
Computational composition strategies in
audiovisual laptop performance

Alo Allik

The University of Hull

This thesis is submitted for the degree of Doctor of Philosophy to

accompany a portfolio of audiovisual performances and the software

systems used in the creation of these works

PhD supervisors: Dr. Robert Mackay and Dr. Joseph Anderson

This project was supported by the University of Hull 80th Anniversary

Scholarship.

April 2014

Acknowledgements

I would like to take this opportunity to thank everyone who has supported

this project throughout its duration. I am very grateful to my supervisor Rob

Mackay who not only has been a very supportive and knowledgeable mentor,

but also an amazingly accommodating friend during my time at the Creative

Music Technology program at the University Hull Scarborough campus. I am

also indebted to my first supervisor Jo Anderson for encouragement, lengthy

conversations and in-depth knowledge, particularly in Ambisonic spatializa-

tion, allowing me to test the early versions of the Ambisonic Toolkit.

This project would not have been possible without the University of Hull

funding this project over the course of 3 years and providing means to attend

the ISEA symposium in Istanbul. I am grateful for the financial support from

the School of Arts and New Media for attending conferences - NIME in Oslo,

IFIMPAC in Leeds, and ICMC in Ljubljana - which has provided opportunities

to present aspects of this research in the UK and abroad. These experiences

proved to be instrumental in shaping the final outcome of this project.

I owe a great deal to the dedication and brilliance of the performers and

collaborators Andrea Young, Satoshi Shiraishi, and Yota Morimoto, the latter

two also for sowing the seeds for my interest and passion for audiovisual per-

formances while working together on ibitsu.

I am also very grateful for the support of many people at the School of Arts

and New Media. I would particularly like to mention Helen Mitchell and Andrew

King for kindly offering me the opportunity to teach, Maria X for providing

valuable study advice, Ellie Maughan for financial advice and support, fellow

doctorate students Matthew Barnard and Nick Del Nero for good company

while organizing and performing at concerts in Scarborough and beyond, and

the technical support from Chris Jones, Alan Young and Neill Walhurst.

I would also like to thank the IT department, particularly Philip Booth, for

their last minute emergency solution for the network performance between

i

ACKNOWLEDGEMENTS ii

California and Scarborough during frantic preparations for my final perfor-

mance.

This project would have been unthinkable without the amazing work by

countless participants and contributors in the SuperCollider community.

Finally I would like to thank my son Thorfinn Laagus and wife Bailey Grey for

their support and patience. I would particularly like to mention my gratitude

to Thorfinn for providing invaluable help coding the systems and converting

drum rhythm patterns from box notation into SuperCollider arrays.

Abstract

We live in a cultural environment in which computer based musical perfor-

mances have become ubiquitous. Particularly the use of laptops as instru-

ments is a thriving practice in many genres and subcultures. The opportu-

nity to command the most intricate level of control on the smallest of time

scales in music composition and computer graphics introduces a number of

complexities and dilemmas for the performer working with algorithms. Writ-

ing computer code to create audiovisuals offers abundant opportunities for

discovering new ways of expression in live performance while simultaneously

introducing challenges and presenting the user with difficult choices. There

are a host of computational strategies that can be employed in live situations

to assist the performer, including artificially intelligent performance agents

who operate according to predefined algorithmic rules. This thesis describes

four software systems for real time multimodal improvisation and composition

in which a number of computational strategies for audiovisual laptop perfor-

mances is explored and which were used in creation of a portfolio of accom-

panying audiovisual compositions.

iii

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

1.1 Project definition . 1

1.2 The portfolio of audiovisual works . 2

1.3 Methodology . 5

1.4 Primary contributions . 7

1.5 Outline . 8

2 Computational strategies

for audiovisual performance 9

2.1 Introduction . 9

2.2 Background . 9

2.3 Basic architecture . 13

2.4 Compositional strategies . 15

2.5 Virtual acoustic spaces . 19

3 Interactive composition: f(x) 22

3.1 Introduction . 22

3.2 Cellular automata . 23

3.3 Continuous automata . 27

3.4 Structure of the performance environment 30

3.5 Audiovisual organization and mapping 32

3.6 Discussion . 35

4 Towards autonomous systems: mikro 38

4.1 Introduction . 38

4.2 The conceptual framework . 40

iv

CONTENTS v

4.3 Real time audio analysis . 42

4.4 Automating the composition process 45

4.5 Interactive computer graphics . 50

4.6 Discussion . 55

5 Live coding: sparsematrix 59

5.1 Introduction . 59

5.2 Sparse matrices of musical structure 60

5.3 Outer totalistic automata for computer graphics 63

5.4 Exploring the audiovisual space through live coding 66

5.5 Discussion . 69

6 Gene expression synthesis 71

6.1 Introduction . 71

6.2 Sound synthesis with evolutionary algorithms 72

6.3 Components of GES . 74

6.4 The selection process . 78

6.5 Genetic operators . 80

6.6 Evolving unit generator graphs . 84

6.7 Defining the fitness function . 85

6.8 Discussion . 87

7 Conclusions 92

A Public performances and presentations 100

B Resources included on digital media 103

B.1 Audiovisual recordings . 103

B.2 Audio recording . 103

C Online resources 104

C.1 Project websites . 104

C.2 Live recordings of performances . 104

C.3 Online recordings . 105

C.4 Source code repositories . 106

D Practice-based Research Degree Guidelines 107

D.1 Practice based Research Degree - PhD/MPhil by Composition . . . 107

List of Figures

2.1 Audiovisual performance by ibitsu at STEIM, Amsterdam in 2006. 11

2.2 Basic architecture of an audiovisual performance system. 13

2.3 The three phases of Ambisonic spatialization 20

3.1 2-dimensional automata neighborhoods. 25

3.2 Rule 90 transition scheme. 26

3.3 Cellular automata classes. 26

3.4 Illustration of continuous automata calculation procedure. 28

3.5 Continuous automata examples employing the same constant ad-

dition parameter (0.1), but with different initial conditions. 29

3.6 Weighted continuous automata examples employing different con-

stant addition parameters and different initial conditions. 30

3.7 Expanding the automata world to three dimensions. 31

3.8 Simple mapping of 2-dimensional continuous automata values to

drawing parameters. 34

3.9 Performing f(x) at the ShinyToys festival in Germany, November

2011. 36

4.1 Analysis visualizer in the mikro system, showing the recorded au-

dio input waveform (top), amplitude tracking data with onset de-

tection (middle), and MFCC data (bottom). 44

4.2 A graphical representation of a two-dimensional SOM of MFCC

data from a performance with e-CLAMBONE. 52

4.3 Overlappingmikro graphics pattern functions, demonstrating the

interaction between automata and SOM worlds. 53

4.4 3D graphics based on the boids algorithm. 55

4.5 The custom-built electronic instrument eCLAMBONE by Satoshi

Shiraishi. 56

vi

LIST OF FIGURES vii

4.6 Performing mikro:strukt with Satoshi Shiraishi at NIME 2011 in

Oslo, Norway. 57

5.1 Application of sparsity rules to a rhythm pattern shown in box

notation. 61

5.2 Cyclic representation of sparsity rules 62

5.3 sparsematrix graphics with the code mapped onto the edges of

the world. 66

5.4 Screenshot of the top section of a live coding session file. 67

5.5 Live coding with Yota Morimoto at the SuperCollider symposium

in London, April 2012. 69

6.1 Encoding a phase modulation instrument as a single-gene se-

quence . 75

6.2 Decoded expression tree of phase modulation as a graph of sine

oscillators. Sine oscillators are designated by captial O and ter-

minals by lower case letters . 76

6.3 Expression tree of a multigenic chromosome with multiplication

function serving as a linker. 77

6.4 Single-point mutation. A terminal in (a) changes into a sine oscil-

lator function in (b) . 81

6.5 Transposition of a codon sequence . 82

6.6 Recombination . 83

6.7 The cyclic gene expression programming algorithm. 84

6.8 Maximum and mean scores of a gene expression synthesis ex-

periment with the fitness scores on the x-axis plotted against the

generation number . 88

1 | Introduction

"The effective complexity of the universe is the length of a concise descrip-

tion of its regularities. Like the algorithmic information content, the effective

complexity receives only a small contribution from the fundamental laws. The

rest comes from the numerous regularities resulting from "frozen accidents."

Those are chance events of which the particular outcomes have a multiplicity

of long-term consequences, all related by their common ancestry."

from The Quark And The Jaguar by Murray Gell-Mann

1.1 Project definition

The objective of this research project is to develop a multimodal autonomous

improvisation system that will be able to interact in real time with human mu-

sicians. The general problem that laptop artists - who are very often program-

mers, composers and performers in one person - encounter is how to specify

levels of granularity for musical and visual parameter control. The general

problem that this project is striving to solve is how to define parameter control

on multiple time scales and levels of compositional hierarchy. The motivations

behind this project are complex and manifold, ranging from technological to

aesthetic in nature. For one, the current state and the potential of open source

software and programming tools offer a host of enticing possibilities for artists

working with interactive digital media. The proliferation of interactive digital

art developed with these free and open technologies might be implying shift-

ing social attitudes towards the role of technology and their impact on society

and culture. The open source aesthetic in itself has come to signify a very

different social attitude in the context of the intellectual property rules of the

dominant corporate socioeconomic model. In the electronic music domain it

may also be considered as signaling an adjustment from the academic tradi-

tion of electroacoustic tape music towards real time and interactive models of

musical composition.

1

CHAPTER 1. INTRODUCTION 2

The software tools themselves impact the results of the compositional pro-

cess to transform from fixed and sequential towards flexible and concurrent.

For example, the inherently real time architecture of the SuperCollider pro-

gramming environment encourages a different method and aesthetic of com-

position compared to its non-real-time precursors. The idea of an electronic

composition, formerly understood as a fixed, static recording achieved by de-

terministic accumulation of sequences of non-realtime operations, acquires a

different meaning; the decision-making of the composer becomes inherently

an interactive real time process and the result ceases to be fixed. Instead,

the focus of technical and aesthetic interest shifts to the process of immedi-

ate interaction more characteristic of the tradition of improvisation than com-

position in the classical sense. Since the architecture of the technology is

acknowledged to be an inevitable influence on the most basic level in the cre-

ative process and the aesthetics of the results, evaluation of the nature and

purpose of technology used becomes an essential part of the project.

During this practice-based project, a portfolio of audiovisual works has

been produced, evidenced by performances, presentations, the computer code

written to create the content and various recordings, in both video and audio

formats.

1.2 The portfolio of audiovisual works

The portfolio of creative works that this written commentary serves to support

essentially consists of 4 computational performance frameworks:

• f(x) is an interactive performance environment that provides a real time in-

terface to controlling emergent behavior in generative computational sys-

tems and facilitates a performance as an exploration of mapping computa-

tional concepts to sonic and visual parameters. The software and hardware

used to implement and deploy f(x): SuperCollider1 for audio synthesis and

system management, Objective-C, Liblo C library for Open Sound Control

(OSC) communication protocol and OpenGL for the precompiled graphics

application, Korg NanoKONTROL MIDI interface and TouchOSC application

on iPhone for external control. There are 6 recordings included on the ac-

companying medium:

1http://supercollider.sourceforge.net/

http://supercollider.sourceforge.net/

CHAPTER 1. INTRODUCTION 3

♢ zone 00

♢ zone 01

♢ zone 02

♢ zone 03

♢ zone 04

♢ zone 05

• mikro embodies an investigation into the extent to which the compositional

process can be automated using techniques from machine learning, com-

plex systems and artificial creativity. The system has been implemented

in three different versions as the search for the suitable graphics envi-

ronment saw the progression from Objective-C to raw C++ to the Cinder2

C++ graphics library. The audio and all management functions were imple-

mented in SuperCollider. There are 4 recordings included:

♢ mikro:strukt - eCLAMBONE performance by Satoshi Shiraishi with ma-

chine improvisation

♢ mikro:skism - eCLAMBONE performance by Satoshi Shiraishi with ma-

chine improvisation

♢ bocca/mikro - voice performance by Andrea Young with machine impro-

visation

♢ mikro:geen - solo live coding performance using the gene expression

programming synthesis definition library

• sparsematrix explores the idea of interfacing with a composition system of

predefined event loops of musical structure by writing computer code live

on stage, a practice known as live coding. Two slightly different systems

have been developed to achieve this. The first incorporates sparsematrix

functionality into a collaborative performance with Japanese composer and

performer Yota Morimoto. The graphics functions are merged into Yota’s

graphics application which uses the OpenFrameworks3 C++ libraries. The

audio systems exchange information about event onsets and tempo using

OSC. The second system is intended for solo live coding performances and

2http://libcinder.org/
3http://www.openframeworks.cc/

http://libcinder.org/
http://www.openframeworks.cc/

CHAPTER 1. INTRODUCTION 4

is implemented in SuperCollider and Cinder. There are two recordings of

sparsematrix:

♢ sparsematrix:2D

♢ sparsematrix:3D

• lambda enables all the above concepts to be combined into an integrated

performance environment and used in combination with each other. The en-

vironment was deployed for the final concert at the University of Hull Scar-

borough Campus in December 2012 and consisted of four sections which

were presented in a continuous performance of approximately 30 minutes:

♢ λ:A (a network performance with the mikro system with singer Andrea

Young using jacktrip software for sending live audio over the Internet

between Scarborough and Calarts in Valencia, California, USA)

♢ λ:T (live coding algorhythmic structures as an interface to audiovisual

performance)

♢ λ:G (collaborative performance with the mikro system and Satoshi Shi-

raishi on eCLAMBONE)

♢ λ:C (real time control of emergent audiovisual processes)

During the project, all the described performance systems were put to prac-

tice at a number of concerts and presented to audiences at festivals, confer-

ences and symposia, both within the UK and internationally. A full list of all

these is included in the Appendix A.

The practice-based research degree guidelines (included in Appendix D)

define a programme of research in which musical composition forms the basis

of the work in the form of a "substantial folio of compositions". However, it is

not defined what exactly constitutes a musical composition. Only the total du-

ration - in this case 90 minutes - has been specified by the guidelines, which

leaves the rest open to interpretation. Traditionally musical score has been

considered as the physical artifact to represent a musical composition, which

usually implies a defined duration. This is even more the case in the electroa-

coustic context where the audio file often replaces the score. However, the

approach taken in this project cultivates a rather more complex situation and

does not fit into the narrow confines of these guidelines. This is partly due to

the nature of digital technology and its state of evolvement which inevitably

CHAPTER 1. INTRODUCTION 5

has had a major impact on the nature and function of musical composition,

but also due to the cultural context and artistic premises that have shaped

the development of the work presented in this thesis. The duration as a quan-

titative measure of the compositions is less relevant in this context as any of

the 4 environments can easily fulfill this requirement in a single performance

or recording session. Rather, the emphasis is on the relevance of computa-

tional concepts to the current artistic and social environment that are actively

explored in each performance in an improvisatory setting. There are a few

physical artifacts that, in combination with the video recordings, help to repre-

sent the compositional processes and the resultant multimodal environments:

source code files, precompiled graphics applications, audio files, web pages,

articles, descriptions in different event brochures. Due to the complex na-

ture of these systems, the accurate documentation is nearly impossible as

there is a strive towards creating fully immersive environments in which the

graphics projection provides the only light source, thus making video recording

extremely challenging, in combination with multichannel Ambisonic audio pro-

jection. The video recordings included with this written account may go some

way to representing the intentions and ideas expressed in the performances,

but in no way can these fully convey the immersive first-hand experience of

being present in the audience or on stage as a performer.

1.3 Methodology

This project has been carried out using two major methodological frameworks

from arts and sciences, both involving creation of artifacts from different, mu-

tually augmenting perspectives:

• Practice-based research method is used when some of the resulting knowl-

edge is embodied in an artifact. It involves an original investigation to

gain knowledge partly by means of practice and the outcomes of that prac-

tice [16]. The portfolio of original audiovisual works constitutes a collection

of artifacts in the form of digital music and computer graphics which have

been deployed at performances, presentations and exhibitions. While the

significance and context of these works are described in this thesis, a full

understanding can only be obtained with direct reference to the software

systems used in creation of these works and the performances and video

CHAPTER 1. INTRODUCTION 6

recordings themselves. Practice-based research method emphasizes the

aesthetic, cultural, artistic and social aspects of the project.

• Design science research method is commonly used in information sciences

and historically grew out of the necessity to distinguish the scientific study

of the artificial from that of the natural using the scientific method. It is

essentially a paradigm for problem-solving which guides the creation of

innovative information systems artifacts. It addresses the twofold nature

of design science as both a process and a product [44]. The principles of

design science have been followed during the design and implementation

of distributed software systems that enable the creation of the audiovisual

environments as cultural artifacts. The design science method provides the

technical framework and methodology for the project.

It was necessary to bring these two methods together considering the inter-

disciplinary nature of the project which combines research objects from both

artistic and scientific disciplines. The methods have been thoroughly inte-

grated and therefore it is not necessarily possible or advisable to draw any

boundaries, but there are general guiding principles that outline the two ap-

proaches. The design science method guides the building of the information

systems from the software engineering perspective, while essential high-level

design features of these systems are informed by practice-based artistic re-

quirements, including knowledge representation from the domains of music

composition and visual arts, human-machine interface development from per-

formance perspective, considerations for audience experience of immersive

multimedia environments, real time signal processing and statistical analysis.

Design evaluation assists in determining the utility, quality and effectiveness

of software systems. There are five primary methodological categories sug-

gested by Hevner et al: observational, analytical, experimental, testing, and

descriptive. Observational and descriptive evaluations in this thesis are in-

cluded in the discussion of each performance environment in turn, while a

general analytical evaluation follows in the conclusions. Practice-based eval-

uation methodology, on the other hand, places the research and design out-

comes in the wider scholarly and cultural context.

CHAPTER 1. INTRODUCTION 7

1.4 Primary contributions

The two major contributions of this project are:

• A collection of audiovisual artifacts in the shape of public performances,

presentations and recordings.

• A distributed software framework facilitating improvised audiovisual collab-

orative performances.

The major contributions can be broken down into a number of components

which are categorized according to the general dual nature of the method-

ology into practice-based (or compositional) and design research based (or

technical). Contributions to the methods and knowledge base of the interdis-

ciplinary field of computer music performance and composition include:

• A method of establishing emergent complex computational behavior as an

interface for improvised performances.

• Autonomous and interactive algorithmic composition methods based on

statistical analysis of spectral dynamics that adopt spectral dynamics and

sound field composition with the Ambisonic Toolkit as significant and pri-

mary musical parameters in composition.

• Gene Expression Synthesis (GES) as a novel method for sound synthesis.

The technical contributions are predominantly in the shape of software sys-

tems and algorithms:

• 4 distributed open source software systems for real-time audiovisual com-

position publicly available as source code repositories on Github4.

• A software framework for Gene Expression Synthesis for evolving SuperCol-

lider unit generator graph functions for sound synthesis.

• A real-time modular music analysis system which utilizes machine listen-

ing algorithms to analyze a musical performance with an emphasis on the

spectral dynamics of the input audio, including a musical analysis database

and the algorithms designed to store, retrieve and manage musical data.

4https://github.com/darkjazz

https://github.com/darkjazz

CHAPTER 1. INTRODUCTION 8

• An artificially intelligent autonomous music composition system which can

be subjected to supervised training using the musical analysis database.

• Interactive OpenGL computer graphics systems based on cellular automata,

self-organizing maps and swarming algorithms.

1.5 Outline

The structure of this written commentary follows from the contents of the port-

folio. Following this introductory chapter, in Chapter 2 the project is placed into

a wider context of scientific and artistic inquiry, introducing the background,

motivations and main topics of the thesis. Chapter 3 discusses the compu-

tational and artistic principles behind f(x) - a performance system based on

three-dimensional world of cellular automata which is controlled during live

performances by customizing proprietary external hardware controllers to suit

the compositional and performative needs of the environment. Chapter 4

introduces the basic principles and methods used in developing the mikro

autonomous performance environment which is developed to analyze a live

musical performance by a human performer and to generate an audiovisual

response using machine listening and learning methods. Chapter 5 explores

the background and techniques used in sparsematrix, a live coding environ-

ment based on the extraction of the most essential structural components of

traditional rhythm patterns and using these as basic building blocks for sponta-

neous composition of rhythmic loops. Another approach to reactive computer

graphics is discussed. Chapter 6 discusses a novel synthesis paradigm - Gene

Expression Synthesis (GES) - based on evolutionary programming principles

known as gene expression programming to evolve SuperCollider unit genera-

tor graph functions. In Chapter ?? a general discussion and conclusions of this

thesis are presented.

2 | Computational strategies

for audiovisual performance

This chapter introduces the motivations for and basic principles and ar-

chitecture of audiovisual performance systems which seek to explore

emergent musical forms in immersive interactive multimodal environ-

ments.

2.1 Introduction

The advances in computing speed and power are constantly shifting the bound-

aries of what is possible to achieve with sound synthesis, algorithmic compo-

sition and performance interfaces in the context of real time interactive music

systems. Arguably this is the main factor behind the proliferation of real time

information systems used in musical performances while the use of interactive

computer graphics in live electronic music has become more of a prominent

feature. Artists and musicians are constantly adapting new software tools and

adopting scientific methods into their creative workflows which in turn inform,

guide and influence their practices, the extent of which often unbeknown to

the practitioners themselves. This project explores different computational

strategies to musical composition in the real time environment, utilizing con-

cepts and methods from different scientific disciplines, including mathematics,

complexity science, artificial intelligence, machine learning, and evolutionary

computation among others. The multimodal environments described in this

thesis have been developed in order to investigate different computational

strategies and algorithmic systems in improvised audiovisual performances.

2.2 Background

Interactively improvising computer music systems are by no means a novel

idea. A number of systems have been created since personal computers have

9

CHAPTER 2. COMPUTATIONAL STRATEGIES 10

become fast enough to handle real time analysis and synthesis, and purpose-

built software packages and programming tools have become available for

composers and computer music researchers. Beginning with the earliest MIDI-

based systems, most notably George Lewis’ Voyager [50] and Robert Rowe’s

Cypher [76], there has been a steady accumulation of algorithms for the myr-

iad of tasks necessary for real time music analysis and composition. Currently

the thriving areas of interactive intelligent music systems, autonomous musi-

cal agents and machine listening algorithms are attracting a steadily increas-

ing body of researchers across the world, which means there are a variety of

ongoing projects exploring the different aspects of interactive machine musi-

cianship. In the context of the current project, the previous work of a number

of researchers, most notably the autonomous agent based systems developed

by Nicholas Collins [21], is invaluable. Since this project explores the notion

of improvisation in the context of computer-mediated performance and the

strategies for algorithmic creativity, previous accounts of computer-mediated

improvisation [19] and machine learning techniques in similar settings [22]

have in many ways helped inform the methodology implemented in the sys-

tems described here. The concept of expanding the interactive musical foun-

dation into a multimodal presentation has been around just as long. Many

computer music systems have been adapted for multimedia purposes, one of

the earliest and most notable being the HARP system by Antonio Camurri and

his colleagues [15].

The interest in interactive multimodal performance environments has nat-

urally evolved from my involvement in a number of previous musical endeav-

ors. There has been a gradual transformation in my personal practice from

electroacoustic composition to live performance while trying to reconcile divi-

sions between different musical traditions, specifically the tradition of art mu-

sic (electroacoustic, Western classical music) and popular musics (jazz, impro-

visation, different forms of electronic dance music). The elevation of Western

classical above any other kind of music, for example typified by the attitude

towards jazz in Philosophy of Modern Music [1], has served to artificially and

unnecessarily isolate musical traditions and practices. A more recent illus-

trative example of this division was the exchange of critique between Karl-

heinz Stockhausen and electronic music producers Aphex Twin, Plastikman,

Scanner, and Daniel Pemberton, known as Stockhausen vs the "Technocrats",

CHAPTER 2. COMPUTATIONAL STRATEGIES 11

which first appeared in 1995 in the Wire magazine [24]. Similar kinds of at-

titudes have prevailed for long periods and to a certain extent unfortunately

continue. One of the arguments often voiced seems to stem from what can

perhaps be described in the context of listening modes, implying a division

between an intellectual and impulsive activity. The analytic or allocentric lis-

tening mode [81] is considered a better, higher form of music making, but this

division from autocentric - a mode centered in emotions - is artificial and the

mistake is to cast the musical process in absolutes.

Figure 2.1: Audiovisual performance by ibitsu at STEIM, Amsterdam in 2006.

