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ABSTRACT 

Biological invasions are characterized by the movement of organisms from their 

native geographic region to new, distinct regions in which they may have 

significant impacts. Biological invasions pose one of the most serious threats to 

global biodiversity, and hence significant resources are invested in predicting, 

preventing, and managing them. Biological systems and processes are typically 

large, complex, and inherently difficult to study naturally because of their immense 

scale and complexity. Hence, computational modelling and simulation approaches 

can be taken to study them. In this dissertation, I applied computer simulations to 

address two important problems in invasion biology. 

First, in invasion biology, the impact of genetic diversity of introduced 

populations on their establishment success is unknown. We took an individual-

based modelling approach to explore this, leveraging an ecosystem simulation 

called EcoSim to simulate biological invasions. We conducted reciprocal 

transplants of prey individuals across two simulated environments, over a gradient 

of genetic diversity. Our simulation results demonstrated that a harsh environment 

with low and spatially-varying resource abundance mediated a relationship 

between genetic diversity and short-term establishment success of introduced 

populations rather than the degree of difference between native and introduced 

ranges. We also found that reducing Allee effects by maintaining compactness, a 

measure of spatial density, was key to the establishment success of prey 

individuals in EcoSim, which were sexually reproducing. Further, we found 

evidence of a more complex relationship between genetic diversity and long-term 

establishment success, assuming multiple introductions were occurring. Low-

diversity populations seemed to benefit more strongly from multiple introductions 

than high-diversity populations. Our results also corroborated the evolutionary 

imbalance hypothesis: the environment that yielded greater diversity produced 

better invaders and itself was less invasible. Finally, our study corroborated a 

mechanical explanation for the evolutionary imbalance hypothesis – the 

populations evolved in a more intense competitive environment produced better 

invaders.  

Secondly, an important advancement in invasion biology is the use of 

genetic barcoding or metabarcoding, in conjunction with next-generation 

sequencing, as a potential means of early detection of aquatic introduced species. 

Barcoding and metabarcoding invariably requires some amount of computational 

DNA sequence processing. Unfortunately, optimal processing parameters are not 

known in advance and the consequences of suboptimal parameter selection are 
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poorly understood. We aimed to determine the optimal parameterization of a 

common sequence processing pipeline for both early detection of aquatic 

nonindigenous species and conducting species richness assessments. We then 

aimed to determine the performance of optimized pipelines in a simulated 

inoculation of sequences into community samples. We found that early detection 

requires relatively lenient processing parameters. Further, optimality depended on 

the research goal – what was optimal for early detection was suboptimal for 

estimating species richness and vice-versa. Finally, with optimal parameter 

selection, fewer than 11 target sequences were required in order to detect 90% of 

nonindigenous species. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

Biological invasions occur when species are transported outside of their native range and 

establish in a novel, distinct range (Colautti and MacIsaac 2004). They can inflict 

ecological, economical, and societal harm (Colautti et al. 2006; Vilà et al. 2011; 

Simberloff et al. 2013). The field of invasion biology is enormous, important, and 

interdisciplinary; with ever-increasing globalization, its relevance now and in the future is 

and will remain unquestionable (Simberloff et al. 2013). However, despite the research 

that has been conducted in this domain, many questions remain unanswered and many 

theories remain to be tested. Many of these theories are computational in nature or lend 

themselves to simulations or modelling approaches (Hargreaves and Eckert 2014; Bock 

et al. 2015; Dlugosch et al. 2015; Xiong, Li, and Zhan 2016). This dissertation was 

motivated by the importance of biological invasions, and by open questions remaining in 

invasion biology that can be answered using computational modelling or simulations 

approaches.  

1.2 Objectives 

It has been theorized that introduced populations should be subject to a genetic 

bottleneck; that is, they should suffer from a reduction in genetic and thus phenotypic 

diversity relative to the population in their native range, and this is theorized to 

negatively impact their adaptability and establishment success (Sakai et al. 2001; Rius 

and Darling 2014; Bock et al. 2015; Dlugosch et al. 2015). Studies of the effects of 

genetic diversity of introduced populations on their establishment success have been 

largely inconclusive, so this remains an interesting area of research (Roman and Darling 

2007; Bock et al. 2015; Estoup et al. 2016). There are related questions as well. What is 

the relationship between genetic diversity of introduced populations and their 

establishment success (Sakai et al. 2001; Bock et al. 2015)? Does this relationship vary 

based on the similarity or harshness of native and introduced ranges (Hufbauer et al. 

2012; Hufbauer et al. 2013; Bock et al. 2015; Estoup et al. 2016)? Outside of propagule 

pressure (the total number of individuals introduced), what other factors affect 

establishment success (Sakai et al. 2001; Simberloff 2009; Colautti, Grigorovich, and 

MacIsaac 2006)? Is there a relationship between fitness of a genotype in the native range 

and fitness of a genotype in the introduced range (Sakai et al. 2001; Bock et al. 2015)? 

