432 research outputs found

    Synthesis of Multiresolution Scenes with Global Illumination on a GPU

    Get PDF
    [Abstract] The radiosity computation has the important feature of producing view independent results, but these results are mesh dependent and, in consequence, are attached to a specific level of detail in the input mesh. Therefore, rendering at iterative frame rates would benefit from the utilization of multiresolution models. In this paper we focus on the rendering stage of a solution for hierarchical radiosity for multiresolution systems. This method is based on the application of an enriched hierarchical radiosity algorithm to an input scene with low resolution objects (represented by coarse meshes), and the efficient data management of the resulting values. The proposed encoding makes it possible to apply the color values obtained for the coarse objects to detailed versions of these objects during the rendering phase. These finer meshes are obtained by a standard mesh subdivision strategy, such as the Loop subdivision scheme. Our solution performs the whole rendering stage of this multiresolution approach on the GPU, implementing it in the geometry shader using Microsoft HLSL. Results of our implementation show an important reduction in computational costs

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Interactive global illumination on the CPU

    Get PDF
    Computing realistic physically-based global illumination in real-time remains one of the major goals in the fields of rendering and visualisation; one that has not yet been achieved due to its inherent computational complexity. This thesis focuses on CPU-based interactive global illumination approaches with an aim to develop generalisable hardware-agnostic algorithms. Interactive ray tracing is reliant on spatial and cache coherency to achieve interactive rates which conflicts with needs of global illumination solutions which require a large number of incoherent secondary rays to be computed. Methods that reduce the total number of rays that need to be processed, such as Selective rendering, were investigated to determine how best they can be utilised. The impact that selective rendering has on interactive ray tracing was analysed and quantified and two novel global illumination algorithms were developed, with the structured methodology used presented as a framework. Adaptive Inter- leaved Sampling, is a generalisable approach that combines interleaved sampling with an adaptive approach, which uses efficient component-specific adaptive guidance methods to drive the computation. Results of up to 11 frames per second were demonstrated for multiple components including participating media. Temporal Instant Caching, is a caching scheme for accelerating the computation of diffuse interreflections to interactive rates. This approach achieved frame rates exceeding 9 frames per second for the majority of scenes. Validation of the results for both approaches showed little perceptual difference when comparing against a gold-standard path-traced image. Further research into caching led to the development of a new wait-free data access control mechanism for sharing the irradiance cache among multiple rendering threads on a shared memory parallel system. By not serialising accesses to the shared data structure the irradiance values were shared among all the threads without any overhead or contention, when reading and writing simultaneously. This new approach achieved efficiencies between 77% and 92% for 8 threads when calculating static images and animations. This work demonstrates that, due to the flexibility of the CPU, CPU-based algorithms remain a valid and competitive choice for achieving global illumination interactively, and an alternative to the generally brute-force GPU-centric algorithms

    Fast Rendering of Forest Ecosystems with Dynamic Global Illumination

    Get PDF
    Real-time rendering of large-scale, forest ecosystems remains a challenging problem, in that important global illumination effects, such as leaf transparency and inter-object light scattering, are difficult to capture, given tight timing constraints and scenes that typically contain hundreds of millions of primitives. We propose a new lighting model, adapted from a model previously used to light convective clouds and other participating media, together with GPU ray tracing, in order to achieve these global illumination effects while maintaining near real-time performance. The lighting model is based on a lattice-Boltzmann method in which reflectance, transmittance, and absorption parameters are taken from measurements of real plants. The lighting model is solved as a preprocessing step, requires only seconds on a single GPU, and allows dynamic lighting changes at run-time. The ray tracing engine, which runs on one or multiple GPUs, combines multiple acceleration structures to achieve near real-time performance for large, complex scenes. Both the preprocessing step and the ray tracing engine make extensive use of NVIDIA\u27s Compute Unified Device Architecture (CUDA)

