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THE MYHILL FUNCTOR, INPUT-REDUCED MACHINES, 
AND GENERALIZED KROHN-RHODES THEORY 

J. A. GOGUEN 
IBM T. J. Watson Research Center 

Yorktown Heights, New York 

Summary 

This paper reports recent progress in a program of 
extending Krohn-Rhodes theory, and its necessary 
preliminaries, to systems with structure other than 
the discrete. It is intended to provide a clear 
idea of the line of research and its motivation, 
with some idea of the methods. Further details may 
be found in future joint papers and in the forth
coming thesis of the second author. 

1. Generalizing Machine Theory 

Roughly the same results have been proved separate
ly for several different types of discrete time 
system. For other types these same results are 
unknown. For example, transition systems, trans
ducers and acceptors, with finite or arbitrary 
cardinality state and/or input sets, have engen
dered a large, and now almost classical, literature. 
'rhe same models with the additional assumption of 
linearity have been less thoroughly studied, es
pecially for such variations of linear as bilinear 
and affine, and when rings are used rather than 
fields. But many classical automaton results are 
known here, and research is actively proceeding. 
•ropological machines, in which input, state, and 
output objects are topological spaces, and the 
transition and output functions are continuous, 
have been studied very little. They are interest
ing as models of nonlinear but smooth systems. 

This paper discusses a general theory which gives 
special results for all the above cases. Many of 
these results are new. 'rl1e method is that of 
Goguen, 4 to prove all results for machines having 
any "sufficiently nice" structure. This requires 
reformulating machine theory into the language of 
abstract structure, category theory, thus treating 
the universal properties of constructions as in 
modern algebra, 11 rather than their particular de
tails. As usual, this method clarifies and ex
tends existing results, while suggesting new ones. 

Among the first nontrivial things done with a class 
of systems are to characterize the behaviors and 
seek minimal realizations. '.l'he work recently done 
by Goguen 2 for machines with "sufficiently nice" 
structure, including linear and topological, is 
summarized here in Section 3. The present paper 
treats the Myhill semigroup construction and as
pects of Krohn-Rhodes theory in the same frame
work. As with the state minimization results, 
many of the applications are new. In Section 6 
we discuss input minimization of machines. 

'l'he technical apparatus required for the general 
development is quite extensive. But fortunately, 
for expository purposes, the main ideas are ade
quately conveyed by the universal property formu
lations of results and constructions in just the 
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discrete case. This we do, except in the final 
sections, which discuss machines, behaviors, and 
semigroups in diagonal closed categories. 

2. The Language of Categories 

Category theory provides a "language of structure" 
in which to do our theory of "machines with suffi
ciently nice structure." This section gives a 
dictionary for that language in more intuitive 
English. Of course, category theory is a totally 
rigorous branch of mathematics and all terms have 
precise technical definitions. The actual proofs 
of assertions in this paper are embedded in this 
framework. But the reader can usually appreciate 
the intuitive context of our results with these 
"basic doctrines" 5 of category theory: (1) any 
mathematical structure is represented by a category, 
(2) any mathematical construction is represented 
by a functor, (3) any canonical construction is 
represented by an adjoint functor, and (4) any 
natural translation from one construction to anoth
er is represented by a natural transformation. 

Categories are denoted A, B, C, etc., and the class 
of objects of A is denoted IAI. Morphisms (or 
maps), in a category, thought of as "preserving 
the structure of objects," are indicated as arrows, 

f 
A+ B from~ to target object, and are 
composed in the order natural to diagrams, f:A + B 
and g:B + C composing to give fg:A + C. Composi
tion is assumed associative, with an identity A 
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for each object A. Application is indicated as 
usual, i.e., for~ EA, f(a) EB, and g(f(a)) = 
(fg)(a) E C, but also "categorically" as afEB and 
afgEC. The set of maps from A to B in C is de
noted C(A,B). A functor F from A to Bis indicated 
F:A + B. Speaking more technically now, F:A + B 
is left adjoint to G:B +A iff there is a natural 
isomorphism ¢:B(F(A),B) ~ A(A,G(B)) of set-valued 
functors of A,B. One writes F -I G. For 
f:F(A) + B, ¢(f) :A+ G(B) is called the adjoint 
transform of f. A subcategory B of A is 
reflective iff the inclusion functor B C A has a 
left adjoint. Technical references for-category 
theory include References 3, 10, 12, and 13. 