Do genetically diverse introduced populations succeed under the same conditions as 

those that are not (Sakai et al. 2001; Roman and Darling 2007; Bock et al. 2015)?  
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Answering these questions is difficult with studies of real biological invasions due 

to several important limitations. First, to quantify establishment success it is also 

necessary to quantify establishment failures, which are extremely difficult to observe and 

study (Roman and Darling 2007). Moreover, few studies, if any, have been able test the 

diversity of introduced populations independent of other factors such as propagule size 

(the number of individuals in a single introduction; Colautti, Grigorovich, and MacIsaac 

2006). Finally, biological invasions can occur over enormous temporal and spatial scales, 

often involving hundreds to millions of propagules, rendering the testing of such theories 

prohibitive due to resource requirements alone. Because of these important limitations, 

testing such theories lends itself to computational modelling and simulation approaches. 

With a simulation approach, these limitations can be alleviated; establishment failures 

can be completely accounted for, diversity of introduced populations can be tested 

independent of other factors, and minimal resources are required to study thousands or 

millions of digital organisms over extensive time periods. 

Answering theoretical evolutionary and ecological questions was the main 

purpose of EcoSim, an individual-based, predator-prey ecosystem simulation which came 

about in 2009 (Gras et al. 2009). The simulation has undergone extensive validation and 

has been instrumental in shedding light on numerous eco-evolutionary theories 

(Golestani, Gras, and Cristescu 2012; Khater, Murariu, and Gras 2015; Karim Pour et al. 

2017; MacPherson et al. 2017; Scott, MacPherson, and Gras 2018). However, as 

individuals in its original inception were sexless, there were limitations to the types of 

theoretical questions it could answer. Also, there were some important potential 

submodels that were heavily simplified or entirely left out of the simulation due to 

computational constraints at the time of its inception. As computational power has 

increased, with the current ubiquity of high-performance computational networks, and to 

increase the range of questions that EcoSim could answer, advanced versions of EcoSim 

were needed. Further, some new EcoSim variants would be required if EcoSim were to 

be used to answer theoretical questions in invasion biology. Thus, a major objective of 

this dissertation was to develop EcoSim and some new variants of it, and to use it to 

answer some of the questions posed earlier in this chapter.  

From a practical standpoint, translocation of species, accidental or purposeful, is 

almost inevitable in our current world (Simberloff et al. 2013). When introductions do 

occur, early detection of the introduced individuals is imperative; a rapid response can be 

enacted, capitalizing on the presumed low abundance of the introduced population 

(Genovesi 2005; Simberloff et al. 2013). Traditional detection methods have recently 

been displaced in favour of molecular genetic detection methods, particularly 

metabarcoding of environmental DNA or bulk samples which is showing promise in 

rapidly detecting a wide range of species with incredibly high sensitivity (Smart et al. 
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2015). Metabarcoding involves the usage of small barcode regions on partial genomes to 

identify species in samples (Ratnasingham and Hebert 2013). One issue with a 

metabarcoding approach is that there are many potential sources of error throughout the 

process, and so computational processing of the sequence data is required (Xiong, Li, and 

Zhan 2016). The computational processing step itself can be a source of both false-

positive (species identified as present when it is not) and false-negative (species not 

identified as present when it is) error, and optimal parameterization of the computational 

sequence processing pipeline is completely unknown throughout the process (Flynn et al. 

2015; Xiong, Li, and Zhan 2016). Thus, we aimed to elucidate how users should select 

parameters for computational sequence processing, particularly for metabarcoding of 

zooplankton bulk samples, and the consequences of poor parameter selection. We also 

aimed to determine if research goals influenced parameter selection – is optimal 

parameterization when the researcher intends to estimate species richness the same as 

when metabarcoding is being used for early detection of invasive species? We aimed to 

discover what level of performance can be expected from a metabarcoding approach, 

assuming optimal parameterization. Finally, a key question in early detection of invasive 

species is if metabarcoding is sufficient, or if a targeted approach is necessary for 

minimization of false positive and false negative errors. Answering this question was 

another objective of this dissertation.  

1.3 Contributions 

• Implemented significant improvements to EcoSim, broadening its potential 

applications and adding numerous features 

• Developed a new variant of EcoSim called EcoSim Niches, with a comparatively 

harsher environment in which resource abundance is lower and more spatially-

variable than that of standard EcoSim, which we showed develops greater 

diversity in prey and predator genotypes, species, and adaptive strategies 

• Developed a new variant of EcoSim called EcoSim Invasions, with standard and 

Niches subvariants, allowing users to study biological invasions from an eco-

evolutionary perspective using EcoSim 

• Showed that in EcoSim, in which individuals are sexual, combatting Allee effects 

are of prime importance for introduced populations 

• Found that the harshness of the recipient environment, not the degree of similarity 

between native and introduced environments, mediates a relationship between 

genetic diversity and short-term establishment success of introduced populations 

• Corroborated the evolutionary imbalance hypothesis, which states that 

environments exhibiting high diversity should produce better invaders and 

simultaneously be less invasible 
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• Corroborated a potential explanation for the evolutionary imbalance hypothesis, 

which involved the evolution of competitive advantages by subjection to a 

competitively intense environment 

• Optimized a sequence processing pipeline for bulk zooplankton metabarcoding, 

for estimating species richness or for early detection of aquatic invasive species 

• Demonstrated the performance of optimal sequence processing of metabarcoded 

bulk zooplankton samples in estimating species richness and early detection of 

aquatic invasive species 

• Established that metabarcoding alone was insufficient for effective early detection 

of aquatic invasive species – it should be used in conjunction with a targeted 

approach to confirm hits discovered with metabarcoding 

1.4 Outline 

Chapter 2 introduces artificial life, an interdisciplinary research field that involves the 

creation of artificial systems that simulate life. It then introduces biological invasions, 

discussing their importance and efforts to predict and manage them. It introduces 

individual-based models and reviews usage of pragmatic and paradigmatic individual-

based models for studying biological invasions. It then discusses the importance of early 

detection and methods of detection of introduced species. 

