
Thesis for the degree of Doctor of Philosophy

On sparse voxel DAGs and
memory efficient compression

of surface attributes for
real-time scenarios

Dan Dolonius

Division of Computer Engineering
Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2022

On sparse voxel DAGs and memory efficient compression of surface
attributes for real-time scenarios
Dan Dolonius

ISBN: 978-91-7905-631-5

© Dan Dolonius, 2022

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5097
ISSN 0346-718X

Technical Report report no 212D
Department of computer Science and Engineering
Research group: Computer Graphics
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Phone: +46(0)32 772 1000

Contact information:
Dan Dolonius
Department of computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg, Sweden

Phone: +46(0)70 7769178
Email: dan.dolonius@gmail.com
URL: http://www.cse.chalmers.se/∼dolonius/

Printed in Sweden
Chalmers Reproservice
Göteborg, Sweden 2022

On sparse voxel DAGs and memory efficient

compression of surface attributes for real-time

scenarios

Dan Dolonius
Department of Computer Science and Engineering
Chalmers University of Technology

Thesis for the degree of Ph.D of Engineering

Abstract

The general shape of a 3D object can expeditiously be represented as, e.g.,
triangles or voxels, while smaller-scale features usually are parameterized
over the surface of the object. Such features include, but are not limited to,
color details, small-scale surface-normal variations, or even view-dependent
properties required for the light-surface interactions. This thesis is a collec-
tion of four papers that focus on new ways to compress and efficiently utilize
surface data in 3D for real-time usage.

In Paper IA and IB, we extend upon the concept of sparse voxel DAGs,
a real-time compression format of a voxel-grid, to allow an attribute mapping
with a negligible impact on the size. The main contribution, however, is a
novel real-time compression format of the mapped colors over such sparse
voxel surfaces.

Paper II aims to utilize the results of the previous papers to achieve uv -
free texturing of surfaces, such as triangle meshes, with optimized run-time
minification as well as magnification filtering.

Paper III extends upon previous compact representations of view de-
pendent radiance using spherical gaussians (SG). By using a convolutional
neural network, we are able to compress the light-field by finding SGs with
free directions, amplitudes and sharpnesses, whereas previous methods were
limited to only free amplitudes in similar scenarios.

Keywords: voxel, geometry, octree, directed acyclic graph, compression,
surface properties, filtering, neural networks, spherical gaussians, light field

i

ii

Acknowledgements

First and foremost, I am very grateful for my mother Amelie, my fathers
Leif and Per, my sister Emma, my partner Freja, and my mother in law
Catharina for their continuous support and encouragement. I would also like
to thank my supervisor Ulf, my co-supervisor Erik, and my co-workers at
Chalmers; Sverker, Alexandra, and Roc. Further, I would like to thank my
co-students during my master studies; Pierre, Edwin, and Damiano for all
the interesting discussions we have had, and still do. And finally, a special
thanks to the dogs Ankan, Nelson, and Lizzie for that little extra bump of
emotional support.

Dan Dolonius
Göteborg, February 2022

iii

iv

List of Appended Publications

This thesis is a summary of four publications. The second publication (IB)
is an extension to the first publication (IA) but is included since the contri-
butions are arguably enough to constitute a paper on its own.
References to the papers will be made with roman numerals.

Paper IA - Dan Dolonius, Erik Sintorn, Viktor Kämpe, Ulf Assarsson,
Compressing Color Data for Voxelized Surface Geometry (original),
I3D ’17 Proceedings of the 21st ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games Article No. 13 (Best paper award).

Paper IB - Dan Dolonius, Erik Sintorn, Viktor Kämpe, Ulf Assarsson,
Compressing Color Data for Voxelized Surface Geometry (extension),
IEEE Transactions on Visualization and Computer Graphics,
(Volume: 25, Issue: 2, Aug. 18 2017, Pages: 1270 - 1282).

Paper II - Dan Dolonius, Erik Sintorn, Ulf Assarsson,
UV-free Texturing using Sparse Voxel DAGs,
Computer Graphics Forum,
(Volume: 39, Issue: 2, Jul. 13 2020, Pages: 121 - 132).

Paper III - Roc Ramon Currius, Dan Dolonius, Erik Sintorn, Ulf Assars-
son,
Spherical Gaussian Light-field Textures for Fast Precomputed Global
Illuminations,
Computer Graphics Forum,
(Volume: 39, Issue: 2, Jul. 13 2020, Pages: 133 - 146).

Other papers and work co-authored by Dan Dolonius:

• Viktor Kämpe, Erik Sintorn, Dan Dolonius, Ulf Assarsson,
Fast, Memory-Efficient Construction of Voxelized Shadows,
IEEE Transactions on Visualization and Computer Graphics,
(Volume: 22, Issue: 10, Oct. 1 2016, Pages: 2239 - 2248).

• Ulf Assarsson, Markus Billeter, Dan Dolonius, Elmar Eisemann, Al-
berto Jaspe, Leonardo Scandolo, Erik Sintorn,
Voxel dags and multiresolution hierarchies: from large-scale scenes to
pre-computed shadows,
Eurographics (Tutorials),
(2018, Pages: 9 - 11)

v

Table of Contents

Abstract . i
Acknowledgements . iii
List of Appended Publications . v

I Introductory chapters

1 Introduction 1
1.1 Thesis structure . 2

2 Object representation 3
2.1 Surface geometry . 4
2.2 Surface properties . 5
2.3 Sampling and Filtering . 7
2.4 View dependent properties . 8

3 Sparse voxel octrees and DAGs 11

4 Problem statements 15
4.1 Compressing voxel-property information 15
4.2 View dependency . 15

5 Summary of Included Papers 17
5.1 Paper IA - Compressing Color Data for Voxelized Surface

Geometry (Original) . 18
5.1.1 Problem . 18
5.1.2 Method . 18
5.1.3 Contributions . 20

5.2 Paper IB - Compressing Color Data for Voxelized Surface
Geometry (Extension) . 22
5.2.1 Problem . 22
5.2.2 Method . 22

5.2.3 Contributions . 23
5.3 Paper II - UV-free Texturing using Sparse Voxel DAGs . . . 25

5.3.1 Problem . 25
5.3.2 Method . 26
5.3.3 Contributions . 27

5.4 Paper III - Spherical Gaussian Light-field Textures for Fast
Precomputed Global Illumination 28
5.4.1 Problem . 28
5.4.2 Method . 29
5.4.3 Contributions . 29

6 Discussion and Future Work 31

Bibliography 33

II Appended Papers 39
Paper IA - Compressing Color Data for Voxelized Surface Geom-

etry (original) . 42
Paper IB - Compressing Color Data for Voxelized Surface Geom-

etry (extension) . 55
Paper II - UV-free Texturing using Sparse Voxel DAGs 71
Paper III - Spherical Gaussian Light-field Textures for Fast Pre-

computed Global Illumination 86

Part I

Introductory chapters

Chapter 1

Introduction

In the physical domain, we perceive objects through their interaction of light
on an atomic or even quantum level, e.g., by blocking, reflecting, and trans-
mitting photons. However, we can make our lives a bit easier by realizing
that some high-level concepts, such as for instance silhouettes and shad-
ows, can be sufficiently reasoned about on a macroscopic scale, while other
properties, such as the smoothness, of a surface resides in the microscopic
domain (scratches and dust). Further, effects such as refraction, diffraction
and metallic surfaces might even need some degree of atomic or quantum
scaling to be fully explained [32].