The main musical inspiration behind the multimodal environments discussed

in this thesis comes from a few sources and is directly related to personal ex-

periences and education. My preceding involvement in the world of electroa-

coustic composition and computer music has provided a foundation for a sys-

tematic approach to algorithmic composition and sound synthesis. Studying

with composers Richard Karpen, Juan Pampin and Bret Battey at the Univer-

sity of Washington in Seattle provided an opportunity to learn the fundamental

aspects of computer music and electroacoustic composition particularly the

practices and traditions of computer music in the United States. The main

influences that have endured from that period include appreciation for the

CHAPTER 2. COMPUTATIONAL STRATEGIES 12

contributions of most notably Jean Claude Risset, John Chowning, Paul Lan-

sky to name just a few, and the emergence of SuperCollider as a preferred

environment in which to research, compose and perform music.

The gradual shift towards live performance was primarily inspired by the

fact that real time processing is the main strength of the SuperCollider envi-

ronment, which encourages the user to adopt a more interactive strategy to

composition, compared to the previous generation of programming tools such

as Csound or Common Lisp Music in which rendering an audio file to disk was

still the prevailing method. This coincided with my active involvement with the

Share digital arts community1 in New York and various projects at the Institute

of Sonology in the Netherlands, both of which in their own way emphasized

the live aspect of electronic music and audiovisual interactive art. Perfor-

mances as a member of multimedia collective ibitsu shaped in many ways the

approach of building up sonic material from a single acoustic source by pro-

cessing the instrumental input in different ways and then sampling the pro-

cessed output during a performance. These samples are then used to develop

the sonic material of the performance in cycles of re-recording and replaying,

while the visual content is entirely derived in an analogous way by captur-

ing and processing the live video feed which becomes a continuous feedback

cycle. Figure 2.1 shows a still from a performance recorded at STEIM in Ams-

terdam with Satoshi Shiraishi performing on e-CLAMBONE and Yota Morimoto

in charge of live visuals.

Liveness in electronic and computer music has been an ever-present topic

of discussion over the course of a musical career which includes electroacous-

tic and computer music composition, producing and DJ-ing electronic dance

music, free improvisation in traditional jazz settings as well as more exploratory

electronic environments, and audiovisual laptop performances and installa-

tions among others. Since computers enable intricate control over different

levels and time scales of composition, the number of musical parameters to

be controlled in a real time situation can become unmanageable unless some

sort of a strategy is adopted for parameter grouping or delegation of control to

algorithmic agents. Before discussing the particular strategies chosen in this

project, the basic architecture of audiovisual performance systems should be

described.
1http://share.dj

http://share.dj

CHAPTER 2. COMPUTATIONAL STRATEGIES 13

2.3 Basic architecture

The basic architecture of the systems discussed in this thesis and thereby the

nature of the audiovisual performances these systems facilitate derives from

the way the programming environments used in this project function. The Su-

perCollider programming environment [55] provides the foundation for all the

systems built during this project. The architecture of this environment is the

result of evolution of music programming languages beginning with the Music

I language developed by Max Mathews in late 1950s [54] and represents a

particular strategy towards encapsulating digital signal processing and higher

level musical concepts. Naturally there are many alternative ways to represent

different levels of signal processing, synthesis and composition. There are two

main factors that have shaped the development of audiovisual performance

environments described in this account. First is the modular structure caused

by the physical separation of different components. The SuperCollider envi-

ronment consists of two applications: the audio server and the programming

language, which in turn includes the language interpreter and the interpreter

as a client to the server. The communication between server and client hap-

pens through the Open Sound Control (OSC) protocol for exchanging musical

information over a TCP or UDP network. This architecture enables the server

and client to be used separately although normally they still reside on the

same physical machine.

Figure 2.2: Basic architecture of an audiovisual performance system.

CHAPTER 2. COMPUTATIONAL STRATEGIES 14

The second factor is the way in which audio synthesis and signal process-

ing is represented and calculated on the audio server. The Gene Expression

Synthesis (GES) method introduced in Chapter 6 explores the language level

representation of signal processing unit generators. It is an evolutionary pro-

gramming paradigm which evolves candidate unit generator graph solutions

in 4 stages: first the unit generators and variables are encoded as linear chro-

mosomes, then decoded into graph structures as objects, third step involves

converting the graph structures into text strings which are then interpreted

by the SuperCollider language interpreter and then sent to the server for

further analysis. In a similar way to Trigger Feedback Networks (TFN) [3],

the GES method explores the inherent structure of the SuperCollider environ-

ment simultaneously to implementing a more general genetic programming

paradigm. TFN, for example, make use of the routing system, feedback and

the way triggers function in real time on the SuperCollider server while GES

relies on the structural idiosyncrasies of SuperCollider UGen graphs. Neither

system would exist in their current shape without the specific structural fea-

tures of the environment and thereby are both good examples of how the

structure and idiosyncrasies of a software tool shape computational and aes-

thetic choices of the user. In a very similar manner, any user of Max/MSP,

ProTools or Ableton Live, for example, are confined to the particular interfaces

and musical concepts that the creators of the respective software tools have

chosen to implement.

The third factor for the distributed architecture is the lack of efficient graph-

ics algorithms available to use in an integrated way in the SuperCollider envi-

ronment. Open Graphics Library (OGL) has been arguably the fastest and most

advanced graphics tool freely available for many years and is widely used as

the foundation for a number of applications ranging from scientific data visu-

alization to 3D animation in the games industry. Despite there being plenty

of alternatives for developing real time rendering applications for computer

graphics (e.g. Processing, GEM, Jitter, Quartz Composer), none offer the same

level of flexibility, computational efficiency and control as OGL.

The modular structure utilizing network technologies enables deployment

of the performance environment on physically separate computers. This en-

ables implementing computationally more expensive strategies and algorithms

for performance and thus higher complexity. Another feature that emerges

CHAPTER 2. COMPUTATIONAL STRATEGIES 15

from the distributed nature is the non-linear way of mappings between the

audio and the visuals as the user is encouraged to consider the modalities as

independent from each other due to the physical separation. An alternative

avenue for exploration is deploying the system distributed between distant

geographical locations for network performances during which participants

send musical and graphics control data to remote performance spaces over

the Internet.

2.4 Compositional strategies

In the increasingly inter-disciplinary and technology driven world of musical

performance, computational strategies for composition and machine interac-

tion constitute an essential ingredient in artistic exploration as artists and

composers adapt and incorporate computational methods together with tech-

nological innovations into their creative workflows. This thesis explores a num-

ber of such strategies in the context of live performance with laptop comput-

ers and explores the practice as a form of virtual reality generation. Musical

composition is considered in the broadest context possible of sonic art where

a composer-performer acts more in the frame of Trevor Wishart’s sonic de-

signer [92], than the archaic and increasingly redundant notion of notatability

of a small subset of musical parameters. In this context the traditional divi-

sion between composers and performers is no longer clearly defined. Musical

composition forms the fundamental corner stone of immersive audiovisual en-

vironments the performances described in this thesis produce.

The role of the composer/performer or an artist-programmer, to borrow a

term from Alex McLean [58], using this architecture to create music and graph-

ics by creating, controlling and modifying computer algorithms during a per-

formance is distinct from the traditional paradigm of composer and performer

as separate entities. An artist-programmer operating in the realm of these

audiovisual systems explores the multi-layered parameter space through al-

gorithms in a manner more akin to an improviser than a traditional composer

or a performer who follows predetermined instructions. Even though many of

the musical ideas as well as signal processing concepts embedded in these

systems have been shaped by the electroacoustic and computer music tradi-

tions, there is an underlying principle which strives for the immediacy of real

CHAPTER 2. COMPUTATIONAL STRATEGIES 16

time decision making. This is as much a feature of the SuperCollider environ-

ment as it is an aesthetic of improvisers.

Computational strategies for audiovisual performance with the latest digital

technologies in the context of our current understanding of our environment

are complex and manifold. The composer-performer has such a vast selection

of software and hardware tools to choose from while having to consider the

implications from many fields of research to the performance paradigm: cog-

nitive, perceptual, evolutionary, physical and many more. Algorithmic strate-

gies can assist in the decision making process of the performer faced with the

exceedingly complex environment of choices. One of the strategies explored

in the f(x) performance environment, described in more detail in Chapter 3,

delegates control of groups of synthesis parameters to a three-dimensional lat-

tice of cellular automata, known as a "world". This cellular automata algorithm

defines local rules of interaction between neighboring items for a number of

adjacent cells on a 3D lattice. These local rules from the perspective of each

individual cell do not have any direct influence on other cells which are not

immediately adjacent. When the rule is applied to all cells simultaneously,

in the same defined time frame, a global pattern of behaviors results as an

emergent phenomenon over a number of such discrete time steps. Each cell

has a state assigned to it at any given time step, most commonly a numer-

ical value, which is modified depending on the numerical values of adjacent

cells according to a uniform rule across the entire automata world. These laws

of interaction in the virtual automata universe can spawn complex patterns

of behavior, some of which may even exhibit computational universality (the

concept of universality is discussed in more detail in Chapter 7).

The automata values can be mapped to sound synthesis or graphics pa-

rameters and this strategy seems to fit situations where there is a need for

controlling large numbers of parameters dynamically changing over small time

frames. Granular synthesis is one such paradigm where individual control of

each parameter of every sonic particle is overly cumbersome, time-consuming

and downright impossible in a real time performance context. Yet the vari-

ous microsonal techniques, extensively covered by Curtis Roads in Microsound

[72], enable detailed control on the smallest time scale of synthesis and com-

position. Granular synthesis is used in some shape or form virtually in every

synthesis process of this project. The different strategies employed in com-

CHAPTER 2. COMPUTATIONAL STRATEGIES 17

bining this synthesis technique with a selection of generative algorithms orig-

inate from and expand on the ideas of evolving sonic screens by stochastic

rules outlined by Iannis Xenakis in Formalized Music [96]. Cellular automata

provide the source material for audiovisual explorations of Japanese artists

Keiichiro Shibuya and Takeshi Ikegami [78] as well as Yota Morimoto’s synthe-

sis unit generators for SuperCollider [65]. Cellular automata have been used in

different configurations and definitions throughout the project for both audio

synthesis on micro level as well as composition of sonic structures on larger

time scales, while non-linear mappings to 3D graphics functions emphasize

the discreteness of the two worlds.

Evolutionary algorithms offer another computational method for exploration

of problem spaces by evolving candidate solutions and evaluating their fitness

according to how well that problem is solved. This is achieved by using tech-

niques that are inspired by genetic operations, including inheritance, muta-

tion, selection and crossover. Biologist Richard Dawkins discusses an evolu-

tionary algorithm that evolves virtual creatures he calls biomorphs in his book

The Blind Watchmaker [28] to illustrate the power of cumulative selection in

evolution. It serves well as an explanatory device, however, one must bear

in mind the unimaginably higher complexity of natural processes operating

on vastly larger time scales when alluding to similarities to this artificial form

of simplified imitation. The most widely used methods of evolutionary com-

putation are genetic algorithms (GA), which typically consist of two parts: an

encoded string or genotype and a decoded solution or phenotype. Genotype is

often represented as a string of 0s and 1s, which translates to a computer pro-

gram that calculates a solution to a problem after the decoding process [61].

Each solution in a population of individuals or chromosomes is assigned a

fitness score according to how well the resulting program solves a particu-

lar problem. Genetic algorithms have been widely experimented with in the

context of sound synthesis and music compositions for a few decades already.

Some of the examples include Gary Lee Nelson’ Sonomorphs [66], coevolution

linking artificial critics and composers as an example of automating the fitness

function in the context of musical creativity [85], MutaSynth for genetic sound

synthesis [26] and John Biles’ GenJam system for generating jazz phrases in

real time interaction [14]. This is by no means even close to a comprehensive

list, but rather a brief acknowledgement to the volume of exciting research

CHAPTER 2. COMPUTATIONAL STRATEGIES 18

that has been undertaken.

Cellular automata, genetic algorithms and other complex systems can be

employed purposefully in real time audiovisual composition by embedding

them in autonomous intelligent agents as compositional strategies. Accord-

ing to the definition in Russell and Norvig [77], an intelligent agent is an au-

tonomous entity that observes certain aspects of its environment, may learn

about the observations by analysis and responds to achieve a predefined goal.

The extent of complexity of an agent can vary from a simple reflex machine

(for example the f(x) environment can be considered a complex reflex ma-

chine) to an autonomous composer agent that learns musical structure from

examples, stores and analyzes the data and uses it to compose phrases of

music in response to real time analysis of an incoming audio stream (just like

the improvising agents built into the mikro environment).

This thesis explores three ways of real-time interaction during a perfor-

mance with a computational system which consists of two physically separate

applications, one for audio synthesis and composition and the other for com-

puter graphics:

• external parameter controllers including MIDI interfaces and Open Sound

Control (OSC) enabled mobile devices

• autonomous agent based approach using machine listening, statistical sig-

nal analysis and machine learning methods.

• exploring the audiovisual parameter space by writing computer code live

on stage known as live coding

Ultimately these three approaches have been integrated into a single en-

vironment lambda so they can be used and overlapped in the same perfor-

mance. The three original prototypes - f(x), mikro, and sparsematrix - have

served the purpose of addressing different strategies of composition and in-

teraction individually and enabling undivided focus on specific strategies. The

interactive OpenGL graphics applications incorporated into these performance

environments are discussed in the respective chapters in the context of com-

putational strategies and algorithmic visualization rather than from the aes-

thetic and historical perspective of audiovisual composition. This is primarily

due to realization that the topic deserves a significantly more rigorous investi-

gation than the duration and scope of this project have afforded. The emphasis

CHAPTER 2. COMPUTATIONAL STRATEGIES 19

has been on the development of the sonic aspect of the multimodal environ-

ments. Before discussing each environment in detail, sound spatialization as

an essential element of all the sonic environments described here warrants a

brief introduction.

2.5 Virtual acoustic spaces

Multi-channel sound projection enables designing virtual sound spaces and

provides the artist-programmer an entire new world to be explored. Space is

just as an important a musical parameter as time, spectral dynamics and more

traditional concerns with harmony. Ambisonics surround sound spatialization

technology provides a high quality and yet practical solution for performance

systems to enable authoring immersive sound fields in real time as an essen-

tial component of a performance. This section explores the sonic space in the

audiovisual context with particular consideration for soundfield imaging with

surround sound tools for creative practices.

A handful of tentative experiments aside, sound space as an essential com-

positional element first emerged in Karlheinz Stockhausen’s piece Gesäng der

Jünglinge which premiered at Westdeutscher Rundfunk (West German Broad-

casting) in Cologne in 1956. This momentous occasion was followed by the

showcasing of Edgar Varese’s Poeme Electronique over 400 loudspeakers in

the Philips pavilion at the 1958 Brussles World’s Fair. Since then, composers

mainly associated with electroacoustic and computer music have explored

many techniques and technologies for sound spatialization, often involving

an impressive array of loudspeakers and necessary supporting technology to

reproduce and modify previously recorded soundfields or to synthesize virtual

ones. There are many specialized high quality systems for spatialization, for

example, the Sonic Lab at Queen’s University in Belfast2, BEAST at the Univer-

sity of Birmingham3, or the Wavefield Synthesis (WFS) system in Leiden, the

Netherlands4. However, these kinds of systems are often either immobile and

thus site-specific or excessively cumbersome to transport. At the same time,

interfacing with these systems for performance purposes can be complicated

and require considerable setup and rehearsal time, especially in the context

2http://www.sarc.qub.ac.uk/sites/sarc/AboutUs/TheSARCBuildingandFacilities/TheSonicLab/
3http://www.birmingham.ac.uk/facilities/BEAST/index.aspx
4http://gameoflife.nl/

http://www.sarc.qub.ac.uk/sites/sarc/AboutUs/TheSARCBuildingandFacilities/TheSonicLab/
http://www.birmingham.ac.uk/facilities/BEAST/index.aspx
http://gameoflife.nl/

CHAPTER 2. COMPUTATIONAL STRATEGIES 20

of live performance. Ambisonics provides a convenient yet powerful alterna-

tive for sound spatialization. One of the main advantages of this technique is

the encoding of the audio signal in a way that encapsulates the spatialization

information independent of the replay system. As a consequence, Ambisonic

technologies facilitate focussing on the spatial aspects of sound without un-

necessary concern for technological details such as loudspeaker configuration.

Ambisonics, meaning "surround sound", was first developed by a group of

researchers, lead by Michael A. Gerzon in the 1970s as a recording and play-

back system [40]. The Ambisonic signal is encoded in four channels in the

same way the Ambisonic array of microphones would record it, regardless of

whether it is actually recorded or synthesized: three figure of eight micro-

phones capturing the sound energy along the 3 spatial axes of front-rear (X),

left-right (Y), top-bottom (Z) and an omni-directional microphone for overall

sound energy. This most basic encoding, known as first-order Ambisonics, has

been used throughout the project.

ENCODE TRANSFORM DECODE

synthesis filtering playback
convert audio signal to B-format apply transforms decode B-format to audio output

Figure 2.3: The three phases of Ambisonic spatialization

The Ambisonic Toolkit5 (ATK), a plugin system for SuperCollider authored

and developed by Joseph Anderson, provides one of the most comprehensive

set of Ambisonic tools available. It is designed to provide user-friendly ac-

cess to a comprehensive set of Ambisonic encoders, transforms and decoders.

The toolkit emphasizes the concept of creating and shaping whole soundfields

rather than placing individual sounds in virtual space. There are three phases

in the process of working with synthesized soundfields in ATK, illustrated in

Figure 2.3: conversion of monophonic signal to Ambisonic B-format, spatial

filtering, and decoding.

The compositional concern with spatial experience derives from the prac-

tice of acousmatic music, but is no longer confined to that tradition alone.

Acousmatic once believed to be the only sonic medium that considers space

5http://www.ambisonictoolkit.net/

http://www.ambisonictoolkit.net/

CHAPTER 2. COMPUTATIONAL STRATEGIES 21

as aesthetically central [82] is arguably no longer in this forsaken predica-

ment. Ambisonic technologies like the ATK provide a laptop performer with

an exhaustive array of creative tools regardless of the performance context.

Nowadays space as a musical parameter is being explored at free improvisa-

tion gigs in jazz clubs as well as a live coding dance music nights in the club

environment. Admittedly some of the performances during this project have

taken place in institutions and concert spaces associated with the tradition

of acousmatic music. However, the improvisatory nature combined with the

visual element sets them apart from the acousmatic.

3 | Interactive composition: f(x)

f (x) is an audiovisual performance environment to enable exploration of con-

tinuous spatial functions derived from the model of continuous spatial cellular

automata. The time-varying functions provide the basis for sound synthesis

and computer graphics parameter mapping. The audio and the visuals are in-

dependent from each other both physically and conceptually and the reciprocal

influence flows in both ways in a non-linear manner. The segmentation of the

visual space and acoustic time is controlled in the performance by affecting the

behavior of the automata world in real time in an attempt to reveal the complex

and organic behavioral patterns in three dimensions and modifying the map-

ping space in response to them. The audio synthesis, computer graphics and

the performance interface have all been developed in open source software.

Audio synthesis and performance interfaces are implemented in the SuperCol-

lider programming environment, graphics functions in OpenGL and Open Sound

Control (OSC) protocol is used for communication between the audio and visual

applications.

3.1 Introduction

Digital technology has provided an incredible variety of opportunities for artis-

tic exploration and has fostered a new perspective on human culture and so-

ciety. It has forced scientific methods and concepts into the working process

and aesthetic framework of an artist due to its very nature. The beginnings of

the digital computer are inseparably connected to research into the biology of

self-replication and the possibility of artificial life. The work of Alan Turing, John

von Neumann, Stanislaw Ulam and many others was essential to the way the

modern world operates and the fundamental concepts based on the spectacle

of biological evolution and natural selection have been integrated into every

piece of digital technology with which we have surrounded ourselves. How-

ever, we generally have little understanding of the nature of this technology

22

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 23

and the long-term impact it has on every aspect of our existence. f (x) is a

performance environment created to reveal some of the aspects and princi-

ples of digital technology. It is based on a concept that has only been made

possible with the advent of computers - cellular automata - and was born out

of research into artificial self-reproduction. It is designed as a live audiovisual

experiment in which the performer interacts with a world of 3-dimensional spa-

tial functions defined - analogously with the principles of cellular automata - in

terms of each other. The performance is seeking to reveal complex patterns

of behavior, generated by relatively simple instructions and rules that would

uncover some of the elusive characteristics of digital media surrounding us

now in almost every situation.

3.2 Cellular automata

Cellular automata constitute an area of research belonging to the interdisci-

plinary field of complex systems science. The beginnings of the research in

complexity can be considered as coinciding with the advent of the field of bi-

ology in the works of Jean Baptiste Lamarck and Gottfried Reinhold Treviranus

in the beginning of 19th century. The idea that living organisms are more

complex - or in other words having a higher degree of organization - than inor-

ganic systems is not a modern concept. In the middle of the twentieth century

two independent lines of research were started that have greatly shaped our

understanding of complexity. In molecular biology, it became evident from

the research that led to the discovery of the chemical structure of DNA, that

every living system is highly organized and this organization is coupled to a

complex molecular apparatus, which functions as a stored information code

for regeneration. There are two complementary modes of existence embed-

ded in each complex living system: the internal physical-chemical workings

of a cell and the informational mode where information is selected, stored,

and interpreted by the physical actions. In early computer science research

an investigation was launched into the nature of complexity in general in a

computational or mathematical sense. John von Neumann initiated the study

of self-replicating automata in the 1940s. He recognized the dual functioning

of information that self-replication requires. The two modes are present in any

cellular automata system as well: the dynamics of an automata system and

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 24

the rules that evolve it [67]. In 1962, Herbert Simon [80] proposed four im-

portant aspects of complexity: hierarchy, evolvability, near-decomposability,

and descriptive simplicity. Complex systems often take a form of a hierarchy,

which is composed of subsystems, which in turn are composed of their own

subsystems. Such hierarchic systems evolve faster than systems of compa-

rable size with no internal hierarchy. Near-decomposability refers to the fact

that interactions between subsystems are not substantial, but not negligible.

The system components do not have a great effect on each other’s short-term

behavior, but depend on all other components in the long run. Descriptive

simplicity derives from the generally high degree of redundancy in hierarchi-

cal systems that allow "chunking" up the description of its parts and describe

it in simple terms. In addition to the four characteristics proposed by Simon,

complex systems are thought to exhibit these additional characteristics:

• Simple laws can generate complex behavior.

• Time-asymmetric self-organization is a real phenomenon of the physical

universe.

• Spontaneous pattern formation as an emergent property, not trivially pre-

dictable.

• Complex emergent phenomena can be simulated by a computer.

• Complexity reflects genotype-phenotype duality.

• Complexity is located between high order and high randomness - "the edge

of chaos".

• Complexity needs to be explained in different terms from traditional reduc-

tionist methodology.

Cellular automata are deterministic dynamical systems, which are discrete in

space and time, operate on a uniform lattice and are characterized by local in-

teractions. An n-dimensional array of cells on a grid that evolves a number of

discrete time steps according to a set of rules based on the states of neighbor-

ing cells. Every cellular automata system consists of four basic components:

1. The grid, which in computer terminology can be defined as an array. The

simplest grid is equivalent to a 1-dimensional array. In two dimensions

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 25

square grid is the most common one, although triangular and hexagonal

grids may be considered. Each slot in the grid represents a cell.

2. The number of distinct states - k - must be specified. The simplest automata

are defined in terms binary states - 0 or 1. The states are usually designated

by integers, although in case of continuous automata float values can be

used.

3. Neighborhood over which cells affect each other. The simplest case is the

nearest neighbors of a cell on a one-dimensional grid. In two-dimensional

cellular automata the most common neighborhoods are the Moore neigh-

borhood, which considers eight adjacent cells including the diagonal ones

and the Von Neumann neighborhood, which excludes the diagonal neigh-

bors (Figure 3.1)

4. Rule space. Number of possible rules N depends on neighborhood size r

and number of allowed states for each cell k:

N= kk
r+1

Figure 3.1: 2-dimensional automata neighborhoods.

In case of one-dimensional grid with nearest neighbor rules and binary

states (i.e. r = 2, k = 2), there are a total of

22
3
= 256

rules possible. The rules are encoded according to the decimal representation

of the binary string of the rule. For example in case of rule 90 the transition

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 26

occurs according to the scheme illustrated in Figure 3.2:

Figure 3.2: Rule 90 transition scheme.

Stephen Wolfram [94] has determined four general classes of behavior in

which the evolution leads to: Class 1: homogenous state - the behavior is very

simple and almost all initial conditions lead to the same uniform state after just

a few generations. Class 2: a set of stable periodic structures, which are sepa-

rated and simple. Class 3: chaotic pattern - the behavior is more complicated

and seems random in many ways, although certain recurring structures are

always present. Class 4: complex structures - a mixture of order and random-

ness, in which relatively simple structures move and interact in complicated

ways.