3. Machines and Behaviors 

A machine is M = <X,S,Y,6,A,a>, where X, S, Y are 
sets, and o:SxX + S, A:S + Y, a:l + S are func
tions, with 1 a one point set {•}. A machine 
morphism M + M~ is <a,b,c> where a:X + X~, 
b:S + S~, c:Y -• Y~ are functions such that the 
equations (b x a)o~ = ob, bA~ = AC, ab = a~ hold. 
Given a machine M, let o+:x* + S be the usual re
cursive extension of 6 to strings of inputs, using 
a as starting state, i.e., o+(A) =a and o+(wx) = 



o(o+(w),x) for x E: X, w E: x*, where x* is the 
monoid of all strings over X, A is the empty 
string, and a:l + S is identified with its image 
a(•) s S. Call M reachable iff o+ is surjec
tive. Let M be the category of all reachable 
machines with morphisms having their first (or 
input) component surjective. 

The external behavior of M, denoted E(M), is the 
composite o+A:X* + Y. In general, a behavior is 
a function f:X* + Y, and a morphism Sf behaviors , 
f + f' is a pair <a,c> where a:X + X and c:Y + Y 
such that a*f' = fc, with a*(x1 ... xn) = 
a(x1) ... a(xn), concatenation in x'*. Let B be 
the category of behaviors with morphisms having 
first component surjective. For <a,b,c> in M, 
let E(<a,b,c>) = <a,c> in B. Then E:M + B is a 
functor, called the external behavior functor. 

Theorem: There is a functor N:B + M right adjoint 
and left inverse to E. 

These conditions determine N uniquely up to state 
set isomorphism as the Nerode minimal state reali
zation construction. N being a left inverse means 
(fN)E = f, i.e., fN realizes f, for all behaviors 
f. Let FSM be the full subcategory of M with 
objects having S finite, and let FSB be the full 
subcategory of B with objects E(M) for M in FSM. 
Then E and N restricted to these categories are 
still adjoint, and this gives the classical situ
ation. More generally, any right-adjoint-left
inverse is a sort of minimal realization functor, 
and exhibits a number of useful properties: see 
Reference 2. 

Most of the above results are proved in Reference 4, 
though without having possibly infinite X and Y. 
The extension to affine and topological cases is 
discussed later. Note that to get acceptors we 
let Y = {O,l}, and to get transition systems, we 
let Y = S and A the identity. The methods of 
Reference 4 show adjointness here too. 

4. Traits and The Myhill Functor 

It is convenient to use a structure conveying 
somewhat less information than the external be
havior. For then the canonical reconstruction of 
the original data, while not in general faithful, 
exhibits a certain minimality. A trait is T = 
<X,M,Y,i,o> where X, Y are sets, Mis a monoid, 
i:X + M is injective and o:M + Y is a function, 
such that X generates M, in the sense that every 
function ~:X + M' extends to at most one monoid 
morphism h:M + M' (if we had said "exactly one," 
M would be freely generated by X, and thus iso
morphic to x*). A trait morphism T + T' is <a,g,c> 
where a:X + X' and c:Y + Y' are functions and 
g:M + M' is a monoid morphism such that ai' = ig 
and go' = oc. (Note that g determines a because 
i' is injective.) Call a trait T firm iff 
o(m1mm2) = o(m1m'm2) for all m1, m2 E: M implies 
m = m'. Let TR denote the category of firm traits 
with morphisms having surjective first component. 

Given f:X* + Y, define the Myhill congruence on 
x* as usual by W'Vfw' iff f(uwv) = f(uw'v) for all 
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u, v E: X;c., and call the quotient X* /cvf = Mf the 
Myhill monoid of f. Let qr:X* + Mf be the quo
tient, and also write [ w] f or even [ w] for qf( w). 
Let Xf = qr(X) ~ Mf, and let if:Xr ->-Mr be the 
inclusion. Define or:Mf + Y by of([w]) = f(w), 
which is easily seen to be well-defined. Call 
Tf = <Xf,Mf,Y,if,of> the Myhill trait off (one 
must check that Xf generates). Note that Tf is 
firm. 

