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Abstract
We characterize the languages in the individual levels of the quantifier alternation hierarchy
of first-order logic with two variables by identities. This implies decidability of the individual
levels. More generally we show that two-sided semidirect products with J as the right-hand factor
preserve decidability.
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1 Introduction

It has been known for some time (Kamp [6], Immerman and Kozen [5]) that every first-order
sentence over the base < defining properties of finite words is equivalent to one containing
only three variables. The fragment FO2[<] of sentences that use only two variables, has
been the object of intensive study; Tesson and Thérien [18] give a broad-ranging survey
of the many places in which the class of languages definable in this logic arises. Weis and
Immerman [21] initiated the study of the hierarchy within FO2[<] based on alternation of
quantifiers. They showed, using model-theoretic techniques, that the hierarchy is infinite,
but finite for each fixed alphabet.

In [17], the second author provided an algebraic characterization of the levels of the
hierarchy, showing that they correspond to the levels of weakly iterated two-sided semidirect
products of the pseudovariety J of finite J -trivial monoids. This still left open the problem of
decidability of the hierarchy: effectively determining from a description of a regular language
the lowest level of the hierarchy to which the language belongs. This problem was apparently
solved in Almeida-Weil [2], from which explicit identities for the iterated product varieties
can be extracted. However, an error in that paper called the correctness of these results into
question. Here we show that the given identities do indeed characterize these pseudovarieties.
In particular, since it is possible to verify effectively whether a given finite monoid satisfies one
of these identities, we obtain an effective procedure for exactly determining the alternation
depth of a regular language definable in two-variable logic.
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We show more generally that the two-sided semidirect product of a pseudovariety with J
as the right-hand factor preserves decidability. That is, if we have an effective procedure
for determining if a given finite monoid belongs to a pseudovariety V, then we have such a
procedure for V ∗∗ J.

At several junctures, our proof could have been shortened by appealing to known results
about the algebra of finite categories and the topological theory of profinite monoids, which
are the principal tools of [2]. For example, Theorem 5 is really just the bonded component
theorem of Tilson [20] coupled with Simon’s Theorem [15] on J -trivial monoids. Lemma 7
closely mirrors the work of Almeida on the structure of the free profinite J -trivial monoid [1].
In order to keep our argument accessible and self-contained, we have chosen to steer clear of
these quite technical results. We do discuss finite categories, but only at the most elementary
level. Avoiding profinite techniques forces us to give explicit size bounds, but these are of
independent interest in decidability questions.

We give the necessary preliminaries from algebra in Section 2. Section 3 is devoted to our
fundamental theorem, a category-based characterization of two-sided semidirect products
with J as the right-hand factor. We apply this result in Section 4 to obtain explicit identities
for the levels of the hierarchy, thus solving the decidability problem. We use these identities
in Section 5 to give a new proof of the result of Weis and Immerman that the hierarchy
collapses for each fixed input alphabet. Section 6 proves the general decidability-preserving
result for block products with J.

After we circulated an early draft of this paper, we became aware of a number of
related results. Kufleitner and Weil [9], building on earlier work of theirs [8], independently
established the decidability of the levels of the alternation hierarchy, using an entirely different
algebraic characterization. A proof that V∗∗J is decidable if V is appears in the unpublished
Ph.D. thesis of Steinberg [16].

2 Preliminaries

While the principal application of our results is in finite model theory, this paper contains
no formal logic per se and is entirely algebraic in content. The reader should consult [17]
and [21] for the definition of FO2[<] and the alternation hierarchy within it. For our purposes
here, they are to be viewed simply as the language classes corresponding to certain varieties
of finite monoids, as discussed below.

2.1 Finite monoids and regular languages
See the book by Pin [11] for a detailed treatment of the matters discussed in this subsection
and the next; here we give a brief informal review.

A monoid is a set M together with an associative operation for which there is an identity
element 1 ∈M. If A is a finite alphabet, then A∗ is a monoid with concatenation of words
as the multiplication. A∗ is the free monoid on A: this means that every map α : A→M,

where M is a monoid, extends in a unique fashion to a homomorphism from A∗ into M.

Apart from free monoids, all the monoids we consider in this paper are finite. If M is
a finite monoid, then for every element m ∈ M there is a unique e ∈ {mk : k > 1} that is
idempotent, i.e., e2 = e. We denote this element mω.

If M,N are monoids then we say M divides N, and write M ≺ N, if M is a homomorphic
image of a submonoid of N.

