

Citation for published version:
McCusker, GA 2010, 'A graph model for imperative computation', Logical Methods in Computer Science, vol. 6,
no. 1, Paper 2. https://doi.org/10.2168/LMCS-6(1:2)2010

DOI:
10.2168/LMCS-6(1:2)2010

Publication date:
2010

Link to publication

Publisher Rights
CC BY-ND
This item is made available via a Creative Commons Attribution-NoDerivs 2.0 licence. The full citation for this
item is: McCusker, G., 2010. A graph model for imperative computation. Logical Methods in Computer Science,
6 (1), 2.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.2168/LMCS-6(1:2)2010
https://researchportal.bath.ac.uk/en/publications/a-graph-model-for-imperative-computation(0d5c83d5-1eb3-43de-8740-72fa9eb76002).html

Logical Methods in Computer Science
Vol. 6 (1:2) 2010, pp. 1–35
www.lmcs-online.org

Submitted May. 14, 2009
Published Jan. 12, 2010

A GRAPH MODEL FOR IMPERATIVE COMPUTATION

GUY MCCUSKER

Department of Computer Science, University of Bath, Bath BA2 7AY, United Kingdom
e-mail address: G.A.McCusker@bath.ac.uk

Abstract. Scott’s graph model is a lambda-algebra based on the observation that con-
tinuous endofunctions on the lattice of sets of natural numbers can be represented via their
graphs. A graph is a relation mapping finite sets of input values to output values.

We consider a similar model based on relations whose input values are finite sequences
rather than sets. This alteration means that we are taking into account the order in
which observations are made. This new notion of graph gives rise to a model of affine
lambda-calculus that admits an interpretation of imperative constructs including variable
assignment, dereferencing and allocation.

Extending this untyped model, we construct a category that provides a model of typed
higher-order imperative computation with an affine type system. An appropriate language
of this kind is Reynolds’s Syntactic Control of Interference. Our model turns out to be
fully abstract for this language. At a concrete level, it is the same as Reddy’s object spaces
model, which was the first “state-free” model of a higher-order imperative programming
language and an important precursor of games models. The graph model can therefore be
seen as a universal domain for Reddy’s model.

1. Introduction

This paper is an investigation into the semantics of imperative programs, using a style of
model first proposed by Reddy [19]. Reddy’s model was a significant development, because
it was the first to model imperative programs without the use of an explicit semantic
entity representing the store. Instead, programs are interpreted as “objects” (in Reddy’s
terminology) which exhibit history-sensitive behaviour. The store is not modelled explicitly;
instead one models the behaviour that results from the use of the store.

This new approach turned out to be the key to finding models that are fully abstract :
that is, models whose equational theory coincides with the operationally defined notion
of program equivalence. The first such models for higher-order imperative programming
languages to be discovered were based on game semantics [2, 1]. Although these models
used several ideas from Reddy’s work, it was not known whether Reddy’s model was itself
fully abstract for the language SCI which it interprets.

In this paper, some of which is a much extended exposition of work first presented
in [13], we show that Reddy’s model is indeed fully abstract. But more than this, we argue
that it arises from a straightforward modification of Scott’s well-known Pω graph-model of

1998 ACM Subject Classification: F.3.2.
Key words and phrases: Semantics of Programming Languages, Denotational Semantics, Local State.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (1:2) 2010
c© Guy McCusker
CC© Creative Commons

http://creativecommons.org/about/licenses

2 GUY MCCUSKER

the λ-calculus [22]. Just as in Scott’s work, we develop a model in which every type-object
appears as a retract of a universal object, and it turns out that these retractions are all
definable in a slightly extended SCI language. Thus the language has a universal type,
which leads to a very cheap proof of full abstraction. With some additional effort, we show
that the extensions required to establish this universal type are in fact conservative, that is,
they do not alter the notion of program equivalence. Therefore the original model is itself
fully abstract.

We should remark that the work required to establish conservativity of one of these
extensions amounts to a partial definability result which would be enough to prove full ab-
straction of the original model directly; indeed, that is what was done in [13]. Nevertheless,
we believe that the presentation in terms of conservativity is useful, not least because of
the ease of establishing full abstraction for the extended language.

1.1. Related work. The utility of a universal type for establishing properties of a model is
well-known, and was explained in detail by Longley [11]. The central idea of this paper, of
modifying Scott’s graph model to record slightly different information, has also been used by
Longley in [12] to obtain a model of fresh name generation. A similar model construction
has been investigated by Hyland et al. [7]. We shall remark further on the connections
between these papers and our present work below, although we leave closer investigation
for future work.

The denotational semantics of SCI was first treated by O’Hearn [17] using functor
categories. Reddy’s model [19] was the first to avoid the explicit use of a store-component
in the mathematical model, but as mentioned above this model was not known to be fully
abstract until a preliminary version of the work being reported here appeared [13]. Joint
work of the present author and Wall [23] developed a game semantics for SCI and estab-
lished a full abstraction result. Laird [9] analysed the fully abstract relational model to
show that equivalence of programs in a finitary fragment of SCI is decidable, but obser-
vational approximation is not, and went on to construct a fully abstract games model of
a version of SCI with control operators, establishing decidability of both equivalence and
approximation. The SCI type system itself has been refined and extended in two ways:
first by Reynolds, using intersection types [21], and then by O’Hearn et al. [15], using a
novel system with two-zone type judgements.

1.2. Acknowledgments. The author is very grateful to the many researchers with whom
he has discussed this work, including Martin Churchill, Jim Laird, John Longley, Ana Car-
olin Martins, Peter O’Hearn, John Power and Uday Reddy. The comments of anonymous
referees were very useful in the preparation of the final version of the paper. The author
also benefitted from the support of two EPSRC research grants during the development and
preparation of this paper.

2. Scott’s Pω model

We begin with a brief review of Scott’s Pω graph model of the λ-calculus, which ap-
peared in the seminal paper Data Types as Lattices [22].

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 3

Let Pω denote the lattice of sets of natural numbers, ordered by inclusion. A continuous
function f : Pω → Pω is determined by its action on finite sets. Therefore, such an f is
determined by the set

graph(f) = {(S, n) | S ⊆fin ω, n ∈ ω, n ∈ f(S)}.

Conversely, let G be a set of pairs (S, n) with S ⊆fin ω and n ∈ ω. We can define a
continuous function fun(G) : Pω → Pω by

fun(G)(S) = {n | ∃S′ ⊆ S.(S′, n) ∈ G}

and it is clear that for any continuous f , fun(graph(f)) = f .
Let code(−) be any injective encoding

code : Pfinω × ω → ω.

Writing [Pω → Pω] for the complete partial order of continuous functions from Pω to itself,
the mapping

f 7→ {code(S, n) | (S, n) ∈ graph(f)}

is a continuous function [Pω → Pω] → Pω, and

S 7→ fun({(S′, n) | code(S′, n) ∈ S})

is a continuous function Pω → [Pω → Pω]. These two mappings therefore form a retraction

[Pω → Pω]� Pω

in the category of domains and continuous functions, so that Pω is a reflexive object in this
category, and thus a model of untyped λ-calculus. For more details on how reflexive objects
are used to model λ-calculus, see Barendregt [4].

Scott in fact worked in the other direction: from the Pω model he defined a category
in which to work, using the Karoubi envelope (see for example [10]) of the monoid of
endomorphisms of Pω. One way of presenting this monoid is as follows. Its elements are
graphs of continuous functions from Pω to itself; explicitly, an element a is a set of pairs
(S, n), where S ⊆fin ω and n ∈ ω, such that

(S, n) ∈ a ∧ S ⊆ S′ =⇒ (S′, n) ∈ a.

(It is easy to verify that these are exactly the image of the graph(−) function.) The monoid
operation is the graph representation of function composition, which can be defined by

a · b = {(
k⋃

i=1

Si, n) | ∃m1, . . . ,mk.({m1, . . . ,mk}, n) ∈ b ∧ (Si,mi) ∈ a, i = 1, . . . , k}.

The Karoubi envelope of this monoid is the category whose objects are idempotents, i.e.
elements a such that a = a · a, and maps f : a → b are elements of the monoid such
that f = a · f · b. Scott shows that this is a cartesian closed category and notes that it is
equivalent to the category of separable continuous lattices and continuous maps. A similar
theory yielding a category of cpos was developed by Plotkin [18]. In this paper, we will
show that replacing the finite sets S in the above construction with finite sequences yields
a category appropriate for modelling imperative computation.

The monoid in question has as its elements set of pairs (s, n) where s is a finite sequence
of natural numbers and n is a natural. Multiplication is defined by

a · b = {(s1 · · · sk, n) | ∃m1, . . . ,mk.(m1 · · ·mk, n) ∈ b ∧ (si,mi) ∈ a, i = 1, . . . , k}

4 GUY MCCUSKER

where s1 · · · sk denotes the concatenation of the sequences s1, . . . , sk and we identify single-
ton sequences with their unique elements.

Let us call this monoid M and its Karoubi envelope K(M). Concretely, the connection
between M and Scott’s monoid is very straightforward: sequences replace Scott’s finite sets,
and concatenation replaces union. It seems obvious that the move from Scott’s construction
to ours is nothing more than replacing one monad, the monad of finite powerset, with
another, that of finite sequences, in some formal construction. In fact the situation is not
quite so straightforward: in order to set things up in an axiomatic fashion, one appears to
require a distributive law of the monad at hand over the powerset monad. While the monad
of finite sequences does distribute over P, Pfin does not. This situation has been studied
by Hyland et al. in [7], where models along the lines of Scott’s are built axiomatically,
using a Kleisli-category construction. Their work only applies to commutative monads, and
therefore not to the finite-sequence monad, so is not directly applicable here. Moreover, for
our purposes neither the category K(M) nor the kind of Kleisli construction proposed by
Hyland et al. provides the most convenient setting in which to work. Although our model
of imperative computation can be seen as living entirely within these categories, we shall
propose a somewhat different construction which yields additional structure useful in the
analysis of the model.

We note also that Longley has recently shown how a similar category, built from an
untyped graph-style model using the monad of finite multisets, as opposed to finite sets or
finite sequences, provides a model of fresh name generation [12]. In future work, we plan
to investigate the relationships between all these models in greater detail, and explore the
constructions at the higher level of generality proposed by Hyland et al.

3. Syntactic Control of Interference

The imperative language we shall model is Reynolds’s Syntactic Control of Interference
(SCI) [20], and this section is devoted to the presentation of its syntax, operational se-
mantics and notion of program equivalence. The language was introduced by Reynolds as
an approach to the problem of establishing the non-interference properties of procedures
and their arguments required by specification logic. Reddy noticed that it was precisely
this interference-free fragment of an Algol-like language which his model could interpret.
Later, Reddy and O’Hearn showed that the model could be extended to a full Algol-like
language by means of the Yoneda embedding [16], but it was not until the refinement of
game semantics was discovered that a fully abstract model for such a language became
available.

The SCI language consists of a direct combination of the language of while-loops, local
variable allocation and the simply-typed λ-calculus with an affine type discipline. The types
of SCI are given by the grammar

A ::= nat | comm | var | A ⊸ A

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 5

where the base types are those of natural numbers (nat), commands (comm) and assignable
variables (var). The terms of the language are as follows.

