This paper contributes to the techniques of topo-algebraic recognition for
languages beyond the regular setting as they relate to logic on words. In
particular, we provide a general construction on recognisers corresponding to
adding one layer of various kinds of quantifiers and prove a corresponding
Reutenauer-type theorem. Our main tools are codensity monads and duality
theory. Our construction hinges on a measure-theoretic characterisation of the
profinite monad of the free S-semimodule monad for finite and commutative
semirings S, which generalises our earlier insight that the Vietoris monad on
Boolean spaces is the codensity monad of the finite powerset functor.Comment: 30 pages. Presentation improved and details of several proofs added.
The main results are unchange