90 research outputs found

    Photon Splatting Using a View-Sample Cluster Hierarchy

    Get PDF
    Splatting photons onto primary view samples, rather than gathering from a photon acceleration structure, can be a more efficient approach to evaluating the photon-density estimate in interactive applications, where the number of photons is often low compared to the number of view samples. Most photon splatting approaches struggle with large photon radii or high resolutions due to overdraw and insufficient culling. In this paper, we show how dynamic real-time diffuse interreflection can be achieved by using a full 3D acceleration structure built over the view samples and then splatting photons onto the view samples by traversing this data structure. Full dynamic lighting and scenes are possible by tracing and splatting photons, and rebuilding the acceleration structure every frame. We show that the number of view-sample/photon tests can be significantly reduced and suggest further culling techniques based on the normal cone of each node in the hierarchy. Finally, we present an approximate variant of our algorithm where photon traversal is stopped at a fixed level of our hierarchy, and the incoming radiance is accumulated per node and direction, rather than per view sample. This improves performance significantly with little visible degradation of quality

    Volumetric cloud generation using a Chinese brush calligraphy style

    Get PDF
    Includes bibliographical references.Clouds are an important feature of any real or simulated environment in which the sky is visible. Their amorphous, ever-changing and illuminated features make the sky vivid and beautiful. However, these features increase both the complexity of real time rendering and modelling. It is difficult to design and build volumetric clouds in an easy and intuitive way, particularly if the interface is intended for artists rather than programmers. We propose a novel modelling system motivated by an ancient painting style, Chinese Landscape Painting, to address this problem. With the use of only one brush and one colour, an artist can paint a vivid and detailed landscape efficiently. In this research, we develop three emulations of a Chinese brush: a skeleton-based brush, a 2D texture footprint and a dynamic 3D footprint, all driven by the motion and pressure of a stylus pen. We propose a hybrid mapping to generate both the body and surface of volumetric clouds from the brush footprints. Our interface integrates these components along with 3D canvas control and GPU-based volumetric rendering into an interactive cloud modelling system. Our cloud modelling system is able to create various types of clouds occurring in nature. User tests indicate that our brush calligraphy approach is preferred to conventional volumetric cloud modelling and that it produces convincing 3D cloud formations in an intuitive and interactive fashion. While traditional modelling systems focus on surface generation of 3D objects, our brush calligraphy technique constructs the interior structure. This forms the basis of a new modelling style for objects with amorphous shape

    Interactive Global Illumination Effects Using Deterministically Directed Layered Depth Maps

    Get PDF
    A layered depth map is an extension of the well-known depth map used in rasterization. Multiple layered depth maps can be used as a coarse scene representation. We develop two global illumination methods which use said scene representation. The first is an interactive ambient occlusion method. The second is an interactive single-bounce indirect lighting method based on photon differentials. All of this is implemented in a rasterization-based pipeline

    Meshless Voronoi on the GPU

    Get PDF
    International audienceWe propose a GPU algorithm that computes a 3D Voronoi diagram. Our algorithm is tailored for applications that solely make use of the geometry of the Voronoi cells, such as Lloyd's relaxation used in meshing, or some numerical schemes used in fluid simulations and astrophysics. Since these applications only require the geometry of the Voronoi cells, they do not need the combinatorial mesh data structure computed by the classical algorithms (Bowyer-Watson). Thus, by exploiting the specific spatial distribution of the point-sets used in this type of applications, our algorithm computes each cell independently, in parallel, based on its nearest neighbors. In addition, we show how to compute integrals over the Voronoi cells by decomposing them on the fly into tetrahedra, without needing to compute any global combinatorial information. The advantages of our algorithm is that it is fast, very simple to implement, has constant memory usage per thread and does not need any synchronization primitive.These specificities make it particularly efficient on the GPU: it gains one order of magnitude as compared to the fastest state-of-the-art multi-core CPU implementations. To ease the reproducibility of our results, the full documented source code is included in the supplemental material

    Towards Fully Dynamic Surface Illumination in Real-Time Rendering using Acceleration Data Structures