Given <a,c>:f + f' in B, define g:Mf ->- Mf' by 
g([w]r) = [a*(w)]r', which again is easily seen 
well-defined and a monoid morphism. Now for 
[x]r E: Xr define a0 ( [x]r) = g( [xJr) = [a(x) ]f', 
and check that <a0 ,g,c> is a trait morphism 
Tr ->- Tf'. This gives rise to the Myhill functor 
My:B + TR. It can be composed with the forgetful 
functor from traits to monoids to obtain what 
should be regarded as the classical Myhill func
tor. Letting FSTR be the full subcategory of TR 
with finite monoids in the objects, it is easily 
checked that the restriction and composites 
My:FSB + FSTR and EMy:FSM + FSTR exist. 

We assume the reader sufficiently familiar with 
the importance of the Myhill monoid as a summary 
of a machine's activity not to require further 
exhortation here. (See Reference 1 for further 
details.) 

5. The Behavior-Trait Adjunction 

The map i:X + M of a trait T = <X,M,Y,i,o> de
termines a monoid morphism i:x* + M uniquely from 
the condition i = jf, where j:X + X* is the 
canonical inclusion (in fact, i(x1 ... xn4 = 
Xi ••• Xn, multiplication in M) because X is free. 
Now define B( T) = io: x·l! + Y, the behavior of T. 
Any <a,g,c>:T + T' in TR gives <a,c>:B(T) + B(T') 
in B, and thus B:TR + B is a functor. 

Theorem: My is left adjoint to B. 

But B is not a left inverse, so this is not a 
minimal realization situation in the sense that 
the machine-behavior adjunction was. However, 
merely being an adjoint entitles a functor to a 
number of benefits; for example, B preserves prod
ucts and My preserves colimits. We see in the 
next section that this adjunction is "almost" a 
minimal realization situation, and actually in
duces one. 

Clearly, we can again restrict to the finite state 
case, obtaining B:FSTR + FSB right adjoint to 
My:FSB + FSTR. The notion of trait is close to 
Krohn-Rhodes notion of the "normal form" of a 
behavior, 8 but of course our results on univer
sality are new. 

6. Input Reduced Machines 

There are situations in which one wants a minimal 
set of controls for a sequential process. For 
example, a minimal control set will optimize the 
reliability and cost of a link for remote con
trolling an industrial process or an artificial 
satellite. This section shows how to find such 



sets for discrete systems. The extension to linear 
and continuous systems is discussed later. 

A behavior f:X* ~ Y is input reduced iff for all 
u, v E: x* and x, x' E: X, f(uxv) = f(ux'v) implies 
x = x'. A machine is input reduced iff its be
havior is, and a trait is input reduced iff its 
behavior is. 

Proposition: For f E: I Bl and '.1' E: !TRI, fMyB and 
TBMy are input reduced. In fact, T ~ TBMy iff T 
is input reduced and f ~ fMyB iff f is input 
reduced. 

Proposition: '.l'he input reduced behaviors are a 
reflective subcategory IRB of B, that is, the in
clusion has a left adjoint; and IRB is equivalent 
to the (full sub) category of input-reduced traits. 
In fact, the left adjoint to the inclusion IRB ~ B 
is MyB. 

The adjunction MyB -I ~is a minimal realization 
situation, in the technical sense 5 that IRB ~ B 
is a right-adjoint-left-inverse. We can compose 
with E -\ N (Section 3) to obtain others. 

'rheorem: 'rhe functor N:IRB +Mis right-adjoint
left-inverse to EMyB:M + IRB. The input 
reduced state reduced machines are a 
(full) reflective subcategory of M; in 
fact, the left adjoint to the inclusion 
is EMyB. 

'rhis gives the input reduced state reduced reali
zations promised earlier. It might be noted that 
the minimal input set Xr may very well contain 
symbols having no effect on certain, or even on 
all states. Such inputs may be necessary for 

> • 1 II 1 k 1 II states to persist through severa c oc. puses. 
Also note that if encoding letters in X by strings 
from Xr were allowed, the problem of input mini
mality would be trivial and unrelated to the Myhill 
monoid. 

7. Categorical Krohn-Rhodes Theory 

Original interest in Krohn-Rhodes theory sprang 
from the novel decompositions it gave for be
haviors and monoids. 8 • 9 More recent work has con
cerned complexity. 1 Generalizations to linear and 
topological systems should have the same applica
tions. This section presents the major theorem of 
Krohn and Rhodes in categorical language, suggest
ing the form of the generalized theory. 

