The Myhill Functor, Input-Reduced Machines, and Generalised Krohn-Rhodes Theory

Robert H. Yacobellis
Loyola University Chicago, ryacobellis@luc.edu

Recommended Citation

Yacobellis, RH. "The Myhill Functor, Input-Reduced Machines, and Generalised Krohn-Rhodes Theory" from the 5th Princeton Conference on Information Sciences and Systems, 1972.

PROCEEDINGS
OF THE
SIXTH ANNUAL
PRINCETON CONFERENCE
ON
INFORMATION SCIENCES AND SYSTEMS

Papers Presented
March 23-24, 1972

Program Co-Directors: M. E. Van Valkenburg Murray Edelberg
Page
Session A-0: Computer Aided Design in Electrical Engineering Chairman: Professor S.W. Director
A Generalized Network Analysis and Simulation System
C. W. Gear 1
Vector and Matrix Variability Type in Sparse Matrix Algorithms
G. D. Hachtel 4
Optimization Methods and Microwave Circuit Design J. W. Bandler 10
Graphical Interaction with Large Scale Circuit Design Programs C. Pottle 15
Session B-0: Computer-Aided Design in Civil Engineering
Chairman: Professor D. P. Billington
Representation of the Computer-Aided Design Process by a Network of Decision Tables S. J. Fenves 16
Concept and Design Evaluation Modeling an Example in Transportation J, E. Snell 22
Computer-Aided Methods for Building Systems Design K, F. Reinschmidt 27
Sparsity-Oriented Methods for Simulation of Mechanical Dynamic Systems N. Orlandea, M. A. Chace and D. A. Calahan 32
Session C-0: Computer-Aided Design in Chemical Engineering Chairman: Professor A. W. Westerberg
On Generating Engineering Design Programs Using a Symbolic Compiler R. S. H. Mah 37
The Use of Large Data Base Systems for Process Engineering Design and Construction
M. T. Tayyabkhan 42
The Computer-Aided Synthesis of Chemical Processing Systems
G. J. Powers 43
The GENDER Routines, An Aid for the Analysis and Optimization of Engineering Systems
J. R. Cunningham and A. W. Westerberg 48
Session A-1: Communication Theory
Chairman: Professor W. L. Root
Fuzzy Languages
L. Zadeh 53
On Binary Representations of Monotone Sequences
P. Elias 54
Some Recent Applications of Reproducing Kernel Hilbert Spaces T. Kailath 58
Applications of Volterra-System Analysis
E. Bedrosian and S. O. Rice 59
Probability Models of Received Scattered and Ambient Fields D. Middleton 66
Distribution of Maxima of the Markov-Like Gaussian Process M. Ein-Gal and I. Bar-David 72
Session A-2: Data Structures and Information Systems
Chairman: Professor W. A. Burkhard
A Capability Based File System D. Tsichritzis 74
The Specification of Data Structures, Access Methods and Efficiency J. K. MuIlin 79
A Language for a Relational Data Base Management System G. Bracchi, A. Fedeli and P. Paolini 84
SAPIENS - A Technique for the Analysis of Tense and Time in Relational Data Systems J. L. Kuhns 93
The Design and Simulation of a Disjoint Information Processing System J. E. Wheeler and A. W. Bennett 98
Modeling of Information Systems C. W. Therrien and J. F. Reintjes 99
Techniques for Storage, Retrieval, and Multi-File Operations for an Information System C. K. Cho 105
Session A-3: Formal Languages and Compilers
Chairman: Dr. A. V. Aho
Norma1 Form Theorems for Phrase Structure Grammars W, J, Savitch 106
Context-free Languages, Probabilistic Automata - A Problem of Paz R. Kosaraju 110
Unary Developmental Systems and Languages
G. T. Herman, K. P. Lee, J. van Leeuwen and G. Rozenberg 114
Least-errors Recognition of Mutated Context-free Sentences in Time $n^{3} \log n$
G. Lyon 115
An $n \log n$ Algorithm for Detecting Reducible Graphs J. E. Hopcroft and J. D. U11man 119
Solution to the Hashing Problem for Code Length 3
D. Mitra 123
COMPILER: Diagnostic Phase K. W. Hahn and J. G. Athey 124
Erasing in Context-Free AFLs
S. A. Greibach 125
Interconnected Computers: Topological and Geometric Considerations R. M. Firestone 126
On Multitransmission Networks with Fanout G. M. Masson 127
Allocation of Concentrators in Teleprocessing Communications Networks B. L. Deekshatulu 132
On the Design of Maximally Reliable Communication Networks R. S. Wilkov 133
Hamiltonian Factorization of the Product of a Complete Graph with Itse1f B. R. Myers 135
Minimum De1ay Networks for Sorting and for Switching D. E. Muller and F. P. Preparata 138
Retrieval Tag Sort
B. T. Bennett and A. C. McKellar 140
Bounds on Algorithms for String Generation A. C. McKellar and C. K. Wong 145
Session A-5: Optimal Control I
Chairman: Dr. Yaakov Bar-Shalom
On Linear Stochastic Systems with Coupled Measurement and Dynamic Control L. C. Kramer and M, Athans 150
Linear Minimax Control Problems with Free Endpoints F. W. Hemming 155
Guaranteed Time Control of Linear Continuous Systems Containing Uncertain Parameters
P. Raghavan 159
The Optimal Linear Regulator with State-Dependent Sampling R. A. Schlueter and A. H. Levis 165
Controllability of Linear Systems in Banach Space with Bounded Operators
R. Triggiani 170
An Approach to the Optimal Linear Regulator with Incomplete State Feedback
V. Vimolvanich and A. Zachai 171
Optimal Initial Data and Control for a Class of Hereditary Systems
N, D. Georganas 172
Session A-6: System Identification
Chairman: Mr. E. Schutzman
Exact Nonlinear Identification Via LinearizationJ. V. White173
Parameter Identification in Nonlinear Time-Varying Processes
M. C. Y. Kuo and G. D. Walters 176
Optimal Least-Squares Parameter Identification and Digital Filtering
A. G. Evans and R. Fischl 180
Application of an Identification Method to Distillation Columns C. Bonivento and R, Guidorzi 185
A Markovian Identification Technique for Nonlinear Systems W. C. Miller 190
Experiments in Distributed Parameter System Identification
S. P. Chaudhuri 191
Session B-1: Combinatorial Structures
Chairman: Professor C. L. Liu
Optimum Binary Trees with Restricted Maximum Path Length T. C. Hu 192
On the Addressing Problem for Loop Switching
R. L. Graham and H. O, Pollak 193
An Algorithm for Optimal Coding of a Noiseless and Memoryless Channel A. Lempel, S. Even and M. Cohn 194
The Number of Semigroups of Order n
D. Kleitman, B. Rothschild and J. Spencer 199
Some Recent Results on the Combinatorial Game Called Welter's Nim E. R. Berlekamp 203
A Nonrecursive List Moving Algorithm E. M. Reingold 205
The Length of Boolean Expressions B. Vilfan and A. R. Meyer 208
Deadlocks in Petri Nets F. G, Commoner 212
Session B-2: Computer Systems
