1,036 research outputs found

    Syntactic Monoids in a Category

    Get PDF
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D = sets), the syntactic semirings of Polak (D = semilattices), and the syntactic associative algebras of Reutenauer (D = vector spaces). Assuming that D is an entropic variety of algebras, we prove that the syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the minimal automaton for L in D. Furthermore, in case the variety D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D-monoids

    Adding modular predicates to first-order fragments

    Full text link
    We investigate the decidability of the definability problem for fragments of first order logic over finite words enriched with modular predicates. Our approach aims toward the most generic statements that we could achieve, which successfully covers the quantifier alternation hierarchy of first order logic and some of its fragments. We obtain that deciding this problem for each level of the alternation hierarchy of both first order logic and its two-variable fragment when equipped with all regular numerical predicates is not harder than deciding it for the corresponding level equipped with only the linear order and the successor. For two-variable fragments we also treat the case of the signature containing only the order and modular predicates.Relying on some recent results, this proves the decidability for each level of the alternation hierarchy of the two-variable first order fragmentwhile in the case of the first order logic the question remains open for levels greater than two.The main ingredients of the proofs are syntactic transformations of first order formulas as well as the algebraic framework of finite categories

    A Categorical Approach to Syntactic Monoids

    Full text link
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D\mathcal D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D=\mathcal D= sets), the syntactic ordered monoids of Pin (D=\mathcal D = posets), the syntactic semirings of Pol\'ak (D=\mathcal D= semilattices), and the syntactic associative algebras of Reutenauer (D\mathcal D = vector spaces). Assuming that D\mathcal D is a commutative variety of algebras or ordered algebras, we prove that the syntactic D\mathcal D-monoid of a language LL can be constructed as a quotient of a free D\mathcal D-monoid modulo the syntactic congruence of LL, and that it is isomorphic to the transition D\mathcal D-monoid of the minimal automaton for LL in D\mathcal D. Furthermore, in the case where the variety D\mathcal D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D\mathcal D-monoids.Comment: arXiv admin note: substantial text overlap with arXiv:1504.0269

    An effective characterization of the alternation hierarchy in two-variable logic

    Get PDF
    We characterize the languages in the individual levels of the quantifier alternation hierarchy of first-order logic with two variables by identities. This implies decidability of the individual levels. More generally we show that the two-sided semidirect product of a decidable variety with the variety J is decidable

    Eilenberg Theorems for Free

    Get PDF
    Eilenberg-type correspondences, relating varieties of languages (e.g. of finite words, infinite words, or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory. Numerous such correspondences are known in the literature. We demonstrate that they all arise from the same recipe: one models languages and the algebras recognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main contribution is a variety theorem that covers e.g. Wilke's and Pin's work on ∞\infty-languages, the variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two previous categorical approaches of Boja\'nczyk and of Ad\'amek et al. In addition we derive a number of new results, including an extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words

    A Graph Model for Imperative Computation

    Get PDF
    Scott's graph model is a lambda-algebra based on the observation that continuous endofunctions on the lattice of sets of natural numbers can be represented via their graphs. A graph is a relation mapping finite sets of input values to output values. We consider a similar model based on relations whose input values are finite sequences rather than sets. This alteration means that we are taking into account the order in which observations are made. This new notion of graph gives rise to a model of affine lambda-calculus that admits an interpretation of imperative constructs including variable assignment, dereferencing and allocation. Extending this untyped model, we construct a category that provides a model of typed higher-order imperative computation with an affine type system. An appropriate language of this kind is Reynolds's Syntactic Control of Interference. Our model turns out to be fully abstract for this language. At a concrete level, it is the same as Reddy's object spaces model, which was the first "state-free" model of a higher-order imperative programming language and an important precursor of games models. The graph model can therefore be seen as a universal domain for Reddy's model

    Quantifiers on languages and codensity monads

    Full text link
    This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.Comment: 30 pages. Presentation improved and details of several proofs added. The main results are unchange
    • …
    corecore