Say f:x* ->- Y divides g:W* + Z, written fig, or g 
simulates f iff there is a monoid homomorphism 
h:X* + w* and a set map b:Z + Y such that f = hgb. 
f divides g length preserving, written f!g(9,p), 
iff rig with h = a* for some a:X + W. The series 
connection of f:X* ->- Y and g:Y* + Z is the com
posite function feg, where fe(Xl ••• Xn) = 
f(x1)f(x1x2) ... f(x1 ... Xn)• The parallel 
connection of f:X* ->- Y and g:W* ->- Z is fxg: (xxw)* + 

yxz, where fxg(<x1,y1> ··· <xn,Yn>) = 

<f(x1 ... xn), g(yl ... Yn)>. The series 
parallel closure of a family of behaviors F, SP( F) , 
is the smallest family of behaviors containing F 
which is closed under series and parallel connec
tion and length preserving division. A behavior 
f is irreducible iff whenever f divides a series 
or parallel connection of two behaviors g and h, 
it divides a finite parallel connection of g with 
itself (or h with itself). 14 Let IRR(f) be the 
collection of all irreducible behaviors which di
vide a behavior f. Then one form of the Krohn
Rhodes Theorem is that f E: SP(IRR(f) UV U {U}), 
where V is a collection of delay behaviors and U 
is an identity-reset behavior. 

Let E be the category with objects sets and mor
phisms extended behaviors fe:x* + Y*. Here (XxY)* 
is the Cartesian product of x* and Y*, and (fxg)e 
is the unique morphism obtained from fe:x* + Y* 
and ge:w* + z*. Let SP be the least subcategory 
of E closed under ~roducts and containing all the 
"free" behaviors a :X* + Y*. If Fis a collection 
of extended behaviors, let SP(F) be the least sub
category of E containing SP and F and closed under 
product. Note that SP( f) = SP( {f}) contains every 
behavior which f simulates (£p). The Krohn-Rhodes 
theorem then says f E: SP(IRR(f) UV U {U}). If we 
give SP vertical morphisms as in the category of 
behaviors, or if we let a vertical morphism be 
a division relation, SP takes on a 2-category 
structure. 10 If we look at a trait <X,M,Y,i,o> as 
a morphism from X to Y, TR also has a 2-category 
structure. It seems likely that the Myhill ad
junction preserves division, irreducibility, etc., 
and is actually some kind of 2-adjunction. We 
would then get similar Krohn-Rhodes results for 
traits (and for monoids via the forgetful functor). 
This is an area which we are currently exploring. 
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8. Mathematical Methods of Generalized Machine 
Theory 

The first "basic doctrine" of Section 2 says any 
mathematical structure is represented by a cate
gory. The preceding theory concerned discrete 
structure, represented by the category Se.,t of 
sets. We now generalize from Se.,t to categories 
C representing other "suitable" structures. 

C must be "closed," or have an "internal hom 
functor." This means for each pair A,B of ob
jects in C, the set of C-morphisms from A to B 
should become an object [A,B] of C. The functor 
[,] arises most easily as a right adjoint to a 
"monoidal" functor Ill:: C x C + C, so called because 
assumed to have an "identity" IE: !CJ, isomor
phisms expressing the monoid laws, aABc:AN(B@C) + 
(Alll:B)@C, rA:A@I +A, and in the "symmetric" case 



we use also CAB:Mffi + Blll:A. These isomorphisms are 
"coherent," i.e. , any diagram of them cow.mutes. 
'l'his discussion motivates the closed symmetric 
monoidal category concept defined in Reference 3 
or 7, It can be shown that such categories have 
natural "evaluation" transforms \!AB:AN[A,B] + B; 
in the case of Set, \!AB takes <a,f> to f( a)· 

Suitable categories must also have countable co
products, the universal construction correspond
ing to countable disjoint unions in Set; and an 
appropriate generalization of the usual surjec
tive-injective set map factorizations. Examples 
include Set of course, with@ Cartesian product; 
but also the category ModR of R-modules with @ 
tensor product, for R a commutative ring with 
unit; the category Ke.Lt of Kelley (i.e., com
pactly generated Hausdorff) spaces with L5!! 