    Get PDF
    The improvements in GPU hardware, including hardware-accelerated ray tracing, and the push for fully dynamic realistic-looking video games, has been driving more research in the use of ray tracing in real-time applications. The work described in this thesis covers multiple aspects such as optimisations, adapting existing offline methods to real-time constraints, and adding effects which were hard to simulate without the new hardware, all working towards a fully dynamic surface illumination rendering in real-time.Our first main area of research concerns photon-based techniques, commonly used to render caustics. As many photons can be required for a good coverage of the scene, an efficient approach for detecting which ones contribute to a pixel is essential. We improve that process by adapting and extending an existing acceleration data structure; if performance is paramount, we present an approximation which trades off some quality for a 2–3× improvement in rendering time. The tracing of all the photons, and especially when long paths are needed, had become the highest cost. As most paths do not change from frame to frame, we introduce a validation procedure allowing the reuse of as many as possible, even in the presence of dynamic lights and objects. Previous algorithms for associating pixels and photons do not robustly handle specular materials, so we designed an approach leveraging ray tracing hardware to allow for caustics to be visible in mirrors or behind transparent objects.Our second research focus switches from a light-based perspective to a camera-based one, to improve the picking of light sources when shading: photon-based techniques are wonderful for caustics, but not as efficient for direct lighting estimations. When a scene has thousands of lights, only a handful can be evaluated at any given pixel due to time constraints. Current selection methods in video games are fast but at the cost of introducing bias. By adapting an acceleration data structure from offline rendering that stochastically chooses a light source based on its importance, we provide unbiased direct lighting evaluation at about 30 fps. To support dynamic scenes, we organise it in a two-level system making it possible to only update the parts containing moving lights, and in a more efficient way.We worked on top of the new ray tracing hardware to handle lighting situations that previously proved too challenging, and presented optimisations relevant for future algorithms in that space. These contributions will help in reducing some artistic constraints while designing new virtual scenes for real-time applications

    Large-Scale Rendering Using Shadowmaps

    Get PDF
    Shadow mapovanie je najpoužívanejšia metóda ktorá sa využíva v real-time 3D grafike na tvorbu tieňov v lokálnych osvetlovacích modeloch. Táto práca krok-za-krokom vysvetľuje proces vytvárania shadow máp. Porovnané su metódy výpočtu hĺbkovej odchylky ako aj filtrovacie metódy, a zároveň je odvodený výpočet normálovej odchýlky pre filtrovacie kernely s premennou veľkosťou. Taktiež popíšeme proces ako efektívne obaliť frustum kamery kaskádovým frustumom. Popri tom vysvetlíme ako využiť moderné OpenGL API na zníženie výkonnostných nedostatkov.Shadow mapping is the most widely used method in real-time 3D graphics for producing shadows in local light models. This thesis step-by-step explains the process of creating shadow maps. Depth biasing as well as filtering methods are analysed, then the calculation of normal offset bias for variable sized kernels is derived. We describe the process of efficiently fitting stable cascade frustums to view frustum. Also shown is how to use modern OpenGL to reduce performance overhead.

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Collimated Whole Volume Light Scattering in Homogeneous Finite Media

    Get PDF
    Crepuscular rays form when light encounters an optically thick or opaque medium which masks out portions of the visible scene. Real-time applications commonly estimate this phenomena by connecting paths between light sources and the camera after a single scattering event. We provide a set of algorithms for solving integration and sampling of single-scattered collimated light in a box-shaped medium and show how they extend to multiple scattering and convex media. First, a method for exactly integrating the unoccluded single scattering in rectilinear box-shaped medium is proposed and paired with a ratio estimator and moment-based approximation. Compared to previous methods, it requires only a single sample in unoccluded areas to compute the whole integral solution and provides greater convergence in the rest of the scene. Second, we derive an importance sampling scheme accounting for the entire geometry of the medium. This sampling strategy is then incorporated in an optimized Monte Carlo integration. The resulting integration scheme yields visible noise reduction and it is directly applicable to indoor scene rendering in room-scale interactive experiences. Furthermore, it extends to multiple light sources and achieves superior converge compared to independent sampling with existing algorithms. We validate our techniques against previous methods based on ray marching and distance sampling to prove their superior noise reduction capability

    A Comparison of Interactive Shadows and Multi-View Layouts for Mouse-based 3D Modelling

    Get PDF
    3D user interfaces allow users to view and interact with objects in a 3D scene and form a key component in many modelling applications used in engineering, medicine and design. Most mouse-based interfaces follow the same multi-view layout (three orthogonal, one perspective). This interface is difficult to understand, as it requires users to integrate all four views and build a 3D mental model. An alternative, Interactive Shadows, has been previously proposed that could improve on the multi-view's shortcomings but has never been formally tested. This paper presents the first quantitative user evaluation (n = 36) of both the multi-view and interactive shadows interfaces to compare their relative effectiveness and usability. Participants completed three types of tasks designed to be representative of object manipulation in current 3D modelling software. Interactive shadows were significantly better (p < 0,05) for tasks requiring participants to estimate distance. This suggests interactive shadows interface might better help users approximate relative object positioning