Figure 3.3: Cellular automata classes.

In complexity science in general the fourth class exhibits behavior that has

been described as on "the edge of chaos". Although the term has been a cen-

ter of a heated debate and conflicting interpretation, it is commonly believed

to refer to behavior that is characteristic of living systems. It should be noted

here that the above classification is fairly subjective, based on empirical obser-

vation rather than mathematical analysis, and, therefore, can be considered

more of a working guideline than a definition.

Expanding the cellular automata concept to two-dimensional lattices indi-

cates a significant increase in the number of possible rules and neighborhood

configurations, which makes any systematic analysis increasingly difficult. For

example, if possible cell states remained limited to binary [0 1] and neigh-

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 27

borhood was defined as what is known as standard Moore configuration or a

9-neighbor square, the number of possible rules would be 2512, which is ap-

proximately 10154.

3.3 Continuous automata

So far each location on the lattice has been considered assuming one of pre-

defined discrete values represented normally by an integer. It is also possible

to contemplate systems where the values are not discrete, but continuous

within a specified range. In such systems, the value of each cell can be de-

fined by calculating the average state of the defined neighborhood [94] [52]

. In this scenario, it becomes necessary to either multiply the average of the

neighborhood of each cell by a fraction greater than 1 - e.g. 3/2 - or add a

value typically between 0 and 1 and then only use the fractional part of the

result for the system to exhibit complex behavior similar to the elementary

automata discussed in the previous section. Otherwise the averaging process

will quickly settle the lattice into a uniform value all across. The multiplier or

the added value becomes the determining factor in the behavior of the au-

tomata on the global level, with smaller values producing an overall smoother

transition effect. In the image below, a close-up of a continuous-valued one-

dimensional automata world is shown. The initial state is defined as all 19

cells being in state 0, except for the one in the center, which has a state value

of 1. The constant value being added, after 2 nearest neighbor and the cell

states have been averaged, is 0.1. Please note that the displayed values have

been rounded to 1 decimal point for legibility.

The simple mechanism is evident when considering the calculation of cen-

ter cell state from the 1st time step to the next and the role of the constant

addition rule from 9th time step to the next. It is easy to see how the cell state

progresses from initial value of 1 to 0.4: (0 + 1 + 0 / 3) + 0.1. Then increasing

gradually to 1 because of the addition. Once the upper boundary is reached,

the calculation yields a value of 1.1, of which only the fractional part is used

in the next time step, resulting in the cell state of 0.1.

The images in Figure 3.5 show worlds of 60 cells each, with the same con-

stant addition value of 0.1, but with different initial conditions: single cell initial

condition on the left and random initial condition on the right.

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 28

Figure 3.4: Illustration of continuous automata calculation procedure.

The behavior of the continuous-valued world can be further affected by as-

signing weights to each of the cell states in the neighbors, making variable the

amount of influence each cell has in the neighborhood. In this case, weighted

mean value is calculated for each cell when updating the states. The state s

of a cell at position i in the one-dimensional lattice is calculated by

s =

∑njhj
∑nj

where n is the size of the lattice, h denotes the values of cells in the neigh-

borhood and w represents the weights assigned to the respective cell state

values. Weighted automata rules increase in significance as the automata

world is extended into higher dimensions as the geometrical properties of the

system become more pronounced. The images in Figure 3.6 demonstrate the

effect in one-dimensional lattices with different initial conditions. In the image

on the left, the weights assigned to the 3-cell neighborhood configuration are

specified as [1, 3, 2], while the add parameter is 0.1. In the second image, the

weights are [1, 2, 3] and the add parameter is 0.95.

The same basic principles can be applied when expanding the automata

lattice to two dimensions. Due to the inherent representational difficulties in

the case of higher dimensional time-evolving systems, it is hoped that the

above demonstrations using one-dimensional lattices will suffice to reveal the

basic principles and dynamics of evolvement of continuous-valued cellular au-

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 29

Figure 3.5: Continuous automata examples employing the same constant addition

parameter (0.1), but with different initial conditions.

tomata worlds. There are, naturally, significantly more complex geometrical

phenomena that emerge in the patterns created in higher dimensions and the

behavior is even harder to quantify. In all the previously discussed worlds, the

border conditions are handled by wrapping the edges over to the other side of

the world. By this convention, in one-dimensional lattices, the nearest neigh-

bor to the left of the first cell is the last i.e. the rightmost cell on the lattice.

A two-dimensional world can in this context be viewed as having a shape of a

torus as each of the edges wraps around to the opposite side.

Cellular automata have been frequently used in sound synthesis and com-

position processes previously. The different strategies employed have ranged

from driving sample level synthesis [65] or parameters for granular synthesis

[4] [60] to mapping states and coordinates to compose musical phrases [11].

There have been attempts to engage 3-dimensional automata in the process

of composition, parameter mapping and performance previously, for example,

calories3D cellular automata simulator and visualizer [89]. f(x) seeks to bring

cellular automata into the realm of audiovisual performance and control the

rules, the emergent behavior and audiovisual mappings in real time.

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 30

Figure 3.6: Weighted continuous automata examples employing different constant

addition parameters and different initial conditions.

3.4 Structure of the performance environment

The concept of continuous-valued cellular automata is further expanded to

the third dimension in the audiovisual performance environment f (x). One

can imagine a cube-shaped region of three-dimensional space sectioned into

smaller cube-shaped sub-regions, each of which has an associated state value

and is defined in terms of surrounding space. The shape of the surround-

ing space depends on the neighborhood definition and is further molded by

the weights assigned to each neighboring region. Thus these spatial fluctua-

tions can be viewed as continuous functions permeating a region of imaginary

space while being defined in terms of each other. This three-dimensional world

forms the foundation of the performance environment. The environment fa-

cilitates a real-time exploration of the evolving spatial patterns by modifying

the global addition value and the shape of the neighborhood and enables the

user to manage predefined computer graphics algorithms and audio synthesis

definitions in response to the automata behavior.

The system has been implemented in two physically separate parts. The

basic architecture has been described in Chapter 2. The automata world

consists of a three-dimensional array of cells, the actual number of cells in

each dimension can be modified at any time during the performance. This

enables finding a compromise between limits on computational power and

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 31

complexity of automata behavior, which increases as a function of world size.

For example, a world that contains 20 cells in each dimension, a workable

configuration under most conditions, is comprised of 8000 interacting cells

in total. The definition of neighborhood shape is typically static and defaults

to the standard Moore neighborhood, which in 3D includes 26 neighboring

cells. The effect each neighbor has on the global behavior is managed by

weight values specified for each neighbor cell. The 3-dimensional world is

demonstrated in Figure 3.7. The image on the left represents all cells in the

world as wireframe cubes, while the image on the right shows the 26 neighbors

in the 3-dimensional Moore neighborhood.

Figure 3.7: Expanding the automata world to three dimensions.

OGL drawing functions are implemented as encapsulated patches, each

with a specific characteristic. These patches can be easily added and modi-

fied during development and constitute a basic unit of the graphics applica-

tion. Each patch has a number of parameters for transparency, color mapping

and other values that can be controlled remotely from SuperCollider (or any

other OSC-enabled application). Besides the individual patch controls, the fol-

lowing global OpenGL parameters are remotely controllable from an external

application:

• Global transparency

• Screen background color

• Zoom along each of the 3 axes

• Speed and direction of rotation

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 32

• Relative rotation angle around each of the 3 axes

Most of the functionality of the performance environment is controlled so

as to make the most efficient use of the language-server architecture. It is

designed to provide a flexible platform for handling OSC communications, dy-

namic user interface management (both graphical and external devices), and

audio synthesis procedures. There are 3 types of trigger functions that can be

added for evaluation and removed in real time, receiving different data from

the automata world:

• global mean and standard deviation values and mean values of any polled

sub-regions

• a selection of individual cell values in a specified configuration

• the x-y-z-coordinates of a cell within a specified state range

The added functions are expected to contain mapping logic from state values

to audio synthesis parameters and can also be used to control certain parame-

ters of the graphics application, creating parameter feedback loops during the

performance. Audio synthesis definitions and time-structuring routines can be

added dynamically during the performance either from predefined functions

or specified in a live-coding just-in-time programming manner.

3.5 Audiovisual organization and mapping

The audiovisual composition relies on two elemental concepts: audiovisual

macro compositional entities called zones and the separation of audio and

visual content within these entities both physically and conceptually. The con-

cept of a zone emerged in the process of developing this project as a means

to have a meaningful segmentation of considerably different audiovisual ma-

terial and allows introducing new approaches to audiovisual mapping without

restructuring the existing organization. Each of these zones can be activated

in any sequence during a performance and, for better or worse, have pro-

vided a general form for the entire composition. Each zone is characterized

by unique and specific mapping procedures resulting in a distinct audiovisual

entity. Normally each new approach requires a different configuration of cell

state values to be polled from the automata world, depending on which part

of the system is being explored. There are currently 4 configurations of 64 cell

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 33

state values polled at a rate of 12 cycles per second that are used in different

zones:

• uniform sampling of every 4 cells throughout the world, starting with the

third cell in each dimension a sampling of 16 cell values from each of the 4

vertical faces of the world

• wireframe cube-shaped sampling of cells from the middle of the world

• sampling of 8 values from 8 layers of odd numbered slices along the z-axis

of the world

The 3D world is represented in OGL by mapping selected cell state values

to low-level vertex drawing functions. Most commonly the cell state or inverse

of the state is mapped to the drawn object’s grayscale color, transparency

and size. The variation of these three parameters already yields a significant

palette of mapping options, considering that what really makes an impact

in terms of the visual content are the intricate patterns that emerge even

from the simplest of representations. In the 2 images below, an example of

visual mapping is provided in a 2-dimensional automata world. In the image

on the left there is a world of 30 by 30 cells, evolved from a symmetrical

initial condition of uniform states 0 for all of the cells, except for a rectangular

wireframe configuration of 20 by 20 cells in state 1 centered around the middle

point. The state after 30 time-steps of evolution is shown. The image on the

right in Figure 3.8 shows the same world at the same phase of evolution, but

here the cell states are mapped to drawings of stroked rectangles with the

rectangle size and the rectangle grayscale color mapped to cell state and the

transparency mapped to the inverse of cell state.

Audio synthesis parameter mapping is driven by the messages received

from the automata world and handled through different types of OSC respon-

der functions depending on the configuration of cell states requested from the

automata application. A commonly utilized technique is to activate a number

of parallel synthesis processes, identifying a certain number of modifiable pa-

rameters and mapping the incoming cell state values to appropriate mapping

ranges for each parameter. In SuperCollider, this mapping is achieved through

ControlSpec class and Warp subclasses that enable the specification of range

and curve of a mapping from between 0 to 1 to any desired range, which

perfectly fits this particular purpose. Each synthesis process can have its cus-

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 34

Figure 3.8: Simple mapping of 2-dimensional continuous automata values to draw-

ing parameters.

tom mapping range for every selected parameter or synthesis processes can

be grouped and the same mapping ranges used for equivalent parameters.

The mapping ranges and curves themselves can also be modified during the

performance, which provides even more powerful expressive tools for the per-

former.

The audio sources for a majority of zones developed derive from previous

electroacoustic compositions and live electronic performances of the author.

Some of these sounds have already been recycled in the similar manner in

previous instances. The inspiration for this approach originates from a com-

position by Richard Karpen, Camera Cantorum, which in the words of the

composer himself "presents a sonic analog of an array of old mirrors, each

facet reflecting a different fragment of one of my previous pieces."1 The dif-

ferent zones of f(x) each derive from a different performance. For example,

the sounds in zone 01 originate from a composition realized in SuperCollider2

called detached which explored the idea of a remix of a rock song in the con-

texts of electroacoustic composition and minimalist electronica. Thus there

are already many levels of reuse and generally each new reiteration renders

the source unrecognizable from its previous form.

The crucial aspect of any composition or performance system relying on

emergent properties is the mapping procedures used to translate the global

1http://faculty.washington.edu/karpen/CameraCantorum.html

http://faculty.washington.edu/karpen/CameraCantorum.html

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 35

behavior of the automata into audiovisual composition entities. Peter Beyls

[12] suggested a number of such interpretation procedures for CA as a non-

exhaustive list of principles which are left open to different interpretations:

• static mapping - a lookup table

• dynamic mapping

• human performer mapping

• cultural concept mapping

• psychoacoustic mapping

• mapping according to natural laws

These principles can overlap - cultural concept mapping can be static or dy-

namic for example. So they do not really constitute a comprehensive ontology

of mapping procedures, but rather provide a useful guide to the available pos-

sibilities. The f(x) zones employ all these strategies in some shape or form.

There are a number of mapping strategies that attempt to find a balance be-

tween the emergent patterns of the automata world and top down composi-

tional concepts of the performer, similar to the approach reported in the article

by Beyls. Static mapping, for example, is widely employed in graphics func-

tions where the cell state values are directly linked to a drawing parameter

such as line length or size of a more complex shape. Similarly in audio map-

ping the cell states are directly interpreted as various parameters, including

amplitude, pitch-shift or angle of rotation as discussed above. These represent

simple static (cell state to amplitude), static cultural concept (pitch-shift fre-

quency intervals are defined in terms of 24-step equal temperament musical

scale), and dynamic psychoacoustic (human spatial hearing psychoacoustics)

mappings respectively.

3.6 Discussion

The system was developed in the beginning stages of the project and was

rather intended as a prototype for a more complex and interactive approach

subsequently developed in the mikro environment. However, largely due to

its primacy combined with the fact that it only requires the author to act as

a perfomer, which makes the logistics of the performance significantly less

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 36

complex, it has been the system most frequently used in public performances

during this project. The performances and presentations include the Super-

Collider Symposium in Berlin, the International Symposium on Electronic Art

in Istanbul, Piksel Festival in Bergen and the International Computer Music

Conferene in Ljubljana among others. Figure 3.9 shows a capture from a live

performance at the Shiny Toys festival in Germany in November 2011.

Figure 3.9: Performing f(x) at the ShinyToys festival in Germany, November 2011.

The automata world constitutes a novel artistic interface which enables ex-

ploration of complex patterns of computational behavior. The importance of

the concept of cellular automata is at the very center of the theory of com-

putation and is a product of research into origins of life and artificial intel-

ligence by some of the most renowned protagonists in the recent scientific

history. f(x) brings these ideas into the realm of live audiovisual performance

and thereby fuses together artistic and scientific research methodology in an

improvisatory setting. At the same time, this approach hopefully helps allevi-

ate some of the skepticism surrounding the use of compuational systems like

cellular automata in a live performance context and highlights the necessary

shift in perspective of the performer towards real time applications from hav-

ing control of a deterministic linear system to becoming a humbled explorer

of complex digital universes.

The f(x) environment is designed to be controlled by a generic MIDI fader

CHAPTER 3. INTERACTIVE COMPOSITION: F(X) 37

interface for audiovisual mapping, synthesis and parameter control as well as

gestural control of selected parameters by a mobile device like an iPhone or an

Android phone equipped with the feature of sending accelerometer readings

and other control information via OSC messages. The different settings for the

automata world that change the rules of virtual physics and thereby the emer-

gent behavior that can be mapped in real time to sound synthesis and graphics

functions make it possible to interactively compose audiovisuals in a perfor-

mance. The flexible structure of the control center enables reconfiguration, re-

moval of existing and addition of new features depensing on the performance

duration and context. The concept of a zone corresponds to predefined global

settings that remain constant during a preformance, each zone represening

a collection of mapping presets. It serves as a structuring element, loosely

equivalent to a composition as an artefact. However, since the actual struc-

ture of each performance depends on the interaction between the performer

and the automata driven interface, a distinction from the traditional composi-

tional artefacts was necessary as the zones only come into existance during

a live performance. Each zone produces a multimodal gestalt, an organized

audiovisual whole that exhibits a definite connection between the modalities

which is too complex to follow in terms of individual cells. The improvisatory

element of f(x) arises from exploration by the performer of emergent audiovi-

sual entities and the spontaneous decision-making processes involved when

responding to the behavior patterns of the automata world.

Even though the automata are completely deterministic and follow simple

local update rules, the resulting behavior is largely unpredictable. As with any

other type of instrument or new musical interface, the behavior of the f(x)

system can learned, thus behavior patterns and audiovisual mappings can be

more or less recreated. The crucial difference between more traditional inter-

faces and the f(x) system is the non-linear response of the latter to performer’s

actions. This is where the audiovisual behavior of the system provides an im-

mersive informative interface with constantly changing audiovisual feedback,

in which the audio spatialization and 3D graphics play an important role.

4 | Towards autonomous systems: mikro

The wealth of compositional techniques and tools that have emerged

as a result of digital technologies provides an enticing challenge to the

artist. The sonic material is no longer bound to a physical instrument,

nor is the musical structure necessarily articulated by human perform-

ers. The prospect of automating parts of the creative process by in-

troducing autonomous agent enriched algorithms provides new avenues

of exploration as well as computational challenges. This chapter intro-

duces an approach to real time audio analysis as a source for interactive

audiovisual performance. The catalyst of the audiovisual environment

is presumed to be a live musical performance that emphasizes the at-

tention to the spectral development of sound structures in the tradition

of electroacoustic and computer music. This expression is further aug-

mented by autonomous machine listening agents that interact with the

incoming audio stream and generate an audiovisual response.

4.1 Introduction

The freedom to create and shape the spectral characteristics of sounds was

recognized as the one of the most essential concerns in computer music com-

position since the very beginning. The notion of static timbres produced by

physically immutable instruments is becoming fossilized amidst the explosive

multiplication of algorithmic adaptability of spectra facilitated by computer

programming. Algorithmic instruments not only enable exploration and real

time composition of audio spectra, but encourage compositional considera-

tions beyond narrow traditional cultural confines and foster artistic practices

informed by scientific research and a more global understanding. These de-

velopments are to be considered within a more general framework, namely

the position and function of art as a way to make sense of human experience

which is a stage that has been reached after over roughly four billion years of

38

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 39

biological evolution. Biological evolution is an algorithmic process - blind, pur-

poseless, myopic, lacking a long-term goal. Among the greatest challenges

is comprehending and explaining how the apparent byproducts of such pro-

cesses have given rise to such elusive and vastly complex phenomena as con-

sciousness, communication and human culture. Technology facilitates closer

comprehension and better explanation for such algorithmic processes in na-

ture often by building simplified models and computational simulations. Signif-

icant advances in computation technology and artificial intelligence research

are reflected in the development of artistic practices as interactive multimodal

performance systems are becoming more commonplace. Artists working from

the realms of sound are progressively embracing technologically facilitated

choices. Largely due to increased processing power of accessible portable

computers there is a shift from fixed electroacoustic composition (tape music,

fixed media composition, computer music rendering) to real time interactive

improvisation (supercollider, chuck). More advanced software and computer

programming based analysis and synthesis tools have facilitated focus to be

realigned from concerns with traditional harmony, melody within static tim-

bres to spectral composition. The academic tradition of acousmatic aesthetics

is slowly being enriched by multimedia environments as advanced and acces-

sible (open source) programming languages and communication technologies

proliferate. The progress in development of more powerful digital signal pro-

cessing algorithms has encouraged the replacement of the MIDI paradigm with

audio stream analysis involving machine listening and statistical methods. Yet

another factor in this long list of interdependent developments is the acces-

sibility to more time-scales of musical composition to use the musical time

structure described by Curtis Roads [72]. In his exhaustive account of granu-

lar synthesis techniques, he emphasizes the importance of time-scales below

that of the traditional note level, the micro time scale. Dennis Gabor’s [36]

theory of sonic quanta realized in granular synthesis algorithms has provided

a new world to be explored. A point to be made observing these trends in the

field of music technology is that more often technology directs the creative

process, rather than the other way around.

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 40

4.2 The conceptual framework

The mikro system for interactive performance with live musicians is imple-

mented as a collection of individual modules, in which each component per-

forms a specialized task and interacts with other components to achieve an

audiovisual output in response to the incoming audio stream. The features

of such real-time interactive system include a capacity to extract informa-

tion from the environment, analyze the gathered data, and respond within

the intended context. Real time audio stream analysis forms the basis for

the ensuing multimodal environment. Prior to sufficiently fast algorithms for

real time feature extraction, a number of interactive systems - most notably

Voyager [50] and Cypher [74] [75] [76] - utilized the MIDI protocol for most

of the analysis tasks, including traditional harmonic analysis, key induction

and metric segmentation. While these projects provide an excellent intro-

duction to the problems that a programmer faces when designing intelligent

artificial systems and the techniques and methods that are developed as so-

lutions, MIDI is not a satisfying solution not only because of obvious inherent

limitations as a music representation tool, but also because the ambition to

work directly with incoming audio signals provides a more direct and detailed

access to the sonic material on much smaller timescales and allows for sig-

nificantly higher precision and intricacy of analysis. That in itself amounts to

a more sensitive and fine-grained analysis algorithm and respectively poses

a more difficult challenge for implementation, especially considering the real

time nature of the system. More importantly, however, MIDI systems cannot

track the most important aspect of the audio signal - the spectral dynamics.

William Hsu’s [46] "timbre-aware" performance systems focus more throughly

on the timbral domain and consider it as an integral element in a performance.

The components of the implementation can be generally classified into 4

main categories: input, analysis, composition, and communication modules.

Due to the disconnected structure of the SuperCollider environment, which

runs the programming language and the audio synthesis engine as two sep-

arate applications simultaneously, each of these modules is further divided

into algorithmic control structures and object structure in the SuperCollider

language and audio synthesis definitions compiled as graphs of audio unit

generators on the SuperCollider audio server. A unit generator in the Super-

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 41

Collider environment is a synthesis server object in which signal processing

concepts are incapsulated [91]. The third component - the graphics applica-

tion implemented in C++ and OpenGL - is another independent entity. The

major advantage of this architecture allows different modules and their re-

spective components to be deployed on physically separate computers run-

ning different operating systems. The input modules manage audio input and

allow effects to be applied to the signal and apply Ambisonics spatialization

algorithms in order to incorporate typically monophonic input signals into the

Ambisonic framework. It also enables different types of audio streams to be

patched through the system. Considering modularity, the input can be from

three different sources:

• mono or multi-channel audio from the audio interface of the host machine,

• a local audio bus inside the SuperCollider application to enable the mikro

system to be utilized in combination with other systems

• streamed audio from another application using the Jack audio framework1

(particularly for network-streamed audio performances)

The input modules handle routing to analysis modules and Ambisonics spa-

tialization of the audio source output which is always mixed to the global

output bus. The audio analyzer module consists of machine listening algo-

rithms that extract auditory features from incoming audio streams. Each audio

stream typically originates from a single physical instrument or a microphone

and is processed separately. The incoming audio stream is segmented into

events based on a combination of onset detection and amplitude tracking.

The audiovisual response is generated with a mixture of top-down symbolic

and bottom-up connectionist artificial intelligence based concepts integrated

into the system. The visual response of the system is currently based on an in-

teractive combination of self-organizing neural networks with two- and three-

dimensional continuous cellular automata. Each node in the self-organizing

map of spectral data also behaves as a cell in continuous automata world.

The neural network organizes incoming multidimensional data of spectral co-

efficients into a multi-dimensional map and the best matching unit is assigned

a contrasting value in the cellular automata neighborhood to create moving

patterns in response to the spectral content of the audio input. The neural

1http://jackaudio.org/

http://jackaudio.org/

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 42

network data in combination with the automata behavior is then mapped to

OpenGL drawing parameters of different predefined graphics functions that

are activated according to different mapping strategies.

4.3 Real time audio analysis

Content-based audio feature extraction has been a well-established practice

in the domain of music information retrieval (MIR) research [62]. In order to

represent the musical knowledge, like harmonics, rhythm and timbre, it is nec-

essary to extract meaningful information from audio signals and also reduce

the amount of data for analysis. The mikro machine listening module imple-

ments a number of algorithms in order to extract musical information from the

live audio stream and stores the information as a database of discrete event

objects. The event segmentation algorithm tries to guess the beginning and

end points of an event and stores each new event as an independent entity

in the events database. For each event, the absolute start time, duration,

continuous sampling of amplitude, overall amplitude envelope, frequency and

spectral information are stored. In addition, each event also contains an au-

dio buffer with the recording of the input audio, which can be used for further

analysis or as a source for processed audio response. The event extraction

algorithm combines onset detection and amplitude following. For onset de-

tection, a threshold-based onset detection unit generator [84] is used which

is triggered when the input signal transitions from below to above a given

threshold, which can be determined according to the performance situation.

The onsets in combination with amplitude following determine the duration of

an event. The amplitude follower either falls below the threshold to signify

the end of an event or a new onset trigger is detected. The amplitude fol-

lower also provides values for the overall amplitude envelope of the event.