We are interested in monoids because of their connection with automata and regular
languages: A congruence on A∗ is an equivalence relation ∼ on A∗ such that u1 ∼ u2,
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88 An effective characterization of the alternation hierarchy in two-variable logic

v1 ∼ v2, implies u1v1 ∼ u2v2. The classes of ∼ then form a monoid M = A∗/ ∼, and the
map u 7→ [u]∼ sending each word to its congruence class is a homomorphism. If L ⊆ A∗,

then ≡L, the syntactic congruence of L, is the coarsest congruence for which L is a union of
congruence classes. The quotient monoid A∗/ ≡L is called the syntactic monoid of L and is
denoted M(L).

We say that a monoid M recognizes a language L ⊆ A∗ if there is a homomorphism
α : A∗ →M and a subset X of M such that α−1(X) = L. The following proposition gives
the fundamental properties linking automata to finite monoids.

I Proposition 1. A language L ⊆ A∗ is regular if and only if M(L) is finite. A monoid M
recognizes L if and only if M(L) ≺M.

2.2 Varieties and identities
A collection V of finite monoids closed under finite direct products and division is called
a pseudovariety of finite monoids. (The prefix ‘pseudo’ is there because of the restriction
to finite products, as the standard use of ‘variety’ in universal algebra does not carry this
restriction.)

Given a pseudovariety V, we consider for each finite alphabet A the set A∗V of regular
languages L ⊆ A∗ such that M(L) ∈ V. We call V the variety of languages corresponding
to the pseudovariety V. The correspondence V 7→ V is one-to-one, a consequence of the
fact that every pseudovariety is generated by the syntactic monoids it contains. We are
interested in this correspondence because of its connection with decidability problems for
classes of regular languages: To test whether a given language L belongs to A∗V, we compute
its syntactic monoid M(L) and test whether M(L) ∈ V. Since the multiplication table of
the syntactic monoid can be effectively computed from any automaton representation of
L, decidability for the classes A∗V reduces to determining whether a given finite monoid
belongs to V.

Let Ξ be the countable alphabet {x1, x2, . . .}. A term over Ξ is built from the letters by
concatenation and application of a unary operation v 7→ vω. For example, (x1x2)ωx1 is a
term. We will interpret these terms in finite monoids in the obvious way, by considering a
valuation ψ : Ξ→M and extending it to terms by giving concatenation and the ω operator
their usual meaning in M. For this reason, we do not distinguish between (uv)w and u(vw),
where u, v and w are themselves terms, nor between terms uω and (uω)ω, as these will be
equivalent under every valuation.

An identity is a formal equation u = v, where u and v are terms. We say that a monoid
M satisfies the identity, and write M |= (u = v), if u and v are equal under every valuation
into M. The family of all finite monoids satisfying a given set of identities is a pseudovariety,
and we say that the pseudovariety is defined by the set of identities. We must stress that
the identities we consider here are very special instances of a much more general class of
pseudoidentities. Under this broader definition, every pseudovariety is defined by a set of
pseudoidentities. See, for instance, Almeida [1]. If a pseudovariety V is defined by a finite
set of identities of the form we described, then membership of a given finite monoid M in V
is decidable, since we only need to substitute elements of V for the variables in the identities
in every way possible, and check that equality holds in each case.

We consider four particular pseudovarieties that will be of importance in this paper. (In
presenting identities we will relax the formal requirement that all terms are over the alphabet
{x1, x2, . . .}, and use a larger assortment of letters for the variables.)

Ap The pseudovariety Ap consists of the aperiodic finite monoids, those that contain no
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nontrivial groups. It is defined by the identity xω = xxω. If A is a finite alphabet,
then M(L) ∈ Ap if and only if L is definable by a first-order sentence over <. In other
words, the first-order definable languages form the variety of languages corresponding
to Ap (McNaughton and Papert [10]).

DA The pseudovariety DA is defined by the identity

(xyz)ωy(xyz)ω = (xyz)ω.

There are many equivalent characterizations of this pseudovariety in terms of other
identities, the ideal structure of the monoids, and logic. For us the most important
ones are these: First, DA is also defined by the identities ([14])

(xy)ω(yx)ω(xy)ω = (xy)ω, xω = xxω.

Second, let e ∈M be idempotent, and let Me be the submonoid of M generated by
the elements m ∈ M for which e ∈ MmM. Then M ∈ DA if and only if e = eMee

for all idempotents e of M. Finally, if L ⊆ A∗ is a language, then M(L) ∈ DA if and
only if L is definable in FO2[<]. In other words, the two-variable definable languages
form the variety of languages corresponding to DA(Thérien and Wilke, [19]).

J The pseudovariety J consists of finite monoids that satisfy the pair of identities

(xy)ω = (yx)ω, xω = xxω.

