Scott's graph model is a lambda-algebra based on the observation that
continuous endofunctions on the lattice of sets of natural numbers can be
represented via their graphs. A graph is a relation mapping finite sets of
input values to output values.
We consider a similar model based on relations whose input values are finite
sequences rather than sets. This alteration means that we are taking into
account the order in which observations are made. This new notion of graph
gives rise to a model of affine lambda-calculus that admits an interpretation
of imperative constructs including variable assignment, dereferencing and
allocation.
Extending this untyped model, we construct a category that provides a model
of typed higher-order imperative computation with an affine type system. An
appropriate language of this kind is Reynolds's Syntactic Control of
Interference. Our model turns out to be fully abstract for this language. At a
concrete level, it is the same as Reddy's object spaces model, which was the
first "state-free" model of a higher-order imperative programming language and
an important precursor of games models. The graph model can therefore be seen
as a universal domain for Reddy's model