M ::= n | M +M | M −M | . . .

| skip | M ;M | M :=M | !M

| while M do M | ifzero M then M else M

| x | λxA.M | MM

| new x in M

where n ranges over the natural numbers, x over a countable set of identifiers, and A over
the types of SCI. We adopt the usual conventions with regard to binding of identifiers:
λxA.M binds x in M ; terms are identified up to α-equivalence; and M [N/x] denotes the
capture-avoiding substitution of N for free occurrences of x in M .

The type system of the language imposes an affine discipline on application: no function
is allowed to share free identifiers with its arguments. Typing judgments take the form

x1 : A1, . . . , xn : An ⊢ M : A

where the xi are distinct identifiers, the Ai and A are types, and M is a term. We use Γ
and ∆ to range over contexts, that is, lists x1 : A1, . . . , xn : An of identifier-type pairs with
all identifiers distinct. The well-typed terms are given by the following inductive definition,
in which it is assumed that all judgments are well-formed.

λ-calculus:

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λxA.M : A ⊸ B
Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ,∆ ⊢ MN : B
Structural Rules:

Γ ⊢ M
weakening

Γ, x : A ⊢ M

Γ ⊢ M
exchange

Γ̃ ⊢ M
Arithmetic:

⊢ n : nat

Γ ⊢ M : nat Γ ⊢ N : nat
⊙ ∈ {+,−, . . .}

Γ ⊢ M ⊙N : nat

Sequential composition:

⊢ skip : comm

Γ ⊢ M : comm Γ ⊢ N : B
B ∈ {comm, nat, var}

Γ ⊢ M ;N : B

Assignable variables:

Γ ⊢ M : var Γ ⊢ N : nat

Γ ⊢ M :=N : comm

Γ ⊢ M : var

Γ ⊢ !M : nat

6 GUY MCCUSKER

Control structures:
Γ ⊢ M : nat Γ ⊢ N : comm

Γ ⊢ while M do N : comm
Γ ⊢ M : nat Γ ⊢ N1 : B Γ ⊢ N2 : B

B ∈ {comm, nat, var}
Γ ⊢ ifzeroM then N1 else N2 : B

Local blocks:
Γ, x : var ⊢ M : B

B ∈ {comm, nat}
Γ ⊢ new x in M : B

In the exchange rule, Γ̃ denotes any permutation of the list Γ. In the rule for application,
the assumption that the conclusion is well-formed implies that Γ and ∆ contain distinct
identifiers. This was key to Reynolds’s interference control agenda: in the absence of a
contraction rule, the only source of identifier aliasing in the language is through procedure
application, so by enforcing the constraint that procedures and their arguments have no
identifiers in common, one eliminates all aliasing. It then follows that program phrases
with no common identifiers cannot interfere with one another.

Note. Our version of SCI allows side-effects at all base types: see the typing rule for se-
quential composition. We also include a conditional at all base types. Variable allocation,
however, is restricted to blocks of type comm and nat: terms such as new x in x are not per-
mitted, because any sensible operational semantics for such terms would violate the stack
discipline for allocation and deallocation of variables.

The operational semantics of the language is given in terms of stores, that is, functions
from identifiers to natural numbers. A store σ has as its domain a finite set of identifiers,
dom(σ). Given a store σ, we write (σ | x 7→ n) for the store with domain dom(σ) ∪ {x}
which maps x to n and is identical to σ on other identifiers. Note that this operation may
extend the domain of σ.

Operational semantic judgments take the form

Γ ⊢ σ,M ⇓ σ′, V : A

where

• Γ is a context containing only var-type identifiers
• σ and σ′ are stores whose domain is exactly those identifiers in Γ
• M and V are terms
• A is a type
• Γ ⊢ M : A and Γ ⊢ V : A
• V is a value, that is, a natural number, the constant skip, an identifier (which must have
type var) or a λ-abstraction.

For the sake of brevity we omit the typing information from the inductive definition below,
writing judgments of the form σ,M ⇓ σ′, V .

Values and functions:

V a value
σ, V ⇓ σ, V

σ,M ⇓ σ′, λxA.M ′ σ′,M ′[N/x] ⇓ σ′′, V

σ,MN ⇓ σ′′, V

Operations:

σ,M1 ⇓ σ′, n1 σ′,M2 ⇓ σ′′, n2
n = n1 ⊙ n2,⊙ ∈ {+,−, . . .}

σ,M1 ⊙M2 ⇓ σ′′, n

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 7

Variables:
σ,N ⇓ σ′, n σ′,M ⇓ σ′′, x

σ,M :=N ⇓ (σ′′ | x 7→ n), skip

σ,M ⇓ σ′, x

σ, !M ⇓ σ′, σ′(x)
Control structures:

σ,M ⇓ σ′, skip σ′, N ⇓ σ′′, V

σ,M ;N ⇓ σ′′, V

σ,M ⇓ σ′, n
n 6= 0

σ, while M do N ⇓ σ′, skip

σ,M ⇓ σ′, 0 σ′, N ⇓ σ′′, skip σ′′, while M do N ⇓ σ′′′, skip

σ, while M do N ⇓ σ′′′, skip

σ,M ⇓ σ′, 0 σ′, N1 ⇓ σ′′, V

σ, ifzero M then N1 else N2 ⇓ σ′′, V

σ,M ⇓ σ′, n σ′, N2 ⇓ σ′′, V
n 6= 0

σ, ifzero M then N1 else N2 ⇓ σ′′, V
Local blocks:

(σ | x 7→ 0),M ⇓ (σ′ | x 7→ n), V

σ, new x in M ⇓ σ′, V
Note that in the rule for local blocks, the well-formedness constraints on the conclusion
σ, new x in M ⇓σ′, V mean that the domains of definition of σ and σ′ are the same, and do
not include x. Therefore the variable x is only available during the execution of the block
M .

We remark that, though the operational semantics takes account of the possibility that
evaluating a term of function-type could change the store, the fact that all the store-changing
term constructs are confined to the base types means that this does not happen: whenever
σ,M ⇓ σ′, V for some M and V of type A ⊸ B, we have σ = σ′ as a straightforward
induction will establish.

We now define a notion of contextual equivalence on programs in the usual way: given
terms Γ ⊢ M,N : A, we say that M and N are contextually equivalent, and write M ∼= N ,
if and only if for every context C[−] such that ⊢ C[M], C[N] : B for B ∈ {comm, nat}, and
every value ⊢ V : B,

C[M] ⇓ V ⇐⇒ C[N] ⇓ V.

(We omit the unique store over no variables from the operational semantic judgments.)
One can also define a contextual preorder : given the same data as above, we write

M <
∼N iff for all contexts C[−] and values V ,

C[M] ⇓ V =⇒ C[N] ⇓ V.

8 GUY MCCUSKER

4. Reddy’s object-spaces model

In this section we give a direct, concrete definition of a semantics for SCI which accords with
the model given by Reddy [19]. To begin with we define the model without imposing any
structure on it, simply using sets and relations. Later we go on to construct a category in
which our modified graph model lives as a monoid of endomorphisms of a particular object,
and show that the model of SCI inhabits that category. We shall then exploit the structure
of the category to obtain a clean proof of the model’s soundness. However, for pedagogical
reasons we believe the concrete presentation of the model in this section is worthwhile. In
particular, for the fragment of the language without abstraction and application, the model
is very simple and intuitively appealing, and its soundness is easy to establish.

4.1. A model based on events. The key idea behind Reddy’s model is that computations
are interpreted not as mappings from initial to final states (i.e. state transformers), but using
sequences of observable events. A program will have as its denotation a set of tuples of such
sequences.

A type is interpreted as a set: the set of observable events at that type. We define the
semantics of types as follows.

[[nat]] = N, the set of natural numbers

[[comm]] = {∗}, a singleton set

[[var]] = {read(n),write(n) | n ∈ N}

[[A ⊸ B]] = [[A]]∗ × [[B]]

where [[A]]∗ denotes the set of finite sequences over [[A]].
The basic event one can observe of a term of type nat is the production of a natural

number, so N is the interpretation of nat. A closed term of type comm can do nothing
interesting apart from terminating when executed, so comm is interpreted as a singleton
set: we will see later that it is the open terms of type comm which behave more like state-
transformers. At the type var, there are two kinds of event: read(n) events correspond to
dereferencing a variable and receiving n as the result, and write(n) events correspond to
assigning n to the variable, and observing termination of this operation.

For the function types, the idea is that a single use of a function A ⊸ B will result in
a single observable output event from B, but may give rise to a sequence of events in the
argument of type A. Compare and contrast with Scott’s Pω model: there functions are
modelled as sets of pairs (S, n) where S is a set of input-observations and n is an output,
while here we have sets of pairs (s, n) where the input observations form sequences rather
than sets.

The denotation of a term

x1 : A1, . . . , xn : An ⊢ M : B

will be a set of tuples
(s1, . . . , sn, b)

where each si ∈ [[Ai]]
∗ and b ∈ [[B]]. Again the idea is that such a tuple records the ability

of M to produce observable event b while itself observing the sequences si of events in (the
terms bound to) its free identifiers.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 9

4.1.1. Remark. Note that, in this model, the observed behaviour in each variable is recorded
separately; that is, there is no record of how interactions with the various variables are
interleaved. It is precisely this which means we can only model SCI rather than the full
Idealized Algol language. The models based on game semantics refine the present model by
breaking each event into two, a start and a finish, and recording the interleaving between
actions, thereby overcoming this limitation.

A little notation must be introduced before we give the definition of the semantics.
We will abbreviate such tuples s1, . . . , sn as ~s, and semantic elements as above will become

(~s, b), or simply b when n = 0. We use ~s~s′ to denote the componentwise concatenation of
the tuples of sequences s1, . . . , sn and s′1, . . . , s

′
n.

We say that a sequence s ∈ [[var]]∗ is a cell-trace iff every read action in s carries the
same value as the most recent write, if any, and zero if there has been no write yet. (A
formal definition appears later.)

We now give the definition of the semantics by induction on the typing derivation of
terms: for each typing rule, Figure 1 gives an equation which defines the semantics of the
term in the rule’s conclusion by reference to the semantics of the terms in its hypotheses.

4.2. Examples.

• Consider the program swap, defined by

x : var, y : var, z : var ⊢ z := !x ; x := ! y ; y := ! z : comm.

It is straightforward to compute that [[swap]] is the set

{(read(n)write(n′), read(n′)write(n′′),write(n)read(n′′), ∗) | n, n′, n′′ ∈ N}.

The semantic definitions do not yet enforce variable-like behaviour, so that in particular
n and n′′ need not be equal.

However, the semantics of new z in swap selects just those entries in which z behaves
like a good variable, so that n = n′′, and then hides the z-behaviour:

[[new z in swap]] = {(read(n)write(n′), read(n′)write(n), ∗) | n, n′ ∈ N}.

Thus the values in x and y are swapped, and the semantics does not record anything
about the use of z or the fact that x was reassigned first.

• The type comm ⊸ comm has as its elements all pairs of the form

(∗ · ∗ · ∗ · · · ∗, ∗).

A deterministic program of this type will contain at most one such element in its denota-
tion, corresponding to a “for loop” which executes its argument a fixed, finite number of
times. There is also the empty set, corresponding to a program which never terminates
regardless of its argument.