Chairman: Professor T. B. Pinkerton
Performance Measures, Definitions and Metric H. Kerner and K. Kuemmerle 213
Processor Preemption in Scheduling for Multiprogramming L. J. Bass 218
On Optimal Schedules for Multiprocessor Systems S. Schindler 219
The Analysis and Solutions for General Queueing Networks K. M. Chandy 224
Placement of Records on a Secondary Storage Device to Minimize Access Time D. D. Grossman and H. F. Silverman 229
Multi-Route Access on Cylinder-Memories N. Minsky. 230
A Microprogrammed Virtual Associative Memory S. H. Dalrymple 236
Multiple Microprocessors with a Common Microprogram Memory J. E. Juliussen and F. J. Mow1e 241
Session B-3: Data Compression and Communication Systems
Chairman: Colonel P. J. Daily
Fisher's Information and Data Compression
Y. Bar-Shalom and R. M. Dressler 246
A Two Dimensional Binary Data Mode1
M. Kanefsky and R. B. Springer 251
A Class of Jointly Optimal Signals and Detectors in Burst Noise D. C. Trimble and L, Kurz 252
Analysis of a Two Dimensional Data Compression Scheme M. Kanefsky 257
A New Automatic Equalizer
R. T. Sha and D. T. Tang 258
The Performance of a Noncoherent FSK Receiver Preceded by a Band-Pass Limiter M. K. Simon and J. C. Springett 264
Analysis and Design of Causal System Functions for Noise and Intersymbol Interference Minimization N. E. Aniebona 268
Minimization of Jitter Effects in Pulse Transmission Systems E. Hansler 269
Session B-4: Information Theory
Chairman: Professor J. Carlyle
A Cooperative Game Approach to Information Transmission Schemes with Noisy Feedback
H. B. Poza 274
Channel Capacity of Finite-State Linear System
M. Orsic and E. M. Rounds 279
A Coding Bound for the Gaussian Channel with Finite Linear Intersymbol Interference J. K. Omura 280
Information and Entropy in Mail Sorting K. Abend 284
A Spectral Resolution of Configuration Matrices of Group Codes for the Gaussian Channel
I. F. Blake 285
Session B-5: Numerical. Algorithms
Chairman: Professor R. Vichnevetsky
A Fast Method for Interpolation Using Preconditioning E. Horowitz 286
Numerical Computation of Fourier Transforms by Splines
A. Caprihan and M. Kinra 292
Associative Processing of FFT
W. T. Cheng and T. Y. Feng 297
Hybrid Computer Solutions of Partial Differential Equations Using Invariant Imbedding Techniques
G. H. Cohen and C. N. Walter 302
Stability Charts of Methods of Lines for Partial Differential Equations R. Vichnevetsky 307
A Comparison of Genetic Algorithms with Conjugate Gradient Methods J. Bosworth, N. Foo and B. P. Zeigler 313
Finite Convergence of Conjugate Gradient Methods in the Minimization of Certain Quadratic Functions Defined on Hilbert Spaces
A. I. Cohen 314
Session B-6: Pattern Recognition and Picture Processing Chairman: Professor A. Rosenfeld
Using 3D Models in Scene Analysis 315
Current Problems in Remote Sensing
G. Nagy 319
Some Computer Experiments in Picture Processing for Data Compaction
C. K. Chow, B. L. Deekshatulu and L. S. Loh 325
A Graph Pattern Matching Operation
J. Mylopoulos 330
Straight Line Approximation for Boundary of Left Ventricular Chamber from a Cardiac Cineangiogram
T. Kaneko and P. Mancini 337
Digital Image Motion Compensation
L. J. Henrikson 342
Session B-7: Systems Theory
Chairman: Professor N. DeClaris
Use of Lie Series and Training Algorithms for Estimating Nonlinear System Stability Boundary
J. Kormanik and C. C. Li 343
Pole Zero Matching of Model Reference Adaptive Systems K. S. Narendra and P. Kudva 348
Weak Decoupling in Linear and Nonlinear Systems
S. N. Singh and W. J. Rugh 350
The Optimal Selection of Certain Satellite System Parameters
R. L. Granger 356
Pursuit-Evasion Involving Three Systems
D. H. Chyung 360
Optimum Acceleration Invariant Signal Design
E. L. Titlebaum 362
Comparison of Expedient and Optimal Reinforcement Schemes for Learning Systems R. Viswanathan and K. S. Narendra 363
Session C-1: Algorithm Analysis and Optimization
Chairman: Professor E. L. Lawler
Is Heuristic Search Really Branch-and-Bound?
I. Pohl 370
Toward a Theory of Convergent Local Search
S. L. Savage, P. Weiner and M. J. Krone 375
Some Recent Results in Finite Complexity
P. M. Spira 381
Efficient Polynomial Evaluation
I. Munro 383
Some Improvements in Nonadaptive Sorting Algorithms M. W. Green 387
Computational Complexity of the Poisson Equation M. H. Schultz 392
Faster Convolution Over Any Ring
C. M. Fiduccia 396
The Markov Algorithm as a Language Parser
J. Katzenelson and E. Milgrom 397
Session $\mathrm{C}-2$: Coding Theory
Chairman: Professor K. K. Tzeng
On the Decoding of a Class of Shortened Cyclic Codes for a Compound Channel H. T. Hsu 399
On Full Power Decoding of Cyclic Codes
K. K. Tzeng and K. Zimmerman 404
A Large Class of Binary Self-Orthogonal Multiple Error-Correcting Codes H. T. Hsu and G. Stockman 408
Threshold Decoding and Generalized Weight Functions W. C. Gore 413
On the Majority Decoding of Error-Correcting Codes L. S. Bobrow 418
On a Class of One-Step Majority-Logic Decodable Codes C. L. Chen and W. T. Warren 419
Session C-3: Combinational and Sequential Circuits
Chairman: Professor S. H. Unger
Monotone Functions in Sequential Circuits G. Mago 420
Integrated Circuit Realization of Sequential Machines (The Set of Algorithms) S. P. Kartashev 425
On Feedback-Free Sequential Circuits
C. A. Harlow and S. M. Lee 433
Every Findte State Machine Can be Simulated (Realized) by a Synchronous (Asynchronous) Feedback Shift-Register Machine
L. S. Levy and M. Freeman 434
Some Binary Output Sequence Properties of Deterministic Autonomous Finite- State Machines
T. A. Kriz 442
Decomposition of Switching Functions into the Sum of Products of Functions of Fewer Variables
C. D. Weiss 443
Control Logic Automated Design Using Modular Logic C. Rey 448
Efficient NaND Gate Synthesis: New Techniques and Experimental Results C. A. Papachristou and C. D. Weiss 449
Session C-4: Detection and Estimation
Chairman: Professor L. D. Davisson
The Structure of Linear L.M.S. Estimators of Cyclostationary Synchronous M-ary Signals W. A. Gardner 450
Coupled Detection and Estimation with Sequentially Dependent Hypotheses
A. G. Jaffer 455
Robust Estimation Based on p-Points
R. D. Martin and C. J. Masreliez 460
Minimax Prediction of Signals Having a Bounded K-th Derivative
D. W. Kelsey and A. H, Haddad 465
