150 research outputs found

    ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ ๊ธฐ๋ฐ˜ ๊ธฐ์ค€ ์ฃผํŒŒ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํด๋ก ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7ฮผs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๊ณ ์†, ์ €์ „๋ ฅ, ๊ด‘๋Œ€์—ญ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ์˜ ์„ค๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๋™์ž‘์„ ์œ„ํ•ด์„œ ์•Œ๋ ‰์‚ฐ๋” ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํš๋“ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ์˜ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์–‘์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ž๊ธฐ๊ณต๋ถ„์‚ฐ์„ ์ด์šฉํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ง์ ‘ ๋น„๋ก€ ๊ฒฝ๋กœ์™€ ๋””์ง€ํ„ธ ์ ๋ถ„ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” ๋ชจ๋“  ์ธก์ • ๊ฐ€๋Šฅํ•œ ์กฐ๊ฑด์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž ๊ธˆ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€๊ณ , ๋ชจ๋“  ๊ฒฝ์šฐ์—์„œ ์ธก์ •๋œ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์‹œ๊ฐ„์€ 7ฮผs ์ด๋‚ด์ด๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 0.032 mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” 32 Gb/s์˜ ์†๋„์—์„œ ๋น„ํŠธ์—๋Ÿฌ์œจ 10-12 ์ดํ•˜๋กœ ๋™์ž‘ํ•˜์˜€๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 32Gb/s์˜ ์†๋„์—์„œ 1.0V ๊ณต๊ธ‰์ „์••์„ ์‚ฌ์šฉํ•˜์—ฌ 1.15 pJ/b์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR โ€“ WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR โ€“ WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 ์ดˆ ๋ก 122๋ฐ•

    Fast synchronization 3R burst-mode receivers for passive optical networks

    Get PDF
    This paper gives a tutorial overview on high speed burst-mode receiver (BM-RX) requirements, specific for time division multiplexing passive optical networks, and design issues of such BM-RXs as well as their advanced design techniques. It focuses on how to design BM-RXs with short burst overhead for fast synchronization. We present design principles and circuit architectures of various types of burst-mode transimpedance amplifiers, burst-mode limiting amplifiers and burst-mode clock and data recovery circuits. The recent development of 10 Gb/s BM-RXs is highlighted also including dual-rate operation for coexistence with deployed PONs and on-chip auto reset generation to eliminate external timing-critical control signals provided by a PON medium access control. Finally sub-system integration and state-of-the-art system performance for 10 Gb/s PONs are reviewed

    Design of reconfigurable multi-mode RF circuits

    Get PDF
    Wireless communication systems and devices have been developing at a much faster pace in the past few years. With the introduction of new applications and services and the increasing demand for higher data rate comes the need for new frequency bands and new standards. One critical issue for next generation wireless devices is how to support all of the existing and emerging bands while not increasing the cost and power consumption. A feasible solution is the concept of the software-defined radio where a single receiver can be reconfigured to operate in different modes, each of which supports one or several bands and/or standards. To implement such a reconfigurable receiver, reconfigurable RF building blocks, such as the LNA, mixer, VCO, etc., are required. This dissertation focuses on two key blocks: the low noise amplifier (LNA) and the voltage controlled oscillator (VCO). First the design, modeling and characterization of a multi-tap transformer are discussed. Simple mathematical calculations are utilized to estimate the inductances and coupling coefficients from the physical parameters of a multi-tap transformer. The design method is verified with several designed multi-tap transformers that are characterized up to 10 GHz using Momentum simulation results. The effect of switch loss on a switched multi-tap transformer is explored and a broadband lumped-element model of the multi-tap transformer is also proposed. Next a reconfigurable multimode LNA capable of single-band, concurrent dual-band, and ultra-wideband operation is presented. The multimode operation is realized by incorporating a switched multi-tap transformer into the input matching network of an inductively degenerated common source amplifier. The proposed LNA achieves single band matching at 2.8, 3.3, and 4.6 GHz; concurrent dual-band matching at 2.05 and 5.65 GHz; and ultra-wideband matching from 4.3 to 10.8 GHz. The chip was fabricated in a 0.13 m CMOS process, and occupies an area of 0.72 mm2, and has a power dissipation of 6.4 mW from a 1.2-V supply. Finally, a triple-mode VCO using a transformer-based 4th order tank with tunable transconductance cells coupling the primary and secondary inductor is introduced. The tank impedance can be re-shaped by the transconductance cells through the tuning of their biasing currents. With the control of biasing current, VCO is configured in three modes, capable of generating a single frequency in 3- and 5- GHz bands, respectively, and two frequencies in both 3- and 5- GHz bands simultaneously. The triple-mode VCO was fabricated in a 0.13 ฮผm CMOS process, occupies an area of 0.16 mm2, and dissipates 5.6 mW from a 1.2-V supply