Pitch unit generator is used to capture the fundamental frequency informa-

tion. Since the mikro system emphasizes the importance of spectral dynamics

in a performance, there are three spectral feature detectors that are used:

MFCC, SpecFlatness and SpecCentroid. Spectral classification is achieved by

integrating data from these unit generators.

The MFCC unit generator calculates a set of Mel-frequency Cepstral Co-

efficients. MFCCs, which were originally employed in automatic speech pro-

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 43

cessing, have been used extensively in music information retrieval as a com-

pressed representation of spectral dynamics, or, to use a more traditional ter-

minology, they can be used to describe the timbre of the input [29] [51]. The

number of coefficients extracted is parametrized in the mikro system and can

be specified for each instance of the analyzer. MFCCs also play an important

role in the automatic composition modules. The coefficients constitute a vital

part of the fitness function in evolutionary computation of synthesis defini-

tions, described in the following chapter, as well as providing the guiding prin-

ciple in the improviser module to pick evolved instruments based on spectral

characteristics. The MFCC data is simultaneously sent to the graphics appli-

cation and used in training a self-organizing neural net which drives the real

time graphics specification. These graphics processes are described later in

this chapter. SpecFlatness outputs a value between 0 and 1 as a reflection of

the noisiness of the input. A high spectral flatness - values closer to 1 - means

the spectrum of the incoming audio has similar amount of power in all spec-

tral bins and sound quality of white noise, while lower values indicate that the

spectral power is concentrated in a small number of bins and the input is closer

to a sine-like sound. The SpecCentroid unit generator calculates the ’centre

of mass’ of the spectrum, returning a frequency value which represents the

weighted mean frequency of the spectrum. The analyzer extracts the values

at a constant rate specified when the process is initialized. The standard rate

used in the performances is 30 sets of values per second, which means that

for an event with a duration of one second, the algorithm stores 600 MFCC

values, and a total of 720 values for all the descriptors. This enables relatively

fine-grained musical analysis of the input in real time without compromising

system performance. The event objects calculate the mean and standard de-

viation values for all the descriptors. In the case of MFCCs, these values are

calculated for each coefficient separately. These averaged values are use-

ful in training musical composition modules on the event level. The values

from the amplitude tracking algorithm are used to obtain an overall amplitude

shape of each event, which can be converted into a SuperCollider Env object

and used as an amplitude envelope in the synthesis process. Similar func-

tionality is implemented for the spectral flatness measures to use dynamic

timbral information in the synthesis process. The amplitude tracking, MFCC

and spectral flatness values in the event database can also be converted into

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 44

a SuperCollider Buffer object and used as multi-dimensional dynamic control

signals for different synthesis parameters. The analyzer automatically records

the audio input into a predefined buffer, from where the audio is copied into

individual events each time an event termination signal is received. Since

the performance duration is not predetermined, the system keeps reallocat-

ing new buffers to record running input until indicated to stop.

Figure 4.1: Analysis visualizer in the mikro system, showing the recorded audio

input waveform (top), amplitude tracking data with onset detection (middle), and

MFCC data (bottom).

The event analyzer also includes a visualization tool shown in Figure 4.1.

The figure visualizes data for an excerpt of eclambone input of about a minute

in duration. The top view in yellow represents the audio waveform. The mid-

dle view shows the amplitude tracking data along the corresponding timeline

plotted as red lines, each line corresponding to a discrete value in the event’s

amplitudes collection. The green divider lines indicate onset detection re-

sults and thus the start time of each event. The onsets and therefore the

event detection depends on the threshold parameter. The system was ini-

tially tested with Satoshi Shiraishi’s custom timbre instrument e-Clambone,

which produces sound in a very specific and idiosyncratic way. Some of the

design decisions were influenced by these unique characteristics and had to

be readjusted later for other instruments, like percussion or human voice. For

example, the onset threshold for the e-Clambone instrument has to be quite

low, because of the wide range in amplitude the instrument is capable of pro-

ducing. Setting the threshold value too high would make the system ignore

some of the more delicate output and the representation would become less

accurate. When using the system with percussion or voice and electronics, the

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 45

threshold can be less sensitive as the output from these setups has an over-

all louder presence while the volume range is much smaller. The lower view

shows the time progression of 8 mel-frequency cepstral coefficients. It reveals

the evolution of spectral dynamics over the course of the audio timeline that

the e-Clambone is capable of producing.

4.4 Automating the composition process

The objective for the composition module is to afford flexibility to different mu-

sical contexts while keeping the implementation relatively light-weight, modu-

lar, extensible and easy to deploy in rehearsals and performances. The audio

analysis events database from the analyzer is accessed from this module and

used in the composition process in response to the live performance. The

live input processing functions are complex unit generator graphs which have

been developed over years of performances, rehearsals and coding trial end

error. These processes require time to develop the sonic output and, there-

fore, are designed to be activated for relatively longer durations, in a range

starting from 5 to 30 seconds or more at a time. Some of these functions are

internally reactive to the input by means of machine listening to changes in

input audio. The activation or fade in and termination or fade out of these pro-

cesses is determined by statistical analysis of the audio input over meso time

scales equivalent to the compositional level of musical phrases or passages.

There are a number of different scenarios that can be specified for activa-

tion and termination of these functions during a performance, depending on

the nature of the input. The strategies employed with e-CLAMBONE involved

training the system using a simple supervised learning method to recognize

different patterns of spectral dynamics corresponding to the performer acti-

vating different modes of the instrument by pressing one of its five sensors.

Since there are 5 sensors that turn processes on and off, there can be a total

of 32 possible combinations, enabling this many different modes on the in-

strument. During the training phase, the mode recognizer algorithm created

a dictionary of associations in which each of the 32 sensor combinations was

connected to running mean and standard deviation values of MFCC analysis

of e-CLAMBONE. The audio input was presented in the form of recorded audio

samples, which were labelled with the corresponding combination of sensor

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 46

activity. These samples were specifically recorded and labelled for the pur-

pose of training the algorithm. A total of 92 samples representative of the

wide range of spectral dynamics of the instrument were analyzed in a ran-

dom order until each combination had accumulated at least 1000 hits. Hits

were counted as onset triggers. The dictionary enables mapping the spectral

output of the instrument to rules which determine activation and termination

of synthesis processes. The live input analysis during a performance can be

used as a lookup vector in the dictionary. The algorithm is very simple, but

achieves relatively accurate detection rates, comprehensively outperforming

more complex solutions such as a neural network approach to the same detec-

tion problem. The detection rate of the simple dictionary recognizer algorithm

turned out to remain constant between 75 - 85% (different modes possessing

varying degrees of recognizability), while the neural net implementation, for

example, achieved a maximum of 70% accuracy. The error of accuracy may

perhaps be undesirable in scientific or commercial applications, however, in

the sportive spirit of glitch art, which in its very essence promotes the explo-

ration and exploitation of errors in the machinery, the system training errors

can be employed in the performance as objects of artistic endeavor and curios-

ity. An illustrative example of such an approach underlies the development of

mikro:skism, a performance environment in which the performer is not totally

in control due to system training errors and a schism is intentionally intro-

duced into the human-machine relationship for exploration in a live concert

situation. Further discussion of this uneasy relationship is presented in the

section dedicated to this particular implementation later in this chapter.

Sample-based synthesis functions are used for short musical events, which

derive their parameters like playback rate or time-stretch factor, amplitude,

duration and amplitude envelope shape from the event database of the ana-

lyzer module as well as preloaded training data. The composer module uses

Markov sets to store pre-analyzed musical data in order to generate short mu-

sical phrases as Markov chains in response to the live input. A Markov set

in this context is a lookup dictionary of transition probability weights, which

are calculated according to observations extracted during the training phase.

Markov sets can be prepared with analysis data from varying sources. The

mikro system uses an audio analysis library functionality, which provides dif-

ferent data sets depending on the type of instrument and other musical con-

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 47

texts. It involves analyzing desired musical works as training examples for the

system and storing the results in the equivalent format to the live input anal-

ysis. There are Markov sets containing transition probabilities for 4 musically

significant parameters in the analysis:

• event duration

• mean event amplitude

• mean event fundamental frequency

• inter-event interval duration

Due to the potential complexity and variability of amplitude envelope shapes,

the envelopes are stored in a Fuzzy set and associated with the duration of

the corresponding event. A Fuzzy set in set theory is known as a set whose

elements have degrees of membership in order to be able to introduce more

flexible assessment of membership [97]. In SuperCollider, a Fuzzy set is es-

sentially a dictionary which associates objects with identical keys, in this case

envelopes to event durations, keeps these in a set and, when queried, returns

one of them by random selection.

The composer module provides an interface for dynamic addition and re-

moval of musical phrase generator processes. The rules for process activation

are defined in the composer. There is a limit on the maximum number of

parallel processes allowed in order to keep the generation of new synthesis

processes under control. An example of a process that is defined for a per-

formance is shown in the listing below. Each process is passed the composer

and the analyzer objects as parameters. As discussed above, the processes

are activated in response to onset detection in the live audio input. Once ac-

tivated, this particular process first determines that the synthesis definition

called “bufplay” from the definitions library is to be used. Then it accesses

the last two events from the live audio input events database and uses these

to initialize a Markov chain for the parameters of the sample player. The en-

velope is picked randomly from the Fuzzy set of envelopes associated with

the duration of the last event, the duration is the duration of the same event,

the playback rate is the ratio of the fundamental frequencies of the last two

events, the amplitude is the peak amplitude or maximum value in the ampli-

tude tracking data of the event, and the interval until the next event is the

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 48

time between the two events. Then a musical phrase consisting of 4, 8, 12 or

16 events is generated, as the number determined by a random selection be-

tween 4 and 16, which is then rounded to the nearest multiple of 4. Each time

the process generates a new synthesis event, a new set of values is queried

from the Markov sets to be used in the next event, based on the respective

probability weights.

{arg composer, analyzer;

var srcA, srcB, current, def;

def = composer.descLib[’bufplay’];

#srcB, srcA = analyzer.events.reverse.keep(2);

current = (

xenv: composer.envSet[srcB.duration.round(composer.timeQuant)],

xdur: srcB.duration.round(composer.timeQuant).clip(0.0625, 4.0),

xfrq: composer.roundFreq(srcA.meanFreq) /

composer.roundFreq(srcB.meanFreq),

xamp: srcB.peakAmp.round(composer.roundAmp),

xtime: abs(srcB.start -

srcA.start).round(composer.timeQuant).clip(0.0625, 4.0),

);

Tdef(’proc00’, {

rrand(4, 16).round(4).do({

var params, stream;

stream = Pbrown(0.0, 1.0, 1/11, inf).asStream;

params = [’out’, ~mikro.decoder.bus, ’in’, ~mikro.input.bus,

’dur’, current.xdur ? 0.5, ’buf’, srcB.buffer, ’rate’,

current.xfrq ? 1.0, ’amp’, current.xamp ? 1.0] ++

def.metadata.specs.collect(_.map(stream.next)).asKeyValuePairs;

Synth.tail(~mikro.group, def.name, params).setn(’env’,

current.xenv);

(current.xtime ? 0.25).wait;

current = (

xenv: composer.envSet[current.xdur],

xdur: (composer.durChain.next(current.xdur) ?

0.5).clip(0.0625, 4.0),

xfrq: composer.intChain.next(current.xfrq),

xamp: composer.ampChain.next(current.xamp),

xtime: (composer.timeChain.next(current.xtime) ?

0.5).clip(0.0625, 4.0)

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 49

);

});

Tdef(’proc00’).clear;

});

Tdef(’proc00’).play;

}

All parameter values must be quantized in some way in order to limit the

number of eventual weight values. The time quanitzation value is applied

in the case of amplitude envelopes to the associated duration as well as the

duration of the event. The modifiable value is by default equal to 1/(26).

The fundamental frequency values are by default rounded to 24-step equal

temperament scale values, but any division by equal steps is possible. The

rounded frequency can be calculated as

ƒ1 = 2
[og2(

ƒ0
ƒr
)d]

d ƒr

where ƒ1 is the rounded frequency value, ƒ0 is the input frequency from the

analysis, ƒr is the reference frequency, and d is number of octave division

steps.

A similar approach is utilized for the synthesis functions resulting from

evolutionary algorithms. The functions are stored in the database concur-

rently with the analysis data, including mean and standard deviation values

for MFCCs, spectral flatness, fundamental frequency, and amplitude. This

enables the database to be queried based on the statistics and used in the

composition process. The way these functions are used in the real time envi-

ronment involves classifying spectral analysis data with a k-means clustering

algorithm in order to optimize matching the input analysis statistics to the

closest match in the instrument database. The composition module handles

the event creation in much the same way as the sample-based synthesizers

by using parallel Markov sets of parameters. The major difference is the way

instruments are selected for each event in a phrase. The instruments are

loaded into a predefined number of clusters - by default there are 64 - based

on the MFCC values from the analysis. The clustering algorithm assigns each

instrument a cluster index based on the nearest mean of a prototype cluster.

Once each instrument has been associated with a cluster, the selection pro-

cess can be initiated by selecting an event from the live input event database,

for example, the most recent addition. This event’s MFCC data is then queried

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 50

and the result used to match the closest cluster prototype, defining the clus-

ter from which the instrument is selected. Then it is either picked randomly

or another matching process determines the instrument to be used based on

the MFCC data. This approach significantly reduces the computational over-

head that would otherwise be required to match the input MFCC vector of 20

values against a database of over 2000 each time a new event is generated.

The musical phrases are composed with parallel Markov sets. The source of

each phrase is analysis data from a selected live event and the parameters for

each synthesizer are determined by querying the sets that have been trained

with sample musical event data. There is an additional Markov set for MFCC

data clusters. The system classifies the MFCC analysis vectors of the musical

example database based on the MFCC clusters. So for each new event that

is generated, the system can pick which cluster to use for the selection of

the instrument. There are a number of operations that are used to vary the

order in which the generated phrases are played. The prepared sequences of

events can be played once or be repeated in the same order. They can also

be repeated in reverse or in randomly scrambled order as well as rotated in

either direction.

4.5 Interactive computer graphics

The graphics are based on three autonomous computational systems - cellular

automata, self-organizing maps and swarm intelligence - which are reactive to

the audio analysis data communicated to the graphics application. The three

systems form an interactive environment, influencing and interacting with

each other. The cellular automata world, similar to the f(x) system discussed

in chapter 3, follows continuous automata rules of averaging neighbor states,

which are floating point values between 0 and 1. A self-organizing map (SOM)

is a type of artificial neural network proposed by Teuvo Kohonen [49] that is

trained with sample data in form of input vectors using unsupervised learning.

Once the map is trained, it can be used to classify input vectors. A SOM can

consists of neurons or nodes arranged most commonly in 2 or 3-dimensional

matrices. Each node represents a vector of weight values. The map is typically

initiated by vectors containing random values. SOMs are first trained with ex-

ample data until the specified training duration is reached. Training duration is

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 51

defined as number of iterations of sample data that the map is presented. For

each iteration of new input vector D, the system proceeds through 2 phases:

• Find the similarity of D for each node in the map using Euclidean distance

formula, where d is the distance and N the size of the vectors, W is the node

weight vector and v is the input vector:

d=

√

√

√

√

N
∑

=1

(W−D)2

retaining the smallest distance value which is called the Best Matching Unit

(BMU)

• For all nodes within a defined radius of the BMU, update the node’s weight

vector scaled by the distance from the BMU:

W(s+1) =Ws+((Ds−Ws)α)

where W(s+1) is the weight vector at next iteration, Ws is current weight

vector, Ds is input of the current iteration, α is the learning rate and l is

influence factor calculated by

 = exp(
d

−2r2
)

where d is the Pythagorean distance from the BMU calculated as

d=
Æ

(BMU−N)2+(BMUy−Ny)2

and r is the radius of influence from the BMU defined as

r =

p
WS

2
exp(

λ

−tc
)

where WS is the total number of nodes in the map, λ is the number of

iterations the system has executed, and tc is a time constant defined as

tc =
λm

log
p
WS
2

Once the iteration is complete, the SOM can be used for classification of in-

put vectors, which in the mikro system originate from live signal processing

analysis. The map defines a location of each input vector using the BMU iden-

tification step in the multi-dimensional space (either 2D or 3D). In the mikro

system the SOM is trained in real time during the performance with MFCC data

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 52

vectors received from the audio analysis of the live input. Figure 4.2 visualizes

the spectral analysis data organized in a two-dimensional SOM that contains

2000 nodes. The first four MFCC coefficients of each node are scaled to a

range of values between 0 and 1 and mapped to color specification of the

squares as RGB and alpha values, the size of the squares is determined by

averaging the next four MFCC values and the background color is determined

by spectral flatness i.e. the lighter the background the noisier the signal.

Figure 4.2: A graphical representation of a two-dimensional SOM of MFCC data from

a performance with e-CLAMBONE.

The SOM and the automata world are linked so that each cell in the au-

tomata world is connected to a node in the SOM. The BMU identification sets

the corresponding cell state in the automata world either to 1.0 or to contrast

the mean state value in the cell neighborhood. This functions as a distur-

bance in the system, affecting the patterns of automata behavior. Since the

automata world is defined in terms of periodic boundary conditions, different

rules of pattern symmetry can be explored in this way. The affected cell can

be bound to other cells in the matrix by mirroring its location along any of the

axes. The affected cells are determined depending on the symmetry setting.

In two-dimensional worlds there are 5 possible symmetry settings:

• No symmetry, only the BMUy cell is affected

• Symmetry along the X axis, the BMUy and Cn−BMU cell affected

• Symmetry along the Y axis, the BMUy and Cny−BMUy cell affected

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 53

• Diagonal symmetry along both X and Y axes, the BMUy and Cny−BMUy cell

affected

• All of the above combined

In three-dimensional worlds the number of symmetries grows to 12. All possi-

ble combinations of these are left at this point to the reader as a thought ex-

ercise. The real time graphics are implemented in the Open Graphics Library

(OpenGL) as pattern functions which are activated and deactivated according

to predefined rules. The pattern functions make use of the automata cell state

and SOM weight vector and BMU values. There are many ways to map the

computational behavior of these systems to graphics drawing functions and

new ways are being continuously researched and implemented. For example,

one method to harness the connectedness of SOM and CA is to draw only cells

that are within a certain radius from the map’s current BMU, which reflects the

location of the node that most closely corresponds to the analysis data of live

input. This kind of a pattern from a recording of mikro:skism is shown in Fig-

Figure 4.3: Overlappingmikro graphics pattern functions, demonstrating the inter-

action between automata and SOM worlds.

ure 4.3: there are 2 overlapping patterns activated simultaneously. The spher-

ical structure composed of 3D box-shaped objects represent the automata

cells, the sizes of which are mapped to respective cell states. The entire struc-

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 54

ture follows the location of the BMU and therefore moves around depending

on the input analysis. The pattern also uses a OpenGL shader with lighting

which is responsive to the input amplitude in a binary manner, i.e. rounded

to the nearest integer, 0 or 1, which creates a strobe-like effect. The other

pattern maps automata cell state values to trigonometric drawing functions

that change the location of each cell within its local space in a circular motion

and also draw extended lines from that moving center reaching out at differ-

ent angles so they overlap with adjacent cells, which creates a dynamic and

complex mesh.

The third computational system in the graphics application is derived from

mathematical models of swarm behavior, particularly from the boids algorithm

by Craig Reynolds [71]. Similarly to cellular automata, the overall system be-

havior exhibits emergent complex behavior, which arises from individual in-

teracting agents following simple local rules. In the boids world, however, the

agents are not fixed to a location, but move around at a velocity determined

by three rules:

• Cohesion forces the agents to move towards the mean position of the

swarm

• Alignment steers the agents in the direction of the mean direction of the

swarm

• Separation repels the agents from each other when their proximity falls

below a certain threshold

In the mikro system, the boid algorithm can react to the live audio input by

mapping live audio analysis data to the different parameters that control the

behavior of the boids algorithm. It is possible to force the boids to follow the

location of the BMU of the SOM world. Another option is to map the ampli-

tude following statistics to the alignment parameter, which controls how close

together the agents tend to be. In this case, louder amplitudes increase the

alignment parameter and allow boids to move away from each other and oc-

cupy a larger space, which can be utilized in the drawing functions. Figure 4.4

shows a snapshot of the 3D boids algorithm visualized with the help of OpenGL

shaders and cube-mapping methods. Each boid can be a vertex of a complex,

dynamic, three-dimensional object and simultaneously rendered as a cube-

mapped sphere.

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 55

Figure 4.4: 3D graphics based on the boids algorithm.

4.6 Discussion

mikro system has naturally evolved during a number of collaborations with

different musicians. The initial research goal was to investigate the degree

to which control of the compositional process can be delegated to machine

agents. There are four implementations that are all based on similar princi-

ples: the systems are driven by an instrumental performance which is ana-

lyzed in real time and an audiovisual response is generated allowing progres-

sively larger degrees of autonomous agency.

mikro:strukt is a collaboration with Japanese instrument designer and per-

former Satoshi Shiraishi. Satoshi’s performance on the eCLAMBONE provides

an acoustic source for the piece. eCLAMBONE is a custom-built, fully inte-

grated electronic instrument that consists of an aerophone supplied with hap-

tic sensors and digital signal processing algorithms.

The eCLAMBONE was built with the specific interest in timbre manipula-

tion by an acoustic instrumentalist to drive a sound synthesis engine [79].

The mikro:strukt environment incorporates a number fo machine listening pro-

cesses that trigger changes in synthesizers and control synthesis parameters,

but the overall structure relies on the intervention of a programmer to activate

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 56

Figure 4.5: The custom-built electronic instrument eCLAMBONE by Satoshi Shiraishi.

and deactivate larger sections of the composition during performances. The

machine learning methods are in this instance used to aid the programmer in

the decision making process as well as to implement complex parameter con-

trol on micro time level that would otherwise be inaccessible in the real time

setting of improvisatory performances. The overall structure of each compo-

sition is normally reached through discussions between the peformer and the

programmer prior to a performance. This approach continues and extends an

established practice of collaboration in which an immersive audiovisual envi-

ronment is the result of improvisation within premeditated boundaries.

mikro:skism, the second in series of collaborative audiovisual performances

involving Satoshi Shiraishi’s improvisation on eCLAMBONE, introduces a higher

level of automation to the compositional process. It attempts to concentrate

on and, in effect, magnify the conflicts and disparities arising from human-

machine interactions in parallel with tensions within a distributed audiovisual

composition system. There are 5 buttons on the eCLAMBONE each associated

with a mode of timbral analysis and resynthesis that can be activated in par-

allel. The mikro:skism system guesses the configuration of buttons pressed at

any point in the piece according to a spectral analysis statistical map that has

been created during the training phase before the performance. The statistical

map links a set of mean MFCC values to each of the 32 possible configurations.

Each button is mapped to an audiovisual entity that is activated when the sys-

tem guesses the configuration, while the mappings change over the duration

of the piece from one section to another. The performer is not otherwise no-

tified of the changes until they happen and the change can be detected from

the behavior of the system. There is always an error in the training procedure,

so that the system is not always correct, 10-15% of the time it guesses wrong,

which creates a tension between the expectations of the performer and the

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 57

response of the system. The role of the programmer is minimal during the

performances. Decisions about overall compositional structure have been im-

plemented into the system previously without informing the performer. The

musical expression of eCLAMBONE is transformed into an immersive environ-

ment that can be controlled by the performer to a certain extent, limited by

the unpredictability of the system.

Figure 4.6: Performing mikro:strukt with Satoshi Shiraishi at NIME 2011 in Oslo,

Norway.

mikro:geen has been created to act as an autonomous improviser in a musi-

cal performance with human musicians or other artificially intelligent agents.

The system uses the database of gene expression synthesis functions (de-

scribed in Chapter 6) in combination with a library of musical analysis exam-

ples from a wide stylistic range of artists, performers an composers including

Andrea Young, Satoshi Shiraishi, Yota Morimoto, Keiichiro Shibuya, Joel Ryan

and Evan Parker, Pan Sonic, Yasunao Tone, Evala, Frances-Marie Uitti, Gianc-

into Scelsi, Konono No 1, Agostino Di Scipio, Pomassl, The Terminal Sound Sys-

tem, Gustafsson & Stackenäs and many others. The gene expression sythesis

functions are selected based on a clustering algorithm that classifies hundreds

of candidate functions into a predetermined number of categories according to

20 MFCC values. The parameters for event duration and amplitude envelope

shape for each function are determined by stochastic transition rules derived

from statistical analysis of musical features.