Strong Consistency of a Nonparametric Estimate of a Density Function T. J. Wagner 470
Optimal Reconstruction of Signals
A. N. Netravali and R. J. P. de Figueiredo 472
Generalfzed Sign-Test Classifiers Within a Unified Framework of M-Sample Nonparametric Tests
J. I. Cochrane and L. Kurz 479
Session C-5: Differential Games and Control
Chairman: Professor J. B. Cruz, Jr.
Strategies for a Goal Tending Game
D. M. Salmon 484
LQG Games -- New Results
T. Basar and M. Mintz 491
A Near Optimal Closed-Loop Solution Method for Nonsingular Zero-Sum Differential Games
G. M. Anderson 497
On N-Person Cooperative Differential Games
J. G. Lin 502
Mixed Strategies in Differential Games and Their Approximation
J. Medanic 508
Session C-6: Networks and Systems
Chairman: Professor P. Dorato
On Stability of Discrete Composite SystemsLj. T. Grujićc and D. D. Siljak513
Applications of a Theorem of Titchmarsh to Bandlimit Irreducibility of Memoryless Filters
G. J. Foschini 517
On State Sensitivity Reduction Compensators for Linear, Lumped and Distributive Systems
S. K. Rawat 523
On the Cascade Load Synthesis of Non-Passive Scattering Operators N. Levan 528
Application of the Method of Moments in the Time-Domain Analysis of Linear Networks with Uniformly Distributed RC Transmission Lines R. G. Matteson and T. A. Bickart 533
A Comparison of Recent Minimax Techniques on Optimum System Modelling J. W. Bandler, N. D. Markettos and T. V. Srinivasan 540
Session C-7: Societal Engineering
Chairman: Professor L. E. Franks
Socio-Technological Systems Studies with the Aid of Structural Analysis L. A. Gérardin 545
Labor in a Dynamic Economic Model
W. G. Vogt and M. H. Mickle 550
A Nonlinear Input-Output Model of a Multisectored Economy I. W. Sandberg 554
Expressway Entrance Ramp Control for Flow Maximization
C. I. Chen, J. B. Cruz, Jr. and J. G. Paquet 563
A Linear Programming Model of Highway Traffic Control D. Tabak 568
Longitudinal Control of Multi-Locomotive Powered Trains
L. E. Peppard and P. J. McLane 571
Application of a Multiple Measurement Technique for the Estimation of DO and BOD in a Steady-State Stream
H. J. Perlis and B. Okunseinde 572
Characterization of Echo Sources in Medical U1trasound
R. C. Waag and T. I. Raji 573
Session D-1: Automata and Cellular ArraysChairman: Professor R. Kieburtz
The Myhil1 Functor, Input-Reduced Machines, and Generalized Krohn-Rhodes Theory
J. A. Goguen and R. H. Yacobellis 574
Some Problems on Tabulator Machines R. Kosaraju 579
Sequence Generation by Real Automata -- Generation in One and Two Dimensions
M. E. Kaliski 580
Nondeterminism in Stochastic Automata
J. W. Carlyle 584
Equi-Informational Sequences
R. P. Daley 585
A Note on Functional Completeness in Many Valued Logic
H. El Lozy and Y. N. Patt 586
Cellular Cascades with Function Inputes
R. W. Ehrich 587
Fault Locatable Two Dimensional Cellular Logic Arrays S. M. Reddy 593
Pattern Recognition Problems in Cellular Space
R. Kosaraju 594
Session D-2: Computer System Mode1sChairman: Professor S. R, Kimbleton
Processor Sharing in a Central Server Queueing Model of Multiprogramming with Applications
F. Baskett 598
A Comparison of Deadlock Prevention Schemes Using a Trace-Driven Model
S. Sherman, J. H. Howard and J. C. Browne 604
Computer System Modeling from a Management Perspective
N. R. Nielsen 608
Response Time Distribution of Multiprogrammed Time-Shared Computer Systems A. Sekino 613
Session D-3: Digital Systems
Chairman: Professor W. H. Huggins
Recursive Filters for MIT Radars
J. W. Mark and H, A. Woods. 620
Some Effects of Quantization and Adder Overflow on the Forced Response of Digital Filters
A. N. Willson, Jr. 625
Computer Realization of an Optimal Filter for Saturating Channels
P. R. Whalen and P. J. McLane 630
Suboptimal Fixed-Point Smoothing for Continuous Nonlinear Systems with Discrete Observations
D. B. Luber and R. S. Berkowitz 635
Results on the Design of Decoupled Discrete-Time Multivariable Systems
K. M. Zahr and C. Slivinsky 640
$\frac{\text { Session D-4: Operations Research }}{\text { Chairman: Dr. S. Lin }}$
Improving the Branch-and-Bound MethodD. T. Tang and C. K. Wong641
A Scheduling Strategy for the Flow-Shop Problem in a System with Two Classes of Processors
V. Y. Shen and Y. E. Chen 645
Some Aspects of Flow-Shop Sequencing Problem
S. S. Reddi and C. V. Ramamoorthy 650
Optimization of Design Tolerances Using Nonlinear Programming
J. W. Bandler 655
An Approach to Constrained Optimization Problems, Using an Heuristic Multimodal Search J. Opačic 660
Hypergeometric Group Testing Procedures F. K. Hwang and S. Lin 661
Session D-5: Optimal Control II
Chairman: Professor H. E. Meadows
On the Modal Control of Distributed Parameter Systems
A. L. Moitinho de Almeida and G. J. Thaler662
On the Determination of Sampling Rates in Closed-Loop Control Systems S. M. Brecher and H. E. Meadows 667
Design of Minimal-Order Controllers for Exact Model Matching
S. H. Wang and E. J. Davison 668
On Optimal Tracking
S. P. Bhattacharyya 673
Minimum Time Control of the Discrete and the Delayed Discrete Systems for any Arbitrary Initial State
N. N. Puri and L. D. Meeker 674
An Open Loop Method of Feasible Directions for the Solution of Optimal Control Problems
G. G. L. Meyer 679
Dynamic Programming and Linear Time Delay Systems with Quadratic Cost
H. N. Koivo 681
A New Optimal Digital Control System
K, L. Leung and Z. V. Rekasius 685
Optimal Bandlimited Controls for Differential Systems Without Convexity Condition
N. U. Ahmed 686
Session D-6: Random Processes
Chairman: Dr. L. Shepp
Entropy Measures for Stochastic Jump ProcessesI. Rubin687
On The Equivalence of a Random Process and a Sequence of Its Linear Functionals
E. Masry and S. Cambanis 693
Shaping Filter Realization for a Class of Non-Separable Random Processes
R. D. Martin and L. L. Scharf 694
A New Type of Error in the Reconstruction of Discretized Random Waveforms
A. Ephremides 695
Optimal Differential-Delay Models for Stochastic Input-Output Systems
M. I. Freedman 700
On the Estimation of Covariance Matrices
E. P. F. Kan 703
Some Further Properties of the Variation J. A. Knight 705
On the Attainability Function of Stochastic Systems
N. U. Ahmed and N. J. Spyratos 706
On the Application of Probabilistic Distance Measures for the Extraction of Features from Imperfectly Labeled Patterns C. C. Babu 707