 Chapter 3 provides a detailed description of the current standard version of 

EcoSim, an individual-based predator-prey ecosystem simulation. EcoSim was developed 

as an experimental platform for testing eco-evolutionary theories. In Chapter 4, EcoSim 

was used to explore the effects of genetic diversity on establishment success of 

introduced populations in a simulated biological invasion with multiple introductions. In 

Chapter 5, a simulation experiment using empirical sequence data was conducted to 

optimize a sequence processing pipeline and subsequently test its performance for early 

detection of aquatic invasive species and estimation of species richness. Chapter 6 

provides a conclusion of this dissertation and discusses potential future work in the realm 

of simulations of biological invasions. 
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CHAPTER 2 

Background 

2.1 Simulations and Artificial Life 

Simulations are approximations of real or imagined systems (Banks et al. 2001). 

Development of a simulation involves the development of the models of which it is 

comprised, and these models may be atomic or composed of submodels themselves. The 

degree to which a simulated system must reflect a real system depends on the intended 

purpose of the simulation. For instance, a flight-simulating video game need not be very 

realistic; its intended purpose is entertainment so there is no harm in simplifying the 

system to the point where it is far from reality. On the other hand, a flight simulator that 

is designed for military training necessitates extreme detail in terms of the definition of 

its models; a user that learned to fly in this simulator is expected to gain skills 

transferrable to the operation of extremely expensive and dangerous machines. Thus, 

typical development of a simulation involves describing the entities that must exist within 

the system, defining the key properties of the entities that must be present based on its 

intended use, and subsequently testing and validating the simulation for its intended use. 

Simulations take on many forms; for instance, a simulation may consist of a few 

mathematical equations (e.g. equation-based modelling) or another may be comprised of 

hundreds of thousands of lines of C++ code.  

Artificial life, often abbreviated ALife, is an interdisciplinary field of research 

that aims to study and understand natural phenomena by creating artificial systems that 

simulate natural life. The term “Artificial Life” was coined in the mid-1980s, when Chris 

Langton introduced it at a workshop “on the synthesis and simulation of living systems” 

(Aguilar et al. 2014). The field has since exploded, yielding two flagship conferences 

(Artificial Life and the European Conference on Artificial Life – among others of course) 

and a journal (Artificial Life – again, among others), all of which are coordinated through 

the International Society for Artificial Life (ISAL) which Langton started (Aguilar et al. 

2014). Langton’s idea of ALife expanded upon the concept of the cellular automaton 

brought forth by von Neumann and Burks (1950). Cellular automata involves the creation 

of space- and time-discrete models, where space is arranged as a grid of cells which holds 

a finite number of states. The states, most simply, can be binary-state (i.e. “on” or “off”), 

and the states of cells change according to a set of predefined rules often based on some 

predefined neighbourhood about a given cell. Time, also being discrete, can be described 

in terms of “generations”, starting at generation zero. The original inception of the 

cellular automaton aimed to develop self-replicating machines, which could be studied to 

help us understand how life adapts to its environment. 
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 Conway’s Game of Life, based on cellular automata, is a zero-player game that 

allows one to set initial states and update rules (Gardner 1970). After setting these 

parameters, the system proceeds to compute the changing states of each cell according to 

the predefined rules. The user, after the simulation has begun, is unable to interact 

directly with it (hence “zero-player”). The user can only observe the system as it 

proceeds and evolves. What is interesting in the study of such cellular automata is not the 

initial configurations or the rules (as these are prescribed by the user), but instead the 

emergent properties of the system as it proceeds. In cellular automata, the rules are 

defined for individual cells; the emergent properties of the system arise as different 

individuals of the system interact using these basic rules. Conway’s Game of Life can 

produce some beautiful and intricate patterns that play out through simulated time, and 

these patterns can remain stable for as little as a few generations, to indefinitely. Indeed, 

complex and stable systems can arise from extremely simple rules that are 

mathematically predefined for individual parts of the system (Holland 1998).  

John Holland, presumably inspired by the study of such complex, emergent, and 

adaptive systems, brought forth the use of ALife-inspired algorithms in the study of 

optimization (Holland 1992). For example, his genetic algorithm takes an evolutionary 

approach to optimization; a population of solutions is initialized, their fitness is 

measured, and then the solutions recombine with each other to form subsequent 

generations based on their level of fitness. In the case of many ALife-inspired 

optimization tasks, and also in many ALife-inspired simulations, fitness is predefined 

(Gras et al. 2015). For example, consider the optimization of the travelling salesman 

problem, defined as follows: a salesman must visit n places exactly once, starting and 

finishing at any one of the n places. The individuals in this system are potential solutions 

(paths that the salesman could follow), and fitness is defined per solution and might be 

related to the total distance travelled in the journey, the time it might take, or the total 

cost of the journey. With a genetic algorithm, a population, initially of randomly-

generated individuals, would iteratively replicate according to a set of predefined rules 

much like what was described in our discussion of cellular automata. As the population 

of the system evolves, better and better solutions to the optimization task arise in the 

population. Though optimality is never guaranteed with the use of such an optimization 

algorithm, such simple, evolving, ALife-inspired algorithms have been shown to produce 

incredible results in extremely complex tasks; for example, an ALife-designed antenna 

developed by NASA ultimately made its way into space (Hornby 2006). Now there exist 

numerous examples of ALife-inspired optimization algorithms, including ant colony and 

particle swarm optimization algorithms. 