CHAPTER 4. TOWARDS AUTONOMOUS SYSTEMS: MIKRO 58

bocca/mikro is an audiovisual improvisatory collaboration with Canadian

singer and composer Andrea Young. In this performance, the worlds of vo-

cal experimentation, interactive machines and audiovisual environments col-

lide as the catalyzing vocal input of bocca provides a source for the mikro

system and the ensuing audiovisual environment, exploring the cultural and

technological connotations of the schism between the natural and the artifi-

cial. bocca is an improvisation for voice and voice-controlled electronics which

uses vocal feature extraction to control variables in algorithmic synthesizers.

The combination of amplified voice morphing into voice-controlled machine

noise extends the human voice, infuses electronics with the vocal envelopes

and blurs the boundaries between voice and electronic sound. The implemen-

tation of mikro for bocca/mikro combines features from the previous three

approaches. The system “learns” about musical structure from the incom-

ing vocal improvisation as well as from other musical examples with the aid

of various machine listening and learning algorithms like mikro:geen, while

simulatenously processing and expanding the incoming audio stream directly

using more reflexive synthesis processes from mikro:strukt.

5 | Live coding: sparsematrix

Writing computer code to create audiovisuals in real time is becoming an estab-

lished form of expression in the realm of electronic arts. The practice introduces

the spontaneity of improvisation into the realm of algorithmic composition and

enables the performers to make computational decisions live on stage. This

chapter proposes an approach to audiovisual live coding based on conversions

of traditional rhythm patterns to sparse representations which are used as the

raw material for time structuring the performance. The visual component of

the performance employs reactive multi-dimensional outer totalistic cellular au-

tomata combined with a self-organizing map of spectral descriptors of real time

audio analysis as the framework upon which computer graphics are built.

5.1 Introduction

sparsematrix is a computational experiment in the form of an audiovisual per-

formance that explores computation as an aesthetic substrate for human cul-

ture. The dominant principle here is the assumption that all processes in na-

ture are in essence algorithmic, in fact, all general physical processes are dom-

inated by simple algorithmic rules. The algorithm becomes the aesthetic in the

process of the human performer interacting with the machine by instructing it

in code. Transcriptions of traditional rhythmic patterns, which have been sub-

jected to conditions of sparsity, provide the raw structuring material. Sparse

matrix is a mathematical idea applied here to dense rhythmic patterns in or-

der to discover the skeletal structures of rhythm loops form various african

traditions arguably one of the most enduring of cultural practices - filling the

event cycles primarily with silences and turning the attention to pure percep-

tion of time stripped of the baggage of cultural connotations. Perception is

inescapably multimodal and audiovisual cognition is a hard-wired reality we

may at times wish to inhibit through specialization, nonetheless a reality we

invariably inhabit. The visual component of the performance employs another

59

CHAPTER 5. LIVE CODING: SPARSEMATRIX 60

type of a simple artificial life algorithm from the theory of computation - that

of multi-dimensional outer totalistic cellular automata which is essentially a

model of complex behavior. The automata receive data flow from audio analy-

sis of the rhythm loops in the form of onset triggers and spectral analysis and

respond in spontaneous patterns of computer graphics which the live cod-

ing can only influence to a point, establishing an heterogeneous relationship

between performer and this multimodal instrument, rather than the more tra-

ditional idea of one-directional flow of control.

5.2 Sparse matrices of musical structure

The central compositional concept in the system is the sparse representa-

tion of traditional rhythms in order to capture their basic time structure. This

approach was partly inspired by Carsten Nicolai’s - also known by the artist

name Alva Noto - sonic experiments in which he “tried to strip bare pop mu-

sic standards to a minimum level of rhythmic structure” [23], that produced

remarkable results in terms of musical form, that could be described as rich

in their sparseness. While Nicolai’s experiments may imply an intuitive and

trial-and-error type of approach, the concepts developed in this system rely on

computational analysis and simple combinatorics. The algorithm implemented

is not optimal and often does not find a solution that satisfies the constraints,

however, it does preserve the most essential structure of the patterns, which

can be used in the performance as a structuring element. African rhythm pat-

terns were chosen as the raw material for their rhythmic complexity, as well

as the rich and ancient cultural tradition, which have been historically often

ignored in musicological research. The rhythms have been transcribed from

the Djembe Font Notation [42] to a SuperCollider dictionary object.

Figure 5.1 shows the rhythm patterns in box notation before (on the left)

and after (on the right) the sparse algorithm is applied. The box notation

was originally developed by Philip Harland and used to notate polyrhythms in

African music [87]. The example is based on a rhythm pattern called Yole from

a library of African rhythms which have been transcribed from the original

notation for 5 instruments: 3 djembe drums, 1 bass drum and a bell. Each

of the djembe drums is represented in the notation as producing 3 distinct

sounds: bass, tone and slap, each of which in turn is considered a different

CHAPTER 5. LIVE CODING: SPARSEMATRIX 61

instrument in the algorithm. This is how we end up with 11 parallel patterns:

the Yole pattern specifies 3 distinct sounds for the first 2 djembes and just 2

distinct sounds for the third djembe and the bass, while the bell sound does not

vary and is represented as the 11th instrument. The sparse representation is

achieved by applying simple constraints to the matrix of events, not allowing

an event to share the same row or column with another event. In order to

preserve the most salient features of the pattern, the importance of each time

unit is determined by the number of concurrent events in the original pattern.

The algorithm then needs to find the best compromise between preserving

the most important time units and keeping all instruments represented in the

sparse matrix. This is a problem of combinatorial mathematics, somewhat

similar to the nine queens problem, and presently the most optimal solutions

for any of the patterns in the library have not been established. Furthermore,

there is no clear single solution, as the constraints can be interpreted in a

number of different ways.

Figure 5.1: Application of sparsity rules to a rhythm pattern shown in box notation.

Figure 5.2 offers an alternative representation has been developed based

on geometric representations of cyclic rhythms previously used in ethnomusi-

cological research [87] [86]. The same Yole pattern is represented in Figure 5.2

in a cyclic wheel-like arrangement. The circular wedge patterns represent the

5 different instruments, while the different shades of colour fills designate the

distinct sounds as discussed above. For example, the innermost circle repre-

sents the bell instrument pattern and is the same as row 11 in the box notation

in Figure 5.1. The next circle represents the bass instrument pattern from rows

9 and 10, and and the 3 outer circles designate the 3 djembe drum patterns.

The main benefit of a circular representation is that it allows for an alterna-

tive conceptualization of rhythm patterns to the traditional linear left-to-right

CHAPTER 5. LIVE CODING: SPARSEMATRIX 62

(a) Original Yole pattern (b) Yole pattern after application of sparsity

rules

Figure 5.2: Cyclic representation of sparsity rules

grid layout derived from Western music notation. The rhythm cycles do not

necessarily have a definite beginning or end and this can be varied in the al-

gorithm, inspired by the circularity of rhythm perception in traditional African

drumming [5].

The algorithm in the current implementation solves the problem in the most

simple terms by counting events in both dimensions for each instrument and

time step and then fills the new matrix in one iteration without trying to solve

the problem recursively. In this form, there are four preference combinations

given the two dimensions of the matrix, which do not necessarily produce an

optimal solution. It is not known whether the given constraints allow for op-

timal solutions for all the patterns included in the library. The solution would

be somewhat similar to the eight rook polynomial in combinatorial mathe-

matics, which investigates the number of ways in which to place rooks on a

chessboard of a given size so that no two rooks are in the same row or col-

umn. However, there are some crucial differences: the rhythm patterns have

variable sizes in both dimensions and even within each pattern individually,

there are always more time slots than instruments, so the symmetry of the

chessboard is lost. Moreover, there are constraints on specific locations of the

rhythm events and the importance requirements of time slots. This probably

means that each rhythm pattern has a set of unique solutions and the compar-

ison can at best serve as a general guiding principle to finding the appropriate

CHAPTER 5. LIVE CODING: SPARSEMATRIX 63

algorithmic solution to the problem.

Incorporating the described library of sparse rhythmic patterns into a live

coding performance exposes a fundamental dilemma within the relatively new

and loosely defined practice. When considering a live coding environment as a

musical performance tool, a decision has to be made about the granularity of

the compositional building blocks to be used to find a right balance between

prepared and real time coding. Since there are many levels to composing

music with computers - including encapsulating common signal processing

algorithms, combining these into synthesis algorithms, using the synthesis al-

gorithms as building blocks for longer musical phrases and so on - the level of

granularity largely depends on the compositional goals and the performance

context. The sparsematrix system already presumes certain musical struc-

tures and concepts and therefore does not fit into the category of idealistic

“pure” live coding environments. However it has been developed with con-

sideration for flexibility on different levels of compositional structure, making

it possible to select the balance between predefined and spontaneous on as

many levels as possible, depending on the context. But before we can proceed

further with the discussion of the musical concerns, let us for a moment delve

briefly into the visual domain.

5.3 Outer totalistic automata for computer graphics

The graphics in the sparsematrix environment are based on another complex

computational system of cellular automata known as outer totalistic cellu-

lar automata. In Chapter 3, the fundamental principles of cellular automata

were introduced and continuous automata rules were discussed in more detail.

Outer totalistic rules belong to the category of discrete-state automata and are

a subset of what are known as totalistic rules. Totalistic rules are defined in

terms of only the total or average of the values of the cells in a neighborhood,

including the cell itself, and not the exact configuration as is the case with

1-dimensional automata frequently used as examples. Outer totalistic rules

consider the center cell state separately from the outer total, i.e. the total of

the neighborhood. The seemingly most popular of all cellular automata rules,

John Conway’s Game of Life, is a good example of an outer-totalistic rule. In

CHAPTER 5. LIVE CODING: SPARSEMATRIX 64

the context of calculating rule space for the life-like totalistic rules using

N= k1+(k−1)(r+1)

which is a derivative of the familiar equation from Chapter 3, taking into ac-

count a significant reduction in the rule space. N is the number of possible

rules, k is number of discrete states, and r is neighborhood size, and consid-

ering, that, in three dimensions, there are 26 neighbors in a Moore neighbor-

hood, which means r = 26 and a number of discrete states k = 2, we get

N= 254 = 1.8∗1016

or, in other words, an unimaginably vast rule space, which means we are far

from any immediate danger of running out of behaviors to explore. In fact,

the space is far too vast for any computational method to have a chance to

find anything workable in a live performance situation, therefore, a library

of life-like rules from the internet and literature has been compiled, which has

been extended during development, experimentation and rehearsing. Another

feature built into the rule definitions is the option to add decay when defining a

rule, inspired by the Generations rule family from the MCell automata lexicon

[93]. Decay means when a cell “dies”, it does not immediately switch to state

0, but goes through a number of discrete intermediate steps before reaching

state 0. The rules are initialized by defining 3 parameters:

• An array of totals of neighborhood cells in state 1 that cause the center cell

to transition from 0 to 1 or “birth” rules. These are only applicable if the

center cell is in state 0.

• An array of totals of neighborhood cells in state 1 that maintain the center

cell’s state 1 or “survival” rules. These are only applicable if center cell is in

state 1. If the array does not contain the total, then the center cell’s state

transitions from 1 to 0.

• the number of intermediate steps when the cell transitions from 1 to 0 or

“decays”.

As an example we can define the Game of Life rule with these parameters.

The MathWorld online resource defines the rules for the Game of Life [90] as:

1. Death: if the count is less than 2 or greater than 3, the current cell is

switched off.

CHAPTER 5. LIVE CODING: SPARSEMATRIX 65

2. Survival: if (a) the count is exactly 2, or (b) the count is exactly 3 and the

current cell is on, the current cell is left unchanged.

3. Birth: if the current cell is off and the count is exactly 3, the current cell is

switched on.

The following SuperCollider code sends a rule initialization command to the

graphics application to invoke the Game of Life rule:

~graphics.sendGenRule([3],[2,3],2);

However, as already suggested, the graphics application enables exploration

of a much vaster rule space that allows roaming far beyond the tiny familiar

confines of the Game of Life. The following code snippet, for example, initial-

izes a more complex rule with a 16 step decay that produces very different

dynamics in either 2D or 3D depending on the definition of dimensionality

when the application is set up:

~graphics.sendGenRule([4,6,8],[3,5,7,9],16);

In order to generate patterns of behavior, an initial configuration of cells has

to be specified and this can be done in many different ways. Similarly to the

mikro graphics system, the cells are associated with a Self-Organizing Map

(SOM) of live input analysis data and each time the Best Matching Unit (BMU)

is determined, the corresponding cell in the automata world is activated, i.e.

its state is set to 1. The same symmetry settings are also applicable here,

however, due to the radically different nature of the rules, the resulting be-

havior is also very different. Figure 5.3 shows a screenshot of the graphics

application computing the above defined complex rule. There are 3 OpenGL

graphics patterns activated mapped to visualize system dynamics with differ-

ent parameters. The floating text visible in the figure is the code that has been

evaluated during the session and mapped to the edges of the cube-shaped

world in an attempt to incorporate it into the visual aspect of the performance

while finding alternatives to the wide-spread live coding practice of displaying

the coding environment itself.

CHAPTER 5. LIVE CODING: SPARSEMATRIX 66

Figure 5.3: sparsematrix graphics with the code mapped onto the edges of the

world.

5.4 Exploring the audiovisual space through live cod-

ing

Figure 5.4 shows the top section of a file uses in a live coding session and

serves as a demonstration of different levels of control in sparsematrix. The

system does not produce any sound or graphics until line 15 in the figure (The

line beginning with Pdef(’mx’, Ppar....).play). This is a good illustration of one

of the main obstacles in the beginning of a set that keeps the audience wait-

ing while the performer types away to get the necessary system components

running. The first five lines initialize the Ambisonic decoder, the graphical ap-

plication interface for SuperCollider, the composition module of sparsematrix,

and enables sending any code that is evaluated to the graphics application

from the window that is used for coding. Then the graphics application is

remotely launched and system audio is initialized, including activating the de-

coder, setting up necessary routing infrastructure and spectral analyzer that

sends data to the graphics application for training the SOM. The musical struc-

tures explored are defined by the sparse rhythm patterns that were described

CHAPTER 5. LIVE CODING: SPARSEMATRIX 67

Figure 5.4: Screenshot of the top section of a live coding session file.

earlier in the chapter. Associating sounds - both synthetic and sampled - with

the patterns can be accomplished on two levels of granularity: they can be

added on-the-fly during the coding session or predefined and loaded when ini-

tializing the system. The 1s in each matrix represent sonic events, which can

be assigned any synthesis definition together with amplitude, duration, enve-

lope shape, effects bus, effects amplitude, and rotation parameters along 3

axes for the Ambisonics spatialization. This allows the painstaking build-up of

live coded structures more akin to the idealist approach of “coding everything

from scratch”. Alternatively, entire patterns can be populated with just a sin-

gle line of code encapsulated in the addSynthPattern method call. On line 18

of the example, a pattern is defined to be identified as “r01” with 32 individ-

ual instruments. The instruments are grouped into layers of 4, parameters

of instruments in each layer can be controlled in this way by layer as well as

individually. The next 4 designates the beat division of the pattern, allowing

CHAPTER 5. LIVE CODING: SPARSEMATRIX 68

different patterns to be played at varying intervals. The next three symbols

in square brackets select 3 patterns from the rhythm library to provide the 32

instruments with rhythmic content. This approach accomplishes more com-

plex rhythms to be employed much faster and makes available more layers

to be instantly available for control. The individual patterns are not immedi-

ately audible once added to the main player pattern Pdef(’mx’), but have to

be activated through a special parameter ’active’. This can be achieved by

setting controls of all individual instrument patterns of a global pattern. In

the example, the parameters for all 32 patterns of the “r01” super-pattern are

set stochastically by providing functions to be evaluated for each individual.

Activation is determined by a probability weight choice, where in each case it

is 0.3 or 30% chance that the individual layer is activated. Amplitude for each

is determined within a range of random values between 0.1 and 0.3, while du-

rations for each event are similarly random values between 0.01 and 0.1. At

this point the graphics application is not displaying anything, so the combined

CA/SOM world is initialized with to contain 20 cells/nodes in each dimension

and 8000 in total. The number of MFCCs for the training of the SOM is spec-

ified at initialization. The next step defines a custom outer totalistic rule for

the automata world with “births” occurring if center cell has 4, 6, or 10 “alive”

neighbors and it survives only if there are 2, 3, 4, or 7 neighbors in state 1.

The transition from 1 to 0 lasts for 12 time steps. Next, the viewpoint of the

camera is set to point at the center (0, 0, 0) of the world from coordinates (40,

50, 40) and finally, a visual pattern number 11 is faded in over 10 seconds

until the transparency of the patterns is at maximum 1.0. Due to the large

space of possibilities for musical exploration which is the product of combina-

tions of all available patterns, synthesis processes, and parameters, stochastic

functions for changing parameters are normally used quite liberally in order to

find interesting or satisfying combinations, the system has a number of built-in

memory functions that enable the performer to store and recall certain con-

figurations that may be encountered. Each use defined super-pattern has an

internal memory buffer of parameter settings which can be recalled by an in-

dex into the past. The last line in the example shows the recall function which

returns the super-pattern “r01” to its previous state.

CHAPTER 5. LIVE CODING: SPARSEMATRIX 69

5.5 Discussion

The sparsematrix system grew into its current form through a combination

of different factors, including the use of live coding as fast prototyping dur-

ing the development combined with a certain disillusionment with graphical

user interfaces for live performances. However, live coding is not an aesthetic

to be explored in its own right, but rather affords the necessary means for

exploration of a constrained musical concept-space defined as a collection of

rhythm patterns. The objective here is to investigate the chasm between long-

lasting cultural traditions and the exponential evolution of computational tech-

nology. The user of sparsematrix acts like a mediator between these two con-

trasting domains in a way, associating signal processing algorithms to skeletal

structure matrices. The conditions of sparseness construct models of musi-

cal structure, only preserving the most essential components. Computational

model building is an effective way to explain and understand natural phe-

nomena and is widely used in many academic disciplines. The sparsematrix

algorithm could potentially be used for structural analysis of any kind of music.

At the same time, there is a definite allusion to DJ culture and electronic dance

music as different rhythmic structures are layered and mixed during a perfor-

mance, creating a sound world which is characterized by repetitive electronic

beats and textures.

Figure 5.5: Live coding with Yota Morimoto at the SuperCollider symposium in Lon-

don, April 2012.

CHAPTER 5. LIVE CODING: SPARSEMATRIX 70

The environment has been adapted for a collaborative project with Yota

Morimoto. in this collaboration between two audiovisual artists who explore

the nature of digital environments from different, mutually augmenting per-

spectives, the direct revelation of binary dynamics and rhythms of electronic

circuits through custom-built sonic and visual models is expanded and con-

trasted with complex behavioral patterns of 3-dimensional artificial life and

genetic programming algorithms. The tension and contrast between dense

pulsating textures of binary audiovisual patterns on the one hand and rhyth-

mic patterns originally derived from traditional ethnic music, but then digi-

tized, filtered, and dehumanized in the network of computational agents and

mechanical automata afford the audience a challenging perceptual experi-

ence, simultaneously challenging, disorienting and yet familiar. Figure 5.5

captures a moment from a performance with Yota at the City Arts and Music

Project during a live coding evening of the SuperCollider symposium in Lon-

don in April 2012. Technically the system consists of three computers, two

of which have stereo audio outputs and the third operates as the combined

graphics server with a VGA video output. The graphics application has been

implemented in OpenFrameworks1 C++ libraries and involved porting all the

necessary sparsematrix objects and OpenGL patterns into Yota’s s0 perfor-

mance system.

1http://www.openframeworks.cc

http://www.openframeworks.cc

6 | Gene expression synthesis

Gene expression programming presents an alternative approach in the evolu-

tionary computation paradigm evolving populations of candidate solutions as

valid computer programs that can be used for a potentially wide range of prob-

lem solving tasks, including sound synthesis. This paper proposes Gene Expres-

sion Synthesis (GES) as a method to evolve sound synthesis functions as nested

graphs of unit generators. The functions are encoded into linear chromosomes

according to the principles of gene expression programming and then evolved

by subjecting the functions to genetic operations and evaluating fitness. The

design of the fitness functions involves statistical methods and machine lis-

tening algorithms in an attempt to automate the supervision of the synthesis

process. The specification of synthesis parameters explores the idea of artificial

co-evolution. A parallel population of functions share their fitness values with

their respective synthesis functions for which they compute parameter values,

while being subjected to genetic operations including recombination separately.

6.1 Introduction

Since the first artificial life experiments by Nils A. Barricelli in the 1950s, evolu-

tionary computing has inspired numerous problem solving and model building

techniques including ways to evolve sound synthesis algorithms inspired by

processes of evolution by adaptation and natural selection. In our attempts

to understand these natural algorithmic processes, which are purposeless and

devoid of any intention, but nonetheless directly responsible for all the com-

plexity and intelligent behavior in the natural world, we keep developing in-

creasingly more powerful technology that enables us to model and simulate,

albeit on a vastly simplified scale, the power of cumulative selection. Genetic

algorithms and genetic programming have been firmly established as efficient

and productive stochastic search and optimization methods within the artificial

intelligence field and have been widely used in various disciplines for years.

71

CHAPTER 6. GENE EXPRESSION SYNTHESIS 72

Gene expression programming was introduced as an improvement to the ex-

isting paradigms, proposed by Candida Ferreira in 2001, by combining the

best features of genetic algorithms and genetic programming [34]. The fun-

damental differences between gene expression programming and its prede-

cessors stem from the separation of genotype-phenotype representations and

the modular multigenic structure of the chromosomes. These improvements

account for significant increases to the efficiency of the algorithm for a num-

ber of benchmark problems. The following account describes an experimental

approach to evolving sound generating programs with the proposed princi-

ples and explores creative applications of evolutionary computation which do

not necessarily presume a definite solution to a problem, but rather an open-

ended solution space to be explored for aesthetic experimentation.

6.2 Sound synthesis with evolutionary algorithms

The evolutionary paradigm has been harnessed in a broad spectrum of ap-

plications in the realm of computer music, applying the processes of gene

expression, selection, reproduction and variation on many different levels of

compositional hierarchy. Examples can be drawn throughout all musical time

levels, including producing waveforms directly by expressing binary geno-

types as sample level time functions, evolving synthesis graphs and optimiz-

ing parameters, generating longer time structures and patterns of motives

and phrases, all the way to composing comprehensive artificial environments

inhabited by listening and sound-generating agents. Magnus [53] developed

a modified genetic algorithm that works directly on time-domain waveforms

to produce genetically evolved electroacoustic music. Garcia [37] [38] pro-

posed using evolutionary methods for selecting topological arrangements of

sound synthesis algorithms and for optimizing internal parameters of the func-

tional elements. On the phrase and motive level, there are two classic studies

that paved the way for countless later explorations: John Biles [13] hierarchi-

cal GenJam system that generates on-the-fly jazz chord progressions and the

“sonomorphs" proposed by Gary Lee Nelson [66]. Jon McCormack [56] devel-

oped an interactive installation of evolving agents influenced by the presence

and movement of audience as an example of a comprehensive digital sonic

ecosystem. These are but a few examples of the wide range of applications

CHAPTER 6. GENE EXPRESSION SYNTHESIS 73

for evolutionary algorithms and by no means meant as a review, rather a ran-

dom sampling of applications on different levels of the compositional process.

The abundance of different possibilities explored demonstrates the poten-

tial inherent in evolutionary processes which can exhibit unparalleled effi-

ciency and problem-solving resourcefulness even in a vastly simplified form

as compared to the forces operating in the natural world. The idea of au-

tomating the design process of sound synthesis algorithms using evolutionary

methods has to be considered in the context of computer music specification.

Generating waveforms by the direct principle of sample-by-sample calculation,

for example, does not necessarily require any higher level infrastructure or a

specialized programming environment, however, such an approach may com-

plicate the design of an efficient fitness function, especially considering unsu-

pervised learning methods. Since the Music N programming languages (most

prominently Csound), the encapsulation of sound generating and processing

functions into unit generators has cultivated a modular graph based concept

of synthesis with interconnectable functions as building blocks. Most contem-

porary synthesis software, regardless of whether the interface is graphical or

text-based, operates based on this model. The method presented here has

been implemented in the SuperCollider environment, but is applicable in any

audio programming environment that has adopted the graph based paradigm,

where sound synthesis programs are defined as interconnected unit generator

graphs. These graphs can be evolved by evolutionary programming principles

just like any other computer programs that serve as the solution space for

a particular problem. The question then becomes how to define or, in other

words, encode these graphs in terms of evolutionary programming.

SuperCollider synthesis topologies have previously been studied in the con-

text of evolutionary programming. Dan Stowell [83] presented a genetic algo-

rithm for live audio evolution at the first SuperCollider symposium in Birming-

ham 2006. The system demonstrates how genetic methods can be used in a

live setting, with modifications to the synthesis process occurring in real time.