In the realm of computer graphics where we often want to render, in
some sense, physical objects, the general representations is as follows. On
a macroscopic level, we let the surface geometry of the object be approxi-
mated by simple primitives, such as triangles, whereas on the microscopic
and lower levels, we approximate the material of the object with statistical
distributions and/or analytical functions. This allows us to efficiently simu-
late how the light interacts with the object, and by increasing the number of
primitives and using more physically accurate distributions, we can render
more complex and realistic scenes but at the expense of rendering times and
memory consumption.

Suffice to say, just naively increasing complexity will yield diminishing
returns as the memory and processing requirements grows much faster than
what the hardware can provide. We thus need to find ways to more efficiently
represent these objects, as well as cheaper methods of rendering them, with-
out sacrificing quality.

This thesis aims to improve and extend existing representations in order
to decrease the memory footprint while still being inexpensive to visualize
with high quality.

1

2 Chapter 1

1.1 Thesis structure

The first part of this thesis is organized as follows. Chapter 2-3 describes
existing concepts and methods on which this thesis expands upon. Chapter
4 offers some brief problem statements which this thesis aims to overcome.
Chapter 5 is a summary of the papers addressing named problems, and chap-
ter 6 is left for discussion and future work.

The second part consists of the appended papers.

Chapter 2

Object representation

Figure 2.1: Left: Original. Middle: Triangulated. Right: Voxelized.

There is a plethora of ways to create and represent virtual objects, besides
the basic primitives. An object can be scanned, using e.g., LIDAR or stereo-
scopic matching, resulting in a point cloud. It can be modelled using para-
metric surfaces, such as Non-uniform rational B-splines or Subdivision sur-
faces. There are also pure functional representations, e.g., where the object
is represented as mathematical functions creating a Signed Distance Field,
which can be rendered by sampling the field and classifying the samples to be
inside or outside the geometry whether their value is within a certain thresh-
old. While the different methods all have their own advantages, a common
issue is that they are either inefficient to store or to render. Point clouds re-
quire a lot of memory and do not really support non-rigid animations, while
parametric solutions and distance fields has too many degrees of freedom
to be rendered with maximum efficiency. Thus, in order to allow real-time
applications or reduce rendering times (power consumption) in offline appli-
cations, these representations are often converted to simple primitives, either
before or during rendering, except for some niche cases.

3

4 Chapter 2

Figure 2.2: An example of how a pixel can encompass many small
triangles.

2.1 Surface geometry

The most common primitive, as hinted in the introduction, is a triangle (see
Figure 2.1). A collection triangles sharing edges is called a triangle mesh,
whereas a collection of independent triangles is called a triangle soup. The
advantage of a triangle is that it is a very simple representation, which results
in fewer edge and degenerate cases. For example, there is only one plane that
can be defined by the three vertices of a triangle, while the four vertices of
a quad can define up to two pairs of two planes, of which desired set is
ambiguous unless extra information is provided. Having so few edge cases
has given rise to the Graphics Processing Units (GPUs), which is hardware
initially dedicated to render massive amount of triangles in parallel through
a process called rasterization.

During rasterization, the triangles are projected onto a virtual plane, the
so called raster image, which is a collection of pixels. The triangle closest to
the camera which overlaps the pixel center is then sampled to yield the final
color for that pixel. Herein lies a problem. Consider Figure 2.2, where the
camera is inside a tower, overlooking a town far away. The red square in the
leftmost image represents one pixel in our image, and as we zoom in, we see
that this pixel encompass and entire building, potentially made of thousands
of triangles. If we only take one sample for this pixel, this means that only
one triangle will represent that pixel, resulting in severe aliasing artifacts.
Another issue is that, while inside the tower, keeping all the triangles that
can not be seen, on the GPU, can be both wasteful or impossible due to
limited amounts of GPU memory. Thus, in order to combat such issues,
the models can first be generated with different levels of detail (LOD) and
stored on disk. Depending on the distance to the object to be rendered, the
most suitable detail level is loaded onto the GPU. However, creating such

CHAPTER 2. OBJECT REPRESENTATION 5

Figure 2.3: A textured cube composed of 12 triangles.

models is extra overhead for artists, and while there exist tools for automatic
downsampling, extra tweaking is still necessary to create high quality models.

An interesting alternative, is voxels, which is short for volume element, anal-
ogous to pixel / picture element (see Figure 2.1). To represent geometry as
voxels, they can be stored in a binary 3D grid, where 0 represents empty vox-
els and 1 when the voxel contains geometry. This naive and direct approach
however is not very efficient and does not solve any of the named problems
with triangles. The benefit is that it is easier to create LODs with voxels,
as we can easily downsample the grid using the simple rule that downsam-
pled voxel contains geometry only if any composing voxels do. Further, the
memory overhead may also be considerably reduced by only storing the non-
empty voxels in a so called Sparse Voxel Octree (SVO). We will revisit and
expand upon this concept in later chapters.

2.2 Surface properties

So far, we have only addressed the macroscopic properties, the geometry, of
the object. More often than not, we also need to specify the microscopic
properties, such as the material of the object. The material properties may
vary on the model of the material, but common properties are how it scatters
light (rough/shiny), transmission (transparent/opaque), and the reflected
wavelengths (color), and on rare occasions, it is sufficient to store this on a
per primitive basis. However, as can be seen in Figure 2.3, we would need
around a million triangles to produce the pattern, compared to only twelve
for the geometry. Since a non-degenerate triangle defines only one plane in
3D space, it should be trivial to realize that we can uniquely define every
point inside the triangle by mapping the vertices to a 2D plane. Thus, by

6 Chapter 2

adding just two extra properties to the vertices (the x and y coordinates on
the 2D plane, a so called uv -map), we can define every point on the surface
of the triangle and use a 2D grid as a lookup table (LUT) to query the desired
surface attributes during rendering. Such a LUT is called a texture, for which
each element is called a texel. Note that while 2D textures is the common
use case, texturing is by no means restricted to just 2D. For example, 1D
textures can be sufficient for creating gradients and 3D textures can be useful
for volumetric objects.

However, individually mapping each triangle would result in a triangle
soup, since there can be no shared vertices as in a triangle mesh. In many
cases, this will increase the memory overhead by about a factor of 6×. Fur-
ther, if we want to have filtered lookups, they would only be filtered on a
per-triangle basis, resulting in aliasing and discontinuities.

Figure 2.4: Unwrapping a cube.