    Real-Time Volumetric Shadows using 1D Min-Max Mipmaps

    Get PDF
    Light scattering in a participating medium is responsible for several important effects we see in the natural world. In the presence of occluders, computing single scattering requires integrating the illumination scattered towards the eye along the camera ray, modulated by the visibility towards the light at each point. Unfortunately, incorporating volumetric shadows into this integral, while maintaining real-time performance, remains challenging. In this paper we present a new real-time algorithm for computing volumetric shadows in single-scattering media on the GPU. This computation requires evaluating the scattering integral over the intersections of camera rays with the shadow map, expressed as a 2D height field. We observe that by applying epipolar rectification to the shadow map, each camera ray only travels through a single row of the shadow map (an epipolar slice), which allows us to find the visible segments by considering only 1D height fields. At the core of our algorithm is the use of an acceleration structure (a 1D minmax mipmap) which allows us to quickly find the lit segments for all pixels in an epipolar slice in parallel. The simplicity of this data structure and its traversal allows for efficient implementation using only pixel shaders on the GPU

    On sparse voxel DAGs and memory efficient compression of surface attributes for real-time scenarios

    Get PDF
    The general shape of a 3D object can expeditiously be represented as, e.g., triangles or voxels, while smaller-scale features usually are parameterized over the surface of the object. Such features include, but are not limited to, color details, small-scale surface-normal variations, or even view-dependent properties required for the light-surface interactions. This thesis is a collection of four papers that focus on new ways to compress and efficiently utilize surface data in 3D for real-time usage.In Paper IA and IB, we extend upon the concept of sparse voxel DAGs, a real-time compression format of a voxel-grid, to allow an attribute mapping with a negligible impact on the size. The main contribution, however, is a novel real-time compression format of the mapped colors over such sparse voxel surfaces.Paper II aims to utilize the results of the previous papers to achieve uv-free texturing of surfaces, such as triangle meshes, with optimized run-time minification as well as magnification filtering.Paper III extends upon previous compact representations of view dependent radiance using spherical gaussians (SG). By using a convolutional neural network, we are able to compress the light-field by finding SGs with free directions, amplitudes and sharpnesses, whereas previous methods were limited to only free amplitudes in similar scenarios

    Neural Free-Viewpoint Relighting for Glossy Indirect Illumination

    Full text link
    Precomputed Radiance Transfer (PRT) remains an attractive solution for real-time rendering of complex light transport effects such as glossy global illumination. After precomputation, we can relight the scene with new environment maps while changing viewpoint in real-time. However, practical PRT methods are usually limited to low-frequency spherical harmonic lighting. All-frequency techniques using wavelets are promising but have so far had little practical impact. The curse of dimensionality and much higher data requirements have typically limited them to relighting with fixed view or only direct lighting with triple product integrals. In this paper, we demonstrate a hybrid neural-wavelet PRT solution to high-frequency indirect illumination, including glossy reflection, for relighting with changing view. Specifically, we seek to represent the light transport function in the Haar wavelet basis. For global illumination, we learn the wavelet transport using a small multi-layer perceptron (MLP) applied to a feature field as a function of spatial location and wavelet index, with reflected direction and material parameters being other MLP inputs. We optimize/learn the feature field (compactly represented by a tensor decomposition) and MLP parameters from multiple images of the scene under different lighting and viewing conditions. We demonstrate real-time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed rendering of challenging scenes involving view-dependent reflections and even caustics.Comment: 13 pages, 9 figures, to appear in cgf proceedings of egsr 202

    Photon Splatting Using a View-Sample Cluster Hierarchy

    Get PDF
    Splatting photons onto primary view samples, rather than gathering from a photon acceleration structure, can be a more efficient approach to evaluating the photon-density estimate in interactive applications, where the number of photons is often low compared to the number of view samples. Most photon splatting approaches struggle with large photon radii or high resolutions due to overdraw and insufficient culling. In this paper, we show how dynamic real-time diffuse interreflection can be achieved by using a full 3D acceleration structure built over the view samples and then splatting photons onto the view samples by traversing this data structure. Full dynamic lighting and scenes are possible by tracing and splatting photons, and rebuilding the acceleration structure every frame. We show that the number of view-sample/photon tests can be significantly reduced and suggest further culling techniques based on the normal cone of each node in the hierarchy. Finally, we present an approximate variant of our algorithm where photon traversal is stopped at a fixed level of our hierarchy, and the incoming radiance is accumulated per node and direction, rather than per view sample. This improves performance significantly with little visible degradation of quality
    corecore