Fredrik Olofsson [70] released a similar algorithm for sound synthesis through

his personal website. The goal of his project was to create genomes that would

translate into realtime synthesis processes and allow the user to evaluate the

results in a framework of a realtime sequencer. The algorithm is, similarly to

the one described above, based on arrays of floating point values serving as

CHAPTER 6. GENE EXPRESSION SYNTHESIS 74

genomes, which were translated into SuperCollider synthesis definitions.

The SuperCollider implementation of the gene expression programming

proposed here expands on the foundations of the methods described above.

The problem addressed is how to encode SuperCollider unit generator graphs

as populations of chromosomes and evolve these graphs using genetic opera-

tors. In a similar way, there is a constrained selection of unit generators that

are included in the graphs and the translation process produces valid sound

generating functions that are evaluated for fitness. However, the following

description introduces a number of modifications and distinct features in ac-

cordance with the techniques of the gene expression algorithm to introduce

an alternative strategy for evolutionary sound synthesis.

6.3 Components of GES

Gene expression programming (GEP) is a method of evolutionary computation

providing an alternative to the established paradigms of classic genetic algo-

rithms (GA) and genetic programming (GP) [34] [35]. The basic premises that

these methods share in common have been inspired by biological evolution

and attempt to model the natural selection process algorithmically in comput-

ers. All these methods use populations of individuals as potential solutions to a

defined problem, select the individuals from generation to generation accord-

ing to fitness, and propagate genetic variation within the population by ran-

dom initiation and applying genetic operators. The differences between these

algorithms are defined by the nature of individuals. In GAs the individuals

are fixed length strings of numbers (traditionally binary); in GP the individuals

are non-linear tree structures of different sizes and levels of complexity. GEP

combines these approaches by encoding complex expression trees as simple

strings of fixed length to overcome the inherent limitations of the previous

methods. In GEP the genotype and phenotype are expressed as separate en-

tities, the structure of the chromosome allowing to represent any expression

tree which always produces a valid computer program. Another feature to

set GEP apart from its predecessors is the structural design of GEP individuals

that allows encoding multiple genes in a single chromosome. This facilitates

encoding programs of higher complexity and expands the range of problems

that can be solved with evolutionary computing.

CHAPTER 6. GENE EXPRESSION SYNTHESIS 75

GEP consists of two principal components: the genes (genotype) and the

expression trees (the phenotype). The information decoding from chromo-

somes to expression trees is called translation. The genome or chromosome

consists of a linear, symbolic string of fixed length composed of one or more

genes. Each gene is structurally divided into two sections: a head and a tail.

There are two types of smallest units called codons that make up a gene:

functions and terminals. Terminals operate as placeholders for static variables

or arguments to the functions. The head of a gene contains symbols repre-

senting both functions and terminals with the start codon always holding a

function while the tail is entirely made up of terminals. This structure and the

particular rules of translation in GEP ensure that each gene encodes a valid

computer program. Despite the fixed length of the genome, each gene has

the potential to encode for expression trees of different levels of complexity

and nesting. The translation from genotype to phenotype follows a simple,

breadth-first recursive principle: as the codons of a gene are traversed, for

each function encountered, the algorithm reserves a number of following un-

reserved codons as arguments to that function regardless whether they are

functions or terminals. The number of codons reserved depends on the num-

ber of arguments the function encountered requires. In order to illustrate this

process, encoding of a simple phase modulation graph is shown in Figure 6.1.

Such a gene would have to consists of a head section with at least 3 codons

and tail with at least 6. The first 3 positions in the head of this gene contain

the two sine oscillator functions and a terminal in between (the head part of

the gene is indicated by a shaded grey background). The tail is entirely made

up of terminals.

Figure 6.1: Encoding a phase modulation instrument as a single-gene sequence

In the Karva notation [33] this chromosome is represented as a string of

upper and lower case letters with position reference numbers above:

0123456789012
OaObdefghcdbc

The expression tree that emerges form this gene after the translation pro-

CHAPTER 6. GENE EXPRESSION SYNTHESIS 76

cess is shown in Figure 6.2.

Figure 6.2: Decoded expression tree of phase modulation as a graph of sine os-

cillators. Sine oscillators are designated by captial O and terminals by lower case

letters

The first codon designating a sinewave oscillator audio rate method (rep-

resented here by symbol O) - which in SuperCollider language specification

expects four arguments: frequency, phase, mul and add - is translated as

the root node in the expression tree with four branches deriving their values

from codons in positions 1 to 4 in the chromosome string as they get reserved

according to number of arguments into the function. When the algorithm en-

counters a terminal, there is no need to reserve anything and the terminal is

assigned its position in the tree with no further branching, however, when it

comes across another function at position 2 in the head of the gene, it looks

ahead to reserve the next sequence of codons, in this case four arguments

are expected again, therefore terminals at positions 5 to 8 fill these nodes.

Once the algorithm has filled all the function arguments, the process stops

and the rest of the terminals in the tail section of the gene are ignored. This

mechanism allows to define the potential complexity and nesting in the result-

ing computer programs as a function of overall gene length. The expression

tree above translates into a corresponding SuperCollider unit generator graph

function:

{arg a, b, c, d, e, f , g;

SinOsc.ar(a, SinOsc.ar(d, e, f, g), b, c)

}

The size of the gene tail t is calculated based on the size of the head h and

the number of terminals n required by the function with the largest number of

CHAPTER 6. GENE EXPRESSION SYNTHESIS 77

arguments.

t = h(n−1)+1

Another feature that sets GEP apart from other evolutionary algorithms is

the use of multigenic chromosomes. Multigenic chromosomes can be com-

bined together by a function that serves as a linker. In order to provide an

example of a multigenic chromosome, let us consider a slightly more complex

example than the phase modulation graph above. This time there are four

unit generators involved: sine oscillator SinOsc (O), sawtooth wave oscillator

LFSaw (S), random values oscillator with quadratic interpolation LFNoise2 (N)

and band-limited pulse wave generator Pulse (P)1. Since the generator with

largest number of arguments is the sine tone oscillator and the head size re-

mains the same for the time being, the gene size is also the same as above,

but this time the chromosome consists of two genes which are linked together

by mathematical multiplication function in the translation process.

The gene expression tree of this chromosome consists of two independent

sub expression trees corresponding to the multigenic structure: the first one

has a noise generator as the root codon and the second one a sawtooth oscil-

lator. There is an additional linker function, in this case multiplication, which

combines the genes together into a single composite function, as shown in

Figure 6.3

*

N S

O O g P f d a

a d c c d h e c h f b a

Figure 6.3: Expression tree of a multigenic chromosome with multiplication function

serving as a linker.

1All the examples presented in this paper use these four unit generators with their corre-

sponding abbreviations

CHAPTER 6. GENE EXPRESSION SYNTHESIS 78

This expression tree translates to a unit generator graph function in Super-

Collider:

{arg a,b,c,d,e,f,g,h;

LFNoise2.ar(

SinOsc.ar(a,d,c,c),

SinOsc.ar(d,h,e,c),

g) ∗

LFSaw.ar(

Pulse.ar(h, f, b, a),

f , d, a)

}

GEP chromosomes contain several genes each coding for structurally and

functionally unique expression trees. Depending on the problem to be solved,

these sub-trees may be selected individually according to their respective fit-

ness or they may form a more complex multi-subunit expression tree and be

selected according to the fitness of the whole chromosome. The linker be-

tween the individual expression trees can also be any function and depends

on the context of the task at hand. For example, in the above structure, the

multiplication could be substituted by addition to produce additive synthesis

instead of modulation synthesis or any other function that requires two argu-

ments.

6.4 The selection process

The gene expression process does not differ much from that of the classic

genetic algorithms. It begins with the random generation of chromosomes

of a certain number of individuals for the initial population. In the next step,

these chromosomes are translated into computer functions to be executed

and the fitness of each individual is assessed against a set of desired examples

which act as the environment to which the individuals are to be adapted. The

individuals are then selected according to their fitness (their performance in

that particular environment) to reproduce with modification, leaving progeny

with new traits. These new individuals are, in their turn, subjected to the

same developmental process: expression of the genomes, confrontation of

the selection environment, selection, and reproduction with modification. The

CHAPTER 6. GENE EXPRESSION SYNTHESIS 79

process is repeated for a certain number of generations or until a good solution

has been found.

The initial population in gene expression programming is created in the

same way as in other evolutionary computation algorithms either by randomly

populating the gene codons with functions and terminals determined to be

part of the solution space or using pre-existing individuals from a pool of pre-

vious successful runs. In case of random generation of the population, which

is by far the most common method used, the genes are constructed, first, by

randomly selecting a root node from the included function definitions, then

the head codons are filled by randomly selecting a function or a terminal for

each position and, finally, the tail only includes random selections of terminal

values. Although, it is not absolutely necessary to define a root node as a

function according to GEP principles, especially in multigenic chromosomes, it

proves more crucial of a factor in the special case of sound synthesis. Sound

synthesis is a special case for more than one reason and the many constraints

that it imposes on the GEP paradigm will be discussed in detail in the following

sections.

As in any other evolutionary programming model, the most important and

challenging component in GEP is the design of the fitness cases as this is

what drives the fitness of the population and ultimately decides the success

of the problem solving algorithm. In most cases which are trying to find the

single best solution to a particular problem, the goal must be defined clearly

and precisely in order for the system to evolve in the intended direction. Al-

though it may not always be the case, particularly while evolving candidate

solutions for complex, open-ended situations including sound synthesis or mu-

sical phrase composition, a poorly designed fitness function tends to produce

random meaningless results and either converges on an inappropriate solu-

tion or will not converge at all producing consistently large error values in

individuals with the highest fitness.

The selection process commences once each individual in the population

has been assigned a fitness value. The purpose of this phase of the algorithm

is to propagate the fittest solutions to the following generation. Again, there

are a number of different methods by which to select the individuals, stochas-

tic and deterministic, however in the long run it makes little difference which

one is used as long as the best traits of the current population are preserved in

CHAPTER 6. GENE EXPRESSION SYNTHESIS 80

the new population. The preferred method in GEP is stochastic, which entails

assigning each chromosome in the population a probability weight value pro-

portional to its relative fitness. This may mean that the fittest individual may

not always survive the selection process while mediocre individuals might be

selected.

6.5 Genetic operators

The selection process has a tendency to converge towards a single high scor-

ing solution and, without genetic operators, would rapidly get stuck in a lo-

cal optimum. Therefore it is essential to maintain genetic diversity, which

is mainly achieved by several modifications introduced during the replication

process of the genomes. There are a variety of genetic operators in GEP di-

vided into three main categories: mutation, transposition, recombination.

Mutation entails modifying a single value in a randomly chosen position

and can occur anywhere in the chromosome. However, the structural organi-

zation of the chromosome must be preserved to ensure that when expressed

the individual still produces a valid program. This means that the root can

only be replaced by another function, any codon in the head section of the

chromosome can be substituted by a function or a terminal and only terminals

are allowed as replacements in the tail section. Mutations of a single codon

can have a dramatic effect on the phenotype a chromosome is encoding, es-

pecially if it occurs in the head section. The following Karva notation strings

display a mutated chromosome before and after the mutation, in which a ter-

minal that occurs in position 1 in the original gene has mutated into a sine

oscillator in the next generation:

0123456789012
NcOgadccdhecc

0123456789012
NOOgadccdhecc

Figure 6.4 shows the effect on corresponding expression trees of this single-

point mutation.

Mutation rate is defined as a global constant in the GEP algorithm and can

be specified as a probability percentage which each chromosome is subjected

to. If the mutation rate is defined as 0.1, it means each chromosome has a

10% chance of being subject to a random one-point mutation.

CHAPTER 6. GENE EXPRESSION SYNTHESIS 81

(a) (b)

N

c O g

a d c c

N

O O g

a d c c d h e c

Figure 6.4: Single-point mutation. A terminal in (a) changes into a sine oscillator

function in (b)

The transposition operations in GES copy short fragments of the genome

from their original locations to another location in the chromosome. For exam-

ple the already familiar gene from two previous examples is subjected to trans-

position of a short codon sequence shown in Karva notation and Figure 6.5.

The terminals at locations 5 and 6 are copied into the head section of the

gene, which results in the first two parameters - frequency and phase in this

case - of the root codon sawtooth oscillator of the first gene to be replaced

by a noise generator and a terminal instead of a sine oscillator and a noise

generator.

0123456789012345678901234567890123
SONOdefadifaahffbNNhObddiceedaebcd

0123456789012345678901234567890123
SNhOdefadifahffbaNNhObddiceedaebcd

The SuperCollider synthesis function that is derived from the transposed

tree is shown in the code listing below:

SynthDef(’r00_g02_s001’, {arg a,b,c,d,e,f,g,h,i;

Out.ar(0,

(LFSaw.ar(LFNoise2.ar(e,f,a), h, SinOsc.ar(d,i,f,a),d))∗

(LFNoise2.ar(LFNoise2.ar(b,d,d),h, SinOsc.ar(i,c,e,e)))

)

})

Recombination involves choosing chromosomes from the pool of individu-

als that have successfully passed the selection process and exchanging their

genetic material. This process results in creation of two new individuals. A de-

fined number of points are randomly chosen along the two parents and their

CHAPTER 6. GENE EXPRESSION SYNTHESIS 82

*

S N

O N O d

e f a d i f a a h f f

N h O

b d d i c e e

(a) original

*

S N

N h O d

e f a d i f a

N h O

b d d i c e e

(b) transposed

Figure 6.5: Transposition of a codon sequence

codons are copied to the child chromosomes as mixed set containing codons

from each of the parents. In order to illustrate the basic principles and effects

of recombination let us consider two chromosomes derived from the same

four unit generators presented previously. The listings below display two par-

ent chromosomes in Karva notation (head sections in bold):

0123456789012345678901234567890123
SONOdefadifahffbaNNhObddiceedaebcd

0123456789012345678901234567890123
PPNSahihgifbbcdafOePNhbddhgbhhgdee

After subjecting these chromosomes to recombination, the result is two

new individuals that have characteristics of each of the parents. In the symbol

strings below, the components that made up the original chromosome 1 are

indicated in bold to illustrate the effect of recombination. The first of the two

randomly selected recombination points is located at position 3 of the chro-

mosome and the second occurred at position 27 located in the head section

of the second gene.

0123456789012345678901234567890123
SONSahihgifbbcdafOehObddiceedaebcd

0123456789012345678901234567890123
PPNOdefadifahffbaNNPNhaadhgbhhgdee

The corresponding expression trees of the two parents and their progeny is

CHAPTER 6. GENE EXPRESSION SYNTHESIS 83

shown in Figure 6.6

*

S N

O N O d

e f a d i f a h f f b

N h O

b d d i c e e

(a) parent A

*

P O

P N S a

h i h g i f b b c d a

e P N h

b d d h g b h

(b) parent B

*

S O

O N S a

h i h g i f b b c d a

e h O b

d d i c

(c) child A

*

P N

P N O d

e f a d i f a h f f b

N P N

h a a d h g b h h g

(d) child B

Figure 6.6: Recombination

These are relatively simple examples in order to demonstrate the principles

of genetic operations in gene expression synthesis. The synthesis functions

that have been evolved so far using this technique typically originate from

chromosomes consisting of at least 4 up to 8 genes and head sizes ranging

between 8 to 16, resulting in much more complex graphs with more levels of

nesting. While the genetic operations ensure variability within the population,

evolution towards a goal is largely determined by a fitness function.

CHAPTER 6. GENE EXPRESSION SYNTHESIS 84

6.6 Evolving unit generator graphs

The algorithm works in a cyclical pattern as illustrated in Figure 6.7, first an ini-

tial population of n individuals is generated, then each individual is expressed

as a recursive expression tree beginning with the root node which can then be

translated into a sound synthesis function string. The function string is evalu-

ated and a synthesis process is started on the server. An analyzer agent then

assigns a fitness value to each individual. The selection process is stochastic

and associates a probability weight to each individual based on their relative

fitness. Replicated individuals are then subjected to a series of genetic oper-

ations depending on the settings of the algorithm. Once every new individual

has been exposed to the genetic operator phase, the cycle is completed by re-

placing the original population with the new individuals which then are ready

for the subsequent repeat of these steps.

Figure 6.7: The cyclic gene expression programming algorithm.

In order to begin the process of evolving unit generator graph functions

CHAPTER 6. GENE EXPRESSION SYNTHESIS 85

for sound synthesis, there are two crucial components to be defined: (1) the

specification of terminals as synthesis function arguments and (2) the design

of the fitness function so that the evolution proceeds towards desired goals

with minimal human supervision. The specification of terminals was solved by

introducing a parallel population of calculation functions in which each individ-

ual becomes expressed as a list of floating point values. This parallel popula-

tion is evaluated simultaneously with the sound generating functions and each

individual receives the same score as its counterpart in the sound generating

population. However, the selection process and the genetic operators are ap-

plied separately so the population retains a certain degree of independence.

The number of genes in this parallel population corresponds to the number of

terminals necessary to fill all the parameters. The functions used in this pop-

ulation are not sound generating functions, but binary arithmetic operators of

addition, subtraction, multiplication, and division and the terminals are static

floating point values. This solution imitates the phenomenon of co-evolution

in the natural world where two interdependent species indirectly cause mutual

evolutionary changes across the confines of their genotypes.

6.7 Defining the fitness function

The fitness function uses machine listening algorithms to analyze the candi-

date solutions once they have passed an initial basic compilation test on the

SuperCollider server. Before the machine analysis can commence, any indi-

vidual that fails the basic fitness check and the expressed function fails to

compile, is automatically assigned a weight value of 0 and consequently ex-

cluded from the selection process. Compilation may fail for any number of

reasons, the most common being invalid input type and since initialization is

completely random, unsuitable function arguments become quite frequent in

case unit generators that have arguments of specific type. A good example of

an invalid unit generator argument would be in case of a filter algorithm which

expects the first argument to be a signal of the same rate (typically audio rate

in this case) as it is running itself, therefore a floating point number is not ac-

cepted and compilation fails. There is an option to start the process by filling

the initial population exclusively with candidate solutions that pass this check.

The machine listening process analyses a set of 20 mel frequency cep-

CHAPTER 6. GENE EXPRESSION SYNTHESIS 86

stral coefficients (MFCC), spectral flatness, spectral centroid, and amplitude

features into running mean and standard deviation values over a desired du-

ration, 3 to 8 seconds in the runs reported in this account. Invalid output from

any of the analysis processes (mostly NaN or unrepresentable value as a re-

sult of a calculation, dividing 0 by 0 for example) is assigned an error value

greater than one which gets treated the same way as uncompilable functions

and is thereby excluded from the selection process. The fitness function that

was used in all the variants of the gene expression experiments under inves-

tigation in this case used example analysis sets extracted from sound exam-

ples towards which the algorithm was expected to converge. A number of

different reference sounds were used including sounds synthesized with GES,

other types of synthesized sounds as well as sounds of traditional musical

instruments. The score of each individual was determined as the difference

between maximum possible score and the total actual error in each of the

analysis categories. The mean and standard deviation statistics of each of

the MFC coefficients were given double weighting relative to other statistical

values and the maximum error in each of the statistical categories was set to

1.0. Spectral centroid values, which are expressed in frequency values, were

mapped to range between 0.0 and 1.0. This meant a maximum individual

score of 10.0 as the sum of scores from MFC coefficients adding up to 2.0 for

both mean and standard deviation statistics, and to 1.0 for spectral flatness,

spectral centroid, and amplitude.

Table 6.1 represents the assignment of initial fitness scores which were

calculated as difference measures from the corresponding features of the ref-

erence sound. Each of the 20 mean MFCC coefficients were each assigned a

weight value of 0.1, which means that the maximum score possible from the

sum of these features is 2.0. The same weight is assigned to the standard

deviation values of MFCC. The remaining 6 features - mean and standard de-

viation values for Spectral Flatness, Spectral Centroid, and Amplitude - were

each assigned a weight of 1.0. Therefore the maximum similarity score possi-

ble is 10.0 in case of identical features.

In order to imitate the condition of limited resources of natural selection,

each candidate solution is assigned a CPU usage value measured during the

execution of the synthesizer. At the end of each evaluation cycle, the CPU us-

age percentage is normalized relative to the minimum and maximum values

CHAPTER 6. GENE EXPRESSION SYNTHESIS 87

FEATURE NUMBER WEIGHT MAXIMUM

MFCC (mean) 20 0.10 2.00

MFCC (std dev) 20 0.10 2.00

Flatness (mean) 1 1.00 1.00

Flatness (std dev) 1 1.00 1.00

Centroid (mean) 1 1.00 1.00

Centroid (std dev) 1 1.00 1.00

Amplitude (mean) 1 1.00 1.00

Amplitude (std dev) 1 1.00 1.00

Total maximum 10.00

Table 6.1: The weights of features used in the fitness function. The maximum score

of each feature is calculated by multiplying the number of features by the weight

of the population and the scores recalculated adding in the CPU percentage

as 10 percent of the total score. This pressure introduces a tendency in the

population of favoring simpler synthesizer graphs over more complex ones.

To counteract this tendency a conflicting fitness pressure is introduced to en-

courage structural complexity. Maximum depth of unit generator nesting is a

straightforward indicator of complexity in graphs, so the scores are adjusted

according to the maximum depth of a chromosome relative to the maximum

of the population. This way, the complexity can be maintained in populations,

while still encouraging resource usage effectiveness. These parameters can

be adjusted depending on the purpose of the experiment.

6.8 Discussion

The most striking feature of the implemented synthesis system that emerged

during the experiments is perhaps the phenomenon of high fitness scores be-

ing present starting from the initial randomly generated population. The maxi-

mum score remained fluctuating within a limited range at the top of the fitness

landscape and did not seem to improve. Figure 6.8 shows a graph of mean and

maximum fitness scores plotted against each generation in an experiment, in

which a synthetic bass sound was used as reference.

This reveals the crucial characteristics of the algorithm and informs of in-

herent properties and constraints of sound generating functions going for-

CHAPTER 6. GENE EXPRESSION SYNTHESIS 88

Figure 6.8: Maximum and mean scores of a gene expression synthesis experiment

with the fitness scores on the x-axis plotted against the generation number

ward. One of the factors for this outcome is the additional server compi-

lation check applied prior to exposing the functions to the statistical fitness

evaluation procedures. This is an additional layer, which in standard frame-

work of GEP problem solving would seem redundant, but has been devised

to accommodate for the specific language-server architecture of the Super-

Collider environment, which is essentially comprised of 2 different computer

languages. Another characteristic that emerged from these experiments was

the explosion of variety combined with rapidly improving mean fitness of the

entire population after 2-5 generations, which produced the most interest-

ing (as subjectively judged by the author) synthesis functions in large variety

compared to later generations. The variety tends to diminish after a number

of generations similar to classic GA-s as strands of highest fitness individuals

take over the population. Furthermore, evolving sound-generating functions

imposes rather strict constraints on the algorithm, which in these experiments

were largely ignored as much as possible. For example, the co-evolution of pa-

rameters to the functions from a set of random calculations exposed the audio

system to unexpected output values which were weeded out by the statisti-

cal analysis of amplitude tracking and bad value checks. Further normalizers

and limiters were employed to try and keep the synthesis output within a per-

ceivable (and tolerable) range. The persistence of relatively high but static

maximum scores also underlines the limitations of the statistical fitness func-

tions used in the experiments. The mean and standard deviation statistics of

CHAPTER 6. GENE EXPRESSION SYNTHESIS 89

the example sounds do not provide sufficient time-domain information, there-

fore, there was always a significant variety of functions with differing spectral

and temporal characteristics attaining high scores. The main limitation to

the sonic output is the selection of unit generators, which were naturally not

expected to conjure up complex spectra of the human voice or traditional mu-

sical instruments. The fitness statistics were intended rather as rough guides

to acceptable ranges of spectral characteristics of the candidate solutions and

near exact matches were understood to be virtually impossible from the outset

even in the case of GEP evolved synthesis experiment. In total, over 3000 new

synthesis definitions have been selected as additions to the GES database as

of this publication. These synthesis definitions are stored together with their

statistical analysis data and linearly encoded chromosomes to be utilized in

the interactive autonomous mikro improvisation system, live coding improvi-

sation performances, and as genetic source material for further experiments

in GES.

