisms of the shift
dynamical system. Mathematical systems theory, 3(4):320–375.

[27] Hochman, M. (2009). On the dynamics and recursive properties of
multidimensional symbolic systems. Inventiones Mathematicae, 176:131–
167.

[28] Hopcroft, J., Motwani, R., and Ullman, J. (2003). Introduction to Au-
tomata Theory, Languages, and Computation. Pearson Education, second
edition edition.

[29] Hurd, L., Kari, J., and Culik, K. (1992). The topological entropy of cel-
lular automata is uncomputable. Ergodic Theory and Dynamical Systems,
12:255–265.

[30] Jalonen, J. and Kari, J. On the conjugacy problem of cellular automata.
Submitted.

[31] Jalonen, J. and Kari, J. (2018a). Conjugacy of one-dimensional one-
sided cellular automata is undecidable. In SOFSEM 2018: Theory and
Practice of Computer Science, volume 10706 of Lecture Notes in Computer
Science, pages 227–238. Edizioni della Normale, Cham.

[32] Jalonen, J. and Kari, J. (2018b). On dynamical complexity of sur-
jective ultimately right-expansive cellular automata. In Proceedings of
AUTOMATA 2018: Cellular Automata and Discrete Complex Systems,
volume 10875 of Lecture Notes in Computer Science, pages 57–71.

[33] Jalonen, J. and Kari, J. (2020). On expansivity and pseudo-orbit tracing
property for cellular automata. Fundamenta Informaticae, 171:239–259.

[34] Kari, J. (1992). The nilpotency problem of one-dimensional cellular
automata. SIAM Journal on Computing, 21:571–586.

[35] Kari, J. (1994a). Reversibility and surjectivity problems of cellular
automata. Journal of Computer and System Sciences, 48:149–182.

[36] Kari, J. (1994b). Rice’s theorem for the limit sets of cellular automata.
Theoretical Computer Science, 127:229–254.

[37] Kari, J. and Lukkarila, V. (2009). Some undecidable dynamical prop-
erties for one-dimensional reversible cellular automata. Algorithmic Bio-
processes, Natural Computing Series, pages 639–660.

105

[38] Kari, J. and Ollinger, N. (2008). Periodicity and immortality in
reversible computing. MFCS, Lecture Notes in Computer Science,
5162:419–430.

[39] Kůrka, P. (1997). Languages, equicontinuity and attractors in cellular
automata. Ergodic Theory and Dynamical Systems.

[40] Kůrka, P. (2003). Topological and symbolic dynamics, volume 11.
Société Mathématique de France.

[41] Kůrka, P. (2009). Topological dynamics of one-dimensional cellular au-
tomata. Encyclopedia of Complexity and System Sciences (R.A. Meyers,
ed.) Part 20, pages 9246–9268.

[42] Lind, D. and Marcus, B. (1995). An Introduction to Symbolic Dynamics
and Coding. Cambridge University Press.

[43] Lukkarila, V. (2009). The 4-way deterministic tiling problem is unde-
cidable. Theoretical Computer Science, 410:1516–1533.

[44] Lukkarila, V. (2010). On Undecidable Dynamical Properties of Re-
versible One-Dimensional Cellular Automata. Phd thesis, Turku Centre
for Computer Science, University of Turku.

[45] Maruoka, A. and Kimura, M. (1976). Condition for injectivity of global
maps for tessellation automata. Information and Control, 32(2):158–162.

[46] Meester, R. and Steif, J. (2001). Higher-dimensional subshifts of finite
type, factor maps and measures of maximal entropy. Pacific Journal of
Mathematics, 200(2):497–510.

[47] Meyerovitch, T. (2008). Finite entropy for multidimensional cellular
automata. Ergodic Theory and Dynamical Systems, 28(4):1243–1260.

[48] Moothathu, S. (2006). Studies in Topological Dynamics with Empha-
sis on Cellular Automata. Phd thesis, Department of Mathematics and
Statistics, School of MCIS, University of Hyderabad.

[49] Morita, K. and Harao, M. (1989). Computation universality of one-
dimensional reversible (injective) cellular automata. IEICE Transactions
on Information and Systems, E72:758–762.

[50] Myhill, J. (1963). The converse of Moore’s garden-of-Eden theorem.
Proceedings of the American Mathematical Society, 14(4):685–686.