10 GUY MCCUSKER

[[x : A ⊢ x : A]] = {(a, a) | a ∈ [[A]]}

[[Γ ⊢ λxA.M : A ⊸ B]] =

{(s1, . . . , sn, (s, b)) | (s1, . . . , sn, s, b) ∈ [[Γ, x : A ⊢ M : B]]}

[[Γ,∆ ⊢ MN : B]] =
{
(~s, ~t1 . . . ~tk, b)

∣∣∣∣
∃a1, . . . , ak.(~s, (a1 . . . ak, b)) ∈ [[Γ ⊢ M : A ⊸ B]]

∧(~ti, ai) ∈ [[∆ ⊢ N : A]] for i = 1, . . . , k

}

[[Γ, x : A ⊢ M : B]] = {(~s, ε, b) | (~s, b) ∈ [[Γ ⊢ M : B]]}

[[Γ̃ ⊢ M : A]] = {(~̃s, a) | (~s, a) ∈ [[Γ ⊢ M : A]]}

[[⊢ n : nat]] = {n}

[[Γ ⊢ M1 ⊙M2 : nat]] =

{(~s~s′,m1 ⊙m2) | (~s,m1) ∈ [[Γ ⊢ M1 : nat]], (~s′,m2) ∈ [[Γ ⊢ M2 : nat]]}

[[⊢ skip : comm]] = {∗}

[[Γ ⊢ M ;N : B]] =

{(~s~s′, b) | (~s, ∗) ∈ [[Γ ⊢ M : comm]], (~s′, b) ∈ [[Γ ⊢ N : B]]}

[[Γ ⊢ M :=N]] =

{(~s~s′, ∗) | (~s, n) ∈ [[Γ ⊢ N : nat]], (~s′,write(n)) ∈ [[Γ ⊢ M : var]]}

[[Γ ⊢ !M : nat]] = {(~s, n) | (~s, read(n)) ∈ [[Γ ⊢ M : var]]}

[[Γ ⊢ while M do N : comm]] =

(~s1~t1 ~s2~t2 . . . ~sj ~tj~s, ∗)

∣∣∣∣∣∣

∀i.(~si, 0) ∈ [[Γ ⊢ M : nat]]

∧(~ti, ∗) ∈ [[Γ ⊢ N : comm]]
∧∃m 6= 0.(~s,m) ∈ [[Γ ⊢ M : nat]]

[[Γ ⊢ ifzero M then N1 else N2 : B]] =

{(~s~t, b) | (~s, 0) ∈ [[Γ ⊢ M : nat]], (~t, b) ∈ [[Γ ⊢ N1 : B]]}

∪

{(~s~t, b) | ∃m 6= 0.(~s,m) ∈ [[Γ ⊢ M : nat]], (~t, b) ∈ [[Γ ⊢ N2 : B]]}

[[Γ ⊢ new x in M : B]] =

{
(~s, b)

∣∣∣∣
∃s.(~s, s, b) ∈ [[Γ, x : var ⊢ M : B]]
∧ s is a cell trace.

}

Figure 1: Reddy-style semantics of SCI

4.3. Soundness for the ground types. We now prove that our model is sound with
respect to the operational semantics for the fragment of the language excluding abstraction,
application, and non-base types. We refer to this fragment as bSCI; it is essentially the
language of while-programs plus block allocated variables.

First let us introduce a little more notation.
We define a notion of state transition. Given a sequence s ∈ [[var]]∗, we define the

transitions
n

s
−→ n′

where n and n′ are natural numbers, as follows.

n
[]

−→ n n
[read(n)]

−→ n

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 11

n
[write(n′)]

−→ n′

n
s

−→ n′ n′ s′
−→ n′′

n
ss′
−→ n′′

We write n
s

−→ to mean that n
s

−→ n′ for some n′. We can now give a precise definition of

cell-trace: a sequence s ∈ [[var]]∗ is a cell-trace if and only if 0
s

−→. Note also that n
s

−→ if
and only if write(n)s is a cell-trace.

We extend this to traces involving more than one var type as follows. Given a context
x1 : var, . . . , xn : var, an element s = (s1, . . . , sn) ∈ [[var]]∗ × · · · × [[var]]∗, and stores σ and
σ′ in variables x1, . . . , xn, we write

σ
s

−→ σ′

iff

σ(xi)
si−→ σ′(xi)

for each i.

Definition Say that a term Γ ⊢ M : B, where B is a base type and Γ contains only
var-typed variables, is good if and only if:

Case B = comm: for all stores σ, σ′ over Γ,

σ,M ⇓ σ′, skip ⇔ ∃(~s, ∗) ∈ [[M]].σ
~s

−→ σ′

Case B = nat: for all stores σ, σ′ over Γ and all n ∈ N,

σ,M ⇓ σ′, n ⇔ ∃(~s, n) ∈ [[M]].σ
~s

−→ σ′

Case B = var: Γ ⊢ !M : nat is good and for all n ∈ N, Γ ⊢ M := n : comm is good.

Lemma 4.1. All terms Γ ⊢ M : B of bSCI, where B is a base type and Γ contains only
var-typed variables, are good in the above sense.

Proof. We proceed by induction on the structure of the term M . For the constants skip

and n, the result is trivial. For variables x : var, we must show that both !x and x :=n are
good.

Unpacking the definitions, we have

[[! x]] = {(~ε, read(n), ~ε, n) | n ∈ N}.

But σ
~ε, read(n), ~ε

−→ σ′ if and only if σ = σ′ and σ(x) = n, which holds if and only if
σ, ! x ⇓ σ′, n.

For the assignment part, we have

[[x := n]] = {(~ε,write(n), ~ε, ∗)}

and σ
~ε,write(n), ~ε

−→ σ′ if and only if σ′ = (σ | x 7→ n), which holds if and only if σ, x := n ⇓
σ′, skip.

For while M do N , first note that

σ, while M do N ⇓ σ′, skip

if and only if there are sequences of stores σi and τi, for i = 1, . . . , n, such that σ = σ1,
σ′ = τn,

σi,M ⇓ τi, 0 τi, N ⇓ σi+1, skip

12 GUY MCCUSKER

for i = 1, . . . , n− 1 and
σn,M ⇓ τn, k

for some k 6= 0. (This can be proved by induction on derivations in the operational semantics
of while.)

Therefore, applying the inductive hypothesis to M and N , we have that

σ, while M do N ⇓ σ′, skip

if and only if there are ~s1, . . . , ~sn and ~t1, . . . , ~tn−1 such that

(~si, 0) ∈ [[M]] (~ti, ∗) ∈ [[N]]

for i = 1, . . . , n− 1 and
(~sn, k) ∈ [[M]]

for some k 6= 0, and moreover

σi
~si−→ τi τi

~ti−→ σi+1

for i = 1, . . . , n− 1 and

σn
~si−→ τn.

But then we have that

σ1
~s1~t1 . . . ~sn−1 ~tn−1 ~sn

−→ τn
and

(~s1~t1 . . . ~sn−1 ~tn−1 ~sn, ∗) ∈ [[while M do N]]

by definition. Furthermore, all elements of [[while M do N]] with cell-traces in the Γ part
are of this form, which establishes the converse.

The case of ifzeroM then N1 else N2 is similar to this one, and simpler.
Consider the case of M :=N . By definition of the operational semantics,

σ,M :=N ⇓ σ′, skip

if and only if there are σ′′, σ′′′, x and n such that

σ,N ⇓ σ′′, n σ′′,M ⇓ σ′′′, x

and σ′ = (σ′′′ | x 7→ n). This is the same as saying

σ,N ⇓ σ′′, n σ′′,M := n ⇓ σ′, skip. (4.1)

By the inductive hypothesis, both N and M are good, and hence by definition of “good”
for terms of type var, M := n is good, so (4.1) holds if and only if we have

(~s, n) ∈ [[N]] (~t, ∗) ∈ [[M := n]]. (4.2)

such that

σ
~s

−→ σ′′ σ′′
~t

−→ σ′.

By definition of the semantics,

(~t, ∗) ∈ [[M := n]] ⇔ (~t,write(n)) ∈ [[M]]

so (4.2) holds if and only if
(~s~t, ∗) ∈ [[M :=N]].

The case of !M follows directly from the inductive hypothesis: since M is good, so is
!M .

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 13

Finally we consider new x in M : comm (the nat case is similar). By definition of the
operational semantics,

σ, new x in M ⇓ σ′, skip

iff
(σ | x 7→ 0),M ⇓ (σ′ | x 7→ n), skip.

By the inductive hypothesis, this is possible if and only if there is some (~s, s′, ∗) ∈ [[M]] with

σ
~s

−→ σ′ 0
s′
−→ n.

The second condition above is the definition of s′ being a cell-trace, so this holds if and only
if (~s, ∗) ∈ [[new x in M]] as required.

The fact that all terms are good gives us the following soundness result for bSCI.

Corollary 4.2. For any closed term ⊢ M : B of bSCI, where B is comm or nat, M ⇓ V if
and only if [[M]] = [[V]].

5. A category of monoids and relations

Before going on to establish the soundness of Reddy’s model for the whole of SCI, we shall
develop a categorical setting for the model, based on monoids and relations. Our monoid
M appears as the monoid of endomorphisms of an object in this category, so the retracts
of this object all live in the category K(M). It happens that all the objects we use to
interpret types of SCI are indeed retracts of this object, so the graph construction does
indeed yield a category suitable for modelling imperative computation. Nevertheless it is
useful to describe the larger category. Not only is its construction straightforward, but also
it possesses some structure beyond that of K(M) which makes the description of Reddy’s
model more straightforward, and allows the soundness result above to be extended to the
whole language using algebraic reasoning.

We believe that there is a more general description of these constructions to be found,
perhaps extending the work of [7]; but we leave this for future work.

To build our category, we will be making use of the category Mon of monoids and ho-
momorphisms, and exploiting the product, coproduct and powerset operations on monoids,
and the notion of the free monoid over a set. For the sake of completeness, we review these
constructions here.

First some notation. For a monoid A, we use eA to denote the identity element, and
write monoid multiplication as concatenation, or occasionally using the symbol ·A. The
underlying set of the monoid A is written as UA.

5.0.1. Free monoids. Recall that for any set A, the free monoid over A is given by A∗, the
monoid of strings over A, also known as the Kleene monoid over A. The operation taking
A to A∗ is left-adjoint to the forgetful functor U : Mon → Set.

14 GUY MCCUSKER

5.0.2. Products. The category Mon has products. The product of monoids A and B is a
monoid with underlying set UA×UB, the Cartesian product of sets. The monoid operation
is defined by

〈a, b〉〈a′, b′〉 = 〈a ·A a′, b ·B b′〉.

The identity element is 〈eA, eB〉. Projection and pairing maps in Mon are given by the
corresponding maps on the underlying sets. The terminal object is the one-element monoid.
The construction given above generalizes to give all small products.

5.0.3. Coproducts. The category Mon also has finite coproducts. These are slightly awk-
ward to define in general, and since we will not be making use of the general construction,
we omit it here.

The special case of the coproduct of two free monoids is easy to define. Since the
operation of building a free monoid from a set is left adjoint to the forgetful functor U , it
preserves colimits and in particular coproducts. For sets A and B, the coproduct monoid
A∗ +B∗ is therefore given by (A+B)∗, the monoid of strings over the disjoint union of A
and B.

The initial object is the one-element monoid.