Garcia [38] presents a somewhat similar approach to evolving sound syn-

thesis graphs. The sound synthesis algorithms are similarly represented as

topologies of interconnected nodes in a graph while the fitness function also

uses an audio feature based distance metric to compare the candidate solu-

tions to a target sound. The evolution of graphs is driven by genetic program-

ming, in which the population consists of individuals each of which represents

a non-linear tree of varying complexity. This variation makes it difficult to

apply genetic operators and thereby new solutions are not introduced into

the populations. This means that in order for the algorithm to converge, the

components for the optimal solution would already have to be present in the

initial populations. [34] Since GES uses the gene expression programming al-

gorithm to guide the search, this problem is solved by encoding the graph

represenation (phenotype) into a linear representation (genotype) which en-

ables more complex and efficient genetic operators to be applied. In Garcia’s

experiments, the algorithm is designed to converge to the target and in the

example presented shows the error diminish significantly lower over 200 gen-

erations than in experiments reported here. This is mainly because (1) the

implementation of Garcia’s algorithm is on a lower representational level of

synthesis using C++ and matlab while the experiments presented here utilize

the large variety of unit generators available in SuperCollider, and (2) Garcia’s

CHAPTER 6. GENE EXPRESSION SYNTHESIS 90

experiments are designed to converge to an optimal solution whereas GES

experiments are designed for open-ended exploration.

The claims that the gene expression programming algorithm is superior to

the traditional evolutionary algorithms [34] appear to be corroborated in the

GES experiments based on the speed of population mean fitness increase and

high maximum scores starting with initial populations. There are no direct

comparisons with previous sound synthesis algorithms due to the fundamen-

tally different nature of the studies considered. Existing genetic algorithms

that have made use of the SuperCollider programming environment used hu-

man listeners as the fitness function, therefore it is not possible to compare the

evolution of the fitness landscapes. These initial experiments have provided

a rich insight into the myriad of sound synthesis possibilities latent in the GES

algorithm. Based on these experiments and taking aboard the methodology

explored in previous evolutionary programming attempts with SuperCollider,

the algorithm can be expanded to include range limitations for unit generator

parameters to safeguard against unreasonable output values. Special classes

of unit generators - such as filters, buffer players, reverberation and spatializa-

tion functions ‚Äì can only be incorporated by providing structural constraints

in the design of the chromosome, but would significantly increase the com-

plexity of the potential sonic output. Further, the parameter definition could

be optimized more efficiently.

The gene expression synthesis method was designed as a tool to be used

in the creative process, particularly to build up a database of synthesizers that

could be employed in different live performance situations. This objective has

guided the decisions made while designing fitness functions and experiments

with the recognition that there are many alternative ways to implement the

basic concept presented here.

There are many practical applications for gene expression synthesizers,

that have been implemented in different projects. In f(x) the gene expression

synthesizers have been added as additional textural sound sources controlled

alongside the original layers created from recycled sonic material. The mikro

system implements a set of these synthesizers as part of the sonic vocabu-

lary of machine improvisers who make selections based on the audio analysis

data stored in the repository. Recent live coding performances of sparsema-

trix have made use of synthesizers evolved for purpose to be computationally

CHAPTER 6. GENE EXPRESSION SYNTHESIS 91

less expensive and have sonic characteristics more suitable for percussive en-

velopes.

7 | Conclusions

"Every last scrap of our external experience is of virtual reality. And every last

scrap of our knowledge - including our knowledge of the non-physical worlds

logic, mathematics, and philosophy, and of imagination, fiction, art and fantasy

- is encoded in the form of programs for the rendering of those worlds on our

brain’s own virtual-reality generator"

from The Fabric of Reality by David Deutsch

The three performance environments presented in this thesis explore differ-

ent strategies for real time improvisation in audiovisual performances, at the

same time representing different ways to interact with algorithmic systems

on stage. Research and development of performance strategies is necessary

due to the volume and complexity of real time composition and performance

tools available to artist-programmers. The function that music and arts per-

form in society is constantly shifting and it is only natural that in the current

context of an increasingly technological society this function is undergoing

drastic changes. A number of trends previously difficult or impossible to re-

alize in music and visual arts are becoming prominent as methods previously

unthinkable have become commonplace. The strategies that have been intro-

duced and improved over the last few decades, coinciding with the advances

in computational power and capacity of personal computers, represent an im-

pressive range of new opportunities. Whether it is interpreting data flow on

the Internet as a musical instrument [68], using biological signals of a human

body [32] or brain activity by EEG [69] to control musical parameters, all these

represent attempts to improve on ways in which we explain the environment

we inhabit and the technology we have created to help us explain. At the same

time the realization that works of art are not imbued with some intrinsic value

of authoritarian or mystical origin, but subject to similar conditions present in

the biological evolution of selection and adaptation, provides a more objec-

tive backdrop to the audiovisual artifacts produced by performance systems

92

CHAPTER 7. CONCLUSIONS 93

like lambda. The most important realization when describing the approach to

composition in these audiovisual works is that musical compositions as well

as any other artworks are not imbued with an intrinsic value originating from

some higher authority as we often would have believed, but rather are sub-

ject to a selection process that resembles natural evolution by selection and

adaptation. This cultural evolution is described in terms of memes, a con-

cept introduced by biologist Richard Dawkins [27]. Audiovisual composition

must be viewed in the context of current social, cultural and scientific devel-

opments, in which computation theory and artificial intelligence very much

occupy a prominent role and thus constitute the main theme of exploration

into generative computer music, audiovisual performance and immersive dig-

ital environments.

Virtual reality is not just an area of research within computer science typi-

fied by large headgear and tactile interfaces connected by bundles of cables.

The tradition of electroacoustic music, particularly the acousmatic trend of

engulfing the audience in darkness in order to be better conditioned for im-

mersive imaginary sound worlds, is evidently a practice of virtual reality gen-

eration, a specific case of purely acoustic kind. The emerging practice of gen-

erative audiovisual performance, the central concern of this thesis, represents

another class of virtual reality generators. These are examples of immersive

environments created with technology, both digital (computers, audio inter-

faces) and analog (sound amplifiers, speakers). However, as suggested in the

quote by David Deutsch at the top of this chapter, it is important to realize

that virtual reality generators are not necessarily only digital computers ex-

ecuting instructions specified by humans, but every information processing

device or organism is in possession of such a generator in order to create a

representation of its environment through perception and cognition. Human

experience can be viewed as a type of highly complex virtual reality gener-

ated by the nervous system which has evolved into the current state over

millions of years of natural cumulative selection. The technology with which

we have surrounded ourselves serves largely the purpose of virtualizing the

human experience in order to model, explore, explain and possibly modify the

environments we inhabit. Virtual reality can be put into the context computa-

tion as a representation of one information processing entity by another and

was perhaps first formulated in Alan Turing’s concept of computational univer-

CHAPTER 7. CONCLUSIONS 94

sality [88], which originally meant that any computation engine that is capable

of computing anything that the universal Turing machine can compute is con-

sidered a universal computer. His thesis has been used to gauge the limits

of computation and, in the course of this exploration, it has been extended to

virtual reality generators. A virtual reality generator is deemed universal if it is

capable of imitating any other digital machine, implying that, given resources

and time, it is capable of rendering behavior of any computable phenomenon.

Determining the limits of what is computable has been the object of rigorous

research in the field of computation theory for years and is still very much an

open question.

The implications of the concept of computability for creative processes that

are the primary objects of interest in this project - such as musical composi-

tion, improvisation, and visual art - have been reshaping the way we consider

artistic practices from the time first computers came about. One thought pro-

voking aspect of our interaction with technology is the extent to which it is

often overlooked how much technology guides the creative process. From

conversations with other composers and many lectures and presentations I

have attended, it seems that very often significant nuances of the interface

to a piece of creative technology remain imperceptible. The users often claim

intention where their choices have been mostly forced by the limitations of the

interface they use. A great example of awareness of such limitations was pre-

sented by David Rokeby [73], a long-term practitioner of creative interactive

technologies, at the 11th International Conference on New Interfaces for Musi-

cal Expression (NIME) in Oslo. In his keynote address, the artist described what

must be a common occurrence in contemporary arts practice, particularly in

cases where technology plays a significant role. His experience of inadver-

tently becoming influenced by the nature of the technology he was working

with during development of interactive installation pieces in the 1980s pro-

vides ample insight into this common phenomenon and perhaps a cautionary

note for anyone working with technology. It also suggests a method for artis-

tic exploration of the technology itself: to purposefully design systems and

performances based on the idiosyncrasies of the hardware and/or software in-

volved. The common frustration stemming from what is sometimes called a

"semantic gap" between top-down design of a project and technological facil-

ities to realize it seems to be often caused by lack of understanding how the

CHAPTER 7. CONCLUSIONS 95

chosen technology operates.

The different techniques for the artist-programmer to interface with algo-

rithmic systems explored in these performance systems are an attempt to

move away from conventional point-and-click graphical user interfaces and

find ways to interact with algorithmic composition environments through ex-

ternal controllers, autonomous algorithmic agents or writing and modifying

computer code directly. The acoustic nature of the performances is defined by

several synthesis methods, which all have in common the focus on the spec-

tral dynamics and development of timbre as the primary musical parameter.

In case of f(x), the sonic material is recycled from recordings of past perfor-

mances and used as the source material to be manipulated and processed un-

til the original material is unrecognizable. The mikro system relies almost en-

tirely on the audio input of the human performer to process and transform the

recorded samples into new material. However, a novel method of computer

sound synthesis is also introduced in the shape of Gene Expression Synthesis

(GES), which entails evolving SuperCollider unit generator graphs functions by

the principles of gene expression programming.

Chapter 1 of this thesis establishes the dualistic interdisciplinary method-

ological framework utilized in this project combining practice-based methods

with the principles of design science. The former methodology applies to the

artefacts produced by the systems, i.e. the actual performances and the mul-

timodal environments created as a result, whereas the design and develop-

ment principles behind the software systems that are used in these perfor-

mances belong in the domain of design science. This also informs the eval-

uation method most pertinent to the context to determine the utility, quality

and efficacy of the performance systems. The following evaluation combines

analytical with observational methods in an attempt to assess the research

and development outcomes.

From static system architecture prespective, the performance environments

can be evaluated according to modularity and extensibility principles, which

then can be then put into the wider context of efficacy. Modularity in perfor-

mance systems facilitates deployment of different components according to

the performance context. The systems developed during this project share

the same fundamental archtecture of hierarchical modularity. On the highest

level of this hierarchy, the physical separation of the audio and graphical ap-

CHAPTER 7. CONCLUSIONS 96

plications and the facility to deploy the applications in separate locations and

performance contexts has not only enabled resource distribution at a perfor-

mance venue between multiple computers, but also distributing applications

to different geographical locations. In practice this has involved deploying

the graphics application at a remote venue while streaming control parameter

information and audio content over the Internet. Furthermore, the physical

separation enables system components to be deployed individually and re-

purposed for applications originally not intended (for example the graphical

component has been adapted as a VJ tool in club settings on a few occasions).

The modular design is most evident in the audio modules of the mikro system

where the different task-based components can be utilized without the rest of

the system. For example, the analysis module is used to build the musical fea-

ture databases without the need to launch the entire system, but becomes an

essential part of the compositional process during actual performances when

real time input analysis informs the musical structure. The mikro system has

benefited the most in terms of functional modularity consisting of modules

desgned to perform a specific task such as audio input routing, audio anal-

ysis, machine learning, musical composition, data storage, and information

retrieval. In contrast, the degree of modularity in f(x) and sparsematrix is con-

siderably lower due to the idiosyncratic nature of the embedded compositional

and computational concepts and, to a certain extent, the lack of premeditated

modular design. In this respect these environments constitute independent

modules in themselves and can be included and excluded from performances

depending on context, but they have not been designed to be easily broken

down into smaller independent components. The f(x) system is designed to be

expandable by adding new distinct compositional components in the form of

audiovisual mapping presets that can be utilized in shaping the overall audio-

visual structure of the performances. The modularity in sparsematrix serves a

similar structuring purpose enabling on-the-fly changes to the mapping of dif-

ferent patterns to synthesis functions, flexible signal routing to audio effects

processes, and incorporation of gene expression synthesis functions into the

sonic composition of the rhythms.

While the modularity and extensibility of the systems have achieved com-

positional and functional requirements, the storage and retrieval systems for

musical analysis and gene expression synthesis data need to be redesigned to

CHAPTER 7. CONCLUSIONS 97

optimize data access in live performance situations. In the current state, the

systems need to be prepared in advance, using an initialization process that

can take up to several minutes to complete. This situation is particularly un-

desirable in the middle of a performance when fast recovery is necessary due

to unexpected system failure (certainly a familiar circumstance for any exper-

imental electronic musician). There may be no immediate solution to speed

up the musical training phase of the composition module due to large volume

of data to be processed, but manipulation of gene expression synthesis data

structures would potentially benefit from a Semantic Web solution involving

JSON or RDF storage mechanisms in terms of speed as well as networked pub-

lic accessibility.

The contextualization of the performance environments from the practice-

based perspective relies on the concept of computability discussed in the be-

ginning of the chapter. Anything computable can be expressed in algorithms,

in other words in sets of explicit instructions. Algorithms, at a certain level

of complexity and possessing certain characteristics, can be considered inher-

ently emergent, creating larger and more complex entities through interac-

tions among simpler building blocks. A common theme throughout the three

performance systems under discussion is how computational emergence can

be used as a general principle of interactive composition in an improvisatory

context. It could be argued that emergent systems in this kind of performance

context cultivate improvisation, since it is impossible to predict the behavior

beforehand to be able to establish a set of premeditated instructions akin to a

musical score. In this computational environment, the artist-programmer acts

as explorer of algorithmic behavior interacting with a virtual multi-dimensional

data space. There is no singular, linear path through the vast parameter

space of compositional possibilities and each instantiation of one of these

performance systems always establishes an unfamiliar initial condition dis-

tinct from any previous instance. The behavioral feedback loops established

between computational systems and the actions of the performers reinforce

the improvisatory nature of the resulting performance. No performance can

ever be repeated even approximately, a characteristic already ingrained in

the non-linear nature of many of the low level signal processing and synthesis

methods that create the spectrally diverse and dynamic sonic makeup of the

performances.

CHAPTER 7. CONCLUSIONS 98

The musical forms that emerge from the performances are very different

from the linear left to right matrix structure familiar from audio and video

editing and sequencing software. In a similar manner they deviate from the

frontally focussed sound space of the prevailing cinematic sound systems like

5.1 and its many variants. No direction is emphasized or marginalized, the

diffuse sound field surrounds the listener from all sides, the dynamic shape of

which does not tend in any one direction, but rather through constant read-

justment and reforming creates an immersive and unpredictable sonic envi-

ronment. The general structure of acoustic forms emerging from f(x) tend to

be cyclic, not in the sense of a cyclic musical form from the history of Western

classical tradition, but has to do with the cyclic configuration of the borders

of the automata world which causes the cell neighborhoods to wrap around

each dimension and thereby propagate the global behavior in an infinite loop

over the edges. This forces the turbulence and complex waves propagating

through the cell states and which are being affected by the performer into

cyclic patterns of acoustic streams. These streams create complex dynam-

ics of behavior which the performer can respond to and try to modify. In this

sense the performance entails an activity more akin to surfing (albeit on a very

small, but rather turbulent pond) than Xenakis’ metaphor of a composer as a

pilot. In contrast, the emergent multimodal forms in the variants of mikro are

shaped largely by the spectral dynamics of the audio input and built-in prob-

abilistic training functions. The autonomous improvising agents can be con-

sidered still rather crude in their complexity and significant improvements can

be achieved by more detailed statistical analysis of the input stream, more ef-

ficiently implemented training modules and more careful consideration of the

different response options by implementing interacting critic algorithms on

multiple hierarchical levels, starting from micro level synthesis to large scale

compositional structures. And, finally, sparsematrix explores rhythm loops as

the building blocks of musical structure. The paradigm of software sequencers

and audio trackers used in the production of electronic dance music is re-

placed by the SuperCollider pattern libraries, algorithmic structural filtering

functions and live coding is preferred to graphical user interface based inter-

action. This encourages exploration of polyrhythmic structures, rapid changes

in tempo and downbeat, introduction of syncopation, and probabilistic param-

eter control of large number of parallel rhythm cycles, again emphasizing the

CHAPTER 7. CONCLUSIONS 99

exploratory nature of the performance rather than routine repetition of prede-

termined and precomposed phrases, sections and movements.

In the context of the main objective of this project - to develop a multi-

modal autonomous improvisation system that interacts in real time with hu-

man musicians - the research and development has produced a fully functional

performance environment in which the three discussed performance systems

have been combined. This enables the performer to combine different com-

positional strategies in a single performance and adapt the system to the per-

formance context. For example, it is possible to perform sparsematrix and

use the audio output as the input to mikro analysis and response system. In

this kind of a setup, an autonomous agent based artificial improviser can ac-

company the live coder and create new avenues of interactive exploration of

the audiovisual parameter space. A number of solutions to the problem of

multilevel audiovisual parameter control on multiple time scales and levels

of compositional hierarchy have been designed, implemented and deployed

for 30 public performances and presentations throughout the duration of the

project. A comprehesive list of all performances and presentations can be

found in Appendix A.

This does not mean that the work is done. Complex software performance

environments require significant amount of time and effort to implement and

maintain, however cannot ever in any way be considered finished. This sets

them decisively apart from the traditional model of compositions as finished

immutable artifacts. Analogously to the general endeavor of knowledge cre-

ation, these performance environments constantly give rise to new problems

to be solved, as novel concepts to be explored and implemented are created

unremittingly by fellow artists as well as curious minds from other fields of

research, all the while components that do not stand up to the process of con-

stant re-evaluation by conjecture and refutation, trial and error are regularly

phased out. At the same time, these complicated instruments are very much

like any other musical instruments, for they too require a vigorous routine of

practice for the performer to acquire a level of virtuosity.

A | Public performances and presentations

During the project, all the described performance systems were put to practice

at a number of concerts and presented to audiences at festivals, conferences

and symposia, both within the UK and internationally:

• 23 Jun 2010. Performance of f(x): zone 00, zone 01, zone 02. Access-space

(Sheffield, UK, http://www.access-space.org/)

• 9 Sep 2010. Presentation and screening of f(x): zone 00, zone 01, zone 02

at SoundingOut 5 Conference (http://soundingout.bournemouth.ac.uk/),

Bournemouth University (Bournemouth, UK, http://home.bournemouth.ac.uk/)

• 24 Sep 2010. Performance of f(x): zone 00, zone 01, zone 02 at Sounding

Code: Supercollider Symposium 2010 (http://supercollider2010.de/), Aus-

land (Berlin, Germany, http://ausland-berlin.de/)

• 10 Nov 2010. On the edge: Imaginary worlds, PS2 University of Hull (Scar-

borough, UK, http://www2.hull.ac.uk/scarborough/)

♢ Performance of mikro:strukt with Satoshi Shiraishi

♢ Performance of f(x): zone 00, zone 01, zone 02

• 18 Nov 2010. Performance of f(x): zone 00, zone 01, zone 02 at Piksel

Festival (http://www.piksel.no), Studio USF (Bergen, Norway, http://www.usf.

no/)

• 3 Dec 2010. Screening of f(x): zone 01 at Pixxelpoint Festival (http://

pixxelpoint.org), Galeria Metropolitana (Gorizia, Italy, http://www.mediainmotion.

de/pixxelpoint2.html)

• 11 Feb 2011. Performance of f(x): zone 00, zone 01, zone 05 at Soundings

Festival (http://www.facebook.com/event.php?eid=183135291711888), University

of Edinburgh (Edinburgh, UK, http://www.ed.ac.uk/home)

100

http://www.access-space.org/
http://soundingout.bournemouth.ac.uk/
http://home.bournemouth.ac.uk/
http://supercollider2010.de/
http://ausland-berlin.de/
http://www2.hull.ac.uk/scarborough/
http://www.piksel.no
http://www.usf.no/
http://www.usf.no/
http://pixxelpoint.org
http://pixxelpoint.org
http://www.mediainmotion.de/pixxelpoint2.html
http://www.mediainmotion.de/pixxelpoint2.html
http://www.facebook.com/event.php?eid=183135291711888
http://www.ed.ac.uk/home

APPENDIX A. PUBLIC PERFORMANCES AND PRESENTATIONS 101

• 16 Mar 2011. Performance of f(x): zone 00, zone 01, zone 03, zone 05 at

Risk of Shock - Sonic Science (http://www.riskofshock.org/), Prifysgol Bangor

University (Bangor, UK, http://www.bangor.ac.uk/)

• 25 Mar 2011. Performance of f(x): zone 00, zone 01, zone 03, zone 05

at Hear This Space (http://www.hearthisspace.com/), Fabrika Arts Centre (Le-

icester, UK, http://www.taoleicester.co.uk/)

• 28 May 2011. Performance of f(x): zone 00, zone 01, zone 02, zone 03,

zone 05 at International Videofestival (http://www.videofestival.org/), Ruhr-

Universität (Bochum, Germany, http://www.ruhr-uni-bochum.de/mz/index.htm)

• 31 May 2011. Performance of mikro:strukt with Satoshi Shiraishi at the

11th International Conference on New Interfaces for Musical Expression

(NIME) 2011 (http://www.nime2011.org/), Chateau Neuf (Oslo, Norway, http:

//studentersamfundet.no/)

• 4 Jun 2011. Todaysart Sessions #2 (http://todaysart.nl), Korzo Theater (The

Hague, The Netherlands, http://www.korzo.nl):

♢ Performance of mikro:strukt with Satoshi Shiraishi

♢ Performance of f(x): zone 01

• 8 Jun 2011. Performance of f(x): zone 01 at Sound, Sight Space and Play

2011 (http://www.sssp.org.uk/), De Montfort University (Leicester, UK, http:

//www.mti.dmu.ac.uk/)

• 23 Jun 2011. Performance of f(x): zone 04 at IPC Cluster Symposium, PS2

University of Hull (Scarborough, UK, http://www2.hull.ac.uk/scarborough/)

• 1 Aug 2011. 2 performances of mikro:strukt with Satoshi Shiraishi at the In-

ternational Computer Music Conference (ICMC) 2011 (http://icmc2011.org.

uk/), CeReNeM, University of Huddersfield (Huddersfield, UK, http://mhm.

hud.ac.uk/cerenem/)

• 15 Sep 2011. Presentation of f(x) at the International Symposium on Elec-

tronic Art (ISEA) 2011 (http://isea2011.sabanciuniv.edu/), Sabanci Center (Is-

tanbul, Turkey, http://isea2011.sabanciuniv.edu/location/sabanci-center-levent)

• 11 Nov 2011. Performance of f(x): zone 00, zone 01, zone 02, zone 04,

zone 05 at ShinyToys Festival (http://shinytoys.eu/festival/), Bollwerk 107

(Moers, Germany, http://www.bollwerk107.de)

http://www.riskofshock.org/
http://www.bangor.ac.uk/
http://www.hearthisspace.com/
http://www.taoleicester.co.uk/
http://www.videofestival.org/
http://www.ruhr-uni-bochum.de/mz/index.htm
(http://www.nime2011.org/
http://studentersamfundet.no/
http://studentersamfundet.no/
http://todaysart.nl
http://www.korzo.nl
http://www.sssp.org.uk/
http://www.mti.dmu.ac.uk/
http://www.mti.dmu.ac.uk/
http://www2.hull.ac.uk/scarborough/
http://icmc2011.org.uk/
http://icmc2011.org.uk/
http://mhm.hud.ac.uk/cerenem/
http://mhm.hud.ac.uk/cerenem/
http://isea2011.sabanciuniv.edu/
http://isea2011.sabanciuniv.edu/location/sabanci-center-levent
http://shinytoys.eu/festival/
http://www.bollwerk107.de

APPENDIX A. PUBLIC PERFORMANCES AND PRESENTATIONS 102

• 24 Nov 2011. Performance of sparsematrix at Sonic Odyssey: Imaginary

Worlds 2, PS2 University of Hull (Scarborough, UK, http://www2.hull.ac.uk/

scarborough/)

• 14 Jan 2012. Performance of f(x): zone 01, zone 04 at noise==noise (http:

//nnnnn.org.uk/doku.php?id=noise_noise_-_supercollider_electronics), nnnnn Stu-

dios (London, UK, http://nnnnn.org.uk/)

• 19 Mar 2012. Performance of sparsematrix at Phipps Hall (University of

Huddersfield, UK, http://www.hud.ac.uk/)

• 15 Apr 2012. Live coding performance of with Yota Morimoto at the Su-

perCollider Symposium (http://www.sc2012.org.uk/live/code/), City Arts and

Music Project (London, UK, http://thecamplondon.com/)

• 17 Apr 2012. Performance of mikro:skism with Satoshi Shiraishi at The Su-

perCollider Symposium (http://www.sc2012.org.uk/live/concert/), City Uni-

versity London (London, UK, http://www.city.ac.uk/)

• 27 Apr 2012. Performance of sparsematrix at the Leeds International Festi-

val For Innovations in Music Production and Composition (http://postgraduate.