[51] Nasu, M. (1995). Textile systems for Endomorphisms and Automor-
phisms of the Shift, volume 114. Memoirs of the American Mathematical
Society.

106

[52] Nasu, M. (2002). The dynamics of expansive invertible onesided cel-
lular automata. Transactions of the American Mathematical Society,
354(10):4067–4084.

[53] Nasu, M. (2008). Textile systems and one-sided resolving automor-
phisms and endomorphisms of the shift. Ergodic Theory and Dynamical
Systems, 28(1):167–209.

[54] Park, K. (1996). Entropy of a skew product with a Z2-action. Pacific
Journal of Mathematics, 172:227–241.

[55] Parry, W. (1964). Intrinsic Markov chains. Transactions of American
Mathematical Society, 112:55–66.

[56] Pavlov, R. and Schraudner, M. (2015). Classification of sofic projective
subdynamics of multidimensional shifts of finite type. Transactions of the
American Mathematical Society, 367:3371–3421.

[57] Smith, A. (1968). Simple computation-universal cellular spaces and self-
reproduction. In 9th IEEE Symposium on Switching Automata Theory,
volume 18, pages 269–277.

[58] Taati, S. (2007). Cellular automata reversible over limit set. Journal
of Cellular Automata, 2:167–177.

[59] von Neumann, J. (1966). The theory of self-reproducing automata. A.
W. Burks, Ed. University of Illinois Press.

[60] Walters, P. (1978). On the pseudo orbit tracing property and its rela-
tionshipt to stability. Lecture Notes in Mathematics, 668:231–244.

[61] Weiss, B. (1973). Subshifts of finite type and sofic systems. Monatshefte
für Mathematik, 77:462–474.

[62] Williams, R. F. (1973). Classification of subshifts of finite type. Annals
of Mathematics, 98:120–153.

[63] Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews
of Modern Physics, 55:601–644.

[64] Zinoviadis, C. (2016). Hierarchy and Expansiveness in Two-
Dimensional Subshifts of Finite Type. Phd thesis, Department of Mathe-
matics and Statistics, University of Turku.

107

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type
210. Mika Murtojärvi, Efficient Algorithms for Coastal Geographic Problems
211. Sami Mäkelä, Cohesion Metrics for Improving Software Quality
212. Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
213. Jetro Vesti, Rich Words and Balanced Words
214. Jarkko Peltomäki, Privileged Words and Sturmian Words
215. Fahimeh Farahnakian, Energy and Performance Management of Virtual

Machines: Provisioning, Placement and Consolidation
216. Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets
217. Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
218. Stefan Grönroos, Efficient and Low-Cost Software Defined Radio on Commodity
 Hardware
219. Noora Nieminen, Garbling Schemes and Applications
220. Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
 Design Thinking Methods
221. Johannes Holvitie, Technical Debt in Software Development – Examining
 Premises and Overcoming Implementation for Efficient Management
222. Tewodros Deneke, Proactive Management of Video Transcoding Services
223. Kashif Javed, Model-Driven Development and Verification of Fault Tolerant
 Systems
224. Pekka Naula, Sparse Predictive Modeling – A Cost-Effective Perspective
225. Antti Hakkala, On Security and Privacy for Networked Information Society –
 Observations and Solutions for Security Engineering and Trust Building in
 Advanced Societal Processes
226. Anne-Maarit Majanoja, Selective Outsourcing in Global IT Services – Operational
 Level Challenges and Opportunities
227. Samuel Rönnqvist, Knowledge-Lean Text Mining
228. Mohammad-Hashem Hahgbayan, Energy-Efficient and Reliable Computing in

Dark Silicon Era
229. Charmi Panchal, Qualitative Methods for Modeling Biochemical Systems and

Datasets: The Logicome and the Reaction Systems Approaches
230. Erkki Kaila, Utilizing Educational Technology in Computer Science and

Programming Courses: Theory and Practice
231. Fredrik Robertsén, The Lattice Boltzmann Method, a Petaflop and Beyond
232. Jonne Pohjankukka, Machine Learning Approaches for Natural Resource Data
233. Paavo Nevalainen, Geometric Data Understanding: Deriving Case-Specific

Features
234. Michal Szabados, An Algebraic Approach to Nivat’s Conjecture
235. Tuan Nguyen Gia, Design for Energy-Efficient and Reliable Fog-Assisted