For these reasons, we ideally want to map as many shared vertices as pos-
sible. This is achieved by a process called unwrapping, which is illustrated
in Figure 2.4, where certain vertices are split so that the model can unfold
to the 2D-plane (a.k.a, cuts). In general, there is no perfect unwrapping
as there will always be a compromise by preserving continuity, angles, or
area, where neglecting any of each will result in different kinds of artifacts
or distortions. The discontinuities arise where the cuts are placed, resulting
in jarring artifacts called seams, forcing artists to strategically place cuts in
areas less likely to be viewed, while keeping the distortions to a minimum.
For a comprehensive guide on alternative texture mapping techniques, please
refer to the course notes on Rethinking Texture Mapping [45] by Cem Yuksel
et al.

CHAPTER 2. OBJECT REPRESENTATION 7

Figure 2.5: Left: SH. Middle: SG. Right: BRDF.
(SH by Inigo Quilez https://www.shadertoy.com/view/lsfXWH)

2.3 Sampling and Filtering

The rendering of an image is in essence a sampling problem, where the sample
points are the pixels and the virtual scene is the signal. In accordance with
the Nyquist–Shannon sampling theorem, we indeed suffer aliasing artifacts if
e.g., the projected texture’s resolution exceeds the sample resolution. In such
cases, a solution is to remove high frequencies with a low-pass filter. As for
textures (and voxel grids), they can trivially be pre-filtered by downsampling
the grid, which for textures is commonly known as a mip-map hierarchy.
Texture aliasing can thus be avoided by sampling from the texture which
best matches the target resolution after projection. There will however be
artifacts, visible as discontinuities when adjacent texels are sampled with
different mipmaps. The solution is to, for each texel, interpolate between the
suitable mipmaps, generally using a first degree polynomial. Not surprisingly,
we call this a linear filter for minification.

On the other hand, we might also suffer from oversampling when the
projected texture resolution is lower than the target resolution, resulting in
discontinuities and block-like artifacts. In this case we can, at run time,
mitigate these problems by upsampling the texture, simply by sampling the
adjacent texels relative the sampling point, p, and interpolate with respect
to the distance from p and the texel centers, i.e., a bi-linear filter for magni-
fication. Combining these two methods is equivalent to sampling a cube, a
tri-linear filter. This idea is easily generalizeable to higher dimensions, e.g.,
a tri-linear filter for voxel magnification, and a linear filter for minification,
resulting in a quad-linear filter.

8 Chapter 2

2.4 View dependent properties

These days, practically all physically-based renderings of virtual scenes are
based on solving the light transport equation [11],

Lo(p, ωo) = Le(p, ωo) +

∫

Ω

f(p, ωo, ωi)Li(p, ωi)|cos(θi)|dωi,

where the exitant radiance Lo must be equal to the emitted radiance Le plus
the scattered incident radiance Li over all incoming directions ωi over the
hemisphere Ω, at a surface point p. How the light is scattered is defined by
the bidirectional reflectance distribution function (BRDF), f , and a common
such distribution is the Cook-Torrance BRDF which is a micro-facet model,
defined as

f(p, ωo, ωi) =
F (ωo, ωh)G(ωi, ωo, ωh)D(ωh)

4(n · ωi)(n · ωo)
,

where F is a Fresnel function, G a geometric attenuation function and, D a
normal distribution function. Finally, n is the normal of the surface, θi is the
angle between the normal and incident direction, and ωh is the half-vector
between the normal and the incoming direction. In Figure 2.5, we see an
example of the Cook-Torrance BRDF, given the incoming direction (cyan),
normal (blue).

While it is most common to store view-independent properties such as
colors, normals, and BRDF specific parameters to calculate the view depen-
dent result on the fly, we need simpler and approximate calculations for real
time scenarios, or long rendering times for realistic high quality images. For
perfectly specular surfaces we can precompute the incoming radiance from
light sources far away by a single environment map [3], and this technique
has later been extended to allow glossy surfaces by pre-convoling the envi-
ronment map with respect to the surface’s BRDF [22]. While it is possible
to capture local radiance by introducing multiple local environment maps for
different points in the scene, the excessive memory overhead inhibits it to be
practically useful in most cases.

Another option is to instead approximate the radiance transfer [38] with
Spherical Radial Basis Functions, (SRBF), which then are convolved with
the BRDF.

The most common basis is probably Spherical Harmonics (SH), which
is a set of particular orthogonal polynomial basis functions defined over the
surface of a sphere and is also frequently used in physics, e.g., for computa-
tions of electron configurations, representation of gravitational or magnetic
fields, and solutions of the Schrodinger equation. For representation of the
first few, see Figure 2.5. While they are practical to work with for diffuse or

CHAPTER 2. OBJECT REPRESENTATION 9

rough surfaces [30], SHs become increasingly problematic for glossy surfaces
and high-frequency lighting environments, as more coefficients are needed to
avoid ringing artifacts due to the nature of these polynomials.

Another popular basis is Spherical Gaussians(SG), which is a special case
of the von Mises-Fisher distribution, and is mathematically defined as
G(v;u, λ,µ) = µeλ(v · u − 1), where u is the axis, µ the amplitude, and
λ the sharpness. By summing up several SGs, arbitrary distributions can
be approximated, as can be seen in the middle image of Figure 2.5 that
is constructed by four SG lobes with different parameters. In the work by
Green et al. [8], they introduce a hybrid method where the diffuse, direct
and indirect terms, for view-independent effects were modeled using SHs
or wavelets, while the higher frequency glossy terms were modeled using
SGs. In the work by Tsai et al. [40], they point out that since the model
by Green et al. is restricted to model only specular effects with SGs, it
is unclear whether effects such as all-frequency shadows could be handled.
Instead, they propose a unified framework which also allows rendering of all-
frequency shadows, even though they are at a disadvantage with representing
highly specular BRDF’s. Succeeding works [41, 10, 43] have improved on this
concept by, for instance, allowing spatially varying BRDF’s, dynamic scenes,
and introducing anisotropic SGs for better reconstructions.

Chapter 3

Sparse voxel octrees and DAGs

(a) Original SVO. (b) Transformed to DAG.

Figure 3.1: Illustration of SVO to dag transformation. Green and
blue boxes represents identical subtrees. For brevity, the octree is
represented as a binary tree.

As explained earlier, storing even the minimum unit of data (a bit) per voxel
in a voxel grid is infeasible at larger resolutions. Arguably, a voxelized surface
will be very sparse, as thus de-facto compression algorithms will perform rea-
sonably well over the entire volume, due to the low entropy, for offline storage.
However, decoding of the compressed data will be far too slow in a real-time
application, and thus we need a format suitable for such situations. A sparse
voxel octree (SVO) is a data structure where a volume is recursively sub-
divided along each canonical axis such that there are eight smaller volumes
(children) composing the larger volume (parent). Further, by subdividing in
an explicit order, we can implicitly store the children such that all is needed
is an 8-bit mask for the nodes in the SVO, sacrificing practicality in favour
of compression.

11

12 Chapter 3

Figure 3.2: Red boxes represent previously identical subtrees which
become different when color information is added to leaf nodes.