5.0.4. Powerset. The familiar powerset construction on Set lifts to Mon and retains much
of its structure. Given a monoid A, define the monoid PA as follows. Its underlying set is
the powerset of UA, that is, the set of subsets of UA. Monoid multiplication is defined by

ST = {x ·A y | x ∈ S, y ∈ T}

and the identity is the singleton set {eA}.
We will make use of the Kleisli category MonP . This category can be defined concretely

as follows. Its objects are monoids, and a map from A to B is a monoid homomorphism
from A to PB. The identity on A is the singleton map which takes each a ∈ A to {a}.
Morphisms are composed as follows: given maps f : A → B and g : B → C, the composite
f ; g : A → C is defined by

(f ; g)(a) = {c | ∃b ∈ f(a).c ∈ g(b)}.

The fact that powerset is a commutative monad on Mon means that the product
structure on Mon lifts to a monoidal structure on MonP as follows. We define A ⊗ B to
be the monoid A×B. For the functorial action, we make use of the double strength map

θA,B : PA× PB −→ P(A ×B)

defined by
θA,B(S, T) = {〈x, y〉 | x ∈ S, y ∈ T}.

This is a homomorphism of monoids. With this in place, given maps f : A → B and
g : C → D in MonP , we can define f ⊗ g : A ⊗ C → B ⊗ D as the homomorphism
f × g ; θB,D. See for example [8] for more details on this construction.

5.1. The category. The category we will use to model SCI is (MonP)
op. This category

can be seen as a category of “monoids and relations” of a certain kind, so we will call it
MonRel.

We now briefly explore some of the structure that MonRel possesses.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 15

5.1.1. Monoidal structure. The monoidal structure on MonP described above is directly
inherited by MonRel. Furthermore, since the unit I of the monoidal structure is given
by the one-element monoid, which is also an initial object in Mon, I is in fact a terminal
object in MonRel, so the category has an affine structure. An important consequence of
this is that projections exist: for any A1, . . . , An there are canonical maps

πi : A1 ⊗ · · · ⊗An → Ai.

5.1.2. Exponentials. Let A and B be any monoids, and C∗ be the free monoid over some
set C. Consider the following sequence of natural isomorphisms and definitional equalities.

MonRel(A⊗B,C∗)

= Mon(C∗,P(A ×B))
∼= Set(C,UP(A ×B))
∼= Rel(C,UA× UB)
∼= Rel(UB × C,UA)

Similarly we can show that

Rel(UB × C,UA) ∼= MonRel(A, (UB ×C)∗).

The exponential B ⊸ C∗ is therefore given by (UB×C)∗. It is important to note that the
free monoids are closed under this operation, so that we can form A1 ⊸ (A2 ⊸ . . . (An ⊸

C∗)) for any A1, . . . , An. That is to say, the free monoids form an exponential ideal in
MonRel.

Given a map f : A ⊗ B → C∗ in MonRel, we write Λ(f) for the curried map A →
(B ⊸ C∗). The counit of the adjunction is written

ev : (B ⊸ C∗)⊗B → C∗.

5.1.3. Products. The coproduct in Mon is inherited by the Kleisli-category MonP , and
since MonRel is the opposite of this category, MonRel has products.

5.1.4. An alternative characterization. We can also describe the category MonRel con-
cretely, as follows. Objects are monoids, and maps A → B are relations R between (the
underlying sets of) A and B, with the following properties:

homomorphism: eAReB, and if a1Rb1 and a2Rb2, then a1a2Rb1b2
identity reflection: if aReB then a = eA
decomposition]: if aRb1b2 then there exist a1, a2 ∈ A such that aiRbi for i = 1, 2 and

a = a1a2.

Identities and composition are as usual for relations. Note that the property of “identity
reflection” is merely the nullary case of the property of “decomposition”.

It is routine to show that this definition yields a category isomorphic to (MonP)
op.

The action of the isomorphism is as follows. Given a map A → B in (MonP)
op, that is to

say, a homomorphism
f : B −→ P(A)

we can define a relation Rf between A and B as the set of pairs {(a, b) | a ∈ f(b)}.

16 GUY MCCUSKER

5.1.5. Recovering the monoid M. We remark that the monoid of endomorphisms of the
object ω∗, the monoid of sequences of natural numbers, is exactly the monoidM of Section 2.
A map ω∗ → ω∗ consists of a monoid homomorphism ω∗ → Pω∗ which is the same as an
ordinary function ω → Pω∗. Reversing the arrows and using the characterization of Rel as
the Kleisli-category for P on Set, this is just a subset of ω∗ × ω, and it is routine to check
that the composition of these sets is as described in Section 2.

It follows that the full subcategory of MonRel consisting of objects which are retracts
of ω∗ can also be seen a subcategory of the Karoubi envelope K(M), and it will turn out
that all the types of SCI are modelled using objects of this subcategory. Just as Scott used
the Karoubi envelope of Pω as a category for giving semantics, we can use K(M). However,
MonRel proves to be a more convenient category, because it possesses additional objects,
in particular tensor products such as ω∗ ⊗ ω∗, which assist in the description and analysis
of our model but do not belong to K(M).

It is perhaps worth remarking that Reddy’s original work struggled to find a satisfying
categorical setting for the model, resorting to the use of multicategories in the absence of
objects such as ω∗ ⊗ ω∗. We believe our new categorical setting paints a more convincing
picture.

5.2. Modelling SCI in MonRel. We now show how Reddy’s model of SCI lives in
MonRel. Types are interpreted as objects of the category, that is, as monoids. Indeed
every type is interpreted as the free monoid over the set which we used for the direct pre-
sentation of the semantics given above. Formally we can give an inductive definition of the
semantics of types as follows.

[[comm]] = 1∗

[[nat]] = N
∗

[[var]] = [[comm]]ω × [[nat]]

[[A ⊸ B]] = [[A]] ⊸ [[B]].

For the definition of [[A ⊸ B]] to make sense it is essential that every [[B]] is a free monoid.
This is clear for the base types comm and nat. Recalling that products in MonRel come
from coproducts in Mon, and that the coproduct of free monoids is again a free monoid,
we see that [[var]] is a free monoid, and therefore by induction every types is interpreted as
the free monoid over some alphabet.

Let us write αA for the underlying alphabet of [[A]], and verify that for every type A,
αA is the set that was used in the direct presentation of the semantics above.

For comm and nat, this is clear. To see that the same holds for var, recall that products
in MonRel come from coproducts in Mon, which for free monoids are given by disjoint
union of alphabets. So

αvar =

(
∑

w

1

)
+N.

The single element of the nth summand of the left component corresponds to write(n), and
the element n of the right component corresponds to read(n); indeed we will continue to
use this notation below. Our reason for giving the semantic definition in the above form
will become clear when we come to the semantics of assignment and dereferencing.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 17

Finally, by the definition of exponential,

α(A ⊸ B) = (αA)∗ × αB

which agrees with our previous definition.
For the semantics of terms, we exploit the categorical structure of MonRel: the λ-

calculus part is interpreted using the monoidal and exponential structure of the category,
while the constants are interpreted by defining particular maps in the category, making use
of products for those constants which allow their operands to share variables.

A term x1 : A1, . . . , xn : An ⊢ M : B is interpreted as a map

[[M]] : [[A1]]⊗ · · · ⊗ [[An]] → [[B]].

(If Γ is the context x1 : A1, . . . , xn : An we will often abbreviate the object [[A1]]⊗· · ·⊗ [[An]]
as [[Γ]]). Unpacking definitions, such a map is a homomorphism

[[B]] → P([[A1]]× · · · × [[An]]).

Since all types are interpreted as free monoids, this is the same as an ordinary function

αB → P((αA1)
∗ × · · · × (αAn)

∗)

which in turn corresponds to a subset of

(αA1)
∗ × · · · × (αAn)

∗ × αB.

Under this representation, the denotations of terms in MonRel have the same form as
those in the direct presentation, and we will use the “sets of tuples” when we need to define
morphisms explicitly.

A variable is interpreted as the identity map:

[[x : A ⊢ x : A]] = id : [[A]] → [[A]].

Weakening is interepreted using projections: if

[[Γ ⊢ M : B]] = f : [[Γ]] → [[B]]

then
[[Γ, x : A ⊢ M : B]] = π ; f

where π : [[Γ]]⊗ [[A]] → [[Γ]] is a projection map.
Exchange is interpreted using the symmetry isomorphisms: for any permutation on a

context taking Γ to Γ̃ there is a corresponding isomorphism symm : [[Γ̃]] → [[Γ]], and then

[[Γ̃ ⊢ M : A]] = symm ; [[Γ ⊢ M : A]].

Abstraction is interpreted using the currying part of the exponential adjunction: if

[[Γ, x : A ⊢ M : B]] = f : [[Γ]]⊗ [[A]] → [[B]]

then
[[Γ ⊢ λxA.M : A ⊸ B]] = Λ(f) : [[Γ]] → [[A]] ⊸ [[B]].

Application is interpreted using ev:

[[MN]] = [[M]]⊗ [[N]] ; ev.

It is straightforward to check that these definitions agree with the concrete ones given
earlier.

18 GUY MCCUSKER

To interpret the basic imperative constructs, we define a collection of maps in the
category. For instance, to interpret while M do N we use a map

w : [[nat]]× [[comm]] → [[comm]]

which we will define below, and set

[[while M do N]] = 〈[[M]], [[N]]〉 ; w.

The object [[nat]]× [[comm]] is the free monoid over the alphabet N ∪ {∗}. We can therefore
define w as the set of tuples

w = {(0 ∗ 0 ∗ · · · 0 ∗ n, ∗) | n 6= 0}.

Maps interpreting ifzero M then N1 else N2, !M and M := N can be defined similarly
and all yield interpretations which agree with the direct one. However, for assignment and
dereferencing, the definition of [[var]] as [[comm]]ω × [[nat]] suggests a more abstract definition
using projections: there are projections

assign(n) : [[var]] → [[comm]]

for each n, and
deref : [[var]] → [[nat]]

and these are indeed the maps we need. Thus our interpretation of var has the kind of
“object oriented” flavour advocated by Reynolds: a variable is an object with ω-many
write-methods and a read-method, and its semantics is given by the product of these.

Finally the semantics of new is given by means of maps of type

[[var ⊸ comm]] → [[comm]] and [[var ⊸ nat]] → [[nat]]

defined by the sets
{((s, ∗), ∗) | s is a cell trace}

and
{((s, n), n) | n ∈ N, s is a cell trace}

respectively.

5.3. Soundness of the model of SCI. We can now show that our model is sound for the
whole of SCI, extending the result of Section 4.3.

First a standard lemma which says that substitution is modelled by composition in the
category.

Lemma 5.1 (Substitution). If Γ, x : A ⊢ M : B and ∆ ⊢ N : A are terms of SCI, then so
is Γ,∆ ⊢ M [N/x] : B, and furthermore [[M [N/x]]] = id[[Γ]] ⊗ [[N]]; [[M]].

With this in place it is standard that β-reduction is soundly modelled, because of the
naturality of currying.

Lemma 5.2. If Γ, x : A ⊢ M : B and ∆ ⊢ N : A, then [[(λx.M)N]] = [[M [N/x]]].

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 19

Both of these Lemmas are proved by a straightforward induction on the structure of
terms. They hold for standard reasons, because we are working in a symmetric monoidal
category and using exponentials to model function spaces. We can now establish soundness
for our model using purely algebraic reasoning: the fact that there is no recursion in the
language makes this particularly straightforward. The key is to establish that every ground-
type term of the full language has the same behaviour as a term of bSCI; a property that
is captured by the following definition.