Healthcare IoT Systems
236. Anil Kanduri, Adaptive Knobs for Resource Efficient Computing
237. Veronika Suni, Computational Methods and Tools for Protein Phosphorylation

Analysis
238. Behailu Negash, Interoperating Networked Embedded Systems to Compose the

Web of Things
239. Kalle Rindell, Development of Secure Software: Rationale, Standards and

Practices
240. Jurka Rahikkala, On Top Management Support for Software Cost Estimation
241. Markus A. Whiteland, On the k-Abelian Equivalence Relation of Finite Words
242. Mojgan Kamali, Formal Analysis of Network Routing Protocols
243. Jesús Carabaño Bravo, A Compiler Approach to Map Algebra for Raster Spatial

Modeling
244. Amin Majd, Distributed and Lightweight Meta-heuristic Optimization Method for

Complex Problems
245. Ali Farooq, In Quest of Information Security in Higher Education Institutions:

Security Awareness, Concerns, and Behaviour of Students
246. Juho Heimonen, Knowledge Representation and Text Mining in Biomedical,

Healthcare, and Political Domains

247. Sanaz Rahimi Moosavi, Towards End-to-End Security in Internet of Things based
Healthcare

248. Mingzhe Jiang, Automatic Pain Assessment by Learning from Multiple
Biopotentials

249. Johan Kopra, Cellular Automata with Complicated Dynamics
250. Iman Azimi, Personalized Data Analytics for Internet-of-Things-based Health

Monitoring
251. Jaakko Helminen, Systems Action Design Research: Delineation of an Application

to Develop Hybrid Local Climate Services
252. Aung Pyae, The Use of Digital Games to Enhance the Physical Exercise Activity of

the Elderly: A Case of Finland
253. Woubishet Zewdu Taffese, Data-Driven Method for Enhanced Corrosion

Assessment of Reinforced Concrete Structures
254. Etienne Moutot, Around the Domino Problem – Combinatorial Structures and

Algebraic Tools
255. Joonatan Jalonen, On Some One-Sided Dynamics of Cellular Automata

Turku
Centre for
Computer
Science

University of Turku
Faculty of Science and Engineering
 • Department of Future Technologies
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3964-9
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

Joonatan Jalonen

Joonatan Jalonen

Joonatan Jalonen
O

n S
om

e O
ne-S

ided D
ynam

ics of C
ellular A

utom
ata

O
n S

om
e O

ne-S
ided D

ynam
ics of C

ellular A
utom

ata

O
n S

om
e O

ne-S
ided D

ynam
ics of C

ellular A
utom

ata

	Introduction
	Preliminaries
	Basic Notations
	Automata, Languages, and Graphs
	Topological Dynamics
	Symbolic Dynamics and Cellular Automata
	Shift Spaces
	Cellular Automata
	Subshifts and Cellular Automata as Topological Dynamical Systems
	Higher-Dimensional Symbolic Dynamics
	Computability

	Stripe Shifts
	Definition and the Stripe Lemma
	Characterization of Sofic Stripe Shifts
	An Uncountable Stripe Shift

	Reversible One-Sided Cellular Automata
	Reversible One-Sided Cellular Automata
	Elementary ROCA's as Products of Involutions

	Examples
	Periodicity and the Diagonal Cellular Automata

	One-Sided Ultimate Expansivity and One-Sided Pseudo-Orbit Tracing Property
	Ultimate One-Sided Expansivity
	One-Sided Pseudo-Orbit Tracing Property
	Right-Expansivity Implies Chain-Mixingness

	Left-POTP and Ultimate Right-Expansive Cellular Automata Have POTP
	Right-Expansive Cellular Automaton with Non-Sofic Traces
	Left-POTP Cellular Automaton with Non-Sofic Traces

	Conjugacy
	One-Dimensional Case
	Conjugacy of One-Dimensional One-Sided Cellular Automata Is Undecidable
	Restricted Cases
	Short Note on Conjugacy of Subshifts

	Two-Dimensional Case
	Conjugacy of Reversible Two-Dimensional Cellular Automata

	Fixing the Alphabet
	Fixing the Alphabet for One-Dimensional Cellular Automata
	Fixing the Alphabet for Two-Dimensional Cellular Automata

	Open Problems
	Blank Page