While the SVO is a more compact alternative than a grid, the mem-
ory requirements still grow unmanageable at extreme resolutions. Kampe et
al. [13] realized that since there are only 28 variations of the leaf1 masks, by
merging identical leaves, the final level can be made significantly more com-
pact. Similarly, recursively storing only the unique subtrees, they manage
to drastically compress the entire SVO in what now is called a Sparse Voxel
DAG2 (see Figure 3.1).

However, with this, what is gained in compression is lost in practical-
ity. While an SVO can store arbitrarily large payloads in the leaves, the
DAG does not share this feature, as adding extra bits of information will
substantially reduce the number of identical elements, thus abolishing the
compression (see Figure 3.2). While storing the geometry attributes in the
leaf nodes in an SVO provides an easy mapping, this will also render any sig-
nificant compression of the attributes themselves nearly impossible. When
attribute compression is desired, a more practical approach is to decouple
the attributes from the SVO so they can be processed independently.

In the paper Out-of-Core Construction of Sparse Voxel Octrees [1], Baert
et al. describe how a SVO can be constructed very efficiently in a streaming
manner by first ordering the voxel grid along a Morton Space-Filling Curve.
The concept of space-filling curves was introduced by the mathematician
Giuseppe Peano in 1890 and describes a continuous surjection from the unit
interval to unit square [28]. As it turns out, this also holds for N-dimensional
hypercubes, and in the case of a voxel grid when countable and finite, it
may also serve as an injection, i.e., we can map from a curve to a grid and
back. The Morton curve is widely adopted due to its simplicity as well as

1The children of the lowest level of the SVO
2DAG - Directed Acyclic Graph

CHAPTER 3. SPARSE VOXEL OCTREES AND DAGS 13

(a) Morton curve (b) Hilbert curve

Figure 3.3: Example of two common space-filling curves. The path
is shown in green, and each cell is color coded to show how coherency
is preserved.

locality preserving features, and other examples of applications includes, e.g.,
optimizing 2D memory accesses or faster construction of bounding volume
hierarchies [26, 19]. Refer to Figure 3.3 for an example of the Morton and
also popular Hilbert curve. As Dado et al. [6] points out, a depth first
traversal of an SVO or DAG will preserve locality, and we realise that by
explicitly ordering the children, as in [1], we can sort the attributes relatively
coherently along any space-filling curve we so desire. This provides a good
foundation for attribute compression, and similarly to how we can replace
the data stored in the leaves with a more light-weight attribute index for a
reasonably sized SVO, we can achieve the same effect with a DAG by storing
a leaf counter in the nodes.

Chapter 4

Problem statements

4.1 Compressing voxel-property information

The elegance of an imlpicit mapping in the SVO is unfortunately lost when
compressing it to a DAG, since adding extra bits of information, e.g., color, in
the leaves will significantly hinder compression, as previously identical leaves
(and thus subtrees) will now be unique, which can be seen in Figure 3.2.
What we need is to be able to decouple the attributes from the DAG, e.g.,
by keeping track of non-empty or empty voxels as in [6, 42], as this will not
change the uniqueness of the nodes. As the number of voxels grow, the raw
attribute data will rather quickly be the dominant factor in terms of memory,
rendering the DAG practically redundant. In the paper by Dado et al. [6], we
saw the first attempt of a lossy compression format for real-time scenarios,
using color palettes, reminiscent of png images.

Admittedly, neither SVOs or DAGs are not as fast as a hardware 3D tex-
ture as we need to do approximately log2n more data reads without hardware
support, where n is the original grid resolution. If filtering is desired, this
will result in up to 8×−16× times more reads, further inhibiting the use in
real-time scenarios.

4.2 View dependency

In real-time scenarios, it is popular to represent both the light field and
BRDF as either SHs or SGs, as it allows for an efficient convolution with
the incoming illumination. If we restrict the SGs to only have a variable
amplitude, we can efficiently compute the parameters using non-negative

15

16 Chapter 4

Figure 4.1: Using only pre-convolved environment map vs ground
truth.

least-squares methods1. Since SHs is an orthonormal basis, the least squares
projection can be performed, in real-time, by a simple integration of the light
field against the basis functions [37, 15]. Consequentially, both SHs and SGs2

have the added benefit that the parameters are trivially filterable, but with
the downside that we require higher order SHs and more SGs to represent
higher frequency effects. Removing the constraint of fixed direction and
sharpness for SGs allows for much more efficient approximations using e.g.,
gradient descent (GD) or expectation maximization (EM) algorithms, which
is perfectly viable if only independent sets of SGs are desired. However, if
filterable SGs are required, the problem becomes significantly non-trivial as
there is no guarantee that the the ordering of lobes of different sets of SGs
is preserved, using GD or EM naively.

In real-time applications, using the Cook-Torrance BRDF, it is common to
pre-convolve the environment map with the normal distribution function
and precompute the expensive convolution in a 3D LUT while also moving
the remaining terms of the light transport equation outside of the integral.
Those terms are then evaluated only for the perfect specular direction, and
as such, the error of this estimation will be worse the rougher the material.
Nevertheless, in practice this is sufficient for unoccluded reflections. The issue
with pre-convolving the environment map however, is that, since it ignores
local occlusions, in scenarios with lots of occlusion, it can have detrimental
effects on the final result, such as the indoor scene in Figure 4.1.

1https://mynameismjp.wordpress.com/2016/10/09/sg-series-part-5-approximating-
radiance-and-irradiance-with-sgs/

2With fixed sharpness and directions

Chapter 5

Summary of Included Papers

In this Section, we will describe the main contributions of each paper:

Paper IA - A novel method for compressing surface properties stored with
a voxelized scene representation, which outperforms previous work by
up to 1.8× at similar quality.

Paper IB - An extension to the previous method in which compression is
further improved by up to 2.5×.

Paper II - An optimization on attribute lookups in DAGs for fast filtering
and uv-free texturing.

Paper III - A novel optimization technique using CNNs to find filterable
SGs.

17

18 Chapter 5

5.1 Paper IA - Compressing Color Data for

Voxelized Surface Geometry (Original)

5.1.1 Problem

In a triangle mesh, the attribute data is commonly stored as a texture. Since
the uv mapping is continuous over one, up to several, triangles, the data is
generally coherent and is therefore suitable for compression; e.g., jpeg and
png for offline storage or bc and astc for real-time scenarios. Unfortunately
this is not the case for sparse data as with an SVO [18] or DAG [13]. While it
is possible to implicitly map the geometry of an SVO by storing the attributes
in the leaves, a DAG lacks this feature. Further, since the map is a sparse 3D
set instead of a dense 2D, conventional compression formats do not perform
well, or even apply. Further, even if applicable, formats such as the BC
family has a fixed compression ratio of 4-8 bits per pixel, while ASTC also
has a fixed ratio of 0.89-8 bits texel1.

As shown in [42, 6], it is possible to introduce a leaf counter to the DAG nodes,
such that an attribute index can be computed by a running sum while keeping
the DAG nodes fingerprint intact, thus decoupling the attributes from the
geometry with only a small overhead (the leaf counter). Dado et al. further
provide the first attempt at a compression format for the decoupled data,
and while they achieve impressive compression ratios, their format is a bit
complex and suffer when the whole color space is evenly utilized, due to their
approach on using color palettes.