    Phase Noise in CMOS Phase-Locked Loop Circuits

    Get PDF
    Phase-locked loops (PLLs) have been widely used in mixed-signal integrated circuits. With the continuously increasing demand of market for high speed, low noise devices, PLLs are playing a more important role in communications. In this dissertation, phase noise and jitter performances are investigated in different types of PLL designs. Hot carrier and negative bias temperature instability effects are analyzed from simulations and experiments. Phase noise of a CMOS phase-locked loop as a frequency synthesizer circuit is modeled from the superposition of noises from its building blocks: voltage-controlled oscillator, frequency divider, phase-frequency detector, loop filter and auxiliary input reference clock. A linear time invariant model with additive noise sources in frequency domain is presented to analyze the phase noise. The modeled phase noise results are compared with the corresponding experimentally measured results on phase-locked loop chips fabricated in 0.5 m n-well CMOS process. With the scaling of CMOS technology and the increase of electrical field, MOS transistors have become very sensitive to hot carrier effect (HCE) and negative bias temperature instability (NBTI). These two reliability issues pose challenges to designers for designing of chips in deep submicron CMOS technologies. A new strategy of switchable CMOS phase-locked loop frequency synthesizer is proposed to increase its tuning range. The switchable PLL which integrates two phase-locked loops with different tuning frequencies are designed and fabricated in 0.5 ยตm CMOS process to analyze the effects under HCE and NBTI. A 3V 1.2 GHz programmable phase-locked loop frequency synthesizer is designed in 0.5 ฮผm CMOS technology. The frequency synthesizer is implemented using LC voltage-controlled oscillator (VCO) and a low power dual-modulus prescaler. The LC VCO working range is from 900MHz to 1.4GHz. Current mode logic (CML) is used in designing high speed D flip-flop in the dual-modulus prescaler circuits for low power consumption. The power consumption of the PLL chip is under 30mW. Fully differential LC VCO is used to provide high oscillation frequency. A new design of LC VCO using carbon nanotube (CNT) wire inductor has been proposed. The PLL design using CNT-LC VCO shows significant improvement in phase noise due to high-Q LC circuit

    Low phase noise 2 GHz Fractional-N CMOS synthesizer IC

    Get PDF
    Low noise low division 2 GHz RF synthesizer integrated circuits (ICs) are conventionally implemented in some form of HBT process such as SiGe or GaAs. The research in this dissertation differs from convention, with the aim of implementing a synthesizer IC in a more convenient, low-cost Si-based CMOS process. A collection of techniques to push towards the noise and frequency limits of CMOS processes, and possibly other IC processes, is then one of the research outcomes. In a synthesizer low N-divider ratios are important, as high division ratios would amplify in-band phase noise. The design methods deployed as part of this research achieve low division ratios (4 โ‰ค N โ‰ค 33) and a high phase comparison frequency (>100 MHz). The synthesizer IC employs a first-order fractional-N topology to achieve increased frequency tuning resolution. The primary N-divider was implemented utilising current mode logic (CML) and the fractional accumulator utilising conventional CMOS. Both a conventional CMOS phase frequency detector (PFD) and a CML PFD were implemented for benchmarking purposes. A custom-built 4.4 GHz synthesizer circuit employing the IC was used to validate the research. In the 4.4 GHz synthesizer circuit, the prototype IC achieved a measured in-band phase noise plateau of L( f ) = -113 dBc/Hz at a 100 kHz frequency offset, which equates to a figure of merit (FOM) of -225 dBc/Hz. The FOM compares well with existing, but expensive, SiGe and GaAs HBT processes. Total IC power dissipation was 710 mW, which is considerably less than commercially available GaAs designs. The complete synthesizer IC was implemented in Austriamicrosystemsโ€Ÿ (AMS) 0.35 ฮผm CMOS process and occupies an area of 3.15 x 2.18 mm2.Dissertation (MEng)--University of Pretoria, 2010.Electrical, Electronic and Computer Engineeringunrestricte

    Gunn diodes and devices (bibliography for 1978-1980)

    Get PDF
    A listing of about 500 works from Soviet and foreign scientific literature on Gunn diodes and devices based on them is presented. The bibliography includes publications in which various questions pertinent to all (or several) types of semiconductor instruments in the superhigh frequency range are mentioned. A subject index is included

    Digital PLL for ISM applications

    Get PDF
    In modern transceivers, a low power PLL is a key block. It is known that with the evolution of technology, lower power and high performance circuitry is a challenging demand. In this thesis, a low power PLL is developed in order not to exceed 2mW of total power consumption. It is composed by small area blocks which is one of the main demands. The blocks that compose the PLL are widely abridged and the final solution is shown, showing why it is employed. The VCO block is a Current-Starved Ring Oscillator with a frequency range from 400MHz to 1.5GHz, with a 300ฮผW to approximately 660ฮผW power consumption. The divider is composed by six TSPC D Flip-Flop in series, forming a divide-by-64 divider. The Phase-Detector is a Dual D Flip-Flop detector with a charge pump. The PLL has less than a 2us lock time and presents a output oscillation of 1GHz, as expected. It also has a total power consumption of 1.3mW, therefore fulfilling all the specifications. The main contributions of this thesis are that this PLL can be applied in ISM applications due to its covering frequency range and low cost 130nm CMOS technology
    • โ€ฆ
    corecore