lcm.ac.uk/), The Wardrobe Club (Leeds, UK, http://www.thewardrobe.co.uk/)

• 7 Sep 2012. Performance of sparsematrix at Live Interfaces: Performance,

Art, Music; The HiFi Club (Leeds, UK, http://www.thehificlub.co.uk/)

• 12 Sep 2012. Performance of f(x) at the International Computer Music

Conference (http://www.icmc2012.si/), Kino Šiška (Ljubljana, Slovenia, http:

//www.kinosiska.si/)

• 26 Oct 2012. Performance of f(x) and sparsematrix at Pluto Festival (http:

//www.pluto-festival.be/), Nijdrop (Opwijk, Belgium, http://www.nijdrop.be/)

• 5 Dec 2012. Performance of lambda with Satoshi Shiraishi and Andrea

Young, PhD Project Final Concert, PS2 University of Hull (Scarborough, UK,

http://www2.hull.ac.uk/scarborough/)

http://www2.hull.ac.uk/scarborough/
http://www2.hull.ac.uk/scarborough/
http://nnnnn.org.uk/doku.php?id=noise_noise_-_supercollider_electronics
http://nnnnn.org.uk/doku.php?id=noise_noise_-_supercollider_electronics
http://nnnnn.org.uk/
http://www.hud.ac.uk/
http://www.sc2012.org.uk/live/code/
http://thecamplondon.com/
http://www.sc2012.org.uk/live/concert/
http://www.city.ac.uk/
http://postgraduate.lcm.ac.uk/
http://postgraduate.lcm.ac.uk/
http://www.thewardrobe.co.uk/
http://www.thehificlub.co.uk/
http://www.icmc2012.si/
http://www.kinosiska.si/
http://www.kinosiska.si/
http://www.pluto-festival.be/
http://www.pluto-festival.be/
http://www.nijdrop.be/
http://www2.hull.ac.uk/scarborough/

B | Resources included on digital media

B.1 Audiovisual recordings

f(x)

• fx/f(x)_zone_00.m4v (05:49)

• fx/f(x)_zone_01.mov (07:36)

• fx/f(x)_zone_02.m4v (03:42)

• fx/f(x)_zone_03.m4v (05:07)

• fx/f(x)_zone_04.m4v (04:35)

• fx/f(x)_zone_05.m4v (05:04)

mikro

• mikro/bocca-mikro.mov (08:25)

• mikro/mikro-geen.mov (28:25)

• mikro/mikro-skism.mov (12:46)

• mikro/bocca-mikro.mov (12:02)

sparsematrix

• sparsematrix/matrix3d.mov (09:49)

• sparsematrix/sparsematrix.mov (09:25)

B.2 Audio recording

lambda - final performance

• lambda/lambda.wav (34:42)

103

C | Online resources

C.1 Project websites

f(x): http://fx.tehis.net

lambda: http://lambda.tehis.net

mikro: http://mikro.tehis.net

sparsematrix: http://matrix.tehis.net

Gene Expression Synthesis: http://geen.tehis.net

C.2 Live recordings of performances

Performance of f(x) at Hear This Space, Fabrika Arts Centre, Leicester, UK on

25 March 2011 (excerpt):

http://www.vimeo.com/22597217

Performance of mikro:strukt with Satoshi Shiraishi at On The Edge, PS2 Uni-

versity of Hull, Scarborough, UK on 10 Nov 2010:

http://vimeo.com/18549321

Performance of mikro:strukt with Satoshi Shiraishi at the 11th International

Conference on New Interfaces for Musical Expression, Oslo, Norway on 31 May

2011:

http://vimeo.com/27694202

Performance of mikro:strukt with Satoshi Shiraishi at the International Com-

104

http://fx.tehis.net
http://lambda.tehis.net
http://mikro.tehis.net
http://matrix.tehis.net
http://geen.tehis.net
http://www.vimeo.com/22597217
http://vimeo.com/18549321
http://vimeo.com/27694202

APPENDIX C. ONLINE RESOURCES 105

puter Music Conference, Huddersfield, UK, August 4 2011:

http://www.youtube.com/watch?v=m3UNrYHZE7Q

Performance of f(x) at the ShinyToys Festival, Moers, Germany, November 11,

2011 (excerpts):

http://www.youtube.com/watch?v=KoFBtj5JBqc

http://www.youtube.com/watch?v=cFURvv0wxSk

Performance of mikro:skism at the SuperCollider Symposium, London, UK,

April 17 2012:

https://vimeo.com/42186998

C.3 Online recordings

• f(x)

– zone 00: https://vimeo.com/18763431

– zone 01: https://vimeo.com/18767837

– zone 02: https://vimeo.com/19193886

– zone 03: https://vimeo.com/19414076

– zone 04: https://vimeo.com/28905481

– zone 05: https://vimeo.com/19476095

• mikro

– mikro:strukt: https://vimeo.com/69230003

– mikro:skism: https://vimeo.com/47340107

– bocca/mikro: https://vimeo.com/75621701

• sparsematrix

– sparsematrix 2D: https://vimeo.com/42571333

– sparsematrix 3D: https://vimeo.com/76418183

http://www.youtube.com/watch?v=m3UNrYHZE7Q
http://www.youtube.com/watch?v=KoFBtj5JBqc
http://www.youtube.com/watch?v=cFURvv0wxSk
https://vimeo.com/42186998
https://vimeo.com/18763431
https://vimeo.com/18767837
https://vimeo.com/19193886
https://vimeo.com/19414076
https://vimeo.com/28905481
https://vimeo.com/19476095
https://vimeo.com/69230003
https://vimeo.com/47340107
https://vimeo.com/75621701
https://vimeo.com/42571333
https://vimeo.com/76418183

APPENDIX C. ONLINE RESOURCES 106

C.4 Source code repositories

f(x) (SuperCollider, C, Objective-C, OpenGL):

SuperCollider code files: https://github.com/darkjazz/Fx3D/tree/master/Audio

SuperCollider class files: https://github.com/darkjazz/sc-lib

Objective-C project: https://github.com/darkjazz/Fx3D/tree/master/Visual

lambda (SuperCollider, C++, OpenGL):

SuperCollider code files:

https://github.com/darkjazz/lambda/tree/master/supercollider

SuperCollider class files: https://github.com/darkjazz/sc-lib

Cinder C++ project: https://github.com/darkjazz/lambda/tree/master/src

mikro (SuperCollider, Objective-C, C, C++, OpenGL):

SuperCollider code files: https://github.com/darkjazz/mikro/tree/master/audio

SuperCollider class files: https://github.com/darkjazz/sc-lib

C++ project: https://github.com/darkjazz/mikro/tree/master/visual

sparsematrix (SuperCollider, C++, OpenGL):

SuperCollider code files: https://github.com/darkjazz/sparsematrix/tree/master/

supercollider

SuperCollider class files: https://github.com/darkjazz/sc-lib

Cinder C++ project: https://github.com/darkjazz/sparsematrix/tree/master/cinder

Gene expression synthesis library (SuperCollider):

https://github.com/darkjazz/gepdefs

This thesis (Latex, Bibtex):

https://bitbucket.org/darkjazz/phdthesis

https://github.com/darkjazz/Fx3D/tree/master/Audio
https://github.com/darkjazz/sc-lib
https://github.com/darkjazz/Fx3D/tree/master/Visual
https://github.com/darkjazz/lambda/tree/master/supercollider
https://github.com/darkjazz/sc-lib
https://github.com/darkjazz/lambda/tree/master/src
https://github.com/darkjazz/mikro/tree/master/audio
https://github.com/darkjazz/sc-lib
https://github.com/darkjazz/mikro/tree/master/visual
https://github.com/darkjazz/sparsematrix/tree/master/supercollider
https://github.com/darkjazz/sparsematrix/tree/master/supercollider
https://github.com/darkjazz/sc-lib
https://github.com/darkjazz/sparsematrix/tree/master/cinder
https://github.com/darkjazz/gepdefs
https://bitbucket.org/darkjazz/phdthesis

D | Practice-based Research Degree Guidelines

D.1 Practice based Research Degree - PhD/MPhil by

Composition

A student may register for a programme of research in which musical compo-

sition forms the basis of the work.

Creative output shall be accompanied by a written commentary, which sup-

ports the work in its relevant theoretical, critical and aesthetic context.

The research degree in musical composition, shall consist of:

1. A substantial folio of compositions demonstrating originality, experimen-

tation, coherence and technical acumen when addressing issues of form,

language and forces. The student will also show a clear and detailed knowl-

edge of contemporary issues in the field.

2. The compositions shall normally be a total of 90 minutes duration for the

degree of PhD and 45 minutes duration for the degree of MPhil. In the

case of the PhD submission the folio must contain one piece of substantial

proportions.

3. The written commentary shall address the compositional approaches used

in each piece and shall demonstrate an understanding of the techniques

used, the context of the piece, and appropriate aesthetic issues. In the

case of PhD, the document should be a maximum of 25, 000 words and a

maximum of 12,000 words for the MPhil.

4. A permanent record in the form of recordings shall accompany at least a

third of the compositions.

Students will be encouraged to have their works reviewed through public per-

formance at conferences and festivals.

107

Bibliography

[1] Theodore W. Adorno. Philosophy of Modern Music. Oxford University Press, 1947.

[2] Amy Alexander and Nick Collins. Live audiovisuals. In Collins and d’Escrivan [23],

pages 126–139.

[3] Alo Allik. Trigger Feedback Networks: creating musical patterns with models of

neural firing networks. Unpublished manuscript and code library, 2003.

[4] Alo Allik. Tehis: a cellular automata programming environment for computer

music composition. Master’s thesis, Institute of Sonology, Koninklijk Conserva-

torium, the Hague, the Netherlands, 2005.

[5] Willie Anku. Circles and time: A theory of structural organization of rhythm in

African music. Music Theory Online, 6(1), 2000. http://www.mtosmt.org/issues/

mto.00.6.1/mto.00.6.1.anku_essay.html.

[6] Jacques Attali. Noise. The Political Economy of Music (Theory and history of

Literature, Vol. 16). University of Minnesota Press, 1985.

[7] Bret Battey. On the presence of water. http://www.mti.dmu.ac.uk/~bbattey/Gallery/

otpw.html, 1997.

[8] Bret Battey. Writing on the surface. http://www.mti.dmu.ac.uk/~bbattey/Gallery/

wots.html, 2000.

[9] Bret Battey, Peter Bill, Neil Chowdhury, Cris Ewing, Chad Kirby, Michael O’Malley,

Juan Pampin, and Richard Karpen. Terraform 1. Multimedia installation curated

by Richard Karpen, Henry Art Gallery in Seattle (Washington, USA), http://www.

henryart.org/exhibitions/exhibition/82, 2000.

[10] Paul Bertelson. Ventriloquism: A case of crossmodal perceptual grouping. Ad-

vances in psychology, 129, 1999.

[11] Peter Beyls. The musical universe of cellular automata. In Proceedings of the

1989 International Computer Music Conference, (ICMC 1989). The International

Computer Music Association, 1989.

[12] Peter Beyls. Cellular automata mapping procedures. In Proceedings of the 2004

International Computer Music Conference, (ICMC 2004). The International Com-

puter Music Association, 2004.

108

http://www.mtosmt.org/issues/mto.00.6.1/mto.00.6.1.anku_essay.html
http://www.mtosmt.org/issues/mto.00.6.1/mto.00.6.1.anku_essay.html
http://www.mti.dmu.ac.uk/~bbattey/Gallery/otpw.html
http://www.mti.dmu.ac.uk/~bbattey/Gallery/otpw.html
http://www.mti.dmu.ac.uk/~bbattey/Gallery/wots.html
http://www.mti.dmu.ac.uk/~bbattey/Gallery/wots.html
http://www.henryart.org/exhibitions/exhibition/82
http://www.henryart.org/exhibitions/exhibition/82

BIBLIOGRAPHY 109

[13] John Biles. Genjam: A genetic algorithm for generating jazz solos. In Proceedings

of the 1994 International Computer Music Conference, 1994.

[14] John Biles. Interactive genjam: Integrating real-time performance with a genetic

algorithm. In Proceedings of the 1998 International Computer Music Conference,

1998.

[15] Antonio Camurri and Pasqualino Ferrentino. Interactive environments for music

and multimedia. Multimedia Systems, 7(1), 1999.

[16] Linda Candy. Practice based research: a guide. http://www.

creativityandcognition.com/research/practice-based-research/. Accessed: 2013-

06-30.

[17] Joel Chadabe. Electric Sound. Prentice Hall, 1997.

[18] Michel Chion. Audio-Vision. Sound On Screen. Columbia University Press, New

York, 1994.

[19] Thomas Ciufo. Computer-mediated improvisation. PhD thesis, Brown University,

2004.

[20] Nick Collins. Generative music and laptop performance. Contemporary Music

Review, 22(4), 2003.

[21] Nick Collins. Towards Autonomous Agents for Live Computer Music: Realtime

Machine Listening and Interactive Music Systems. PhD thesis, Centre for Science

and Music, Faculty of Music, University of Cambridge, 2006.

[22] Nick Collins. LL: Listening and learning in an interactive improvisation system.

Unpublished research report, 2007.

[23] Nick Collins and Julio d’Escrivan, editors. The Cambridge Companion to Elec-

tronic Music. Cambridge University Press, 2007.

[24] Christoph Cox and Daniel Warner, editors. Audio Culture: Readings in Modern

Music. Continuum, 2004.

[25] Francis Crick. The Astonishing Hypothesis. Touchstone, 1994.

[26] Palle Dahlstedt. Evolutionary algorithms as creative tools for the contemporary

composer. PhD thesis, Chalmers University of Technology, Göteborg, Sweden,

2004.

[27] Richard Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 1976.

[28] Richard Dawkins. The Blind Watchmaker. Penguin Books, 1986.

[29] Giovanni De Poli and Paolo Prandoni. Sonological models for timbre characteri-

zation. Journal of New Music Research, 26, 1997.

[30] Daniel C. Dennett. Darwin’s Dangerous Idea. Penguin Books, 1995.

http://www.creativityandcognition.com/research/practice-based-research/
http://www.creativityandcognition.com/research/practice-based-research/

BIBLIOGRAPHY 110

[31] David Deutsch. The Fabric of Reality. Penguin Books, 1997.

[32] Marco Donnarumma. Xth sense: A study of muscle sounds for an experimental

paradigm of musical performance. In Proceedings of the International Computer

Music Conference (ICMC), Huddersfield, 2011., 2011.

[33] C. Ferreira. Karva notation and k-expressions. from gep tutorials: A gepsoft web

resource. http://www.gene-expression-programming.com/tutorial002.htm.

[34] Cândida Ferreira. Gene expression programming: a new adaptive algorithm for

solving problems. Complex Systems, 13, 2001.

[35] Cândida Ferreira. Gene Expression Programming: Mathematical Modeling by

an Artificial Intelligence, volume 21 of Studies in Computational Intelligence.

Springer, 2006.

[36] Dennis Gabor. Acoustical quanta and the theory of hearing. Nature,

159(4044):591–94, 1947.

[37] Ricardo A. Garcia. Automating the design of sound synthesis techniques using

evolutionary methods, 2001.

[38] Ricardo A. Garcia. Growing sound synthesizers using evolutionary methods. In

In Proceedings ALMMA 2001: Artificial Life Models for Musical Applications Work-

shop, 2001.

[39] Murray Gell-Mann. The Quark and the Jaguar : Adventures in the Simple and

Complex. W. H. Freeman, September 1995.

[40] Michael A. Gerzon. Practical periphony: The reproduction of full-sphere sound.

In Audio Engineering Society Convention 65, 1980.

[41] N. Griffith and P.M. Todd, editors. Musical networks: Parallel distributed percep-

tion and performance. MIT Press, 1998.

[42] Lennart Hallstrom. African drum rhythms - educational tools for djembes, bass

drums, and bells. http://www.djembe.net/. Accessed: 2012-10-02.

[43] Paul Hegarty. Noise/Music. The Continuum International Publishing Group Inc,

2007.

[44] Alan Hevner, Salvatore March, Jinsoo Park, and Sudha Ram. Design science in

information systems research. MIS Quarterly, 28, 2004.

[45] Douglas Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books,

Inc, 1979.

[46] William Hsu. Two approaches for interaction management in timbre-aware im-

provisation systems. In Proceedings of the 2008 International Computer Music

Conference, 2008.

http://www.gene-expression-programming.com/tutorial002.htm
http://www.djembe.net/

BIBLIOGRAPHY 111

[47] Takashi Ikegami. Evolvability of machines and tapes. Artificial Life and Robotics,

3, 1999.

[48] James Joyce. Finnegan’s Wake. Faber and Faber, 1939.

[49] Teuvo Kohonen. Self-Organising Maps. Springer-Verlag, 1994.

[50] George E. Lewis. Too many notes: Computers, complexity and culture in Voyager.

Leonardo Music Journal, 10, 2000.

[51] Beth Logan. Mel frequency cepstral coefficients for music modeling. In Interna-

tional Symposium on Music Information Retrieval, 2000.

[52] B. J. Maclennan. Continuous spatial automata. Technical report, Department of

Computer Science, University of Tennessee, 1990.

[53] Cristyn Magnus. Evolving electroacoustic music: the application of genetic al-

gorithms to time-domain waveforms. In Proceedings of the 2004 International

Computer Music Conference, 2004.

[54] Max V. Mathews and John R. Pierce, editors. Current Directions in Computer

Music Research. MIT Press, 1989.

[55] James McCartney. Rethinking the computer music language: Supercollider. Com-

puter Music Journal, 26(4), 2002.

[56] Jon McCormack. Eden: An evolutionary sonic ecosystem. In Advances in Artificial

Life, 6th European Conference, ECAL 2001, Prague, Czech Republic, September

10-14, 2001, Proceedings, pages 133–142, 2001.

[57] Harry McGurk and John MacDonald. Hearing lips and seeing voices. Nature, 264,

1976.

[58] Alex McLean. Artist-Programmers and Programming Languages for the Arts. PhD

thesis, Goldsmiths, University of London, 2011.

[59] Dennis H. Miller. Seven animations. Microcinema International, DVD, 2006.

[60] Eduardo R. Miranda. Granular synthesis of sounds by means of a cellular au-

tomaton. Leonardo, 28(4), 1995.

[61] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,

MA, USA, 1998.

[62] Dalibor Mitrovic, Matthias Zeppelzauer, and Christian Breiteneder. Features for

content-based audio retrieval. Advances in Computers, 78, 2010.

[63] Manfred Mohr. Artist’s statement. Bulletin of the Computer Arts Society, London,

January 1973, 1973.

[64] Manfred Mohr. Dimensions. Generative Drawings. Galerie D+C Mueller-Roth,

Stuttgart, Germany, March 4 - April 29, 1979, 1979. Exibition Catalog.

BIBLIOGRAPHY 112

[65] Yota Morimoto. Hacking cellular automata: an approach to sound synthesis. In

The SuperCollider Symposium, Berlin, Germany, 2010, 2010.

[66] Gary Lee Nelson. Sonomorphs: An application of genetic algorithms to the

growth and development of musical organisms. In Proceedings of the Fourth

Biennial Art & Technology Symposium, volume 155, 1993.

[67] John Von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, Champaign, IL, USA, 1966.

[68] Netochka Nezvanova. The internet, a musical instrument in perpetual flux. Com-

puter Music Journal, 24(3), 2000.

[69] Jestern Alberto Novello. Invisible to visible: the eeg as a tool for music control

and creation. Master’s thesis, Institute of Sonology, Koninklijk Conservatorium,

the Hague, the Netherlands, 2012.

[70] Fredrik Olofsson. Work with Mark: Genetics. (a blog post.). http://www.

fredrikolofsson.com/f0blog/?q=node/144. Accessed: 2012-08-27.

[71] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.

SIGGRAPH Computer Graphics, 21(4), July 1987.

[72] Curtis Roads. Microsound. The MIT Press, 2004.

[73] David Rokeby. Adventures in phy-gital space. In Proceedings of the International

Conference on New Interfaces for Musical Expression, 2011.

[74] Robert Rowe. Machine listening and composing with Cypher. Computer Music

Journal, 16, 1992.

[75] Robert Rowe. Interactive Music Systems: Machine Listening and Composing. MIT

Press, Cambridge, MA, USA, 1993.

[76] Robert Rowe. Machine Musicianship. MIT Press, Cambridge, MA, USA, 2001.

[77] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd

Edition). Prentice Hall, 2003.

[78] Keiichiro Shibuya and Takeshi Ikegami. Personal communication. Club Transme-

diale 2008, Berlin, Germany. 2008-01-28.

[79] Satoshi Shiraishi. A real-time timbre tracking model based on similarity. Master’s

thesis, Institute of Sonology, Koninklijk Conservatorium, the Hague, the Nether-

lands, 2006.

[80] Herbert A. Simon. The architecture of complexity. Proceedings of the American

Philosophical Society, 106(6), 12 December 1962.

[81] Denis Smalley. The listening imagination: Listening in the electroacoustic era.

Contemporary Music Review: Live Electronics, 13, 1997.

http://www.fredrikolofsson.com/f0blog/?q=node/144
http://www.fredrikolofsson.com/f0blog/?q=node/144

BIBLIOGRAPHY 113

[82] Denis Smalley. Space-form and the acousmatic image. Organised Sound, 12,

2007.

[83] Dan Stowell. Supercollider code written by Dan Stowell. http://www.mcld.co.uk/

supercollider/. Accessed: 2012-08-27.

[84] Dan Stowell and Mark Plumbley. Adaptive whitening for improved real-time au-

dio onset detection. In Proceedings of the 2007 International Computer Music

Conference, 2007.

[85] Peter M. Todd and Gregory M. Werner. Frankensteinian methods for evolutionary

music composition. In Griffith and Todd [41].

[86] Godfried Toussaint. Classification and phylogenetic analysis of african ternary

rhythm timelines, 2003.

[87] Godfried T. Toussaint. The geometry of musical rhythm. In Jin Akiyama, Mikio

Kano, and Xuehou Tan, editors, Lecture Notes in Computer Science, volume

3742, pages 198–212. Springer, 2004.

[88] Alan M. Turing. Computing machinery and intelligence. Mind, 59, 1950.

[89] Ge Wang. Calories: 3d cellular automata simulation + visualization for music.

https://ccrma.stanford.edu/~ge/software/calories/. Accessed: 2012-09 -10.

[90] Eric W. Weisstein. Game of life. From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/GameofLife.html. Accessed: 2013-08-29.

[91] Scott Wilson, David Cottle, and Nick Collins, editors. The SuperCollider Book. MIT

Press, Cambridge, MA, USA, 2011.

[92] Trevor Wishart. On Sonic Art. Harwood Academic Publishers, 1998.

[93] Mirek Wojtowicz. Mirek’s cellebration - 1-d and 2-d cellular automata viewer,

explorer and editor. http://www.mirekw.com/ca/index.html. Accessed: 2012-10-15.

[94] Stephen Wolfram. A new kind of science. Wolfram Media Inc., Champaign, Ilinois,

US, United States, 2002.

[95] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming

Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

[96] Iannis Xenakis. Formalized Music. Indiana University Press, 1972.

[97] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3), 1965.

http://www.mcld.co.uk/supercollider/
http://www.mcld.co.uk/supercollider/
https://ccrma.stanford.edu/~ge/software/calories/
http://mathworld.wolfram.com/GameofLife.html
http://www.mirekw.com/ca/index.html

	Acknowledgements
	Abstract
	Introduction
	Project definition
	The portfolio of audiovisual works
	Methodology
	Primary contributions
	Outline

	Computational strategies for audiovisual performance
	Introduction
	Background
	Basic architecture
	Compositional strategies
	Virtual acoustic spaces

	Interactive composition: f(x)
	Introduction
	Cellular automata
	Continuous automata
	Structure of the performance environment
	Audiovisual organization and mapping
	Discussion

	Towards autonomous systems: mikro
	Introduction
	The conceptual framework
	Real time audio analysis
	Automating the composition process
	Interactive computer graphics
	Discussion

	Live coding: sparsematrix
	Introduction
	Sparse matrices of musical structure
	Outer totalistic automata for computer graphics
	Exploring the audiovisual space through live coding
	Discussion

	Gene expression synthesis
	Introduction
	Sound synthesis with evolutionary algorithms
	Components of GES
	The selection process
	Genetic operators
	Evolving unit generator graphs
	Defining the fitness function
	Discussion

	Conclusions
	Public performances and presentations
	Resources included on digital media
	Audiovisual recordings
	Audio recording

	Online resources
	Project websites
	Live recordings of performances
	Online recordings
	Source code repositories

	Practice-based Research Degree Guidelines
	Practice based Research Degree - PhD/MPhil by Composition

