190 research outputs found

    On new chaotic and hyperchaotic systems: A literature survey

    Get PDF
    This paper provides a thorough survey of new chaotic and hyperchaotic systems. An analysis of the dynamic behavior of these complex systems is presented by pointing out their originality and elementary characteristics. Recently, such systems have been increasingly used in various fields such as secure communication, encryption and finance and so on. In practice, each field requires specific performances with peculiar complexity. A particular classification is then proposed in this paper based on the Lyapunov exponent, the equilibriums points and the attractor forms

    An optimal control for complete synchronization of 4D Rabinovich hyperchaotic systems

    Get PDF
    This paper derives new results for the complete synchronization of 4D identical Rabinovich hyperchaotic systems by using two strategies: active and nonlinear control. Nonlinear control strategy is considered as one of the powerful tool for controlling the dynamical systems. The stabilization results of error dynamics systems are established based on Lyapunov second method. Control is designed via the relevant variables of drive and response systems. In comparison with previous strategies, the current controller (nonlinear control) focuses on convergence speed and the minimum limits of relevant variables. Better performance is to achieve full synchronization by designing the control with fewer terms. The proposed control has certain significance for reducing the time and complexity for strategy implementation

    Coexistence of generalized synchronization and inverse generalized synchronization between chaotic and hyperchaotic systems

    Get PDF
    In this paper, we present new schemes to synchronize different dimensional chaotic and hyperchaotic systems. Based on coexistence of generalized synchronization (GS) and inverse generalized synchronization (IGS), a new type of hybrid chaos synchronization is constructed. Using Lyapunov stability theory and stability theory of linear continuous-time systems, some sufficient conditions are derived to prove the coexistence of generalized synchronization and inverse generalized synchronization between 3D master chaotic system and 4D slave hyperchaotic system. Finally, two numerical examples are illustrated with the aim to show the effectiveness of the approaches developed herein

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    On the impulsive synchronization control for a class of chaotic systems

    Get PDF
    The problem on chaos synchronization for a class of chaotic system is addressed. Based on impulsive control theory and by constructing a novel Lyapunov functional, new impulsive synchronization strategies are presented and possess more practical application value. Finally some typical numerical simulation examples are included to demonstrate the effectiveness of the theoretical results

    Projective and hybrid projective synchronization of 4-D hyperchaotic system via nonlinear controller strategy

    Get PDF
    Nonlinear control strategy was established to realize the Projective Synchronization (PS) and Hybrid Projective Synchronization (HPS) for 4-D hyperchaotic system at different scaling matrices. This strategy, which is able to achieve projective and hybrid projective synchronization by more precise and adaptable method to provide a novel control scheme. On First stage, three scaling matrices were given in order to achieving various projective synchronization phenomena. While the HPS was implemented at specific scaling matrix in the second stage.  Ultimately, the precision of controllers were compared and analyzed theoretically and numerically. The long-range precision of the proposed controllers are confirmed by third stage
    • …
    corecore