This is equivalent to the identities

(xy)ωx = y(xy)ω = (xy)ω.

Alternatively, J consists of finite monoids M such that for all s, t ∈M, MsM = MtM

implies s = t. Such monoids are said to be J -trivial.
A theorem due to Imre Simon [15] describes the regular languages whose syntactic

monoids are in J. Let w ∈ A∗. We say that v = a1 · · · ak, where each ai ∈ A, is a
subword of w if w = w0a1w1 · · · akwk for some wi ∈ A∗. We define an equivalence
relation ∼k on A∗ that identifies two words if and only if they contain the same
subwords of length no more than k. In particular, w1 ∼1 w2 if and only if w1 and w2
contain the same set of letters. Simon’s theorem is:

I Theorem 2. Let φ : A∗ →M be a homomorphism onto a finite monoid. Then the
following are equivalent:

M ∈ J.
There exists k ≥ 1 such that if w ∼k w′, then φ(w) = φ(w′). (In particular, M is
a quotient of A∗/ ∼k .)

It is easy to show that the second condition implies the first; the deep content
of the theorem is the converse implication. The theorem can also be formulated in
first-order logic: The variety of languages corresponding to J consists of languages
definable by Boolean combinations of Σ1 sentences over <.

J1 The pseudovariety J1 consists of all idempotent and commutative monoids; i.e., those
finite monoids that satisfy the identities x2 = x, xy = yx. A language L ⊆ A∗ is in
the variety of languages corresponding to J1 if and only if it is a union of ∼1-classes.
It is well known, and easy to show, that J1 ⊆ J ⊆ DA ⊆ Ap, and all the inclusions
are proper.
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90 An effective characterization of the alternation hierarchy in two-variable logic

2.3 Two-sided Semidirect Products
In this section we describe an operation on pseudovarieties of finite monoids, the two-sided
semidirect product. This was given in its formal description by Rhodes and Tilson [12], but it
has precursors in automata theory in the work of Schützenberger on sequential bimachines [13],
Krohn, Mateosian and Rhodes [7], and Eilenberg on triple products [4]. Traditionally, one
begins with a two-sided semidirect product operation on monoids, and then uses this to
define the corresponding operation on pseudovarieties. Here we find it simpler to define the
operation on varieties directly.

Let A be a finite alphabet, and ψ : A∗ → N a homomorphism into a finite monoid. Let
Σ = N × A × N, which we treat as a new finite alphabet. We define a length-preserving
transduction (not a homomorphism) τψ : A∗ → Σ∗ by τψ(1) = 1, and

τψ(a1 · · · an) = σ1 · · ·σn, where

σi = (ψ(a1 · · · ai−1), ai, ψ(ai+1 · · · an)) ∈ Σ.

(If i = 1, we interpret the right-hand side as (1, a1, ψ(a2 · · · an)), and similarly if i = n.)
Let V and W be pseudovarieties of finite monoids. Let M be a finite monoid, and let

φ : A∗ →M be a surjective homomorphism. We say that M ∈ V ∗∗W if and only if there
exist homomorphisms

ψ : A∗ → N ∈W,

h : (N ×A×N)∗ → K ∈ V,

such that φ factors through (h ◦ τψ, ψ)—in other words, for all v, w ∈ A∗, if ψ(v) = ψ(w) and
h(τψ(v)) = h(τψ(w)), then φ(v) = φ(w). It is not difficult to check that this is independent
of the alphabet A and the homomorphism φ, and is thus determined entirely by M, and
that furthermore V ∗∗W forms a pseudovariety of finite monoids. We will treat this as
the definition of V ∗∗W, but it is also straightforward to verify that this coincides with
the pseudovariety generated by two-sided semidirect products K ∗∗N, where K ∈ V and
N ∈W.

We define a sequence {Vi}i≥1 of pseudovarieties by setting V1 = J, and, for i ≥ 1,
Vi+1 = Vi ∗∗ J. The main result of [17] is that DA is the union of the pseudovarieties Vi,

and that the variety of languages corresponding to Vi is the ith level of the alternation
hierarchy within FO2[<].

2.4 Finite categories
We give a brief account of the tools from the algebraic theory of finite categories needed to
prove our main results. The original papers of Tilson [20] and Rhodes and Tilson [12] give a
complete and careful exposition of the general theory.

The categories studied in category theory are typically big categories, in which the object
class consists of something like all topological spaces, and the arrows are all continuous
functions. The work of Tilson [20] showed the utility of studying very small categories in
which the object set, as well as each set of arrows between two objects, is finite.

