266 research outputs found

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Simulation and analytical performance studies of generic atm switch fabrics.

    Get PDF
    As technology improves exciting new services such as video phone become possible and economically viable but their deployment is hampered by the inability of the present networks to carry them. The long term vision is to have a single network able to carry all present and future services. Asynchronous Transfer Mode, ATM, is the versatile new packet -based switching and multiplexing technique proposed for the single network. Interest in ATM is currently high as both industrial and academic institutions strive to understand more about the technique. Using both simulation and analysis, this research has investigated how the performance of ATM switches is affected by architectural variations in the switch fabric design and how the stochastic nature of ATM affects the timing of constant bit rate services. As a result the research has contributed new ATM switch performance data, a general purpose ATM switch simulator and analytic models that further research may utilise and has uncovered a significant timing problem of the ATM technique. The thesis will also be of interest and assistance to anyone planning on using simulation as a research tool to model an ATM switch

    Data distribution satellite

    Get PDF
    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs

    Cost-effective Information and Communication Technology (ICT) infrastructure for Tanziania

    Get PDF
    The research conducted an Information and Communication Technology (ICT) field survey, the results revealed that Tanzania is still lagging behind in the ICT sector due to the lack of an internationally connected terrestrial ICT infrastructure; Internet connectivity to the rest of the world is via expensive satellite links, thus leaving the majority of the population unable to access the Internet services due to its high cost. Therefore, an ICT backbone infrastructure is designed that exploits optical DWDM network technology, which un-locks bandwidth bottlenecks and provides higher capacity which will provide ICT services such as Internet, voice, videos and other multimedia interactions at an affordable cost to the majority of the people who live in the urban and rural areas of Tanzania. The research analyses and compares the performance, and system impairments, in a DWDM system at data transmission rates of 2.5 Gb/s and 10 Gb/s per wavelength channel. The simulation results show that a data transmission rate of 2.5 Gb/s can be successfully transmitted over a greater distance than 10 Gb/s with minimum system impairments. Also operating at the lower data rate delivers a good system performance for the required ICT services. A forty-channel DWDM system will provide a bandwidth of 100 Gb/s. A cost analysis demonstrates the economic worth of incorporating existing optical fibre installations into an optical DWDM network for the creation of an affordable ICT backbone infrastructure; this approach is compared with building a completely new optical fibre DWDM network or a SONET/SDH network. The results show that the ICT backbone infrastructure built with existing SSMF DWDM network technology is a good investment, in terms of profitability, even if the Internet charges are reduced to half current rates. The case for building a completely new optical fibre DWDM network or a SONET/SDH network is difficult to justify using current financial data

    Design of a token ring to ISDN Gateway

    Get PDF

    Destination-directed, packet-switched architecture for a geostationary communications satellite network

    Get PDF
    A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed

    An Integrated Network Architecture for a High Speed Distributed Multimedia System.

    Get PDF
    Computer communication demands for higher bandwidth and smaller delays are increasing rapidly as the march into the twenty-first century gains momentum. These demands are generated by visualization applications which model complex real time phenomena in visual form, electronic document imaging and manipulation, concurrent engineering, on-line databases and multimedia applications which integrate audio, video and data. The convergence of the computer and video worlds is leading to the emergence of a distributed multimedia environment. This research investigates an integrated approach in the design of a high speed computer-video local area network for a distributed multimedia environment. The initial step in providing multimedia services over computer networks is to ensure bandwidth availability for these services. The bandwidth needs based on traffic generated in a distributed multimedia environment is computationally characterized by a model. This model is applied to the real-time problem of designing a backbone for a distributed multimedia environment at the NASA Classroom of the Future Program. The network incorporates legacy LANs and the latest high speed switching technologies. Performance studies have been conducted with different network topologies for various multimedia application scenarios to establish benchmarks for the operation of the network. In these performance studies it has been observed that network topologies play an important role in ensuring that sufficient bandwidth is available for multimedia traffic. After the implementation of the network and the performance studies, it was found that for true quality of service guarantees, some modifications will have to be made in the multimedia operating systems used in client workstations. These modifications would gather knowledge of the channel between source and destination and reserve resources for multimedia communication based on specified requirements. A scheme for reserving resources in a network consisting legacy LAN and ATM is presented to guarantee quality of service for multimedia applications

    Campus Telecommunications Systems: Managing Change

    Get PDF
    The purpose of this book is to provide a broadbased understanding of the rapidly changing environment of campus telecommunications. The anticipated audience for this material is the non-technical university administrator who may not have direct responsibility for telecommunications, but has a need to understand the general environment in which his telecommunications manager functions and the basic concepts of the technology. Five topic areas were selected that best cover the preponderance of issues. No attempt has been made to associate or closely coordinate materials from one chapter\u27s subject to that of any other. Each chapter generally stands alone. In total, however, the five chapters address the topics and issues that most often generate inquiries from university administrators outside the telecommunications department. Introduction 1 The Changing Telecommunications Environment 2 Telecommunications Technology and the Campus 3 Student Services 4 Financing a New Telecommunications System . 5 Selecting a Consultant Glossary Inde
    • …
    corecore