Cartesian, and most interestingly, the affine 
category A66R with objects R-modules (again for 
R commutative with unit) and with R-affine mor
phisms (i.e., R-linear plus a constant), and the 
affine tensor product A@RB = A@RB+A+B. Affine 
machines are a natural and physically significant 
generalization of linear machines; see Reference 3, 

All of Section 3 generalizes to suitable C. A 
machine in Chas X, S, Y s ICI and o,A,O morphisms 
in c' but replace 1 by I. Next define x* = Ut 
@tx, the countable coproduct of the iterated 
powers of X, and show it is the free monoid in C 
generated by X. A monoid in monoidal C is <M,µ,e> 
with Ms ICI and with µ:M@M + M, e:I +Min C, 
satisfying associativity and identity laws. A 
semigroup in C has only µ and associativity. 

By considering automata in C ("machines" without 
A) we can define o+:x* + s, and then the behavior 
E(M) = o+A:X* + Y. Morphisms of machines and be
haviors are just as in Section 3 (use epic for 
surjective) giving categories M, B, and the be
havior functor E:M + B. Again there is a functor 
N:B + M right-adjoint-left-inverse to E, giving 
Nerode minimal state realizations. The construc
tion crucially uses all the suitability assump
tions; see Reference 3 or 4. 

9. Monoids in Diagonal Closed Categories 

Generalized Krohn-Rhodes theory uses monoid theory 
in closed categories sketched here. Parts of this 
theory need more structured closed categories than 
those of Section 8. We call them diagonal, because 
their main new feature is a "diagonal" natural 
transform 'Vx:X + X@X, coherent with the closed 
symmetric monoidal structure. We again assume 
countable coproducts and reasonable factoriza
tions. For some purposes we assume I is a terminal 
object, meaning each object A has a unique morphism 
uA:A + I, and also assume some coherence for these 
morphisms. 'l'hese assumptions about I are not 
needed for just semigroup theory. Among the exam
ples of Section 8, Set, Ke.Lt, and A66R are diag
onal, but U.HR is not. 

The definitions of monoid and semigroup in a diag
onal category are exactly the same as in monoidal 
category. Monoids in Set are ordinary monoids, in 
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Ke.Lt are "continuous" monoids, and in A66R are 
generalized linear. Among the latter are the 
tensor, Grassman, and other "algebras" of modern 
mathematics (see Reference 11). We now describe 
some basic constructions for monoids in 
categories. 

If M and M' are monoids in a symmetric monoidal 
C, so is their product MDlM', with identity 

-1 
rI e@e' 

I --+ I@I + Mlll:M' and multiplication 
b µ@µ' 

(MID1') @ (MID1') + (MDlM) @ (M'DlM') + M@M', 

where b is a combination of the associative and 
cow.mutative laws a and c. 

For any object A in closed symmetric monoidal C, 
[A,A] can be made a monoid, with multiplication 

b 
the adjoint transform of ([A,A]@ [A,A])@ A+ 

V@l \! 

(AN(A,A]) @ (A,A] + A L1! (A,A] +A and identity 
crA 

the transform of Illl:A -->- A, where b is made from 
a and c, and v is evaluation. 

If Mis a monoid and A an object in diagonal C, 
then [A,M] is also a monoid, with multiplication 
and identity the adjoint transforms of the com-

d 
posites ([A,M]@ (A,M])@ A+ (AN[A,M])@(A@[A,M]) 
v@v µ u e 

+ M@M + M, and Illl:A + I + M, where d is composed 
from \7, a, c; v:Alll:[A,M] +Mis evaluation; u is 
the unique map; and µ, e are from M. The proof 
is quite long, but straightforward. 

If M is a monoid in monoidal C, a right M-action 
is an object A and an a:ADlM +A satisfying asso
ciativity and identity laws. Defining morphisms 
of (right) M-actions in the obvious way, we get a 
category Ac.,tM of them. Examples: an X-automaton 
with state object S is an x*-action on S with a 
"point" o:I + S; M itself is an M-action with 
µ :!@! + M; a right ideal of M is a manic U + M in 
Ac.,tM; I is an M-act with IDlM u I; a left ~ or 
reset of M is a right ideal of the form g: I + M 
in ActM. Left action is defined dually, and a 
bi-action invol~e of each. If C is closed 
and As ICI, [M,A] can be given a left M-action 
structure a using evaluation; it is in fact the 
cofree M-action generated by A. It is possible 
to go on and develop ideal theory. For exa~ple, 
U is a right simple ideal of M iff it contains no 
proper right subideal, and is r~ght cyclic iff 
the image of some I* + M in Act . 