There are, indeed, fundamental differences between the synthetic ALife 

simulations stemming from the earliest works by the likes of von Neumann and Langton 



 

7 
 

and the ALife optimizations stemming from the works of Holland. ALife simulations aim 

to synthesize artificial life by describing rules and interactions in a bottom-up manner. On 

the other hand, the optimization approaches allow us to construct top-down systems as a 

means of conducting analysis on a complex system. However, when fitness is predefined 

in an ALife simulation, the evolution of the system is no longer open-ended and the 

behavior of the system is theoretically no different from an ALife inspired optimization 

in which the user defined the characteristics of the fitness landscape. For an ALife 

simulation to feature true open-ended evolution, even the fitness landscape itself must 

evolve and emerge as a property of the system, due to evolving interactions between its 

atomic parts. For instance EcoSim, a predator-prey individual-based ecosystem model 

(see Section 2.3) is one of the few such ALife systems that feature true open-ended 

evolution. Synthetic ALife systems were initially extremely basic, almost coming off as a 

mathematics-based form of art or entertainment. Nowadays, ALife systems can be 

extremely complex and used to describe, analyze, and make predictions of a wide range 

of physical, chemical, and biological systems. A major part of this dissertation involves 

the use of individual-based modelling, a major field of ALife, to provide theoretical 

insights regarding biological invasions. 

2.2 Biological Invasions 

Biological invasions involve the transportation of individuals from their native 

geographic range to a new and distinct range, in which they can establish and have 

negative impacts (Colautti and MacIsaac 2004). The invasion process can be seen as 

individuals of some species passing through a series of filters or barriers (Kolar and 

Lodge 2001; Sakai et al. 2001; Colautti and MacIsaac 2004); if they pass through all of 

the filters and cause impact in their new range, they are considered invasive. Potential 

invaders start as propagules in their native range. The first step for a biological invasion 

is for the propagules to be taken up into a transport vector. The propagules must then 

survive their journey to the new location, and subsequently be released into it. The 

individuals must be able to survive and reproduce in their new environment in order to 

establish. Further, they must also be able to successfully interact with the local 

community in the new range, and this involves exploiting an open ecological niche or 

exploiting some niche better than the natives do, via competition or consumption of 

resources such as native flora or fauna. Finally, if the species has strong dispersal 

capabilities, the species can typically become widespread and reach high abundances (for 

example, one of the most successful invaders of all time, the zebra mussel). On the other 

hand, the species may not disperse well but can still cause impacts local to its destination, 

even at relatively low abundances.  
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As noted, invasions require individuals to be taken up into a transport vector and 

for the individuals to survive their journey to a new location. These transport vectors are 

typically provided directly by humans; invasions are indeed initiated and facilitated by 

human action. Individuals can be introduced, for instance, via ballast water (Ricciardi and 

MacIsaac 2000), animal and plant trade (Duggan et al. 2006; Pyšek and Richardson 

2010), cargo, luggage, other animals (Leighton et al. 2012), vehicles (De Ventura et al. 

2017), and even biocontrol attempts (Shanmuganathan et al. 2010). Propagule pressure is 

a term used to describe the total number of individuals introduced to a novel location 

(Colautti, Grigorovich, and MacIsaac 2006). Propagule pressure consists of two main 

factors – propagule size and propagule number (Simberloff 2009). Propagule size is the 

number of individuals introduced in a single introduction event, while propagule number 

is the number of introduction events (Simberloff 2009). Some authors include other 

factors in the definition of propagule pressure, such as the frequency of introduction 

events and the condition of the individuals when released into the novel environment 

(“propagule quality”; Simberloff 2009). Of course, propagule pressure is widely 

recognized as a key determinant in the establishment success of introduced populations 

(Colautti, Grigorovich, and MacIsaac 2006). Though the exact amount of propagule 

pressure for a given introduction is typically unknown, many have attempted to estimate 

it via historical data or even genetic data from an existing introduced population 

(Simberloff 2009). Though propagule pressure is surely a key determinant of 

establishment success, there are some extreme counterexamples. For example, the North 

American population of Lasioglossum leucozonium, a bee species originating in Europe, 

is theorized to have originated from a single female (Zayed, Constantin, and Packer 

2007). As “invasion biology is largely a probabilistic science” (Simberloff 2009), such 

examples form the exceptions, not the rule. 

 Below, we elaborate on why biological invasions are important to study. We then 

discuss the prediction and management of biological invasions. We then elaborate on 

individual-based models, which are one of the techniques used in predictions of invasions 

and review a range of studies using individual-based models with respect to invasions 

from both practical and theoretical perspectives. Finally, we discuss the importance of 

early detection of invasive species and techniques used in early detection. 