A category C consists of a set of objects obj(C), a set of arrows hom(A,B) from A to B for
all A,B ∈ obj(C), and associative partial binary operations ◦ : hom(A,B)× hom(B,C)→
hom(A,C) for all A,B,C ∈ obj(C) called composition, such that there is an identity in
hom(A,A) for all A ∈ obj(C).

In this view, a finite monoid is simply a category with a single object, and a finite category
is consequently a generalized finite monoid.
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Let A be a finite alphabet, M and N finite monoids with homomorphisms

M
φ←− A∗ ψ−→ N,

where φ maps onto M. We will define a finite category, which we call the kernel category
ker(ψ ◦ φ−1). 1

The objects of ker(ψ ◦ φ−1) are pairs (n1, n2) ∈ N ×N. The arrows are represented by
triples

(n1, n2) u→ (n′1, n′2),

where u ∈ A∗, n′1 = n1 · ψ(u) and ψ(u) · n′2 = n2. Whenever we have a pair of consecutive
arrows

(n1, n2) u→ (n′1, n′2), (n′1, n′2) v→ (n′′1 , n′′2),

then we can define the product arrow

(n1, n2) uv−→ (n′′1 , n′′2).

If this were all there were to arrows in the kernel category, we would in general have an
infinite set of arrows between two objects. However, we identify two coterminal arrows

(n1, n2) u,u′

−−→ (n′1, n′2)

if for all v, w ∈ A∗ with ψ(v) = n1, ψ(w) = n′2,

φ(vuw) = φ(vu′w).

It is easy to check that this identification is compatible with the product on consecutive
arrows, so the true arrows of ker(ψ ◦ φ−1) are equivalence classes modulo this identification.
In particular, the finiteness of M and N implies that there are only finitely many distinct
arrows.

If (n1, n2) = (n′1, n′2), then any pair of arrows from (n1, n2) to itself are consecutive, and
thus the set of all such arrows at (n1, n2) is a finite monoid, which we denote Mn1,n2 . This is
a base monoid. Base monoids, then, are just built from words u satisfying n1 · ψ(u) = n1,

and ψ(u) · n2 = n2, and collapsing modulo the equivalence relation identifying arrows.
The following lemma concerning the structure of the base monoids will be quite useful.

I Lemma 3. Let A be a finite alphabet: M,N,N ′ finite monoids, and consider homomorph-
isms

M
φ←− A∗ ψ−→ N

ψ′

−→ N ′,

where φ maps onto M. Then every base monoid of ker(ψ ◦ φ−1) divides some base monoid of
ker((ψ′ψ) ◦ φ−1).

Proof. Let n1, n2 ∈ N. We denote by M1 the base monoid at (n1, n2) in ker(ψ ◦ φ−1), and
by M2 the base monoid at (n′1, n′2) = (ψ′(n1), ψ′(n2)) in ker((ψ′ψ) ◦ φ−1). Set

U = {u ∈ A∗ : n1 · ψ(u) = n1, n2 = ψ(u) · n2},

U ′ = {u ∈ A∗ : n′1 · ψ′ψ(u) = n′1, n
′
2 = ψ′ψ(u) · n′2}.

1 The odd notation for the kernel category is used to maintain consistency with the traditional setting
for these finite categories. ψ ◦ φ−1 is a relational morphism from M to N, and Tilson defines these
categories for arbitrary relational morphisms, not just those derived from morphisms of the free monoid.
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92 An effective characterization of the alternation hierarchy in two-variable logic

U and U ′ are submonoids of A∗, and U ⊆ U ′. M1 andM2 are the quotients of U and U ′ by the
congruences identifying equivalent arrows in the respective categories. Let u, u′ ∈ U represent
equivalent arrows of M2, and suppose v, w ∈ A∗ are such that ψ(v) = n1, ψ(w) = n2. Then
ψ′ψ(v) = n′1, ψ

′ψ(w) = n′2, so by equivalence in M2 we have φ(vuw) = φ(vu′w). But this
means that u and u′ represent equivalent arrows in M1, so M1 is a quotient of the image of
U in M2. Thus M1 ≺M2. J

It is worth keeping in mind the somewhat counterintuitive message of this lemma: The
category ker(ψ ◦ φ−1) is bigger (it has more objects) than ker((ψ′ψ) ◦ φ−1) but its base
monoids are smaller.