THE MYHILL FUNCTOR, INPUT-REDUCED MACHINES, AND GENERALIZED KROHN-RHODES THEORY
J. A. GOGUEN

IBM T. J. Watson Research Center Yorktown Heights, New York

Summary

This paper reports recent progress in a program of extending Krohn-Rhodes theory, and its necessary preliminaries, to systems with structure other than the discrete. It is intended to provide a clear idea of the line of research and its motivation, with some idea of the methods. Further details may be found in future joint papers and in the forthcoming thesis of the second author.

1. Generalizing Machine Theory

Roughly the same results have been proved separately for several different types of discrete time system. For other types these same results are unknown. For example, transition systems, transducers and acceptors, with finite or arbitrary cardinality state and/or input sets, have engendered a large, and now almost classical, literature. The same models with the additional assumption of linearity have been less thoroughly studied, especially for such variations of linear as bilinear and affine, and when rings are used rather than fields. But many classical automaton results are known here, and research is actively proceeding. Topological machines, in which input, state, and output objects are topological spaces, and the transition and output functions are continuous, have been studied very little. They are interesting as models of nonlinear but smooth systems.

This paper discusses a general theory which gives special results for all the above cases. Many of these results are new. The method is that of Goguen, ${ }^{4}$ to prove all results for machines having any "sufficiently nice" structure. This requires reformulating machine theory into the language of abstract structure, category theory, thus treating the universal properties of constructions as in modern algebra, ${ }^{1}$ rather than their particular details. As usual, this method clarifies and extends existing results, while suggesting new ones.

Among the first nontrivial things done with a class of systems are to characterize the behaviors and seek minimal realizations. The work recently done by Goguen ${ }^{2}$ for machines with "sufficiently nice" structure, including linear and topological, is summarized here in Section 3. The present paper treats the Myhill semigroup construction and aspects of Krohn-Rhodes theory in the same framework. As with the state minimization results, many of the applications are new. In Section 6 we discuss input minimization of machines.

The technical apparatus required for the general development is quite extensive. But fortunately, for expository purposes, the main ideas are adequately conveyed by the universal property formulations of results and constructions in just the
R. H. YACOBELLIS

Bell Telephone Laboratories, Incorporated Naperville, Illinois
discrete case. This we do, except in the final sections, which discuss machines, behaviors, and semigroups in diagonal closed categories.

2. The Language of Categories

Category theory provides a "language of structure" in which to do our theory of "machines with sufficiently nice structure." This section gives a dictionary for that language in more intuitive English. Of course, category theory is a totally rigorous branch of mathematics and all terms have precise technical definitions. The actual proofs of assertions in this paper are embedded in this framework. But the reader can usually appreciate the intuitive context of our results with these "basic doctrines" 5 of category theory: (1) any mathematical structure is represented by a category, (2) any mathematical construction is represented by a functor, (3) any canonical construction is represented by an adjoint functor, and (4) any natural translation from one construction to another is represented by a natural transformation.

Categories are denoted A, B, C, etc., and the class of objects of A is denoted $|A|$. Morphisms (or maps), in a category, thought of as "preserving the structure of objects," are indicated as arrows, f
$A \rightarrow B$ from source to target object, and are composed in the order natural to diagrams, $f: A \rightarrow B$ and $\mathrm{B}: \mathrm{B} \rightarrow \mathrm{C}$ composing to give $\mathrm{fg}: \mathrm{A} \rightarrow \mathrm{C}$. Composition is assumed associative, with an identity A for each object A. Application is indicated as usual, i.e., for $a \in A, f(a) \varepsilon B$, and $g(f(a))=$ $(f g)(a) \varepsilon C$, but also "categorically" as af εB and afgec. The set of maps from A to B in C is denoted $C(A, B)$. A functor F from A to B is indicated $F: A \rightarrow B$. Speaking more technically now, $F: A \rightarrow B$ is left adjoint to $G: B \rightarrow A$ iff there is a natural isomorphism $\phi: B(F(A), B) \simeq A(A, G(B))$ of set-valued functors of A, B. One writes $F-\mid G$. For $f: F(A) \rightarrow B, \phi(f): A \rightarrow G(B)$ is called the adjoint transform of f. A subcategory B of A is reflective iff the inclusion functor $B \subseteq A$ has a left adjoint. Technical references for category theory include References $3,10,12$, and 13.

3. Machines and Behaviors

A machine is $M=\langle X, S, Y, \delta, \lambda, \sigma\rangle$, where X, S, Y are sets, and $\delta: S x X \rightarrow S, \lambda: S \rightarrow Y, \sigma: 1 \rightarrow S$ are functions, with 1 a one point set $\{\cdot\}$. A machine morphism $M \rightarrow M^{-}$is $\langle a, b, c\rangle$ where $a: X \rightarrow X^{\prime}$, $\mathrm{b}: S \rightarrow \mathrm{~S}^{\prime}, \mathrm{c}: \mathrm{Y} \rightarrow \mathrm{Y}^{\prime}$ are functions such that the equations $(b \times a) \delta^{\prime}=\delta b, b \lambda^{\prime}=\lambda c, o b=\sigma^{\prime}$ hold. Given a machine M, let $\delta^{+}: X^{*} \rightarrow S$ be the usual recursive extension of δ to strings of inputs, using σ as starting state, i.e., $\delta^{+}(\Lambda)=\sigma$ and $\delta^{+}(w x)=$
$\delta\left(\delta^{+}(\mathrm{w}), \mathrm{x}\right)$ for $\mathrm{x} \varepsilon \mathrm{X}$, w $\varepsilon \mathrm{X}^{*}$, where X^{*} is the monoid of all strings over X, Λ is the empty string, and $\sigma: 1 \rightarrow S$ is identified with its image $\sigma(\cdot) \varepsilon$ S. Call M reachable iff δ^{+}is surjective. Let M be the category of all reachable machines with morphisms having their first (or input) component surjective.