2.2.1 Importance of Biological Invasions 

Biological invasions can inflict difficult-to-predict and difficult-to-assess negative 

ecological, economical, and even societal impacts (Colautti et al. 2006; Vilà et al. 2011; 

Simberloff et al. 2013). Most countries have hundreds or thousands of non-native 

species, many of which are still being discovered as they were previously thought to be 

native (Lodge 1993; Cristescu 2015). Biological invasions have long been recognized to 
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pose one of the most serious threats to worldwide biodiversity (McKinney and Lockwood 

1999; Dirzo and Raven 2003; Shochat et al. 2010; Simberloff et al. 2013); yet despite a 

wide range of actions taken to reduce human-mediated introductions, invasion rates are 

not appearing to slow (Seebens et al. 2017). Due to human activities, including but not 

limited to biological invasions, a global “biotic homogenization” is occurring whereby 

many “loser” species are being replaced by very few “winner” species, and known 

invaders represent a relatively high proportion of the latter group (McKinney and 

Lockwood 1999; Shochat et al. 2010). Conservative estimates from Dirzo and Raven 

(2003) are that 30% of threatened birds, 15% of threatened plants, and 10% of threatened 

mammals are directly affected by introduced populations. Non-exhaustively, invasive 

species can impose ecological impacts by competing with, eating, or even hybridizing 

with native species, resulting in the loss of native biodiversity. From the conservation 

standpoint alone, biological invasions require attention, not only from scientists but also 

from policymakers and the public.  

 Unfortunately, humans generally do not like to acknowledge problems, let alone 

solve them, until they are costing us money. Invasions do plenty of economic damage. 

Economic impacts can stem from, for instance, damage to manmade structures, resources 

spent preventing, managing, or eradicating invasions, and damage to aquaculture and 

agriculture industries. For instance, in a study by Schultz et al. (2011), the cost of 

biofouling of a single class of US Navy ships was estimated to be >$1 billion over 

approximately 15 years, largely due to heavily reduced fuel economy but also due to 

maintenance such as the application of antifouling paints and cleaning. For the entire 

naval fleet, the costs were estimated to be a minimum of $400 million annually, and the 

US naval fleet represents <0.5% of ships in the entire world. Nonindigenous species also 

create serious costs for fisheries, livestock, agriculture, and natural resources industries. 

For example, Colautti et al. (2006) characterized the cost of nonindigenous species in 

Canada in these industries at that time. On the limited data available, they were able to 

conservatively attribute approximately $187 million annually in costs due to 

nonindigenous species and estimate that this value only represents about 1% of the true 

cost. The losses stemmed from, among other factors, reduced efficiency in hydroelectric 

power plants, fouling of water intakes, reduced production of timber and non-timber 

forests, damage to food crops, damage to livestock or production therefrom, and research 

and management of particularly problematic nonindigenous species. A similar study on 

the impacts of nonindigenous insects in continental USA estimated that tree boring 

insects, which can often cause mortality of their hosts and seem to be the costliest guild 

of nonindigenous insects, cost local governments approximately $1.7 billion yearly with 

$830 million lost by residents in property value and about $130 million lost in timber 

(Aukema et al. 2011). In terms of the cost of management, as of 2002, Australia was 
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already spending approximately $100 million AU yearly and New Zealand was spending 

approximately $121 million NZ to control and prevent invasions (Colautti et al. 2006). 

New Zealand and Australia are considered world leaders in control and prevention of 

nonindigenous species. On a related note, biological invasions can have societal impacts 

on humans as well; for example, there exists plenty of legislation (informed by invasion 

biologists and other scientists) concerned with the transportation of plants and animals 

outside of their native range. Since 2006, intercontinental ships entering the Great Lakes 

have been subject to Canada’s saltwater flushing policies. In Alberta, there exists 

mandatory boat checking stations for boats being transported between bodies of water, as 

an example of infrastructure change caused by biological invasions. Clearly, biological 

invasions demand our attention and intervention, from both conservation and economic 

standpoints. 

2.2.2 Prediction and Management 

Bock et al. (2015) describe the relationship of ecologists and evolutionary biologists to 

invasive species as “love-hate”. Invasive species indeed cause significant problems, such 

as those described above, so scientists rightfully tend to dislike them for that. But they are 

certainly interesting from a practical standpoint, in terms of trying to predict the nature of 

their occurrences, impacts, and even interactions with humans (e.g. management, public). 

Because of the importance of invasions, we need to be able to predict where invasions 

might take place, what species might be involved, how they might get to their 

destinations, and the types and magnitudes of impacts they may cause. To these ends, the 

literature is rife with, for instance, transport vector maps and analyses (Muirhead and 

MacIsaac 2005; Herborg, O’Hara, Therriault 2009; Hulme 2009), analyses and 

predictions of animal and plant trade (Bertolino 2009; Humair et al. 2015), niche-based 

models (Thuiller et al. 2005; Broennimann and Guisan 2008; Rodda, Jarnevich, and Reed 

2009; Goldsmit et al. 2018), and analyses of efficacy of prevention or management 

strategies (Briski et al. 2010; Chivers, Drake, and Leung 2017). Comparisons of 

functional response (how consumption rate of a predator changes with prey density) 

between invasive and non-invasive sister species have yielded insights on what makes 

species invasive, on invasive and native predator-prey interactions, and on the importance 

of context in impact prediction (Dodd et al. 2014; Bovy et al. 2015; Laverty et al. 2015). 