If Mand N are monoids in diagonal C, ¢:1.jj/lli + N 
is a connecting morphism iff it is a left 
M-action satisfying also identity and distribu
tive conditions for N, the latter using VM. The 
semidirect product NID:qiM is NDlM with multiplication 

d Nlll:¢@1 
the composite (Nm.I) @ (NDJM) + (N@(M@N) )@(MID1) + 

llN'ZllM 
(Nlll:N) Ill: (Mlll:M) + Nlll:M, where d uses 'VM, a, and 
with identity as in the monoid product. It is 

_, 



interesting, though tedious, to verify N@¢M really 
is a monoid. Similarly, it can be verified that 

CJ, 

the left M-action Mlll:[M,N] + [M,N] is a connecting 
homomorphism; the resulting semidirect product 
[M,N]l&a.M is called the wreath product of Mand N, 
denoted N wr M. 

Division of monoids is defined as usual, MIN iff 
M is a quotient of a submonoid of N. When the 
category of monoids has pullbacks, division is a 
transitive relation, since the pullback of N'>-> 
N~P', coming from MJN and NJP gives MIP. There
fore the monoids in C are a category with divi
sions as morphisms. 

10. The M;yhill Functor and Krohn-Rhodes Theory in 
Diagonal Closed Categories 

Several aspects of the Myhill monoid construction, 
traits, and Krohn-Rhodes theory carry over to 
diagonal closed categories. For the Myhill con
struction, we take a behavior f:X* + Y in diagonal 
C, and form rB:x* + [X*llIX*,Y], the adjoint trans
form of a(cµ@x*)µ, where µ is the natural multipli
cation on x* corresponding to concatenation. The 
object [X*llIX*,Y] is an X*-biaction, and fB is an 
X*-biaction homomorphism. If we factor fB as fB = 
qrm, where m is manic and qi' is a coequalizer, then 
the domain Mr of m is also an x*-biaction. Further
more, (x*@qr)(qrlil:Mr) = (qr@X*)(Mr@qr) is a pushout, 
giving a monoid multiplication µr:Mrlil:Mr +Mr with 
qf a monoid epimorphism. f factors as qfof, where 
or is constructed from m, r, eM, and evaluation, 
and if f = hk is any other factorization of f 
through a monoid epimorphism h:X* + N, there is a 
unique mono id epimorphism h' :N + Mr such that 
hh' = qf. 'fiiis minimality condition for Mr gives 
a Myhill adjunction with 'rr = <Xr,Mr,Y ,ir,o1» the 
trait of f, where Xr is the domain of ir in the 
factorization J1qf = qif. 'rhen Xr generates Mr 
since qf is epic, and Tr is firm in the sense that 
it has an isom0rphic Myhill quotient. 

If fig, i.e., f = hgb, then MrJMg. For factoring 
g as qgog, we have f = hqg•ogb· Then factor 
hqg:X* -• Mg through a monoid M as hqg = qo. Since 
hand qg are homomorphisms, M" [X*@x*,MgJ, so o 
is a monoid monomorphism. Since f = q(oogb), min
imality of Mr gives an epic q':M +Mr such that 
qf = ~q' 'rhus Mf is a subquotient of Mg, via o 
and q . 

As in Su, the ~ill monoid of fxg divides Mrlil:Mg, 
where fXg i~JW) ( flil:g) for f:X* -• Y and g:W* + 

z. We get jx@Jw because X@W generates (X0.W)*. For 
the series connection of f:X* + Y and g:Y* + Z, we 
first define fe:x* + y* by components f~:@iX+@iY 
as f(j = lr:I +I, fr = J1f:X + Y, and fi = 
(V. 1 @ X)(f~ 1 @ j. 1f), where ji-l is the in-

0.i- x ].- ].-
cl us ion of @i-lx into x*. Then f factors as qfOf, 
h =reg as qo, and req:X* +Mg as q'o', where 
q':X* + M. Since q' is a monoid epic, there is a 
unique q" :M ->- Mh such that q' q" = qh. M is a 
submonoid of Mr wr Mg, so Mh divides Mr wr Mg. 

F'urther research on Krohn-Rhodes Theory is in 
progress. Some preliminary results use split exact 

sequences to examine irreducible monoids (those 
for which Mlsx¢T implies either MJs or MIT) in 
diagonal closed categories. 
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