The reason for the construction of the kernel category in [12] is its relation to two-
sided semidirect products. Roughly speaking, M ∈ V ∗∗W if and only if there exists
ψ : A∗ → N ∈W such that the category ker(ψ ◦ φ−1) is ‘globally in V’. We will not define
this precisely, but instead note without proof one consequence, namely that if M ∈ V ∗∗W,

then ker(ψ ◦ φ−1) satisfies a weaker condition of being ‘locally in V’:

I Proposition 4. Let φ : A∗ →M be a homomorphism mapping onto M. If M ∈ V ∗∗W,

then there is a homomorphism ψ : A∗ → N ∈W such that each base monoid of ker(ψ ◦ φ−1)
is in V.

3 A local-global theorem for categories

In general, the converse of Proposition 4 is false. This section is devoted to establishing an
important instance in which it is true, namely when W = J.

I Theorem 5. Let A be a finite alphabet, M and N finite monoids with N ∈ J and
homomorphisms

M
φ←− A∗ ψ−→ N,

where φ maps onto M . Suppose V is a pseudovariety of finite monoids with J1 ⊆ V. If
every base monoid of ker(ψ ◦ φ−1) is in V, then M ∈ V ∗∗ J.

Proof. It follows from Theorem 2 that for some k > 0, ψ factors through the homomorphism
A∗ → A∗/ ∼k identifying two words that have the same subwords up to length k. By
Lemma 3 we may assume that ψ is this homomorphism, and that N = A∗/ ∼k . In particular,
if w ∈ A∗, then we can represent ψ(w) as the set of subwords of w of length no more than k.

The set P(N ×N) of subsets of N ×N forms an idempotent and commutative monoid
with union as the operation, and hence belongs to J1 ⊆ V. Let Σ = N × A × N and let
hU : Σ∗ → P(N×N) be the homomorphism defined by mapping σ = (P, a, S) to {(Pψ(a), S)}
for each σ ∈ Σ. Given P, S ∈ N, define a homomorphism hP,S : Σ∗ → MP,S by mapping
(P ′, a, S′) ∈ Σ to the arrow class of (P, S) a→ (P, S) if P = P ′ = Pψ(a), ψ(a)S = S′ = S, and
to 1 ∈MP,S otherwise. Finally, set M ′ to be the direct product

M ′ = P(N ×N)×
∏

(P,S)∈N×N

MP,S ,

and set
h = hU ×

∏
(P,S)∈N×N

hP,S .

By our hypothesis M ′ ∈ V.
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Let w,w′ ∈ A∗, with ψ(w) = ψ(w′) and h(τψ(w)) = h(τψ(w′)). We will show φ(w) =
φ(w′), which gives the result.

We will look at the paths through ker(ψ ◦ φ−1) traced out by w and w′. Since ψ(w) =
ψ(w′), the two paths are coterminal, beginning at the object (1, ψ(w)) and ending at (ψ(w), 1).
Let the ith letter of w be ai, then the ith arrow on this path is the class of

(Pi−1, Si−1) ai−→ (Pi, Si),

where Pj is ψ(u) for the prefix u = a1 · · · aj of length j of w, and likewise Sj = ψ(v) for the
suffix v = aj+1 · · · a|w|. Let

(P, S) ai−→ (P ′, S′)

be on the path traced by w, then we have P ⊆ P ′ and S′ ⊆ S. Either P = P ′ and S = S′, in
which case this arrow belongs to one of the base monoids, or at least one of the inclusions
is proper. Since hU (τψ(w)) = hU (τψ(w′)) and ψ(w) = ψ(w′), the same pairs (P, S), (P ′, S′)
must occur in the path traced by w′. Because of the inclusions, they must occur in the same
relative order in this path, with (P, S) preceding (P ′, S′). They also must be adjacent in this
path, since if there were a third pair (P ′′, S′′) between them, we would have

P ⊆ P ′′ ⊆ P ′, S′ ⊆ S′′ ⊆ S,

so this new pair would have to occur in the original path traced by w, strictly between
(P, S) and (P ′, S′). Finally, the letter a labeling the arrow joining these two objects in the
respective paths is completely determined by (P, S) and (P ′, S′). This is because at least
one of the two inclusions P ⊆ P ′ and S′ ⊆ S is proper. Assume without loss of generality
that the first of these is a proper inclusion. Then P ′ contains a word that is not in P, and
the last letter of this word is a.

Thus our two paths are depicted by the diagram below:

P ′′0 , S
′′
0 P ′′1 , S

′′
1 P ′′r , S

′′
r

a′′1

u0

u′0

a′′2

u1

u′1

a′′r

ur

u′r

The paths traverse exactly the same sequence of distinct objects

(1, ψ(w)) = (P ′′0 , S′′0 ), (P ′′1 , S′′1 ), . . . , (P ′′r , S′′r ) = (ψ(w), 1).