From these examples and others, there are many different intriguing ways scientists have 

made practical predictions about invasions. One method that is of relevance to this 

dissertation is the use of individual-based models (Section 2.3). Studies using pragmatic 

individual-based models which are designed to make practical predictions are discussed 

in Section 2.3.1. 
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Invasions provide interesting situations to try to understand or predict from 

theoretical ecological and evolutionary standpoints as well. Individuals are subject to a 

wide range of difficult challenges when they are introduced to a novel range. We can 

study the selection pressures on introduced populations, which can give us insights as to 

how species naturally expand their range or colonize new geographic regions. Phillips et 

al. (2006) showed that invasive cane toads in Australia were evolving longer legs, which 

they theorized at the time should aid in dispersal of the species. Subsequently, Phillips, 

Brown, and Shine (2010), showed that cane toads farther from the invasion origin 

(Cairns, Australia) also had a genetic predisposition for increased dispersal, helping to 

confirm their earlier hypothesis. We can also study what, from an evolutionary 

standpoint, contributes to invasiveness (i.e. the capacity for a species to become 

invasive). For instance, a review by Richards et al. (2006) discussed the roles of 

phenotypic plasticity in the success of invasive plants, citing evidence of and highlighting 

the differences between invasive and non-invasive species of three flavours – jack-of-all-

trades (i.e., generalist), master-of-some (i.e., mostly specialist), and the jack-and-master 

which the authors introduced in that work (i.e. mostly generalist, but can exploit some 

favourable niche). Lodge (1993) proposed the possibility that invaders are better 

competitors in their invaded ranges because they evolved amongst stiff competition in 

their native ranges. On the other hand, there is evidence of the evolution of greater 

competitive advantage in invaders; comparisons between native and introduced 

conspecifics in some cases have shown that the introduced individuals are larger and 

more fecund (Siemann and Rogers 2001).  

In a given introduction, typically the number of introduced individuals is low. 

This alone should set an enormous challenge, because this increases stochasticity and 

reduces the success of cooperative and density-dependent interactions (e.g. mating in 

sexual species, group feeding, niche modification). Allee effects are when fitness of 

individuals positively correlates with density at low population sizes. A critical question 

in invasion biology is, in the face of Allee effects and all these other challenges, what 

allows introduced populations to successfully establish (Sakai et al. 2001; Bock et al. 

2015)? Kanarek and Webb (2010) showed theoretically that if populations can rapidly 

evolve to reduce Allee effects (via, for instance, increasing mate detection distance), 

evolutionary rescue could be possible when otherwise the population would go extinct. 

That study still begs the question of the possibility of this evolutionary rescue happening 

in the time frame during which invasions may take place. This question itself is difficult 

to answer as well, because even successful invaders may undergo a lag phase where 

population size is incredibly low (perhaps undetectably so) for an extended period (Sakai 

et al. 2001). This means that we often have no concept of the time it takes for an invasion 

to take place. Effects of genetic drift, the random shift in allele frequency potentially 
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resulting in the loss of alleles, are known to more strongly impact small than large 

populations (Bock et al. 2015). Interesting questions in this domain remain. What impact 

does genetic drift have on introduced populations? Do introduced populations undergo 

rapid shifts in allele frequency? Does this affect their establishment success? On a related 

note, as introduced populations are typically small, they should usually be subject to a 

genetic bottleneck (reduction in genetic diversity relative to their native population) as 

well. Reduced genetic diversity is expected to reduce the capacity for populations to 

adapt to novel or changing environments (Bock et al. 2015). A key question to ask is how 

then can introduced populations survive when their adaptive potential is so severely 

reduced? These types of theoretical questions are extremely difficult to answer studying 

real invasions for a multitude of reasons. Thus, as was possible with practical studies for 

biological invasions, some scientists have turned to individual-based models to make 

theoretical predications as well. Section 2.3.2 reviews the use of paradigmatic individual-

based models to answer such theoretical questions related to ecology and evolution in 

invasions. Chapter 4 aims to elucidate the effects of genetic diversity of introduced 

populations on their establishment success using EcoSim. 

A large body of research has also accumulated from attempts to manage 

biological invasions, both successful and failed. In a review of eradications in Europe, 

Genovesi (2005) noted that the easiest taxon to eradicate was mammals, while insects and 

plants were typically only successfully eradicated on islands but not on mainland. 

Genovesi also noted the importance of early detection of the invasions followed by 

subsequent rapid response, and that Europe was facing issues in achieving both of these. 

Pluess et al. (2012) conducted a meta-analysis of invasion eradication programs 

worldwide and over the last century and framed their analysis as a classification problem. 

They developed several decision trees to explain the factors affecting eradication success, 

finding that temporal and spatial extent of invasion were key predictive factors, along 

with whether sanitary measures (defined as banning transport of potentially infested 

materials) were taken. Such studies yield important insights of what factors affect success 

of eradications, but it is also important to know what strategies have worked for 

particular taxa – and there are plenty of such studies. In addition to looking back into 

historical eradication attempts, a proactive approach can also be taken to plan or test 

management efforts. Individual-based models can also help researchers plan and 

preliminarily test management strategies (see Section 2.3.1). Management clearly stands 

to strongly benefit from rapid response, but rapid response is predicated on early 

detection. Section 2.4 discusses the importance and means of early detection of 

nonindigenous species. 
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2.3 Individual-based Models 

Among biological disciplines, behavioral ecology has a strong tradition of accounting for 

the role of organism-environment interactions in behavior (Krebs and Davies 1997). 

