11 research outputs found

    Isolation-by-Distance and Outbreeding Depression Are Sufficient to Drive Parapatric Speciation in the Absence of Environmental Influences

    Get PDF
    A commonly held view in evolutionary biology is that speciation (the emergence of genetically distinct and reproductively incompatible subpopulations) is driven by external environmental constraints, such as localized barriers to dispersal or habitat-based variation in selection pressures. We have developed a spatially explicit model of a biological population to study the emergence of spatial and temporal patterns of genetic diversity in the absence of predetermined subpopulation boundaries. We propose a 2-D cellular automata model showing that an initially homogeneous population might spontaneously subdivide into reproductively incompatible species through sheer isolation-by-distance when the viability of offspring decreases as the genomes of parental gametes become increasingly different. This simple implementation of the Dobzhansky-Muller model provides the basis for assessing the process and completion of speciation, which is deemed to occur when there is complete postzygotic isolation between two subpopulations. The model shows an inherent tendency toward spatial self-organization, as has been the case with other spatially explicit models of evolution. A well-mixed version of the model exhibits a relatively stable and unimodal distribution of genetic differences as has been shown with previous models. A much more interesting pattern of temporal waves, however, emerges when the dispersal of individuals is limited to short distances. Each wave represents a subset of comparisons between members of emergent subpopulations diverging from one another, and a subset of these divergences proceeds to the point of speciation. The long-term persistence of diverging subpopulations is the essence of speciation in biological populations, so the rhythmic diversity waves that we have observed suggest an inherent disposition for a population experiencing isolation-by-distance to generate new species

    Speciation dynamics of an agent-based evolution model in phenotype space

    Get PDF
    This dissertation is an exploration of phase transition behavior and clustering of populations of organisms in an agent-based model of evolutionary dynamics. The agents in the model are organisms, described as branching-coalescing random walkers, which are characterized by their coordinates in a two-dimensional phenotype space. Neutral evolutionary conditions are assumed, such that no organism has a fitness advantage regardless of its phenotype location. Lineages of organisms evolve by limiting the maximum possible offspring distance from their parent(s) (mutability, which is the only heritable trait) along each coordinate in phenotype space. As mutability is varied, a non-equilibrium phase transition is shown to occur for populations reproducing by assortative mating and asexual fission. Furthermore, mutability is also shown to change the clustering behavior of populations. Random mating is shown to destroy both phase transition behavior and clustering. The phase transition behavior is characterized in the asexual fission case. By demonstrating that the populations near criticality collapse to universal scaling functions with appropriate critical exponents, this case is shown to belong to the directed percolation universality class. Finally, lineage behavior is explored for both organisms and clusters. The lineage lifetimes of the initial population of organisms are found to have a power-law probability density which scales with the correlation length exponent near critical mutability. The cluster centroid step-sizes obey a probability density function that is bimodal for all mutability values, and the average displays a linear dependence upon mutability in the supercritical range. Cluster lineage tree structures are shown to have Kingman\u27s coalescent universal tree structure at the directed percolation phase transition despite more complicated lineage structures. --Abstract, page iii

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Simulations and Modelling for Biological Invasions

    Get PDF
    Biological invasions are characterized by the movement of organisms from their native geographic region to new, distinct regions in which they may have significant impacts. Biological invasions pose one of the most serious threats to global biodiversity, and hence significant resources are invested in predicting, preventing, and managing them. Biological systems and processes are typically large, complex, and inherently difficult to study naturally because of their immense scale and complexity. Hence, computational modelling and simulation approaches can be taken to study them. In this dissertation, I applied computer simulations to address two important problems in invasion biology. First, in invasion biology, the impact of genetic diversity of introduced populations on their establishment success is unknown. We took an individual-based modelling approach to explore this, leveraging an ecosystem simulation called EcoSim to simulate biological invasions. We conducted reciprocal transplants of prey individuals across two simulated environments, over a gradient of genetic diversity. Our simulation results demonstrated that a harsh environment with low and spatially-varying resource abundance mediated a relationship between genetic diversity and short-term establishment success of introduced populations rather than the degree of difference between native and introduced ranges. We also found that reducing Allee effects by maintaining compactness, a measure of spatial density, was key to the establishment success of prey individuals in EcoSim, which were sexually reproducing. Further, we found evidence of a more complex relationship between genetic diversity and long-term establishment success, assuming multiple introductions were occurring. Low-diversity populations seemed to benefit more strongly from multiple introductions than high-diversity populations. Our results also corroborated the evolutionary imbalance hypothesis: the environment that yielded greater diversity produced better invaders and itself was less invasible. Finally, our study corroborated a mechanical explanation for the evolutionary imbalance hypothesis – the populations evolved in a more intense competitive environment produced better invaders. Secondly, an important advancement in invasion biology is the use of genetic barcoding or metabarcoding, in conjunction with next-generation sequencing, as a potential means of early detection of aquatic introduced species. Barcoding and metabarcoding invariably requires some amount of computational DNA sequence processing. Unfortunately, optimal processing parameters are not known in advance and the consequences of suboptimal parameter selection are poorly understood. We aimed to determine the optimal parameterization of a common sequence processing pipeline for both early detection of aquatic nonindigenous species and conducting species richness assessments. We then aimed to determine the performance of optimized pipelines in a simulated inoculation of sequences into community samples. We found that early detection requires relatively lenient processing parameters. Further, optimality depended on the research goal – what was optimal for early detection was suboptimal for estimating species richness and vice-versa. Finally, with optimal parameter selection, fewer than 11 target sequences were required in order to detect 90% of nonindigenous species

    Book of abstracts

    Get PDF

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Sympatric Speciation Through Assortative Mating in a Long-Range Cellular Automaton

    No full text
    A probabilistic cellular automaton is developed to study the combined effect of competition and assortativity on the speciation process in the absence of geographical barriers. The model is studied in the case of long-range coupling. A simulated annealing technique was used in order to find the stationary distribution in reasonably short simulation times. Two components of fitness are considered: a static one that describes adaptation to environmental factors not related to the population itself, and a dynamic one that accounts for interactions between organisms such as competition. The simulations show that both in the case of flat and steep static fitness landscape, competition and assortativity do exert a synergistic effect on speciation. We also show that competition acts as a stabilizing force preventing the random sampling effects to drive one of the newborn populations to extinction. Finally, the variance of the frequency distribution is plotted as a function of competition and assortativity, obtaining a surface that shows a sharp transition from a very low (single species state) to a very high (multiple species state) level, therefore featuring as a phase transition diagram. Examination of the contour plots of the phase diagram graphycally highlights the synergetic effect

    The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE)

    Get PDF

    11th International Coral Reef Symposium Abstracts

    Get PDF
    https://nsuworks.nova.edu/occ_icrs/1001/thumbnail.jp
    corecore