Definition Let Γ ⊢ M : A be a term of SCI, where Γ contains only var-typed variables.
We say that M is bSCI-expressive iff:

• A is a ground type and there exists a term Γ ⊢ M ′ : A of bSCI such that [[M]] = [[M ′]]
and for all stores σ and values Γ ⊢ V : A

σ,M ⇓ σ′, V ⇐⇒ σ,M ′ ⇓ σ′, V

or
• A = A1 ⊸ A2 is a function type and for all bSCI-expressive terms ∆ ⊢ N : A1, Γ,∆ ⊢
MN : A2 is bSCI-expressive.

Note that the first case above implies that all ground-type terms of bSCI with only var-
typed free variables are automatically bSCI-expressive.

Lemma 5.3. Let x1 : A1, . . . , xn : An ⊢ M : A be any term of SCI, and let Γi ⊢ Ni : Ai be

bSCI-expressive terms. Then M [~Ni/~xi] is bSCI-expressive.

Proof. By induction on the structure of M .

Variables: this case is trivial.
Constants: trivial since constant terms are themselves bSCI-terms.
Term formers of bSCI: for terms such as while M1 do M2, we must prove that

while M1[~N/~x] do M2[~N/~x] is bSCI-expressive.

The subterms Mi[~N/~x] are bSCI-expressive by inductive hypothesis, and hence there
are terms M ′

1 and M ′
2 of bSCI such that

[[M ′
i]] = [[Mi[~N/~x]]]

for i = 1, 2, and for all stores σ and values V ,

σ,M ′
i ⇓ σ′, V ⇐⇒ σ,Mi[~N/~x] ⇓ σ′, V.

By the definition of the operational semantics it follows that

σ, while M ′
1 do M ′

2 ⇓ σ′, V

if and only if

σ, while M1[~N/~x] do M2[~N/~x] ⇓ σ′, V.

By the compositionality of the denotational semantics,

[[while M ′
1 do M ′

2]] = [[while M1[~N/~x] do M2[~N/~x]]]

and hence while M1[~N/~x] do M2[~N/~x] is bSCI-expressive, as required.
The cases of other term-formers which are included in bSCI, such as if and new, are

similar.

20 GUY MCCUSKER

Abstraction: For a term λx.M , we must prove that λx.M [~N/~x] is bSCI-expressive. Let

us write M ′ for M [~N/~x]. By the definition of bSCI-expressive, we must show that
for all bSCI-expressive terms P1, . . . , Pk such that (λx.M ′)P1 . . . Pk is of ground type,
(λx.M ′)P1 . . . Pk is bSCI-expressive.

By the inductive hypothesis, M ′[N/x] is bSCI-expressive whenever N is. Hence by
definition of bSCI-expressivity, M ′[P1/x]P2 . . . Pk is bSCI-expressive whenever the Pi are.
Therefore there is a term M ′′ of bSCI such that [[M ′′]] = [[M ′[P1/x]P2 . . . Pk]] and for all
stores σ and values V ,

σ,M ′′ ⇓ σ′, V ⇐⇒ σ,M ′[P1/x]P2 . . . Pk ⇓ σ′, V.

But by soundness of β-reduction,

[[(λx.M ′)P1 . . . Pk]] = [[M ′[P1/x]P2 . . . Pk]] = [[M ′′]].

This is to say that (λx.M ′)P1 . . . Pk is bSCI-expressive whenever the Pi are, so λx.M ′ is
bSCI-expressive.

Application: For a term M1M2, we must show that M1[~N/~x]M2[~N/~x] is bSCI-expressive.
But by inductive hypothesis,

Mi[~N/~x]

is bSCI-expressive for i = 1, 2 and the result follows by definition of bSCI-expressivity at
function types.

Lemma 5.4. For any closed term M of type nat or comm, M ⇓ V iff [[M]] = [[V]].

Proof. By Lemma 5.3, M is bSCI-expressive and hence there is a term M ′ of bSCI such
that [[M]] = [[M ′]] and M ⇓ V if and only if M ′ ⇓ V . By the soundness for bSCI-terms,
Corollary 4.2, M ′ ⇓ V if and only if [[M ′]] = [[V]], and the result follows.

Theorem 5.5 (Equational Soundness). If Γ ⊢ M,N : A are terms such that [[M]] = [[N]],
then M and N are contextually equivalent.

Proof. Since the semantics is compositional, for any context C[−], we have [[C[M]]] =
[[C[N]]]. By Lemma 5.4, C[M] ⇓ V iff [[C[M]]] = [[V]] iff [[C[N]]] = [[V]] iff C[N] ⇓ V as
required.

6. Two extensions to the language

In the next section it will be useful to consider a version of SCI extended with two new
constructs: erratic choice and a “bad variable” constructor. It will turn out that in a
certain sense these extensions add no new expressive power—in technical parlance, they
are conservative extensions—but they do alter the character of the language at an intuitive
level, and allow new programs to be written. More importantly for our purposes, they give
rise to the presence of a universal type in the language.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 21

6.1. Erratic choice. There are several ways to add an erratic choice operation to the
language. As long as we are interested only in the “may-converge” version of the ⇓ predicate,
recording what values are possible as the result of a computation without making any
guarantee of termination, the simplest form of erratic choice is a random number generator.

We add to the language a constant random, with typing rule

Γ ⊢ random : nat
and operational semantics

σ, random ⇓ σ, n
for any n.

The denotational semantics of random in our model is

[[Γ ⊢ random : nat]] = {(~ε, n) | n ∈ N}.

6.1.1. Remark. Note that if we were to treat the must-converge predicate, this unbounded
nondeterminism would be very different from finite nondeterminism, and would lead to some
technical difficulties in the semantics, cf. [3]. However, for may-convergence, adding random
to the language is equivalent to adding a mere binary nondeterministic choice operator.

6.2. Bad variable constructor. We alluded earlier to the “object-oriented” nature of
our denotational semantics of the var type: var is seen as the product of countably many
assignment methods of type comm and a dereferencing method of type nat. We can import
this reading of the var type into the syntax of the language by means of a bad-variable
constructor mkvar, as follows.

The typing rule is
Γ ⊢ M : nat ⊸ comm Γ ⊢ N : nat

Γ ⊢ mkvar M N : var
For operational semantics, there are three rules:

σ, mkvar M N ⇓ σ, mkvar M N

σ,N ⇓ σ′, n σ′,M ⇓ σ′′, mkvar M1 M2 σ′′,M1n ⇓ σ′′′, V

σ,M :=N ⇓ σ′′′, V

σ,M ⇓ σ′, mkvar M1 M2 σ′,M2 ⇓ σ′′, V

σ, !M ⇓ σ′′, V
The idea is that mkvar M N is a variable for which the assignment methods are given
by the Mn and the dereferencing method is given by N . Thus any genuine variable x is
equivalent to

mkvar (λn.x := n) (! x)

but many other kinds of variable are available, some with very un-variable-like behaviour,
such as

mkvar (λn.skip) (3)

which always gives 3 when dereferenced.
The denotational semantics of mkvar is as follows.

[[mkvar M N]] = {(~s,write(n)) | (~s, ∗) ∈ [[Mn]]} ∪ {(~s, read(n)) | (~s, n) ∈ [[N]]}

22 GUY MCCUSKER

A somewhat more abstract presentation can be given. First note that the denotations of
terms

f : nat ⊸ comm ⊢ fn : comm

for each n give us ω-many maps [[nat ⊸ comm]] → [[comm]] and thus a map

flatten : [[nat ⊸ comm]] → [[comm]]ω

which “flattens” a function into a tuple. Since [[var]] = [[comm]]ω × [[nat]] we can then define

[[mkvar M N]] = 〈[[M]]; flatten, [[N]]〉.

6.2.1. Remark. One might argue that the mkvar constructor is unnatural from a program-
mer’s point of view. However, the ability to define one’s own assignment and dereferencing
operators is a useful programming technique which is frequently exploited in languages such
as Ruby, for example [5]. This constructor appears in the syntax of most Algol-like lan-
guages which have been studied in the theoretical literature, and is available in most models
of such languages too. Our result, to follow, which shows that mkvar is a conservative ex-
tension of SCI is therefore somewhat comforting; moreover this result can be extended to
full Idealized Algol, arguing via a game-based model [14].

6.2.2. Terminology. We shall refer to the language SCI extended with mkvar as SCImk.
The relation of contextual equivalence for this language, defined in the same way as for
SCI, will be denoted ∼=mk. Note that this relation may distinguish more terms of the pure
SCI language than does ∼=, because contexts may now make use of mkvar; in fact we shall
see later that this is not the case, so that mkvar is a conservative extension of the language.
Similarly, the language extended with both mkvar and random will be called SCImk,ran and
its notion of contextual equivalence will be written ∼=mk,ran.

6.3. Soundness. We now show that the model of the extended language SCImk,ran is sound.
The proof is a straightforward extension of the arguments used to establish Lemma 5.4. For
the sake of completeness (of the paper, not the model!) we give the formulation here.

Definition A term x1 : var, . . . , xn : var ⊢ M : A of SCImk,ran is good iff

• A is comm and for all σ, σ′,
σ,M ⇓ σ′, skip

if and only if

∃(~s, ∗) ∈ [[M]].σ
~s

−→ σ′.

• A is nat and for all σ, σ′, n,
σ,M ⇓ σ′, n

if and only if

∃(~s, n) ∈ [[M]].σ
~s

−→ σ′.

• A is var and for all n, M := n is good and !M is good.
• A is A1 ⊸ A2 and for all good N : A1, MN : A2 is good.

Lemma 6.1. For any term x1 : A1, . . . , xn : An ⊢ M : B of SCImk,ran, if Γi ⊢ Mi : Ai are

good terms for i = 1, . . . , n, with the Γi disjoint, then Γ1, . . . ,Γn ⊢ M [~Mi/~xi] : B is good.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 23

Proof. By induction on the structure of M . We treat only the cases of random and mkvar;
the arguments for the others are as in the proofs of Lemmas 4.1 and 5.3.

For random, the operational semantics says that

σ, random ⇓ σ, n

for any σ and n. But σ
~ε

−→ σ and

(~ε, n) ∈ [[random]]

by definition. Conversely, if σ
~ε

−→ σ′ then σ = σ′, so both directions of the required
implication hold.

For mkvar, we shall show that if M : nat ⊸ comm and N : nat are good, then so is
mkvar M N .

We must show that (mkvar M N) := n and !(mkvar M N) are good. By the definition
of the operational semantics,

σ, (mkvar M N) := n ⇓ σ′, skip

if and only if
σ,Mn ⇓ σ′, skip.

Since M and n are good, this happens if and only if

∃(~s, ∗) ∈ [[Mn]].σ
~s

−→ σ′.

By definition of the semantics of mkvar, this holds iff

∃(~s,write(n)) ∈ [[mkvar M N]].σ
~s

−→ σ′

which in turn holds iff

∃(~s, ∗) ∈ [[(mkvar M N) := n]].σ
~s

−→ σ′

by definition of the semantics of assignment, which completes the argument. The case for
dereferencing is proved similarly.

Corollary 6.2. For any closed term M of SCImk,ran having type comm, M⇓skip ⇔ ∗ ∈ [[M]],
and for any closed term M of type nat, M ⇓ n ⇔ n ∈ [[M]].