Behavioral ecology and the related field of optimal foraging theory (Stephens and Krebs 

1986) model animal behavior in terms of optimal adaptation to environmental niches. 

The goal is not to test whether organisms actually behave optimally, but to use normative 

expectations to interpret behavioral data and/or generate testable hypotheses. One 

approach for understanding the behavior of complex ecosystems is through individual-

based models (IBMs), which provide a bottom-up approach allowing for the 

consideration of the traits and behavior of individual organisms. Ecological modelling is 

still a growing field, at the crossroads between theoretical ecology, mathematics, and 

computer science (Ricotta 2000). Since natural ecosystems are very complex (in terms of 

number of species and of ecological interactions), ecosystem models aim to characterize 

the major dynamics of ecosystems in order to synthesize the understanding of such 

systems and allow for predictions of their behavior. Ecosystem simulations can also help 

scientists to answer theoretical questions regarding evolutionary process, the emergence 

of species, and the emergence of learning capacities. One of the most interesting aspects 

of such ecosystem simulations is that they offer a global view of the evolution of the 

system, which is difficult to obtain in nature. However, the scope of ecosystem 

simulations has always been limited by the computational possibilities of their time. 

Today, it is possible to run simulations that are more complex than ever due to the 

availability of high-performance computing resources. 

Several individual-based ecosystem simulation platforms with various features 

exist. For example, Echo, one of the first such models, is a basic ecosystem simulation in 

which resources are limited and agents evolve (Hraber et al. 1997). In Echo, each agent, 

upon obtaining the required resources to copy its genome, replicates itself with some 

mutations. The agents, through interaction with other agents (combat, trade, or mating) or 

the environment, can acquire resources. Polyworld is another such IBM software (Yaeger 

1994) to evolve artificial intelligence through natural selection and evolutionary 

algorithms. It displays a graphical environment in which trapezoidal agents search for 

food, mate, and create offspring. The number of agents is typically only in the hundreds, 

as each agent is rather complex and the environment consumes considerable 

computational resources. In this model, each individual makes decisions based on a 

neural network, which is derived from each individual's genome. Recently, Polyworld 

has been used to study the effects of different neuromodulation models on the 

adaptability of its individuals (Yoder and Yaeger 2014), finding that neuronal plasticity 

modulation (decreasing or increasing the rate at which neuron weights change) tends to 

produce individuals that adapt more effectively. It has also been used to study the way in 
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which network topologies influence the evolved complexity of the networks (Yaeger 

2013) and, most recently, the level of chaos as the individuals in the system evolve 

(Williams and Yaeger 2017). Avida is another artificial life software platform for 

studying the evolutionary biology of self-replicating and evolving computer programs 

(Ofria and Wilke 2004), inspired by the Tierra system (Thearling and Ray 1994). Unlike 

Tierra, Avida assigns every digital organism its own protected region of memory and 

executes its program with a separate virtual CPU. A second major difference is that the 

virtual CPUs of different organisms can run at different speeds. The speed at which a 

virtual CPU runs is determined by several factors, but most importantly, by the tasks that 

the organism performs: logical computations that the organisms can carry out to reap 

extra CPU speed as a bonus. With increasing computational power, individual-based 

ecosystem simulation platforms such as Tierra, Avida, Polyworld, and EcoSim (Ray 

1991; Lenski et al. 1999; Yaeger 1994; Gras et al. 2009) can be used to address 

increasingly difficult questions in biology (Lenski et al. 2003; Clune et al. 2008; Clune et 

al. 2011; Golestani et al. 2012). EcoSim (Gras et al. 2009), in particular, has been 

designed to model large-scale virtual ecosystems. 

Recently, much has been done in the field of ecological IBMs on three main 

fronts: formalization and development practices of IBMs, pragmatic modelling, and 

paradigmatic modelling. With respect to formalization and development practices, some 

insist that there is an increasing need for developers of IBMs to be transparent about the 

process used to develop a model (Schmolke et al. 2010; Augusiak et al. 2014; Grimm et 

al. 2014). They argue that potential clients need to have a thorough understanding of the 

model so that they can know whether the model is applicable to whatever they would like 

to test. Clients need formal statements of the question(s) the model is designed to answer, 

descriptions of the submodels and their organization within the model, information on the 

degree of testing performed on the model, and the rationale behind making any 

modifications throughout the long and iterative process that is the “modelling cycle”. So, 

several researchers have proposed and subsequently revised (Grimm et al. 2014) a new 

standard format for the description of an IBM, TRAnsparent and Comprehensive 

Ecological modelling documentation (TRACE) (Schmolke et al. 2010), which differs 

from the previously-proposed ODD protocol (Grimm et al. 2006) in that TRACE is more 

comprehensive and more concerned with describing the development cycle and practical 

ability of a model. Furthermore, the ODD protocol can be used within TRACE as a 

means of describing the model’s implementation. TRACE complements the principle of 

“evaludation” (Augusiak et al. 2014), representing an urged evaluation and validation of 

a model throughout the development, application, and analysis of it. The current revision 

of TRACE intends to focus the developer on documenting the modelling process for the 



 

15 
 

sake of ensuring quality and credibility throughout said process, as the originally 

proposed TRACE was less efficient and less specific regarding its goals.  