The external behavior of M, denoted $E(M)$, is the composite $\delta^{+} \lambda: \mathrm{X}^{*} \rightarrow \mathrm{Y}$. In general, a behavior is a function $f: X^{*} \rightarrow Y$, and a morphism of behaviors $f \rightarrow f^{\prime}$ is a pair $\left\langle a, c>\right.$ where $a: X \rightarrow X^{\prime}$ and $c: Y \rightarrow Y^{\prime}$ such that $a^{*} f^{\prime}=f c$, with $a^{*}\left(x_{1} \ldots x_{n}\right)=$ $a\left(x_{1}\right) \ldots a\left(x_{n}\right)$, concatenation in X^{-*}. Let B be the category of behaviors with morphisms having first component surjective. For $\langle a, b, c\rangle$ in M, let $E(\langle a, b, c\rangle)=\langle a, c\rangle$ in B. Then $E: M \rightarrow B$ is a functor, called the external behavior functor.

Theorem: There is a functor $\mathbb{N}: B \rightarrow M$ right adjoint and left inverse to E .

These conditions determine N uniquely up to state set isomorphism as the Nerode minimal state realization construction. N being a left inverse means (fN)E $=$ f, i.e., fN realizes f, for all behaviors f. Let FSM be the full subcategory of M with objects having S finite, and let $F S B$ be the full subcategory of B with objects $E(M)$ for M in $F S M$. Then E and N restricted to these categories are still adjoint, and this gives the classical situation. More generally, any right-adjoint-leftinverse is a sort of minimal realization functor, and exhibits a number of useful properties: see Reference 2.

Most of the above results are proved in Reference 4, though without having possibly infinite X and Y. The extension to affine and topological cases is discussed later. Note that to get acceptors we let $Y=\{0,1\}$, and to get transition systems, we let $Y=S$ and λ the identity. The methods of Reference 4 show adjointness here too.

4. Traits and The Myhill Functor

It is convenient to use a structure conveying somewhat less information than the external behavior. For then the canonical reconstruction of the original data, while not in general faithful, exhibits a certain minimality. A trait is $T=$ $\langle X, M, Y, i, 0\rangle$ where X, Y are sets, M is a monoid, i: $X \rightarrow M$ is injective and $0: M \rightarrow Y$ is a function, such that X generates M, in the sense that every function $h: x \rightarrow M^{\prime}$ extends to at most one monoid morphism $h: M \rightarrow M^{\prime}$ (if we had said "exactly one," M would be freely generated by X, and thus isomorphic to X^{*}). A trait morphism $T \rightarrow T^{\prime}$ is <a,g,c> where $a: X \rightarrow X^{\prime}$ and $c: Y \rightarrow Y^{\wedge}$ are functions and $\mathrm{g}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ is a monoid morphism such that ai" $=$ ig and go $=0 c$. (Note that g determines a because i^{\prime} is injective.) Call a trait T firm iff $o\left(m_{1} m_{2}\right)=o\left(m_{1} m^{\prime} m_{2}\right)$ for all $m_{1}, m_{2} \varepsilon M$ implies $m=m^{\prime}$. Let $T \vec{R}$ denote the category of firm traits with morphisms having surjective first component.

Given $f: X^{*} \rightarrow Y$, define the Myhill congruence on X^{*} as usual by w$f^{W^{*}}$ iff $f(u w v)=f\left(w^{*} v\right)$ for all
$u, v \in X^{*}$, and call the quotient $X^{*} / \sim_{f}=M_{f}$ the Myhill monoid of f. Let $q_{f}: X^{*} \rightarrow M_{f}$ be the quotient, and also write $[w]_{f}$ or even [w] for $q_{f}(w)$. Let $X_{f}=q_{f}(X) \subseteq M_{f}$, and let $i_{f}: X_{f} \rightarrow M_{f}$ be the inclusion. Define $O_{f}: M_{f} \rightarrow Y$ by $\circ_{f}([w])=f(w)$, which is easily seen to be well-defined. Call $T_{f}=\left\langle X_{f}, M_{f}, Y, i_{f}, O_{f}\right\rangle$ the Myhill trait of f (one must check that X_{f} generates). Note that If_{f} is firm.

Given <a, $c>: f \rightarrow f^{\prime}$ in B, define $g: M_{f} \rightarrow M_{f}{ }^{\prime}$ by $g\left(\left[w_{f}\right)=\left[a^{*}(w)\right]_{f^{\prime}}\right.$, which again is easily seen well-defined and a monoid morphism. Now for $[x]_{f} \in X_{f}$ define $a_{0}\left([x]_{f}\right)=g\left([x]_{f}\right)=[a(x)]_{f^{\prime}}$, and check that $\left\langle a_{0}, \varepsilon, c\right\rangle$ is a trait morphism $\mathrm{T}_{\mathrm{f}} \rightarrow \mathrm{T}_{\mathrm{f}}{ }^{\prime}$. This gives rise to the Myhill functor $M y: B \rightarrow T R$. It can be composed with the forgetful functor from traits to monoids to obtain what should be regarded as the classical Myhill functor. Letting FSTR be the full subcategory of $T R$ with finite monoids in the objects, it is easily checked that the restriction and composites My: FSB \rightarrow FSTR and EMy: FSM \rightarrow FSTR exist.

We assume the reader sufficiently familiar with the importance of the Myhill monoid as a summary of a machine's activity not to require further exhortation here. (See Reference l for further details.)

5. The Behavior-Trait Adjunction

The map $i: X \rightarrow M$ of a trait $T=\langle X, M, Y, i, o\rangle$ determines a monoid morphism $\bar{i}: X^{*} \rightarrow M$ uniquely from the condition $i=j \bar{i}$, where $j: \underline{X} \rightarrow X^{*}$ is the canonical inclusion (in fact, $\bar{i}\left(x_{1} \ldots x_{n}\right)=$ $x_{i} \cdots x_{n}$, multiplication in M) because X^{*} is free. Now define $B(T)=$ io: $X^{*} \rightarrow Y$, the behavior of T. Any $\left\langle a, g, c>: T \rightarrow T^{\prime}\right.$ in $T R$ gives $\left\langle a, c>: B(T) \rightarrow B\left(T^{\prime}\right)\right.$ in B, and thus $B: T R \rightarrow B$ is a functor.

Theorem: My is left adjoint to B.
But B is not a left inverse, so this is not a minimal realization situation in the sense that the machine-behavior adjunction was. However, merely being an adjoint entitles a functor to a number of benefits; for example, B preserves products and My preserves colimits. We see in the next section that this adjunction is "almost" a minimal realization situation, and actually induces one.

Clearly, we can again restrict to the finite state case, obtaining B:FSTR \rightarrow FSB right adjoint to My:FSB \rightarrow FSTR. The notion of trait is close to Krohn-Rhodes notion of the "normal form" of a behavior, ${ }^{8}$ but of course our results on universality are new.

6. Input Reduced Machines

There are situations in which one wants a minimal set of controls for a sequential process. For example, a minimal control set will optimize the reliability and cost of a link for remote controlling an industrial process or an artificial satellite. This section shows how to find such
sets for discrete systems. The extension to linear and continuous systems is discussed later.

A behavior $f: X^{*} \rightarrow Y$ is input reduced iff for all $u, v \varepsilon X^{*}$ and $x, x^{*} \varepsilon X, f(u x v)=f\left(u x^{*} v\right)$ implies $x=x^{\wedge}$. A machine is input reduced iff its behavior is, and a trait is input reduced iff its behavior is.