    Realistic simulation and animation of clouds using SkewT-LogP diagrams

    Get PDF
    Nuvens e clima são tópicos importantes em computação gráfica, nomeadamente na simulação e animação de fenómenos naturais. Tal deve-se ao facto de a simulação de fenómenos naturais−onde as nuvens estão incluídas−encontrar aplicações em filmes, jogos e simuladores de voo. Contudo, as técnicas existentes em computação gráfica apenas permitem representações de nuvens simplificadas, tornadas possíveis através de dinâmicas fictícias que imitam a realidade. O problema que este trabalho pretende abordar prende-se com a simulação de nuvens adequadas para utilização em ambientes virtuais, isto é, nuvens com dinâmica baseada em física que variam ao longo do tempo. Em meteorologia é comum usar técnicas de simulação de nuvens baseadas em leis da física, contudoossistemasatmosféricosdeprediçãonuméricasãocomputacionalmente pesados e normalmente possuem maior precisão numérica do que o necessário em computação gráfica. Neste campo, torna-se necessário direcionar e ajustar as características físicas ou contornar a realidade de modo a atingir os objetivos artísticos, sendo um fator fundamental que faz com que a computação gráfica se distinga das ciências físicas. Contudo, simulações puramente baseadas em física geram soluções de acordo com regras predefinidas e tornam-se notoriamente difíceis de controlar. De modo a enfrentar esses desafios desenvolvemos um novo método de simulação de nuvens baseado em física que possui a característica de ser computacionalmente leve e simula as propriedades dinâmicas relacionadas com a formação de nuvens. Este novo modelo evita resolver as equações físicas, ao apresentar uma solução explícita para essas equações através de diagramas termodinâmicos SkewT/LogP. O sistema incorpora dados reais de forma a simular os parâmetros necessários para a formação de nuvens. É especialmente adequado para a simulação de nuvens cumulus que se formam devido ao um processo convectivo. Esta abordagem permite não só reduzir os custos computacionais de métodos baseados em física, mas também fornece a possibilidade de controlar a forma e dinâmica de nuvens através do controlo dos níveis atmosféricos existentes no diagrama SkewT/LogP. Nestatese,abordámostambémumoutrodesafio,queestárelacionadocomasimulação de nuvens orográficas. Do nosso conhecimento, esta é a primeira tentativa de simular a formação deste tipo de nuvens. A novidade deste método reside no fato de este tipo de nuvens serem não convectivas, oque se traduz nocálculodeoutrosníveis atmosféricos. Além disso, atendendo a que este tipo de nuvens se forma sobre montanhas, é também apresentadoumalgoritmoparadeterminarainfluênciadamontanhasobreomovimento da nuvem. Em resumo, esta dissertação apresenta um conjunto de algoritmos para a modelação e simulação de nuvens cumulus e orográficas, recorrendo a diagramas termodinâmicos SkewT/LogP pela primeira vez no campo da computação gráfica.Clouds and weather are important topics in computer graphics, in particular in the simulation and animation of natural phenomena. This is so because simulation of natural phenomena−where clouds are included−find applications in movies, games and flight simulators. However, existing techniques in computer graphics only offer the simplified cloud representations, possibly with fake dynamics that mimic the reality. The problem that this work addresses is how to find realistic simulation of cloud formation and evolution, that are suitable for virtual environments, i.e., clouds with physically-based dynamics over time. It happens that techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems based on physics laws are computationally expensive and provide more numerical accuracy than the required accuracy in computer graphics. In computer graphics, we often need to direct and adjust physical features, or even to bend the reality, to meet artistic goals, which is a key factor that makes computer graphics distinct from physical sciences. However, pure physically-based simulations evolve their solutions according to pre-set physics rules that are notoriously difficult to control. In order to face these challenges we have developed a new lightweight physically-based cloudsimulationschemethatsimulatesthedynamicpropertiesofcloudformation. This new model avoids solving the physically-based equations typically used to simulate the formation of clouds by explicitly solving these equations using SkewT/LogP thermodynamic diagrams. The system incorporates a weather model that uses real data to simulate parameters related to cloud formation. This is specially suitable to the simulation of cumulus clouds, which result from a convective process. This approach not only reduces the computational costs of previous physically-based methods, but also provides a technique to control the shape and dynamics of clouds by handling the cloud levels in SkewT/LogP diagrams. In this thesis, we have also tackled a new challenge, which is related to the simulation oforographic clouds. From ourknowledge, this isthefirstattempttosimulatethis type of cloud formation. The novelty in this method relates to the fact that these clouds are non-convective, so that different atmospheric levels have to be determined. Moreover, since orographic clouds form over mountains, we have also to determine the mountain influence in the cloud motion. In summary, this thesis presents a set of algorithms for the modelling and simulation of cumulus and orographic clouds, taking advantage of the SkewT/LogP diagrams for the first time in the field of computer graphics
    corecore