5.1.2 Method

While [42, 6] use a per-pointer leaf count, we instead opt for a per-node
counter (see Figure 5.1). Since our DAG is stored in a 32-bit array, where
the elements are (8-bit child mask + 24-bit padding) and (n×32-bit child
pointers), we can use the 24 padding bits as our leaf counter. Using 24 bits
for the leaf counter is generally sufficient for DAG resolutions up to 10243,
and for larger resolutions we can just store an offset for the upper levels into a
separate 32-bit counter array. These nodes are few, and in our experiments,
we found that the overhead was generally far less than 0.1%. This way,
we have minimal impact to the DAG size instead of almost doubling it, in
the case of per-pointer counters. The drawback is that we need to read the
preceding childs counter for each node, resulting in extra memory reads. In

1for 2D textures

CHAPTER 5. SUMMARY OF INCLUDED PAPERS 19

2 3

4

2 2

1 1 1 1

0 1

(a) SVO: Color indices
can be trivially mapped to
nodes.

4

2 2

1 1

+2

+1

+0

2+1+0= 3

(b) DAG: Storing total num-
ber of leaf nodes preserves
identical nodes.

Figure 5.1: Example how a desired color index (red path) can be
found by a running sum of preceding child nodes total number of leaf
nodes.

our experiments, we found that while per-pointer counter lookups is around
1.2×−1.9× faster, it also results in a 1.5×−1.8× larger DAG.

In this paper, we investigate two methods of compressing colors, both of
which rely on first ordering the voxels along a 1D space-filling curve.

Regarding the first method, we argue that if we map this 1D array to a
2D array, again using a space-filling curve, the colors will often be reason-
ably coherent, and thus we will be able to utilize conventional compression
algorithms.

In the second method, we introduce a novel compression format, inspired
by the BC and ASTC [27, 9] families of compression formats, since they
are real time formats with almost zero overhead. In these formats, the
texture is split into blocks, e.g., 4 × 4 texels, of which each contain a set
of base colors and a cheap per-texel value, which together are used to re-
construct the original color for each of the texels. Similarly, in our for-
mat, we divide the color array into blocks, with the difference that our
blocks are not of fixed size. For each block, we assign two base colors
(e.g., 2 × 16 bits) and a per-color weight (e.g., 3 bits). The base colors
(B1, B2) and the weight (w) are chosen such that the original color (C) is
reconstructed by a linear interpolation; C = wB1 + (1 − w)B2. Addition-
ally, since the blocks are of variable length, we also need to store the first
voxel index for the range of voxels assigned to that block (see Figure 5.2).

20 Chapter 5

Voxel

colors

Block

headers

C0 C1

Start Voxel

Weight

bits

C0 C1

Start Voxel

010 010 110 100 101 001 001 011 101 111 010 110 101 010

w0 w1 w2 w3 w4 w5

Block range

Figure 5.2: Visualization of data layout for
fixed weight bit width.

The base colors and the first voxel
index is stored together (2× 16+ 32
bits) in which we call the header, all
of which is stored in a 32-bit array,
and the weights are stored in a sepa-
rate array. This way, the headers are
of fixed size, which we will take ad-
vantage of during the decoding, ex-
plained later. Since the weights are
always of fixed size, the means of compression are to minimize the number
of headers, or in other words, find as large blocks as possible.

We achieve this by first specifying an error threshold, meaning that the mean
square error (MSE) of the reconstructed color may not be larger than that
threshold. The gist of the encoding is as follows.

1. Each color is considered a block.

2. Sequentially try to merge a block with its left or right neighbour,
whichever has the lowest MSE after merging. If both merges violate
the error threshold, the block is considered done. This involves finding
new base colors and weights for the union of the two blocks considered.

3. When all blocks are processed, we start a new iteration with the newly
merged blocks and repeat until all blocks are considered done.

The decoding of a color first requires finding the voxel index, which has
already been covered. Given this index, we perform a binary search on the
headers’ first voxel index2 to find the block spanning the color, as well as a
direct lookup in the weight array using the same index. With this, we have
all we need to reconstruct the color, the base colors (included in the header),
and the weight.

5.1.3 Contributions

We have introduced an alternative to map attributes to a DAG. While lookup
times are a bit more expensive, the memory overhead is practically negligible
compared to previous methods, which almost doubled the size of the DAG.
The main contribution is, however, a novel compression format for sparse
3D data that outperforms previous attempts in both compression/quality
accompanied by a straight forward implementation. We also investigate and

2Which is only possible because of their fixed size.

CHAPTER 5. SUMMARY OF INCLUDED PAPERS 21

demonstrate how it is possible to instead map the data to a texture in order
to utilize conventional compression formats, such as jpeg for offline storage
or astc for real-time scenarios.

22 Chapter 5

5.2 Paper IB - Compressing Color Data for

Voxelized Surface Geometry (Extension)

5.2.1 Problem

Given the fixed bit rate of the weights (bpw) in Paper IA, the theoretical
optimal compression ratio at e.g., 3 bpw, is 12%, in the infeasible scenario
where only one header is required for all colors. Thus, it would make sense
to have a variable bit rate, where higher bit rates can span larger areas,
decreasing the headers footprint at the cost of weights, while lower bit rates
might be suitable for large regions of similar or identical colors. However to
achieve this, there are two, not mutually exclusive, major hurdles we need to
overcome:

1. How do we store the headers for this variable bits per weight. Naively
storing a bit pointer per header will definitively inhibit compression as
these consequently are required to be very large.

2. How to choose the per-header bit rate, so that we consume as little
memory as possible.

Further, we also need to address another shortcoming of the previous paper,
as it lacked the implementation for more than one LOD, which will result
in aliasing when many voxels are projected onto the same pixel. This is
not a problematic task as the method is already explained in Paper IA,
but an investigation on how interleaving colors from different levels affects
compression needs to be performed.

5.2.2 Method

We can reduce the weight-bit pointer size by first segregating the underlying
color array into several smaller sets of the same size, which we call macro
blocks. These macro blocks can then be compressed independently, where the
contained header’s voxel index and weight-bit pointer only need to be much
smaller, local offsets relative the macro block, as can be seen in Figure 5.3.
Using a size of 214 colors for the macro blocks allows us to use 0-4 bits for
the weights such that the required information can neatly be packed in the
32-bit section of the previous format’s block header containing the voxel start
index. We only need 14 bits to specify the macro-local voxel index, 16 bits
for the macro-local bit pointer, and two bits to specify the number of bits
per weight within that block. However, as the attentive reader might have
noticed, two bits for the weight bit-width can only enumerate four different

CHAPTER 5. SUMMARY OF INCLUDED PAPERS 23

cases, e.g., 1-4 bpw. We manage to enumerate the fifth case by realising that
we never need all the bits set for the bit pointer, leaving this value free as a
sentinel. The overhead is thus 1/128 extra bits per color for the macro-block
header, plus a small extra overhead due to the fact that a block that ideally
would reside in the border between two macro block will be forced to be (up
to) two blocks instead. Naturally, and as the paper shows, this overhead is
insignificant.