Note that the statement of this result is a little different from the analogous result for
SCI, Corollary 4.2, because of the nondeterminism in the language.

Just as before, this result is enough to allow us to establish the soundness of our model.

Theorem 6.3. If M and N are terms of SCImk,ran of the same type and [[M]] = [[N]], then
M ∼=mk,ran N .

Another simple corollary will prove useful for us later.

Corollary 6.4. If M and N are closed terms of SCImk,ran of type nat, then M ∼=mk,ran

N ⇐⇒ [[M]] = [[N]].

Proof. The right-to-left implication is Theorem 6.3. Left-to-right holds because if M and
N are equivalent, then M ⇓ n if and only if N ⇓ n for any n, so by Corollary 6.2, n ∈ [[M]]
if and only if n ∈ [[N]], that is, [[M]] = [[N]].

24 GUY MCCUSKER

7. A universal type and full abstraction

We begin this section with the observation that every type-object [[A]] in MonRel is a
retract of [[nat]], confirming our claim that the Karoubi envelope of the monoid M is an
appropriate setting for modelling imperative computation.

This would be little more than an intriguing observation but for the fact that the maps
involved in the retractions are definable by terms of SCImk,ran. Thus, not only is [[nat]] a
universal object for the category of type-objects in MonRel, but also nat is a universal
type in the language. This gives rise to a very simple proof of the full abstraction of the
model of SCImk,ran. We then show that this result restricts to the smaller language SCI by
demonstrating that SCImk,ran extends SCI conservatively.

Lemma 7.1. Let A be any countable set. The monoid A∗ is a retract of [[nat]] = ω∗ in
MonRel.

Proof. Let f : A → ω be any injective function. We define maps

in : A∗ → ω∗ out : ω∗ → A∗

in MonRel by the relations

in = {(a1 · · · ak, f(a1) · · · f(ak)) | a1, . . . , ak ∈ A}

out = {(f(a1) · · · f(ak), a1 · · · ak) | a1, . . . , ak ∈ A}

It is immediately clear that these are well-defined maps in MonRel and that in; out = id.

Since every type object [[A]] is a list-monoid over a countable set, every type-object is
a retract of [[nat]].

We should remark, however, that not every object used to define the semantics of SCI
is a retract of [[nat]]. For example one can show that the object [[nat]] ⊗ [[nat]] does not
have this property. The category MonRel therefore possesses some advantages over the
category K(M).

We can go further in our description of type-objects as retracts of [[nat]]: the retractions
at hand are denotations of terms of SCImk,ran.

Definition A type A of SCI is a definable retract of nat iff there are maps in : [[A]] → ω∗

and out : ω∗ → [[A]] in MonRel such that in; out = id[[A]] and furthermore there are terms
x : A ⊢ in : nat and y : nat ⊢ out : A of SCImk,ran such that [[in]] = in and [[out]] = out.

Theorem 7.2. Every type of SCI is a definable retract of nat.

Proof. By induction on the structure of types. We shall give particular definable retractions
for the types nat, comm, var and nat ⊸ nat. The case of a more general function type
A ⊸ B is then handled inductively, by defining

x : A ⊸ B ⊢ inA⊸B : nat , innat⊸nat(λn : nat.inB(x(outA(n)))) : nat

y : nat ⊢ outA⊸B , λa : A.outB(outnat⊸nat(y)(inA(a))) : A ⊸ B.

The identity maps clearly make nat a definable retract of itself. For the type comm, we
define

x : comm ⊢ incomm : nat , x; 0

y : nat ⊢ outcomm : comm , ifzero y then skip else Ω

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 25

where Ω is any nonterminating program. It is trivial to verify that these terms have the
required property.

For the type var, we make use of nondeterminism. We are going to encode the action
of reading a value n from a variable as the number 2n, and writing n to a variable as 2n+1
(any effective encoding of a disjoint sum of naturals would do, of course). The in term
randomly assigns to or dereferences from the variable x, and then returns the encoding of
what it has done:

x : var ⊢ invar : nat , new r := random in ifzero r then 2(!x)
else (x := r − 1); 2r − 1.

The semantics of invar therefore consists of all pairs of the forms

([read(n)], 2n) and ([write(n)], 2n + 1).

The out term makes use of mkvar to create a variable. Both the reading and writing
parts of this variable evaluate the natural number y once. If y is of the form 2n, then the
variable allows n to be read from it; if on the other hand y is 2n + 1, then the variable
allows n to be written to it. No other actions are possible.

y : nat ⊢ outvar : var , mkvar (λn : nat.if y = 2n+ 1 then skip else Ω)
(new z := y in if even(!z) then !z/2 else Ω).

The semantics of this term therefore consists of all pairs of the forms

([2n], read(n)) and ([2n + 1],write(n))

thus giving the required retraction.
Finally for nat ⊸ nat, the term in supplies the function with a randomly generated

sequence of inputs, s, observes the output, n, and returns an encoding of the pair (s, n) as a
natural number. Compare this with the code(−) function used to embed [Pω → Pω] in Pω
in Scott’s model. To ease the notation we use a liberal dose of syntactic sugar. We assume
that an encoding of sequences of natural numbers as naturals exists, and suppress mention of
it, so it appears that the variable s in the term below is used to store finite sequences directly.
We write ε for the encoding of the empty sequence, [n] for the encoding of the singleton
sequence containing the element n, and · for the encoding of concatenation. If n is a number
encoding a sequence s, |n| denotes the length of sequence s and ni denoting the ith element
of s. We also use pair notation 〈s, n〉 for the encoding of this pair as a natural number, and
fst and snd to compute the projections from such encoded pairs. Finally we allow multiple
variables to be allocated and initialized at once, so that new s := ε;x := 0 in M means
new s in new x in s := ε;x := 0;M . With these abbreviations at our disposal, innat⊸nat is
defined as follows.

f : nat ⊸ nat ⊢ innat⊸nat , new s := ε;x := 0 in
x := f(new r := random in (s :=!s · [!r]); !r);
〈!s, !x〉.

Finally for outnat⊸nat, we take the value y : nat, decode it as a pair (s, n), and return a
function which can return n on observation of the input sequence s, but can do nothing

26 GUY MCCUSKER

else.

y : nat ⊢ outnat⊸nat , λznat.new y′ := y; z′ := z; s := fst(!y′);n := snd(!y′);x := 0 in
while !x < |!s| do

if !z′!x = !s!x then x :=!x+ 1 else Ω;
!n

These definable retractions allow us to prove full abstraction for SCImk,ran in a very
straightforward fashion.

Theorem 7.3. The model of SCImk,ran in MonRel is fully abstract. That is, for any closed
terms M and N of the same type, [[M]] = [[N]] if and only if M ∼=mk,ran N .

Proof. The left-to-right implication is Theorem 6.3. For the right-to-left, suppose M and
N are equivalent terms. Then by definition of equivalence, we also have

in[M/x] ∼=mk,ran in[N/x].

These are closed terms of type nat, so by Corollary 6.4, [[in[M/x]]] = [[in[N/x]]]. By
compositionality of the semantics it follows that [[out[in[M/x]/y]]] = [[out[in[N/x]/y]]]. But
[[out[in[M/x]/y]]] = [[M]]; [[in]]; [[out]] and similarly for N , so we conclude that [[M]] = [[N]]
as required.

8. A model without nondeterminism

We have established full abstraction of our model of SCImk,ran, which admits both the mkvar
construct and nondeterminism. Before embarking on our proof that these additional con-
structs do not change the notion of equivalence in SCI, we first develop a more constrained
model in which random cannot be interpreted.

Reddy’s original object-spaces model did not admit the nondeterministic construct
random. We use some of Reddy’s ideas to construct a variant of the category MonRel which
contains the same model of SCImk but, like Reddy’s category, contains no nondeterministic
elements. The idea is to introduce a relation of coherence, in the style of Girard’s coherence
spaces [6].

Definition Given a monoid A, a coherence relation ⌢ on A is a symmetric reflexive binary
relation on the underlying set of A such that

prefix closure: if a1a2 ⌢a′1a
′
2 then a1 ⌢a′1

extension: if aa1 ⌢aa2 then a1 ⌢a2.

A useful intution is that elements a and a′ are coherent, a ⌢ a′, if they can coexist as
possible observations to be made of a single deterministic computation at the same state.
So, for instance, distinct natural numbers n and n′ will not be coherent in the denotation
of nat, but write(n) and write(n′) will be coherent in var because a variable may allow any
value to be written to it.

Definition The category MonRelCoh is defined as follows. Objects are pairs (A,⌢)
consisting of a monoid A together with a coherence relation on A, and maps from (A,⌢A)
to (B,⌢B) are relations R such that R is a map from A to B in MonRel and furthermore

• if a ⌢A a′, aRb and a′Rb′ then b ⌢B b′

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 27

• if a ⌢A a′, aRb and a′Rb then a = a′.

Composition is the usual composition of relations.

Lemma 8.1. MonRelCoh is a category.

Proof. It is clear that the identity relations are valid maps in MonRelCoh so we just need
to show that composition preserves the two new constraints on maps. Let R : A → B and
S : B → C be maps in MonRelCoh. Suppose a⌢A a′ and that aR;Sc and a′R;Sc′. Then
there exist b, b′ ∈ B such that aRb, bSc, a′Rb′ and b′Sc′. Since a ⌢A a′ we have b ⌢B b′

and hence c ⌢C c′ as required. Now suppose c = c′; we shall show that a = a′. Since S is
a valid map, we have b = b′ and then since R is valid, a = a′. Hence R;S is a valid map in
MonRelCoh.

The following definition is due to Reddy [19].

Definition Given a set A and a symmetric reflexive binary relation ⌢A on A, we define
an object of MonRelCoh called the object-space over A consisting of the free monoid over
A with coherence relation defined by:

a1 . . . am ⌢a′1 . . . a
′
n

if and only if

∀i ∈ {1, . . .min(m,n)− 1}.a1 . . . ai = a′1 . . . a
′
i ⇒ ai+1 ⌢A a′i+1.

That is to say, two sequences are coherent if either one is a prefix of the other, or at the
first place they differ, the two differing elements are coherent.

Lemma 8.2. Let (A,⌢) be a set with a coherence relation, and let A∗ be the object-space
over this structure. Let B be any object of MonRelCoh. Let R be a relation from UB to
A such that if bRa and b′Ra′ with b ⌢ b′ then a ⌢ a′ and if a = a′ then b = b′. Then there
is a unique map in MonRelCoh from B to A∗ which extends R; by abuse of notation we
also write R for this relation.

Proof. The unique candidate for this map is the extension of R to a map B to A∗ in
MonRel, exploiting the fact that A∗ is the free monoid over A. We just need to show that
it is a valid map in MonRelCoh.

We first show that if b⌢b′ with bRa1 · · · an and b′Ra′1 · · · a
′
n′ then a1 · · · an⌢a′1 · · · a

′
n′ .

This requires demonstrating that at the first i such that ai 6= a′i, we have ai ⌢ a′i, if such
an i exists. We proceed by induction on the minimum of n, n′. In the base case there is
nothing to prove, so suppose both n and n′ are non-zero.