The arrow joining (P ′′j−1, S
′′
j−1) and (P ′′j , S′′j ) in both these paths is the same letter a′′j . For

j = 0, . . . , r each path contains a loop at (P ′′j , S′′j ) labeled by a factor uj of w in one path,
and a factor u′j in the other path. We have

w = u0a
′′
1u1 · · · a′′rur,

w′ = u′0a
′′
1u
′
1 · · · a′′ru′r.

Let w0 = w, wr+1 = w′ and for j = 1, . . . , r, let

wj = u′0a
′′
1 · · ·u′j−1a

′′
j uj · · · a′′rur.
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94 An effective characterization of the alternation hierarchy in two-variable logic

In other words, we transform w into w′ one step at a time, changing each uj in succession
to u′j . We claim that at each step, φ(wj) = φ(wj+1), so that we will get φ(w) = φ(w′), as
required. Let (P, S) = (P ′′j , S′′j ). By the definition of hP,S , the image in the base monoid
MP,S of a word under hP,S ◦ τψ involves only the letters where the prefix under ψ maps to
P and suffix maps to S; in our case these are the letters of uj and u′j , respectively. So since

h(τψ(w)) = h(τψ(w′)), (P, S)
uj ,u

′
j−−→ (P, S) are equivalent arrows. Thus

φ(wj) = φ(u′0a′′1 · · ·u′j−1a
′′
j uja

′′
j+1 · · ·ur) = φ(u′0a′′1 · · ·u′j−1a

′′
j u
′
ja
′′
j+1 · · ·ur) = φ(wj+1).

J

As we mentioned in the introduction, our argument is essentially the one used to prove
a more general result, due to Tilson [20], that every category divides a direct product of
its strongly connected components. In the special case that we consider, these components
reduce to single objects and hence are the base monoids of the category. The hypothesis
J1 ⊆ V in the statement of Theorem 5 is actually not necessary, so long as V is nontrivial:
If V is a pseudovariety of monoids that does not contain J1, then every member of V is
a group, and it is known that the converse of Proposition 4 holds when V contains only
nontrivial groups; this also follows from results in [20]. We do not require this fact in our
main application to the alternation hierarchy.

4 Effective characterization of levels of the alternation hierarchy

We now define a sequence of identities that will allow us to characterize the varieties Vn.
We set

u1 = (x1x2)ω, v1 = (x2x1)ω,

and for n ≥ 1,
un+1 = (x1 · · ·x2nx2n+1)ωun(x2n+2x1 · · ·x2n)ω,

vn+1 = (x1 · · ·x2nx2n+1)ωvn(x2n+2x1 · · ·x2n)ω.

I Theorem 6. Let n ≥ 1. M ∈ Vn if and only if M |= (un = vn), and M |= (xω = xxω).

As we remarked above, when a pseudovariety V is defined by a finite set of identities of
this type, one can decide membership in V. Since the levels of the alternation hierarchy in
FO2[<] are the varieties of languages corresponding to the Vi, the alternation depth of a
language in FO2[<] is effectively computable.

Proof. The ‘only if’ part (the identities hold in Vn) is proved in [17], so we will just give
the proof of the ‘if’ part (sufficiency of the identities).

We prove the theorem by induction on n. It is well known that the identities u1 =
v1, x

ω = xxω characterize V1 = J.
So we assume n > 1 and suppose thatM is an aperiodic monoid such thatM |= (un = vn).

We let φ, ψ be as in the previous section, so that φ is any morphism mapping onto M ∈ Vn,
and ψ depends on the choice of a subword length K. We will show that if K is chosen to be
a large enough value, then each base monoid MP,S of the category ker(ψ ◦ φ−1) satisfies the
identity un−1 = vn−1. By the inductive hypothesis and since MP,S is aperiodic, this implies
that each MP,S belongs to Vn−1, and thus by Theorem 5, M ∈ Vn−1 ∗∗ J = Vn.

We let x1, . . . , x2(n−1) be any elements of MP,S . Thus, each xi is represented by a triple
(P, S) wi−→ (P, S), where wi ∈ A∗, P · ψ(wi) = P, ψ(wi) · S = S.
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We construct words Wn−1,W
′
n−1 ∈ A∗ by replacing each xi in un−1 (respectively vn−1)

by wi. We will think of ω in these strings as representing a finite exponent N such that
xN = xN+1 for all x ∈M, and hence for all x ∈MP,S , since each base monoid MP,S divides
M. Thus if n > 2,

Wn−1 = (w1w2 · · ·w2n−3)NWn−2(w2n−2w1 · · ·w2n−4)N ,

W ′n−1 = (w1w2 · · ·w2n−3)NW ′n−2(w2n−2w1 · · ·w2n−4)N .