Proposition: For $f \varepsilon|B|$ and $T \varepsilon|T R|, f M y B$ and TBMy are input reduced. In fact, $T \simeq$ TBMy iff T is input reduced and $f \simeq f M y B$ iff f is input reduced.

Proposition: The input reduced behaviors are a reflective subcategory $I R B$ of B, that is, the inclusion has a left adjoint; and $I R B$ is equivalent to the (full sub) category of input-reduced traits. In fact, the left adjoint to the inclusion $I R B \subseteq B$ is MyB.

The adjunction $M y B-\mid \subseteq$ is a minimal realization situation, in the technical sense ${ }^{5}$ that $I R B \subseteq B$ is a right-adjoint-left-inverse. We can compose with $\mathrm{E}-\mathrm{N}$ (Section 3) to obtain others.

Theorem:
The funct or $N: I R B \rightarrow M$ is right-adjoint-left-inverse to EMyB:M \rightarrow IRB. The input reduced state reduced machines are a (full) reflective subcategory of M; in fact, the left adjoint to the inclusion is EMyB.

This gives the input reduced state reduced realizations promised earlier. It might be noted that the minimal input set X_{f} may very well contain symbols having no effect on certain, or even on all, states. Such inputs may be necessary for states to persist through several "clock pulses." Also note that if encoding letters in X by strings from X_{f} were allowed, the problem of input minimality would be trivial and unrelated to the Myhill monoid.

7. Categorical Krohn-Rhodes Theory

Original interest in Krohn-Rhodes theory sprang from the novel decompositions it gave for behaviors and monoids. ${ }^{8}, 9$ More recent work has concerned complexity. ${ }^{1}$ Generalizations to linear and topological systems should have the same applications. This section presents the major theorem of Krohn and Rhodes in categorical language, suggesting the form of the generalized theory.

Say $f: X^{*} \rightarrow Y$ divides $g: W^{*} \rightarrow Z$, written $f \mid g$, or g simulates f iff there is a monoid homomorphism $h: X^{*} \rightarrow W^{*}$ and a set map $b: Z \rightarrow Y$ such that $f^{\prime}=h g b$. f divides g length preserving, written $\mathrm{f} \mid \mathrm{g}(\ell \mathrm{p})$, iff $\mathrm{f} \mid \mathrm{g}$ with $\mathrm{h}=\mathrm{a}^{*}$ for some $\mathrm{a}: \mathrm{X} \rightarrow \mathrm{W}$. The series comnection of $f: X^{*} \rightarrow Y$ and $g: Y^{*}+Z$ is the composite function f_{g}, where $f e\left(x_{1} \ldots x_{n}\right)=$ $f\left(x_{1}\right) f\left(x_{1} x_{2}\right) \ldots f\left(x_{1} \ldots x_{n}\right)$.... The parallel connection of $f: X^{*}+Y$ and $g: W^{*} \rightarrow Z$ is $f \times g:(X \times W)^{*} \rightarrow$ $\overline{Y \times Z}$, where $\mathrm{f} \times_{g}\left(\left\langle\mathrm{X}_{1}, \mathrm{Y}_{1}\right\rangle \ldots\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right\rangle\right)=$
$\left\langle f\left(x_{1} \ldots x_{n}\right), g\left(y_{1} \ldots y_{n}\right)\right\rangle$. The series
parallel closure of a family of behaviors $F, \operatorname{SP}(F)$, is the smallest family of behaviors containing F which is closed under series and parallel connection and length preserving division. A behavior f is irreducible iff whenever f divides a series or parallel connection of two behaviors g and h, it divides a finite parallel connection of g with itself (or h with itself). ${ }^{14}$ Let $\operatorname{IRR}(f)$ be the collection of all irreducible behaviors which divide a behavior f. Then one form of the KrohnRhodes Theorem is that $f \varepsilon \operatorname{SP}(\operatorname{IRR}(f) \cup D \cup\{U\})$, where \mathcal{D} is a collection of delay behaviors and U is an identity-reset behavior.

Let E be the category with objects sets and morphisms extended behaviors $f^{e}: X^{*}+Y^{*}$. Here ($X \times Y$)* is the Cartesian product of X^{*} and Y^{*}, and $\left.\left(f^{*}\right)^{*}\right) e$ is the unique morphism obtained from $f^{e}: X^{*} \rightarrow Y^{*}$ and $g^{e}: W^{*} \rightarrow Z^{*}$. Let $S P$ be the least subcategory of E closed under products and containing all the "free" behaviors $a^{*}: X^{*} \rightarrow Y^{*}$. If F is a collection of extended behaviors, let $S P(F)$ be the least subcategory of E containing $S P$ and F and closed under product. Note that $S P(f)=S P(\{f\})$ contains every behavior which f simulates ($\ell \mathrm{p}$). The Krohn-Rhodes theorem then says $f \in S P\left(\operatorname{IRR}\left(f^{0}\right) \cup D \cup\{U\}\right)$. If we give $S P$ vertical morphisms as in the category of behaviors, or if we let a vertical morphism be a division relation, $S P$ takes on a 2 -category structure. ${ }^{10}$ If we look at a trait $\langle\mathrm{X}, \mathrm{M}, \mathrm{Y}, \mathrm{i}, 0\rangle$ as a morphism from X to $Y, T R$ also has a 2 -category structure. It seems likely that the Myhill adjunction preserves division, irreducibility, etc., and is actually some kind of 2-adjunction. We would then get similar Krohn-Rhodes results for traits (and for monoids via the forgetful functor). This is an area which we are currently exploring.

8. Mathematical Methods of Generalized Machine Theory

The first "basic doctrine" of Section 2 says any mathematical structure is represented by a category. The preceding theory concerned discrete structure, represented by the category Set of sets. We now generalize from Set to categories C representing other "suitable" structures.

C must be "closed," or have an "internal hom functor." This means for each pair A, B of $o b-$ jects in C, the set of C-morphisms from A to B should become an object $[A, B]$ of C. The functor [,] arises most easily as a right adjoint to a "monoidal" functor $\mathbb{Q}: C \times C \rightarrow C$, so called because assumed to have an "identity" I $\in|C|$, isomorphisms expressing the monoid laws, aABC:A历̆ (BXC) \rightarrow $(A \otimes B) \otimes C, r_{A}: A M I \rightarrow A$, and in the "symmetric" case
we use also $c A B: A \otimes B \rightarrow B \otimes A$. These isomorphisms are "coherent," i.e., any diagram of them commutes. 'Ihis discussion motivates the closed symmetric monoidal category concept defined in Reference 3 or 7 . It can be shown that such categories have natural "evaluation" transforms $\nu_{A B}: A \mathbb{A}[A, B] \rightarrow B$; in the case of Set, $v_{A B}$ takes $\langle a, f\rangle$ to $f(a)$.