By the decomposition property, we can find b1, . . . , bn such that b = b1 · · · bn and each
biRai, and similarly for b′ and the a′i. By the prefix-closure property in B, b1 ⌢ b′1 and
hence a1 ⌢ a′1. Thus if a1 6= a′1, we are done. Otherwise, a1 = a′1 implies that b1 = b′1 and
then by the extension property of coherence in B, we have b2 · · · bn⌢b′2 · · · b

′
n′ and of course

b2 · · · bnRa2 · · · an and similarly for the b′i and a′i. Then the inductive hypothesis gives us
the result we require.

We now show that if additionally a1 · · · an = a′1 · · · a
′
n′ then b = b′, again by induction

on n (which is equal to n′). The base case is guaranteed by the identity reflection property
of maps in MonRel. In the inductive step, we again decompose b and b′ as above, and note
that since a1 = a′1 we have b1 = b′1. Then we also have b2 · · · bnRa2 · · · an and similarly for
the b′i, and conclude by the inductive hypothesis.

28 GUY MCCUSKER

The product, tensor and exponential constructions in MonRel all lift to MonRelCoh.
This can be expressed as follows.

Lemma 8.3. MonRelCoh is a symmetric monoidal category with products, and the
object-spaces form an exponential ideal in MonRelCoh. Moreover the forgetful functor
to MonRel preserves all this structure on the nose.

Proof. We just need to define the coherence-relation parts of the various constructions and
show that they are well-defined and have the appropriate properties.

For the monoidal structure, coherence is defined pointwise:

(a, b)⌢A⊗B (a′, b′) ⇐⇒ a⌢A a, b ⌢B b.

(To aid legibility in future we will drop the subscripts on the ⌢ relations where no confusion
will arise.)

It is clear that this definition makes ⊗ into a bifunctor on MonRelCoh and that the as-
sociativity, symmetry and unit maps from MonRel are well-defined maps in MonRelCoh
too.

We now consider the exponentials. Let (A,⌢A) be an object of MonRelCoh, and
let (B,⌢B) be a set equipped with a symmetric reflexive binary relation. In MonRel
the exponential A ⊸ B∗ is given by the free monoid over UA × B. We shall define a
symmetric reflexive binary relation on this set and show that the object-space this defines
is the required exponential in MonRelCoh.

The coherence relation on UA × B echoes the definition of map in MonRelCoh:
(a, b)⌢ (a′, b′) if and only if

• a⌢A a′ ⇒ b ⌢B b′

• a⌢A a′ ∧ b = b′ ⇒ a = a′.

By Lemma 8.2, maps from an object C into this object space are described by relations
from UC to UA×B which satisfy the appropriate coherence constraints. That is, if cR(a, b)
and c′R(a′, b′) then we have

• c ⌢C c′ =⇒ (a, b)⌢ (a′, b′)
• c ⌢C c′ ∧ (a, b) = (a′, b′) =⇒ c = c′.

On the other hand, maps from C ⊗ A to B∗ are given by relations from UC × UA to
B such that

• c ⌢C c′ ∧ a ⌢A a′ =⇒ b ⌢B b′

• c ⌢C c′ ∧ a ⌢A a′ ∧ b = b′ =⇒ a = a′ ∧ c = c′.

It is straightforward to verify that these are the same constraints, so that we have a
natural bijection of homsets:

MonRelCoh(C ⊗A,B∗) ∼= MonRelCoh(C,A ⊸ B),

as required.
A similar argument shows that products in MonRel lift to MonRelCoh. For object-

spaces, the construction is very straightforward: the product of object-spaces A∗ and B∗ is
the object space over the disjoint union A+B, equipped with the coherence relation which
relates elements of A if and only if they are related in the object space A∗, and similarly
for B, but also relates all elements of A to all elements of B.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 29

MonRelCoh therefore possesses all the structure we require to model SCI. To lift our
model to MonRelCoh we just need to give interpretations of the base types and constants.
The base types are all interpreted using object spaces, with underlying coherence relations
as follows:

• for nat, n⌢ n′ ⇐⇒ n = n′.
• for comm, ∗⌢ ∗.
• for var, write(n)⌢write(n′) for all n, n′; read(n)⌢ read(n′) ⇐⇒ n = n′; and write(n)⌢
read(n′) for all n, n′. Note that this makes var the product object-space of nat with
ω-many copies of comm.

It is easy to check that the constant maps used in the denotations of SCI terms are maps of
MonRelCoh over the appropriate types. The same applies to mkvar, but not to random:
the map [[random]] clearly violates the coherence constraints since it returns incoherent
outputs from coherent (empty) inputs.

Theorem 8.4. The model of SCImk in MonRel lifts to MonRelCoh.

Corollary 8.5. If ⊢ M : A is a closed term of SCImk and a, a′ ∈ [[M]] then a ⌢ a′. (Here
we blur the distinction between maps from the tensor unit into [[A]] and subsets of [[A]].)

Thus the model of SCImk in MonRelCoh captures SCImk’s deterministic nature: for
instance, closed terms of type nat contain at most one natural number in their denotation.

9. Conservativity results

In this section we show that the extensions of SCI with the mkvar and random operators
are conservative, that is to say, they have no effect on the relation of contextual equivalence
for terms of the original SCI language. This means that the new contexts available when
the language is extended have no additional discriminating power, and as a result, the full
abstraction theorem for SCImk,ran also applies to the smaller languages SCImk and SCI.
As explained in [13], this work shows that Reddy’s object-spaces model [19] was the first
example of a fully abstract semantics for a higher-order imperative language, though this
was not known at the time. Its full abstraction is remarkable since it contains a great many
undefinable elements. However, the definable elements do suffice to distinguish any two
different elements of the model, and it is this which leads to full abstraction.

Though we present our results in the form of conservativity theorems rather than direct
full abstraction proofs, our arguments hinge on partial definability results which would be
enough to establish full abstraction of the model for SCI and SCImk directly, that is,
without appealing to Theorem 7.3, if desired. The proof of conservativity of mkvar in
particular makes heavy use of our definability results, and is essentially the same as the
direct proof of full abstraction given in [13]. Nevertheless we believe that presenting the
results as conservativity theorems is worthwhile, particularly in light of the relatively cheap
proof of full abstraction for SCImk,ran, and the limited use of definability in the proof of
conservativity of random.

30 GUY MCCUSKER

9.1. Definability. As explained above, our conservativity results are established by means
of a partial definability result which demonstrates how certain elements of our model are
found as the denotations of terms from SCI and its extensions.

Let us first mention a curious fact. Let C[−] be some context of SCI, so that in
particular C[−] does not employ mkvar. If

C[if !x = 3 then skip else diverge]⇓,

then it is also the case that C[x := 3]⇓. This inability of mkvar-free contexts to distinguish
completely between reading and writing into variables is the main obstacle to overcome in
our definability proof. The presence of mkvar makes quite a difference, since for example a
context binding x to the term

mkvar (λy.diverge) (3)

will make the first term above converge and the second diverge. This immediately tells us
that the addition of mkvar is not conservative with respect to the contextual preorder. Our
work in this section will show that it is conservative with respect to contextual equivalence;
this came as a surprise.

The following definition captures the relationship between sequences of observations
which is at work in the above example.

Definition For any SCI type A, we define the positive and negative read-write orders
�+ and �− between elements of [[A]] as follows. We give only the definitions for singleton
elements; the definitions are extended to sequences by requiring that the elements of the
sequences are related pointwise.

• At type comm:
∗ �+ ∗ ∧ ∗ �− ∗

• At type nat:
n �+ m ⇐⇒ n = m ⇐⇒ n �− m

• At type var:

a �+ a′ ⇐⇒ (a = a′) ∨ ∃n.a = read(n) ∧ a′ = write(n)
a �− a′ ⇐⇒ a = a′

• At type A ⊸ B:

(s, b) �+ (s′, b′) ⇐⇒ s �− s′ ∧ b �+ b′

(s, b) �− (s′, b′) ⇐⇒ s �+ s′ ∧ b �− b′

In general, s �+ t iff t can be obtained from s by replacing some occurrences of read(n)
actions in positive occurrences of the type var by the corresponding write(n) actions. The
order �− is the same but operates on actions in negative occurrences of var.

We are now in a position to state our definability result.

Lemma 9.1. Let A be any type of SCI and let a ∈ [[A]] be any element of the monoid
interpreting A. There exists a term

x : A ⊢ test(a) : comm

of SCI (not including mkvar or random) such that (s, ∗) ∈ [[test(a)]] iff a �− s. There also
exists a context Γ = x1 : var, . . . , xn : var, Γ-stores init(a) and final(a), and a term

Γ ⊢ produce(a) : A

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 31

such that for all a′ ∈ [[A]],

(∃s.(s, a′) ∈ [[produce(a)]] ∧ init(a)
s

−→ final(a)) ⇐⇒ a �+ a′.

Proof. We will prove the two parts of this lemma simultaneously by induction on the type
A. First note that any a ∈ [[A]] is a sequence of elements from a certain alphabet. Before
beginning the main induction, we show that it suffices to consider the case when a is a
singleton sequence. The cases when a is empty are trivial: test([]) = skip and produce([])
is any divergent term, with init([]) and final([]) both being the unique store on no variables.

If a = [a1, a2, . . . , an], then we can define test(a) as

test([a1]) ; test([a2]) ; . . . ; test([an]).

For the produce part, suppose that A = A1 ⊸ A2 ⊸ . . . ⊸ Ak ⊸ B for some base type B,
and that the context Γ contains all the variables needed to define the produce(ai). For any
store σ over variables x1, . . . , xn, define check(σ) to be the term

if (!x1 6= σ(x1)) then diverge

else if (!x2 6= σ(x2)) then diverge

. . .
else if (!xn 6= σ(xn)) then diverge

else skip

Define set(σ) to be x1 := σ(x1) ; · · · ; xn := σ(xn).
An appropriate term produce(a) can then be defined as follows.

Γ, x : var ⊢ λ~yi
~Ai . x :=!x+ 1;

if (!x = 1) then produce(a1)y1 . . . yk
else if (!x = 2) then check(final(a1));

set(init(a2));
produce(a2)y1 . . . yk

. . .
else if (!x = n) then check(final(an−1));

set(init(an));
produce(an)y1 . . . yk

else diverge

The required initial state init(a) is (init(a1) | x 7→ 0), and the final state final(a) is (final(an) |
x 7→ n).

We now define test(a) and produce(a) for the case when a is a singleton, by induction
on the structure of the type A.

For the type comm, we define

test(∗) = x : comm ⊢ x : comm

produce(∗) = y : var ⊢ y :=!y + 1 : comm

init(∗) = (y 7→ 0)

final(∗) = (y 7→ 1)

Note the way the initial and final states check that the command produce(∗) is used exactly
once.

32 GUY MCCUSKER

The type nat is handled similarly:

test(n) = x : nat ⊢ if (x = n) then skip else diverge : comm

produce(n) = y : var ⊢ y :=!y + 1;n : nat

init(n) = (y 7→ 0)

final(n) = (y 7→ 1)

For var, there are two kinds of action to consider: those for reading and those for
writing. For writing we define:

test(write(n)) = x : var ⊢ x := n : comm

produce(write(n)) = x : var, y : var ⊢ y :=!y + 1;x : var

init(write(n)) = (x 7→ n+ 1, y 7→ 0)

final(write(n)) = (x 7→ n, y 7→ 1)

For produce(write(n)), the variable y checks that exactly one use is made, and the variable
x checks that the one use is a write-action assigning n to the variable.