In the special case n = 2, we have W1 = (w1w2)N , W ′1 = (w2w1)N .
If w ∈ A∗, we denote by α(w) the set of letters occurring in A∗. We also denote by B the

set α(Wn−1) = α(W ′n−1). Let z, y ∈ A∗ with ψ(z) = P, ψ(y) = S.

I Lemma 7. If K > |M | · (|A|2 + |A|)/2, then z has a suffix z′ with a factorization
z′ = z1z2 · · · z|M | where

B ⊆ α(z1) = α(z2) = · · · = α(z|M |),

and, likewise, y has a prefix y′ with a factorization y′ = y1y2 · · · y|M | where

B ⊆ α(y1) = α(y2) = · · · = α(y|M |).

Assuming the lemma, we will now complete the proof of Theorem 6. SinceM |= (un = vn),
we obtain M |= (xy)ω(yx)ω(xy)ω = (xy)ω by setting x1 = x, x2 = y, and xk = 1 for k > 2.
Thus M ∈ DA.

We can write z = z′′z′, where z′ = z1 . . . z|M | has a factorization as in Lemma 7.
By the standard pumping argument, it follows that there are indices i ≤ j such that
φ(z1 . . . zi−1)φ(zi · · · zj) = φ(z1 . . . zi−1), and thus

φ(z1 . . . zi−1)φ(zi · · · zj)ω = φ(z1 . . . zi−1).

If we now set
e = φ(zi · · · zj)ω

s2n−1 = e · φ(zj+1 · · · z|M |), and si = φ(wi) for i < 2n− 1,

we obtain, from the identity e ·Me · e = e,

φ(z′) = φ(z1 . . . zi−1) · φ(zj+1 · · · z|M |)
= φ(z1 . . . zi−1)e · eφ(zj+1 · · · z|M |)
= φ(z1 . . . zi−1)e ·

(
φ(zj+1 · · · z|M |)(s1 · · · s2n−1)ω−1s1 · · · s2n−2

)
· eφ(zj+1 · · · z|M |)

= φ(z1 . . . zi−1)e · φ(zj+1 · · · z|M |)(s1 · · · s2n−1)ω

= φ(z′) · (s1 · · · s2n−1)ω.

The third equality above holds because by Lemma 7, zi · · · zj contains all the letters that
occur in the zk and the wk, and hence all the values we inserted between occurrences of e
belong to Me.

Similarly, using the part of Lemma 7 concerning the prefix of y, we find a value s2n such
that φ(y′) = (s2ns1 · · · s2n−2)ωφ(y′). Since M |= (un = vn) we obtain

φ(zWn−1y) = φ(z′′)φ(z′)φ(Wn−1)φ(y′)φ(y′′)
= φ(z′′)φ(z′)(s1 · · · s2n−1)ωφ(Wn−1)(s2ns1 · · · s2n−2)ωφ(y′)φ(y′′)
= φ(z′′)φ(z′)(s1 · · · s2n−1)ωφ(W ′n−1)(s2ns1 · · · s2n−2)ωφ(y′)φ(y′′)
= φ(z′′)φ(z′)φ(Wn−1)φ(y′)φ(y′′)
= φ(zW ′n−1y).
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But this means that MP,S |= (un−1 = vn−1), as we required. J

We now turn to the proof of Lemma 7.

Proof of Lemma 7. By symmetry, we only need to treat the part concerning the suffix of z.
Whenever we need to emphasize the dependence of ψ on the chosen subword length m, we
will write it as ψm. Recall that ψ(z) = ψK(z) is the set of subwords of length no more than
K in z, and that ψ(zb) = ψ(z) for all b ∈ B.

We will show that if B ⊆ α(z) and ψT (zb) = ψT (z) for all b ∈ B, where

T = |M | · (k2 + k)/2,

and k = |α(z)|, then z contains a suffix with the required properties. This gives the lemma,
because ψK(zb) = ψK(z) implies ψT (zb) = ψT (z) for any α(z) ⊆ A.

The proof is by induction on |α(z)|. The base case occurs when α(z) = B. Let B =
{b1, . . . br}. By repeated application of ψT (zbi) = ψT (z) we find (b1 · · · br)|M |, which has
length |M ||B| ≤ |M |(|B|2 + |B|)/2, is a subword of z. In this case we can simply take z′ = z

and factor z = z1 · · · z|M |, where each zi contains one of the factors b1 · · · br as a subword.
We thus suppose that α(z) = A′ contains B as a proper subset. Let N = |A′|. We look

at a subword of maximal length t1 · · · tp of z such that α(ti) = A′. We must have p ≥ 1. If
p ≥ |M |, we can again take z′ = z and factor z as z1 · · · z|M |, where each zi contains ti as a
subword. If p < |M |, we let s = |A′|, then we write

t1 · · · tp = a1a2 · · · aps, and z = z0a1z1 · · · apszps.