Suitable categories must also have countable coproducts, the universal construction corresponding to countable disjoint unions in Set; and an appropriate generalization of the usual surjec-tive-injective set map factorizations. Examples include Set of course, with Cartesian product; but also the category Modr of R-modules with tensor product, for R a commutative ring with unit; the category Kell of Kelley (i.e., compactly generated Hausdorff) spaces with \triangle Cartesian, and most interestingly, the affine category A for with objects R-modules (again for R commutative with unit) and with R-affine morphisms (i.e., R-linear plus a constant), and the affine tensor product $A(A) R_{R}=A \otimes_{R} B+A+B$. Affine machines are a natural and physically significant generalization of linear machines; see Reference 3 .

All of Section 3 generalizes to suitable C. A machine in C has $X, S, Y \in|C|$ and δ, λ, σ morphisms in C, but replace 1 by I. Next define $X^{*}=\perp$ $\square^{t} x$, the countable coproduct of the iterated powers of X, and show it is the free monoid in C generated by X. A monoid in monoidal C is $\langle M, \mu$,e> with $M \in|C|$ and with $\mu: M \otimes M \rightarrow M, e: I \rightarrow M$ in C, satisfying associativity and identity laws. A semigroup in C has only μ and associativity.

By considering automata in C ("machines" without $\lambda)$ we can define $\delta^{+}: X^{*} \rightarrow S$, and then the behavior $E(M)=\delta^{+} \lambda: X^{*} \rightarrow Y$. Morphisms of machines and behaviors are just as in Section 3 (use epic for surjective) giving categories M, B, and the behavior functor $E: M \rightarrow B$. Again there is a functor $N: B \rightarrow M$ right-adjoint-left-inverse to E, giving Nerode minimal state realizations. The construction crucially uses all the suitability assumptions; see Reference 3 or 4 .

9. Monoids in Diagonal Closed Categories

Generalized Krohn-Rhodes theory uses monoid theory in closed categories sketched here. Parts of this theory need more structured closed categories than those of Section 8. We call them diagonal, because their main new feature is a "diagonal" natural transform $\nabla_{X}: X \rightarrow X \otimes X$, coherent with the closed symmetric monoidal structure. We again assume countable coproducts and reasonable factorizations. For some purposes we assume I is a terminal object, meaning each object A has a unique morphism $u_{A}: A \rightarrow I$, and also assume some coherence for these morphisms. These assumptions about I are not needed for just semigroup theory. Among the examples of Section B, Set, Kell, and Affr are diagonal, but $L^{L} n_{R}$ is not.

The definitions of monoid and semigroup in a diagonal category are exactly the same as in monoidal category. Monoids in Set are ordinary monoids, in

Kell are "continuous" monoids, and in Ab́b are generalized linear. Among the latter are the tensor, Grassman, and other "algebras" of modern mathematics (see Reference 11). We now describe some basic constructions for monoids in categories.

If M and M^{-}are monoids in a symmetric monoidal C, so is their product MeX ${ }^{-}$, with identity -1

where b is a combination of the associative and commutative laws a and c.

For any object A in closed symmetric monoidal C, [A,A] can be made a monoid, with multiplication
the adjoint transform of $([A, A] \otimes[A, A]) \otimes A \rightarrow$ VWI v $(A \otimes[A, A]) \otimes[A, A] \stackrel{V \otimes}{\rightarrow} \underset{\operatorname{cr}_{A}}{A}[A, A]^{\vee} A$ and identity
the transform of $I \otimes A \rightarrow A$, where b is made from a and c, and v is evaluation.

If M is a monoid and A an object in diagonal C, then $[A, M]$ is also a monoid, with multiplication and identity the adjoint transforms of the comd
posites $([A, M] \boxtimes[A, M]) \boxtimes A \rightarrow(A \mathbb{X}[A, M]) \mathbb{A}(A \mathbb{D}[A, M])$ $\stackrel{v \otimes v}{\rightarrow} \stackrel{\mu}{\rightarrow} M$, and $I \otimes A \rightarrow I \xrightarrow{\rightarrow}+M$, where d is composed from $\nabla, a, c ; v: A \otimes[A, M] \rightarrow M$ is evaluation; u is the unique map; and μ, e are from M. The proof is quite long, but straightforward.

If M is a monoid in monoidal C, a right M-action is an object A and an $\alpha: A \otimes M \rightarrow A$ satisfying associativity and identity laws. Defining morphisms of (right) M-actions in the obvious way, we get a category Act ${ }^{M}$ of them. Examples: an X-automaton with state object S is an X^{*}-action on S with a "point" $\sigma: I \rightarrow S ; M$ itself is an M-action with $\mu: M \times M \rightarrow M$; a right ideal of M is a monic $U \rightarrow M$ in Act ${ }^{M}$; I is an M-act with $I Q M$ it I; a left zero or reset of M is a right ideal of the form $g: I \rightarrow M$ in Act ${ }^{M}$. Left action is defined dually, and a bi-action involves one of each. If C is closed and $A \in T C \mid,[M, A]$ can be given a left M-action structure α using evaluation; it is in fact the cofree M-action generated by A. It is possible to go on and develop ideal theory. For example, U is a right simple ideal of M iff it contains no proper right subideal, and is right cyclic iff the image of some $I^{*} \rightarrow M$ in ActM.

If M and N are monoids in diagonal $C, \phi: M \times N \rightarrow N$ is a connecting morphism iff it is a left M-action satisfying also identity and distributive conditions for N, the latter using ∇_{M}. The semidirect product $N \mathbb{Q}_{\phi} \mathrm{M}$ is $\mathrm{N} \otimes \mathrm{M}$ with multiplication d $N \mathbb{N Q}$ the composite $(N X M) \otimes(N X M) \rightarrow(N X(M X N)) Q(M X M) \xrightarrow{N Q}$ $\mu_{\mathrm{N}} \mathrm{NHM}_{\mathrm{M}}$
$(N W N) \times N\left(M \times M\right.$, where d uses ∇_{M}, a, and with identity as in the monoid product. It is
interesting, though tedious, to verify $\mathbb{N} \mathbb{C}_{\phi} \mathrm{M}$ really is a monoid. Similarly, it can be verified that α
the left M-action $M \mathbb{M}[\mathrm{M}, \mathrm{N}] \rightarrow[\mathrm{M}, \mathrm{N}]$ is a connecting homomorphism; the resulting semidirect product $[M, N] \circledast_{\alpha} M$ is called the wreath product of M and N, denoted \mathbb{N} wr M.