Reading is handled similarly:

test(read(n)) = x : var ⊢ if (!x = n) then skip else diverge : comm

produce(read(n)) = x : var, y : var ⊢ y :=!y + 1;x : var

init(read(n)) = (x 7→ n, y 7→ 0)

final(read(n)) = (x 7→ n, y 7→ 1)

In init(read(n)), the variable x holds n so that if the expression produce(read(n)) is used for
a read, the value n is returned. The variable x must also hold n finally, so produce(read(n))
cannot reach the state final(read(n)) if it is used to write a value other than n. However, it
would admit a single write(n) action. This is the reason for introducing the � relation: if a
term of our language can engage in a read(n) action, then it can also engage in write(n).

For a function type A ⊸ B, the action we are dealing with has the form (s, b) where s
is a sequence of actions from A and b is an action from B. We can now define

test(s, b) = x : A ⊸ B ⊢ new x1, . . . , xn in

set(init(s));
(λxB .test(b))(xproduce(s));
check(final(s));

produce(s, b) = λxA.test(s); produce(b)

init(s, b) = init(b)

final(s, b) = final(b)

where x1, . . . , xn are the variables used in produce(s).
The non-interference between function and argument allows us to define these terms

very simply: for test(s, b) we supply the function x with an argument which will produce
the sequence s, and check that the output from x is b. We must also check that the function
x uses its argument in the appropriate, s-producing way, which is done by means of the
init(s) and final(s) states. For produce(s, b) we simply test that the argument x is capable
of producing s, and then produce b.

It is straightforward to check that these terms have the required properties.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 33

9.2. Conservativity of random.

Lemma 9.2 (random is conservative). Let Γ ⊢ M,N : A be terms of SCImk such that
M ∼=mk N . Then M ∼=mk,ran N .

Proof. It suffices to consider closed terms, because in all the language fragments we consider,
open terms M and N are equivalent if and only if their closures λ~x.M and λ~x.N are
equivalent.

So, let ⊢ M,N : A, suppose M ∼=mk N and let C[−] be a context, possibly employing
random, such that C[M]⇓skip. We shall show that C[N]⇓skip by induction on the number
of occurrences of random in C[−].

The base case, where C[−] does not employ random at all, is trivial: C[−] is a SCImk
context, so since M ∼=mk N , we have C[N] ⇓ skip.

For the inductive step, let C ′[−] be the context obtained from C[−] by replacing one
occurrence of random with a fresh variable r of type nat. Then for any term P , C[P]⇓skip
if and only if (λr.C ′[P])(random) ⇓ skip.

Since (λr.C ′[M])(random) ⇓ skip, Corollary 6.2 implies that

(ε, ∗) ∈ [[(λr.C ′[M])(random)]].

By definition of [[random]] and the semantics of application, there must exist a sequence s
of natural numbers such that (s, ∗) ∈ [[λr.C ′[M]]].

By Lemma 9.1, there is a term

x : nat → comm ⊢ test : comm

not involving random, such that (t, ∗) ∈ [[test]] iff t = (s, ∗).
We therefore have (ε, ∗) ∈ [[(λx.test)(λr.C ′[M])]] and hence by Corollary 6.2, (λx.test)(λr.C ′[M])⇓

skip. But (λx.test)(λr.C ′[−]) is a context involving the same number of occurrences of
random as does C ′[−], so by inductive hypothesis we also have (λx.test)(λr.C ′[N]) ⇓ skip.
Therefore (ε, ∗) ∈ [[(λx.test)(λr.C ′[N])]], which is only possible if (s, ∗) ∈ [[λr.C ′[N]]]. But
then

(ε, ∗) ∈ [[(λr.C ′[N])(random)]]

and hence by Corollary 6.2 again, (λr.C ′[N])(random)⇓skip. Finally we can conclude that
C[N] ⇓ skip as required.

Corollary 9.3. The model of SCImk in MonRel is fully abstract.

9.3. Conservativity of mkvar.

Lemma 9.4. Let A∗ be an object-space interpreting a type of SCI in MonRelCoh and
let a, a′ ∈ A∗.

• If a �− a′ and a⌢ a′ then a = a′.
• If a �+ a′ then a⌢ a′.

Proof. By induction on type. We consider only the cases of singleton sequences; the general
cases follow easily.

For comm and nat, both �− and �+ are the identity relations, so the results hold
trivially. For var, �− is again the identity relation completing this case. For �+, the result
follows from the fact that read(n)⌢ write(n).

34 GUY MCCUSKER

For the inductive step, consider elements (s, b) and (s′, b′) of A ⊸ B. If (s, b) �− (s′, b′)
then s �+ s′ and b �− b′. By the inductive hypothesis on type A, s⌢s′ so if (s, b)⌢ (s′, b′)
then we also have b ⌢ b′. The inductive hypothesis on B then gives us b = b′ and hence
s = s′ as required. If (s, b) �+ (s′, b′) then s �− s′ and b �+ b′. Then if s⌢s′, the inductive
hypothesis gives us s = s′. Induction also tells us that b ⌢ b′, and hence (s, b)⌢ (s′, b′) as
required.

Lemma 9.5 (mkvar is conservative). Let Γ ⊢ M,N : A be terms of SCI such that M ∼= N .
Then M ∼=mk N .

Proof. As in Lemma 9.2 we consider only closed terms. Suppose ⊢ M,N : A with M ∼= N
and let (ε, a) ∈ [[M]] be any element of the denotation of M . By Lemma 9.1 there is a term
x : A ⊢ test(a) : comm such that (a′, ∗) ∈ [[test(a)]] if and only if a �− a′. We therefore have
(ε, ∗) ∈ [[(λx.test(a))M]], and hence (λx.test(a))M ⇓ skip by Corollary 4.2. By hypothesis
we have (λx.test(a))N ⇓ skip, so that (ε, ∗) ∈ [[(λx.test(a))N]]. Therefore there is some a′

such that a �− a′ and (ε, a′) ∈ [[N]]. Symmetrically we can find a′′ such that a′ �− a′′ and
(ε, a′′) ∈ [[M]].

By Corollary 8.5, a ⌢ a′′ and then by Lemma 9.4, a = a′′ and hence a = a′. It follows
that [[M]] = [[N]] and hence M ∼=mk N by Theorem 6.3.

Corollary 9.6. The model of SCI in MonRel is fully abstract.

We remark that Reddy was not aware that his model was fully abstract; indeed it was
believed not to be.

10. Conclusions

We have shown that a simple amendment of Scott’s Pω graph-model gives rise to a model
of imperative computation, in the event-based style of Reddy’s object-spaces model and
later models based on game semantics. Moreover we have shown that this model contains a
universal type, thus yielding a very cheap proof of full abstraction for the language SCImk,ran.
With some additional work we have established full abstraction for the original SCI language
via conservativity results; this was not known prior to our work.

We believe that the general approach of constructing models in this way is of interest
and has the potential to give rise to a range of interesting concrete models and some useful
insights at a more abstract level. We intend to develop an axiomatic presentation of our
constructions, expanding on the work of Hyland et al. [7]. At present it is not clear whether
the more refined game-based models can be presented in this style; this remains a topic for
further investigation.

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for general references. In
Proceedings, Thirteenth Annual IEEE Symposium on Logic in Computer Science, pages 334–344. IEEE
Computer Society Press, 1998.

[2] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game semantics for Ideal-
ized Algol with active expressions. In P. W. O’Hearn and R. D. Tennent, editors, Algol-like Languages,
pages 297–329 of volume 2. Birkhaüser, 1997.

[3] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment. Journal of the ACM,
33(4):724–767, October 1986.

A GRAPH MODEL FOR IMPERATIVE COMPUTATION 35

[4] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition,
1984.

[5] D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O’Reilly Media, Inc., January 2008.
[6] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1989.
[7] M. Hyland, M. Nagayama, J. Power, and G. Rosolini. A category-theoretic formulation of engeler-style

models of the untyped λ-calculus. In Proc. MCFSIT 2004, Electronic Notes in Theoretical Computer
Science volume 161, pages 43–57, 2006.

[8] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied Logic, 69:73–106, 1994.
[9] J. Laird. Decidability in syntactic control of interference. Theoretical Computer Science, 394:64–83,

2008.
[10] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press,

1986.
[11] J. Longley. Universal types and what they are good for. In Domain theory, logic and computation:

Proceedings of the 2nd International Symposium on Domain Theory, number 3 in Semantic Structures
in Computation, pages 25–63. Kluwer, 2003.

[12] J. Longley. Interpreting localized computational effects using operators of higher type, extended ab-
stract. In Logic and Theory of Algorithms, Fourth Conference on Computability in Europe, CiE 2008,
Athens, Proceedings, number 5028 in Lecture Notes in Computer Science. Springer Verlag, 2008.

[13] G. McCusker. A fully abstract relational model of syntactic control of interference. In Proceedings,
Computer Science Logic (CSL) 2002, volume 2471 of Lecture Notes in Computer Science, pages 247–
261. Springer-Verlag, 2002.

[14] G. McCusker. On the semantics of the bad variable constructor in Algol-like languages. In S. Brookes
and P. Panangaden, editors, Proceedings, Nineteenth Conference on the Mathematical Foundations of
Programming Semantics, Montreal 2003, Electronic Notes in Theoretical Computer Science. Elsevier,
2003.

[15] P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic control of interference
revisited. Theoretical Computer Science, 228(1–2):211–252, 1999.

[16] P. W. O’Hearn and U. Reddy. Objects, interference and the Yoneda embedding. In M. Main and
S. Brookes, editors, Mathematical Foundations of Programming Semantics: Proceedings of 11th Inter-
national Conference, Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers
B.V., 1995.

[17] P. W. O’Hearn. A model for syntactic control of interference. Mathematical Structures in Computer
Science, 3(4):435–465, 1993.

[18] G. Plotkin. Tω as a universal domain. J. Computer and System Sciences, 17:209–236, 1978.
[19] U. S. Reddy. Global state considered unnecessary: Object-based semantics for interference-free imper-

ative programs. Lisp and Symbolic Computation, 9(1), 1996.
[20] J. C. Reynolds. Syntactic control of interference. In Conf. Record 5th ACM Symposium on Principles

of Programming Languages, pages 39–46, 1978.
[21] J. C. Reynolds. Syntactic control of inference, part 2. In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D.

Rocca, editors, Automata, Languages and Programming, 16th International Colloquium, ICALP 89,
Stresa, Italy, July 11-15, 1989, Proceedings, volume 372 of Lecture Notes in Computer Science, pages
704–722. Springer, 1989.

[22] D. Scott. Data types as lattices. SIAM J. Computing, 5:522–587, 1976.
[23] M. Wall. Games for Syntactic Control of Interference. PhD thesis, University of Sussex, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Related work
	1.2. Acknowledgments

	2. Scott's P-omega model
	3. Syntactic Control of Interference
	4. Reddy's object-spaces model
	4.1. A model based on events
	4.2. Examples
	4.3. Soundness for the ground types

	5. A category of monoids and relations
	5.1. The category
	5.2. Modelling SCI in MonRel
	5.3. Soundness of the model of SCI

	6. Two extensions to the language
	6.1. Erratic choice
	6.2. Bad variable constructor
	6.3. Soundness

	7. A universal type and full abstraction
	8. A model without nondeterminism
	9. Conservativity results
	9.1. Definability
	9.2. Conservativity of random
	9.3. Conservativity of mkvar

	10. Conclusions
	References