0100101101001010010100100010110101001010100011

Voxel

colors

Macro

blocks

+

Block

headers

Macro 0

First Block

Weight start

C0 C1

Header info

14bit 2bit 16bit

Voxel index

offset

Bits/weight Weight

offset

Weight

bits

16K colors

Macro 1

First Block

Weight start

Macro N

First Block

Weight start

w0 w1 w2

C0 C1

Header info

Figure 5.3: Visualization of data layout for
variable weight bit width. © 2017 IEEE.

Our encoding relies on first creating
a tree structure of blocks of differ-
ent weight bit-rates. Using the same
algorithm as in Paper IA, we first
construct the leaf-level blocks at 0
bpw and then use those blocks to
recursively create new blocks with
higher bit rates. To find the opti-
mal cut through this tree, we be-
gin with the parents of the leaves,
comparing the sum of the mem-
ory overhead of blocks with lower
bit rates against the parent block
(they describe the same set of col-
ors), keeping the one(s) with lowest
overhead. This is then repeated re-
cursively with higher bit rates, resulting in an optimal cut when we reach
the root.

During decoding, the macro blocks are directly indexable given a voxel in-
dex3. Using the header index of the comprising and directly following macro
blocks results in a range of header candidates. Similarly as in Paper IA,
we perform a binary search to find the correct header and decode the color.
Note however that an added benefit is that the binary search is now faster
as we have implicitly restricted the range of header candidates through the
macro blocks.

5.2.3 Contributions

Extending the previous compression format to allow variable bits per weight
significantly decrease the compressed size given the same error thresholds.

3Explained in Paper IA

24 Chapter 5

Figure 5.4: Different levels of mip mapping. © 2017 IEEE.

Further, we show that the decoding is as fast, or faster, than the previous
format thanks to the reduced binary search range given by the macro blocks.
Finally, we implemented LOD (Figure 5.4) and compared compression rates.
The concern was that the scattering of internal nodes would decrease co-
herency and thus negatively affect compression. However, as it turns out,
this concern was misplaced, as the color of the internal nodes are similar
enough to actually yield better compression rates.

CHAPTER 5. SUMMARY OF INCLUDED PAPERS 25

5.3 Paper II - UV-free Texturing using Sparse

Voxel DAGs

5.3.1 Problem

Figure 5.5: Merging DAGs.

While sparse voxel DAGs solve many prob-
lems, triangles are still the preferred primi-
tives for many applications, since they offer
other advantages for which there is yet no
competitive alternative using voxels. How-
ever, UV-mapping a triangle mesh is not a
trivial endeavour. Producing a high qual-
ity map requires the artist to carefully mind
seams and distortions while not wasting tex-
ture space, which requires skill and time.
While automatic methods do exist [35, 29,
36, 46, 14, 33, 39, 21, 7], the end result is far
from the quality of a hand-crafted map.

An interesting alternative is to instead
use Sparse Volumetric Textures [16, 2, 20].
These are all viable alternatives in their own right but nevertheless suffer
from, for instance, seams, bleeding, memory overhead, globally uniform res-
olution or non-realtime performances.

In this paper, we expand upon these ideas, utilising the results from Paper
IB to address the following problems:

• Fast filtered lookups in a DAG with compressed colors.

• Remove color bleeding due to disjointed surface parts of the object
sharing the same voxel.

• Handle mipmap hierarchies where the problem above becomes even
more pronounced as the increased voxel sizes and larger filter sizes will
encompass more geometry.

• Allowing per-mesh resolutions using a single DAG.

26 Chapter 5

5.3.2 Method

Figure 5.6: The specific ordering for some
sample, p (inside the blue volume), indi-
cated by the green line.

The first step is to acquire a voxel
representation of the model, where
we store the non-empty voxels in-
tersecting with the geometry, along
with a filtered color lookup if we
wish to transfer existing colors from
the model. As the model may very
well contain surface elements that
will share voxels, the artist is re-
quired to specify individual parts
that should not bleed over to each
other. These parts are then vox-
elized and converted into separate
DAGs.

In order to unify them into one
DAG, we merge these DAGs by
aligning them vertically at the leaf
level (see Figure 5.5) and storing the
roots and their starting level in the DAG in a separate array.

For a filtered lookup, we present two alternatives. First a high quality
quad-linear filter, which relies on the realization that the neighbouring voxels
in the filter kernel will have a specific relative Morton order depending on the
sample position (Figure 5.6). This allows us to calculate an optimal traversal
of the DAG where we only need to keep a stack of three elements, allowing us
to restart from the first shared parent of the current and next voxel, instead
of the root. The second alternative is a custom multi-sample scheme which
allows even faster minification filtering at the expense of lower quality for
high frequency textures.

We also improve on the color decoding since the specific ordering of our
samples guarantees that the colors will be at strictly increasing positions in
our color structure, which allows us to quickly realize if the next color is in
the same or next block, or moving the lower bound for the binary search if
it is not.

The selection of independent parts are made in Blender, although, for most
cases, the original models were already satisfactory, i.e., using the different
meshes composing the model as the independent parts. The creation of the
data structure is performed in OpenGL, CUDA, and C++. To render the
results, we rasterize the per-pixel object-space position of the model, which is

CHAPTER 5. SUMMARY OF INCLUDED PAPERS 27

used in our CUDA kernels as the sampling position for the algorithm. Note
that this would also work for animated and skinned meshes, as long as the
object-space position can be evaluated.

5.3.3 Contributions

This paper presents an implict mapping using sparse voxel DAGs with com-
pressed textures. We also show how we can avoid color bleeding or seams
by letting an artist specify which parts of the model should be independent.
While this process requires manual labour, this is typically less complex than
constructing a traditional uv -map. This also allows for different texture reso-
lution per part by voxelizing the meshes at different resolutions. By merging
the individual DAGs for each part, we also improve on the compression ratio
of the textures by up to 32%.

We also optimize for quad-linear filtering and multisampling, for which
the magnification and minification filtering results in a 2.5±0.2 times speed-
up compared to the naive approach. Using multisampling instead of minifi-
cation roughly doubles the speedup, e.g., from 5±2 ms to 2.5±0.5 ms in full
HD, on a RTX 2080 graphics card.

28 Chapter 5

5.4 Paper III - Spherical Gaussian Light-field

Textures for Fast Precomputed Global Il-

lumination

5.4.1 Problem

Global illumination has a huge impact on realism and fidelity and is therefore
highly desired for movies as well as real-time applications. While it is possible
to use path tracing to sample the scene thousands of times for each pixel in
offline applications, current high-end GPUs only allow a few samples under
real-time constraints. Recent methods allow the re-use of previous frames
combined with sophisticated denoising techniques [23, 5]. However, they are
still too expensive on mid or low-end hardware.

Figure 5.7: Left: Fixed directions can-
not capture high frequency changes. Right:
More accurate approximation using free di-
rections.