Division of monoids is defined as usual, M|N iff M is a quotient of a submonoid of N . When the category of monoids has pullbacks, division is a transitive relation, since the pullback of $\mathrm{N}^{\prime} \rightarrow$ $N \leftrightarrow P^{\prime}$, coming from $M \mid N$ and $N \mid P$ gives $M \mid P$. Therefore the monoids in C are a category with divisions as morphisms.
10. The Myhill Functor and Krohn-Rhodes Theory in Diagonal Closed Categories

Several aspects of the Myhill monoid construction, traits, and Krohn-Rhodes theory carry over to diagonal closed categories. For the Myhill construction, we take a behavior $f: X^{*} \rightarrow Y$ in diagonal C, and form $f^{B}: X^{*} \rightarrow\left[X^{*} \mathbb{M} X^{*}, Y\right]$, the adjoint transform of $a\left(c \mu \mathbb{X} X^{*}\right) \mu$, where μ is the natural multiplication on X^{*} corresponding to concatenation. The object $\left[X^{*} \mathbb{X} X^{*}, Y\right]$ is an X^{*}-biaction, and f^{B} is an X^{*}-biaction homomorphism. If we factor f^{B} as $f^{B}=$ $q_{f} \mathrm{~m}$, where m is monic and q_{f} is a coequalizer, then the domain M_{f} of m is also an X^{*}-biaction. Furthermore, $\left(X^{*} \mathbb{X} q_{f}\right)\left(q_{f} \mathbb{\otimes} M_{f}\right)=\left(q_{f} \mathbb{X} X^{*}\right)\left(M_{f} \mathbb{X} q_{f}\right)$ is a pushout, giving a monoid multiplication $\mu_{f}: M_{f} \mathbb{X M}_{f} \rightarrow M_{f}$ with q_{f} a monoid epimorphism. f factors as $q_{f} \circ_{f}$, where O_{f} is constructed from m, r, e_{M}, and evaluation, and if $f=h k$ is any other factorization of f through a monoid epimorphism $h: X^{*} \rightarrow \mathbb{N}$, there is a unique monoid epimorphism $\mathrm{h}^{-}: \mathbb{N} \rightarrow M_{\mathrm{f}}$ such that $\mathrm{hh}^{-}=\mathrm{q}_{\mathrm{f}}$. This minimality condition for M_{f} gives a Myhill adjunction with $T_{f}=\left\langle X_{f}, M_{f}, Y, i_{f}, o_{f}\right\rangle$ the trait of f, where X_{f} is the domain of i_{f} in the factorization $j_{I} q_{f}=q i_{f}$. Then X_{f} generates M_{f} since q_{f} is epic, and T_{f} is firm in the sense that it has an isomorphic Myhill quotient.

If $f \mid g$, i.e., $f=h g b$, then $M_{f} \mid M_{g}$. For factoring g as $q_{g} \circ_{g}$, we have $f=h q_{g} \circ_{g} b$. Then factor $h q_{g}: X^{*} \rightarrow M_{g}$ through a monoid M as $h q_{g}=q o$. Since h_{g} and q_{g} are homomorphisms, $M \approx\left[X^{*} \mathscr{C} X^{*}, M_{g}\right]$, so 0 is a monoid monomorphism. Since $f=q\left(0 \mathrm{O}_{\mathrm{g}} \mathrm{b}\right)$, minimality of M_{f} gives an epic $q^{\prime}: M \rightarrow M_{f}$ such that $q_{f^{\prime}}=q q^{\prime}$. Thus M_{f} is a subquotient of M_{g}, via o and q^{\prime}.

As in Set, the Myhill monoid of $\mathrm{f}^{\times} \mathrm{X}_{\mathrm{g}}$ divides $\mathrm{M}_{\mathrm{f}} \mathrm{XM}_{\mathrm{g}}$, where $f x_{g}$ is ($\left.\begin{array}{l}X X J W\end{array}\right)(f \otimes g)$ for $f: X^{*} \rightarrow Y$ and $g: W^{*}{ }^{*}$, Z. We get $\mathrm{XX}^{(0)}$ because XWW generates (XWW)*. For the series connection of $f: X^{*} \rightarrow Y$ and $g: Y^{*} \rightarrow Z$, we first define $f^{e}: X^{*} \rightarrow Y^{*}$ by components $f e X_{X} X \rightarrow \mathbb{Z}$ as $f 8=l_{I}: I \rightarrow T, f\left(f=J_{1} f: X \rightarrow Y\right.$, and $f_{1}^{1}=$ $\left(\nabla_{X^{i-1} X} X X\right)\left(f_{i-1}^{e} \mathbb{X} j_{i-1} f\right)$, where j_{i-1} is the inclusion of $\mathbb{M}^{i-1} X$ into X^{*}. Then f factors as $q_{f} O_{f}$, $h=f^{e} g$ as qo, and $f^{e} e_{i} X^{*} \rightarrow M_{g}$ as $q^{\prime} 0^{\prime}$, where $q^{*}: X^{*} \rightarrow M$. Since q^{-}is a monoid epic, there is a unique $q^{\prime \prime}: M \rightarrow M_{h}$ such that $q^{\prime} q^{\prime-}=q_{h}$. M is a submonoid of $M_{f} \mathrm{wr} \mathrm{M}_{\mathrm{g}}$, so M_{h} divides M_{f} wr M_{g}.
Further research on Krohn-Rhodes Theory is in progress. Some preliminary results use split exact
sequences to examine irreducible monoids (those for which $M \mid S x_{\phi} T$ implies either $M \mid S$ or $M \mid \mathbb{T}$) in diagonal closed categories.

References

1. Arbib, M. A., ed., Algebraic Theory of Machines, Languages, and Semigroups, Academic Press, 1968.
2. Give'on, Y., and Zalcstein, Y., "Algebraic Structures in Linear Systems Theory," Jnl. of Cptr. and Sys. Sci, 4, 346-370, 1970.
3. Goguen, J. A., "Discrete Time Machines in Closed Monoidal Categories, I," Institute for Cptr. Res. Quarterly Report, University of Chicago, 1971.
4. Goguen, J. A., "Realization is Universal," to appear in Math. Sys. Th. also ICR Quarterly Report, Univ. of Chicago, 1970.
5. Goguen, J. A., "Systems and Minimal Realization," Proc. of 1971 IEEE Confr. on Decision and Control, Miami, 1971.
6. Kalman, R. E., Falb, P., and Arbib, M., Topics in Mathematical Systems Theory, McGraw Hill, 1969.
7. Kelley, G. M., and MacLane, S., "Coherence in Closed Categories," Journal of Pure and Applied Algebra, Vol. 1, No. 1:97-140 (1971).
8. Krohn, K., and Rhodes, J., "Algebraic Theory of Machines I Prime Decomposition for Finite Semigroups and Machines," Transactions of the American Mathematical Society, 116:450-464 (1965).
9. Lallement, Gerard, "On the Prime Decomposition Theorem for Finite Monoids," Mathematical Systems Theory, Vol. 5, No. 1: 8-12 (1969).
10. MacLane, S., Category Theory for the Working Mathematician, Springer, 1972.
11. MacLane, S., and Birkhoff, G., Algebra, Macmillan, 1967.
12. Mitchell, B., Theory of Categories, Academic Press (1965).
13. Pareigis, Categories and Functors, Academic Press (1970).
14. Zeigler, B., "A Note on Series Parallel Irreducibility," Mathematical Systems Theory, Vol. 5, No. l: l-3 (2971).