We further suppose that this factorization represents the leftmost occurrence of a1 · · · aps as
a subword of z, in other words that zps has maximum possible length for this property. Note
that α(zps) is a strict subset of A′, for otherwise z would have contained a longer subword
t1 · · · tp+1 with α(ti) = A′. Thus |α(zps)| ≤ N − 1. Set T = |M | · ((N − 1)2 + (N − 1))/2. We
must have ψT (zpsb) = ψT (zps) for all b ∈ B. If not, there is a subword u of zps of length less
than T such that ub is not a subword of zps. However t1 · · · tpub has length no more than

(|M | − 1) ·N + T < |M | · (N + ((N − 1)2 + (N − 1))/2) = |M | · (N2 +N)/2,

and is accordingly a subword of z, and thus there is a strictly earlier occurrence of t1 · · · tp
as a subword of z, a contradiction. We can thus apply the inductive hypothesis to zps and
conclude that zps contains a suffix of the required type. J

5 Collapse of the hierarchy

In the original model-theoretic study of the alternation hierarchy in FO2[<], Weis and
Immerman [21] and also Kufleitner and Weil [9] showed that while the hierarchy is strict, it
collapses for each fixed-size alphabet. An algebraic proof of strictness was given in [17], using
the identities that form the subject of the present paper. We can use similar techniques to
prove the collapse result.

I Theorem 8. Let n > 0. If M ∈ DA is generated by n elements, then M ∈ Vn.

The proof, which we omit, uses our main result Theorem 6 to conclude that if M ∈ DA,
then M |= (uN = vN ) for some N. We then use identity manipulation in DA to show that
this implies M |= (un = vn), where n is the number of generators.

In particular for any fixed alphabet the quantifier alternation hierarchy collapses.

I Corollary 9. Any language over a k-letter alphabet definable by a two-variable sentence is
definable by one in which the number of quantifier blocks is k.
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6 General decidability results

Here we show that for arbitrary pseudovarieties V, the operation V 7→ V ∗∗ J preserves
decidability. This of course implies our result (a consequence of Theorem 6) that the varieties
Vj are all decidable, but Theorem 6 is a sharper result, since it gives explicit identities. As
we remarked in the introduction, the general decidability result was originally proved by
Steinberg [16], but not previously published. Our approach has the advantages both of being
relatively elementary, and yielding explicit bounds on the complexity of membership testing.

We suppose that φ : A∗ →M is a surjective homomorphism onto a finite monoid. Let
N > 0, we denote by kerN φ the category ker(ψN ◦ φ−1), where ψN is the natural projection
of A∗ onto the quotient A∗/ ∼N . We set

K = |M | · (|A|2 + |A|)/2

as in the statement of Lemma 7. With these notations we have:

I Theorem 10. Let V be a pseudovariety of monoids. M ∈ V ∗∗ J if and only if every base
monoid of kerK φ is in V.

We omit the proof. The idea is this: By Proposition 4, if M ∈ V ∗∗ J, then there is
some K ′ such that all the base monoids of kerK′ φ are in V. We use Lemma 7 to show that
if K ′ > K, then every base monoid of kerK φ divides a direct product of base monoids in
kerK′ φ, so the result follows from Theorem 5.

We can effectively compute all the objects and arrow classes of kerK φ from φ, and we can
also take A = M and φ to be the extension of the identity map on M to A∗. The theorem
thus immediately implies:

I Corollary 11. If V is a decidable pseudovariety of finite monoids, then so is V ∗∗ J.

7 Conclusion

We have shown that the identities given in [17] indeed characterize Vn. There is, of course,
a one-sided semidirect product, which has been much more thoroughly studied. Our results,
and their proofs, can all be adapted to one-sided products, with little modification. In this
case, the hierarchy collapses at the second level: J ∗ J ∗ J = J ∗ J. (This fact is not new. It
has long been known that the closure of J under one-sided products is the pseudovariety R
of R-trivial monoids, and Brzozowski and Fich [3] showed R = J1 ∗ J.)

In their paper, Kufleitner and Weil [9] give a completely different characterization of the
levels of FO2[<]. It would be nice to see a direct connection between these two approaches.
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