Even though it is possible to precom-
pute and compress indirect illumina-
tion over static scenes in the form of
SRBFs, the common bases, SH and
SG, share some inherent or practi-
cal limitations. Using SH, or SG
with fixed directions, entails that the
lobes of the SRBFs will have sub-
optimal directions, as can be seen in
Figure 5.7. Theoretically, we are free
to choose the directions, amplitudes,
and sharpnesses of a set of SGs to
find an optimal set of parameters,
and indeed it is very much possible
to do so, using methods such as GD or EM. The problem lies when we want
to estimate the parameters for many sets of SGs that are not independent, if
we want to utilize e.g., bi-linear filtering of the parameter samples, as there
is no guarantee for the ordering of parameters.

Solving a system of interdependent sets of SG parameters is far from trivial,
and in this paper we present a method that solves this optimization problem.
Moreover, we also introduce illumination-weighted environment visibility in
order to remedy the limitations of using a pre-convolved environment map.

CHAPTER 5. SUMMARY OF INCLUDED PAPERS 29

5.4.2 Method

We first create a unique uv -parameterization of the scene, in which for each
texel a 2D light-field image4 is computed and stored on disk. Realising that
neural networks characteristically will produce similar outputs given similar
inputs, we can train a convolutional neural network(CNN) to estimate the
parameters of the SGs, which thus will be implicitly ordered since adjacent
light-fields will also be similar. We achieve this by simply evaluating the SGs
to predict the light-field image and backpropagating the error through the
network. The parameters are then stored in 2D textures allowing hardware
texture lookups and filtering.

Our illumination-weighted environment visibility is computed, for each
texel, by taking the ratio of the pre-convolved environment map with and
without visibility. Using the same principle as the light-field, this is also
approximated as a set of SGs, allowing a high-quality, real-time estimation
of the reflected light by evaluating the SGs in the direction of interest and
multiplying the result with the pre-convolved environment map.

5.4.3 Contributions

In this paper, we show that introducing extra degrees of freedom for the
SG axis and sharpness, in combination with the illumination-weighted envi-
ronment visibility, we can (with fewer lobes) significantly improve rendering
quality and performance, for static scenes, compared to previous methods.
We achieve good quality global-illumination renderings in full HD in 1-2ms,
using a RTX 2080 graphics card.

4Typically 128x128 half float RGB images, for all directions in our implementation.

Chapter 6

Discussion and Future Work

Figure 6.1: Using SGs for view dependent radiance and visibility in
a DAG of resolution 2563.

The desire for more complex and performant 3D representations will probably
not fade any time soon. One recent example is Unreal Engine’s new vir-

31

32 Chapter 6

tualized geometry system, named Nanite1, which allows multiple orders of
magnitude increase in geometry complexity. While this is a triangle-based ap-
proach, there is also active research in DAGs, such as lossy compression [17],
interactive editing [4], or hybrid solutios such as Merged Multiresolution Hi-
erarchies [34]. Furthermore, there has been a surge of papers, inspired by
Neural Radiance Fields (NeRF) [24], where a neural network is trained to
synthesize novel views given a sparse set of images. As an example, PlenOc-
tress [44] proposes a more efficient variant of NeRF where they pre-tabulate
the NeRF into an octree-based radiance field and store the view dependence
as spherical harmonics. In the paper, they state that the full models are
of order 2GB in size for a sparse 5123 grid, which they then reduce by a
factor of 20 × −30× by a more aggressive thresholding, downsampling, and
quantization. Regarding limitations, they admit that their octree-based rep-
resentation is much larger than that of NeRF, which inspires us about the
possibility to instead use what we have learned from the included papers in
this thesis for a performant and more compact representation. In fact, a
similar attempt was made, where we used a modified CNN from Paper III
to approximate outgoing radiance and visibility and employ Paper II for
fast filtered look-ups. While showing promising results, the paper is not yet
finished and is hence omitted (see Figure 6.1 for preliminary results).

Recently, both Google2 and NVIDIA3 have shown interest in free viewpoint
teleconferencing. However, due to the complexity and constraints for real-
time streaming, they either rely on custom hardware and/or limiting the area
to faces only. With new research from Rasmusson et al. [31] and Muller et
al. [25] that significantly improves on the convergence over NeRF, previous
research for time varying DAGs [12], and the included papers in this thesis,
we start to see the possibility for general real-time streaming of radiance
fields on consumer level hardware.

In 2019, Disney released the assets required to render a scene from the island
in the movie Moana (2016)4. The uncompressed data for only the geometry
is a staggering 93GB, and including animations adds another 131GB. Thus,
it would also be worth investigating how well DAG and attribute compression
would perform, as well as investigating new use cases such as caching view-
dependent properties to speed up authoring, lookdev, or the final rendering.

1https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Nanite/
2https://blog.google/technology/research/project-starline/
3https://nvlabs.github.io/face-vid2vid/
4https://www.disneyanimation.com/resources/moana-island-scene/

Bibliography

[1] Jeroen Baert, Ares Lagae, and Philip Dutré. Out-of-core construction of
sparse voxel octrees. Computer Graphics Forum, 33(6):220–227, 2014.

[2] David Benson and Joel Davis. Octree textures. ACM Trans. Graph.,
21(3):785–790, July 2002.

[3] James F. Blinn and Martin E. Newell. Texture and reflection in com-
puter generated images. Commun. ACM, 19(10):542–547, oct 1976.

[4] V. Careil, M. Billeter, and Elmar Eisemann. Interactively modifying
compressed sparse voxel representations. Computer Graphics Forum,
39:111–119, 05 2020.

[5] Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied,
Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. In-
teractive reconstruction of monte carlo image sequences using a recurrent
denoising autoencoder. ACM Trans. Graph., 36(4), jul 2017.

[6] Bas Dado, Timothy R Kol, Pablo Bauszat, Jean-Marc Thiery, and Elmar
Eisemann. Geometry and attribute compression for voxel scenes. In
Computer Graphics Forum, volume 35, pages 397–407. Wiley Online
Library, 2016.

[7] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic Parameter-
izations of Surface Meshes. Computer Graphics Forum, 2002.

[8] Paul Green, Jan Kautz, Wojciech Matusik, and Frédo Durand. View-
dependent precomputed light transport using nonlinear gaussian func-
tion approximations. In Proceedings of the 2006 Symposium on Interac-
tive 3D Graphics and Games, I3D ’06, page 7–14, New York, NY, USA,
2006. Association for Computing Machinery.

[9] Konstantine I Iourcha, Krishna S Nayak, and Zhou Hong. System and
method for fixed-rate block-based image compression with inferred pixel
values, September 21 1999. US Patent 5,956,431.

33

34 Chapter 6

[10] Kei Iwasaki, Wataru Furuya, Yoshinori Dobashi, and Tomoyuki Nishita.
Real-time rendering of dynamic scenes under all-frequency lighting using
integral spherical gaussian. Computer Graphics Forum, 31(2pt3):727–
734, 2012.

[11] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, aug 1986.

[12] Viktor Kämpe, Sverker Rasmuson, Markus Billeter, Erik Sintorn, and
Ulf Assarsson. Exploiting coherence in time-varying voxel data. In
Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D ’16, page 15–21, New York, NY, USA,
2016. Association for Computing Machinery.

[13] Viktor Kämpe, Erik Sintorn, and Ulf Assarsson. High resolution sparse
voxel dags. ACM Trans. Graph., 32(4):101:1–101:13, July 2013.

[14] Andrei Khodakovsky, Nathan Litke, and Peter Schröder. Globally
smooth parameterizations with low distortion. ACM Trans. Graph.,
22(3):350–357, July 2003.

[15] Gary King. Real-time computation of dynamic irradiance environment
maps, volume 2, pages 167–176. Addison-Wesley Professional, 2005.

[16] Martin Kraus and Thomas Ertl. Adaptive texture maps. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, HWWS ’02, pages 7–15, Aire-la-Ville, Switzerland, Switzer-
land, 2002. Eurographics Association.

[17] Remi Laan, Leonardo Scandolo, and Elmar Eisemann. Lossy geometry
compression for high resolution voxel scenes. Proceedings of the ACM
on Computer Graphics and Interactive Techniques, 3:1–13, 04 2020.

[18] Samuli Laine and Tero Karras. Efficient sparse voxel octrees. IEEE
Transactions on Visualization and Computer Graphics, 17(8):1048–
1059, 2011.

[19] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David
Luebke, and Dinesh Manocha. Fast bvh construction on gpus. In Com-
puter Graphics Forum, volume 28, pages 375–384. Wiley Online Library,
2009.

[20] Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. GPU Gems 2,
chapter Octree textures on the GPU, pages 595–613. Addison-Wesley
Professional, 2005.

BIBLIOGRAPHY 35

[21] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least
squares conformal maps for automatic texture atlas generation. ACM
Trans. Graph., 21(3):362–371, July 2002.

[22] Josiah Manson and Peter-Pike Sloan. Fast filtering of reflection probes.
Computer Graphics Forum, 35(4):119–127, 2016.

[23] Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech
Jarosz. An efficient denoising algorithm for global illumination. In ACM
SIGGRAPH / Eurographics High Performance Graphics, page 7, July
2017. HPG 2017.

[24] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.
Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis. In ECCV, 2020.

[25] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller.
Instant neural graphics primitives with a multiresolution hash encoding.
arXiv:2201.05989, January 2022.

[26] Anthony E Nocentino and Philip J Rhodes. Optimizing memory access
on gpus using morton order indexing. In Proceedings of the 48th Annual
Southeast Regional Conference, page 18. ACM, 2010.

[27] Jorn Nystad, Anders Lassen, Andy Pomianowski, Sean Ellis, and
Tom Olson. Adaptive scalable texture compression. In Proceedings
of the Fourth ACM SIGGRAPH/Eurographics conference on High-
Performance Graphics, pages 105–114. Eurographics Association, 2012.

[28] Giuseppe Peano. Sur une courbe, qui remplit toute une aire plane.
Mathematische Annalen, 36(1):157–160, 1890.

[29] Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga
Sorkine-Hornung. Autocuts: Simultaneous distortion and cut optimiza-
tion for uv mapping. ACM Trans. Graph., 36(6):215:1–215:11, Novem-
ber 2017.

[30] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for
irradiance environment maps. In Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’01, page 497–500, New York, NY, USA, 2001. Association for Comput-
ing Machinery.

36 Chapter 6

[31] Sverker Rasmuson, Erik Sintorn, and Ulf Assarsson. PERF: performant,
explicit radiance fields. CoRR, abs/2112.05598, 2021.

[32] Feynman Richard. Qed: The strange theory of light and matter, 1985.

[33] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-
chart geometry images. In Proceedings of the 2003 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, SGP ’03, pages 146–
155, Aire-la-Ville, Switzerland, 2003. Eurographics Association.

[34] Leonardo Scandolo and Elmar Eisemann. Directed acyclic graph encod-
ing for compressed shadow maps. In High Performance Graphics. ACM,
2021.

[35] Nico Schertler, Daniele Panozzo, Stefan Gumhold, and Marco Tarini.
Generalized motorcycle graphs for imperfect quad-dominant meshes.
ACM Trans. Graph., 37(4):155:1–155:16, July 2018.

[36] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bo-
gomyakov. Abf++: Fast and robust angle based flattening. ACM Trans.
Graph., 24(2):311–330, April 2005.

[37] Peter-Pike Sloan. Stupid spherical harmonics (sh) tricks. In Game
developers conference, volume 9, page 42, 2008.

[38] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting en-
vironments. ACM Trans. Graph., 21(3):527–536, jul 2002.

[39] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski.
Bounded-distortion piecewise mesh parameterization. In Proceedings of
the Conference on Visualization ’02, VIS ’02, pages 355–362, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[40] Yu-Ting Tsai and Zen-Chung Shih. All-frequency precomputed radi-
ance transfer using spherical radial basis functions and clustered tensor
approximation. ACM Trans. Graph., 25(3):967–976, jul 2006.

[41] Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining
Guo. All-frequency rendering of dynamic, spatially-varying reflectance.
ACM Trans. Graph., 28(5):1–10, dec 2009.

[42] Brent Robert Williams. Moxel dags: Connecting material information
to high resolution sparse voxel dags. Master thesis, 2015.

BIBLIOGRAPHY 37

[43] Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu,
and Shi-Min Hu. Anisotropic spherical gaussians. ACM Transactions
on Graphics, 32(6):209:1–209:11, 2013.

[44] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo
Kanazawa. PlenOctrees for real-time rendering of neural radiance fields.
In ICCV, 2021.

[45] Cem Yuksel, Sylvain Lefebvre, and Marco Tarini. Rethinking tex-
ture mapping. Computer Graphics Forum (Proceedings of Eurographics
2019), 38(2):535–551, 2019.

[46] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Feature-based
surface parameterization and texture mapping. ACM Trans. Graph.,
24(1):1–27, January 2005.

	Tom sida

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 52; only odd numbered pages
 Trim: none
 Shift: move right by 19.84 points
 Normalise (advanced option): 'original'

 32

 D:20220107115512
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 298
 273
 Fixed
 Right
 19.8425
 0.0000

 Odd
 1
 SubDoc
 52

 CurrentAVDoc

 None
 37.4173
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 51
 116
 50
 26

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 52; only odd numbered pages
 Trim: none
 Shift: move left by 39.69 points
 Normalise (advanced option): 'original'

 32

 D:20220107115512
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 298
 273
 Fixed
 Left
 39.6850
 0.0000

 Odd
 1
 SubDoc
 52

 CurrentAVDoc

 None
 37.4173
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 49
 116
 50
 26

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 52; only even numbered pages
 Trim: none
 Shift: move right by 19.84 points
 Normalise (advanced option): 'original'

 32

 D:20220107115512
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 298
 273

 Fixed
 Right
 19.8425
 0.0000

 Even
 1
 SubDoc
 52

 CurrentAVDoc

 None
 37.4173
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 49
 116
 51
 26

 1

 HistoryList_V1
 qi2base