MacPherson and Gras (2016) argue that there is too much of a focus on 

“evaludation” and that not all IBMs are “merely adjunctive tools”. More specifically, 

pragmatic models, focusing on a particular species or system, usually with the intent of 

making predictions in applied ecology, should undergo a more rigorous parameterization 

process using empirical data, be subject to evaludation, and be more stringently 

documented. Pragmatic models are often tied to conservation efforts or the management 

of delicate ecosystems, and so a model must be realistic enough to effectively predict 

how a specific (very complex) ecological system will behave. On the other hand, 

MacPherson and Gras (2016) argue that paradigmatic models are, in fact, experimental 

platforms. Though they must be realistic enough, in the general sense, there should be 

less of a focus on incorporating empirical data into the calibration or parameterization of 

them, as they are typically designed to answer rather general theoretical questions, the 

results of which we often have no means of historically validating due to the scale of 

interactions being emulated in the simulation. Furthermore, they argue that paradigmatic 

models can lose generalizability by over-calibrating the model empirically. They propose 

a relaxed notion of model evaluation by removing the constraint of empirical calibration; 

they instead insist that the calibration be “reasonable”, that is, consistent with general 

observations in nature. 

Pragmatic models are those that aim to model a specific system or population, and 

most IBMs are pragmatic in nature (DeAngelis and Grimm 2014). De los Santos et al. 

(2015), for instance, designed an IBM of a marine amphipod, Gammarus locusta, to 

assess the effect of long-term exposure to a chemical pollutant, aniline. They used real 

life-history traits of G. locusta to parameterize the model and observed significant 

negative impacts in individual survivorship and production of offspring with exposure to 

aniline. Other works in pragmatic modelling include a toxicological model for zebrafish 

(Hazlerigg et al. 2014), a model mediating effects of climate change on population 

dynamics in European anchovies (Pethybridge et al. 2013), a model for conservation and 

management of brown trout in Europe (Frank and Baret 2013), and a model for motion of 

the blue mussel, Mytilus edulis (de Jager et al. 2013). With respect to IBM usage in the 

field of biological invasions, pragmatic models are more common (see Section 2.3.1). 

As the naming convention suggests, paradigmatic modelling moves away from 

answering questions about specific species or ecosystems and instead aims to uncover the 

underlying causes of more generalized ecological or evolutionary phenomena (DeAngelis 

and Grimm 2014). Zaman et al. (2014), for example, used Avida to show that parasite-

host interactions increase the complexity and evolvability of digital organisms over a 

long time-frame. Avida has been used in several other recent works (Fortuna et al. 2013; 
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Goldsby et al. 2014; Ostrowski et al. 2015, LaBar et al. 2016). Similar to Zaman et al., 

Kvam et al. (2015) also studied the complexity of the brain of a population of digital 

organisms, in this case Markov Brain agents. In contrast, they studied complexity in light 

of the problem-solving environment the agents were subject to. Olson et al. (2013) used 

Markov Brain Agents as well, but instead they placed the agents into a toroidal world and 

observed changes in physical cluster tightness when subject to different types of predator 

attacks. Botta-Dukát and Czúcz (2016) generated a spatially-implicit IBM to simulate 

community compositions and tested the ability of five functional diversity indices. 

Functional diversity indices aim to determine the number of functionally different species 

in a community. Their simulation accounted for habitat filtering (suitability of an 

individual to a habitat – a means of local trait convergence) and trait-similarity-based 

competition for resources (a means of local trait divergence) in composing the simulated 

communities. With mechanisms causing individual trait divergence and convergence, 

they could effectively test the functional diversity indices for their ability to detect these 

two key assembly processes. They found trait divergence was difficult to detect for all the 

indices tested, whereas trait convergence was detectable by some indices. Uchmański 

(2016) found, using an IBM, that dispersal mechanisms of individuals affect the 

persistence of metapopulations. In different runs of the simulation, individuals would 

disperse from their current habitat to another unoccupied neighboring habitat for different 

reasons (when one gains no resources due to competition, when competition yields 

insufficient resources to produce an offspring, random chance, or when no individuals in 

a habitat could reproduce). If individuals dispersed due to total loss of resources resulting 

from competition, the metapopulations persisted longest. Similarly, when individuals 

dispersed due to insufficient resources for reproduction, the metapopulations persisted 

longer than by chance. If individuals waited until none in a habitat could reproduce, the 

metapopulations failed to persist longer than cases in which dispersal was random. 

Another recent paradigmatic IBM tested the effects of patch size and refuge abundance 

on the strength of predator-prey interactions and population dynamics (Li et al. 2017). 

They found that refuge availability decreased the interaction strength between prey and 

predators, which consequently improved the stability of populations. CDPOP (Landguth 

and Cushman 2010) and its descendant CDMetaPOP (Landguth et al. 2017) are both 

IBMs that use Mendelian inheritance with any number of alleles and loci to study the 

effects of a varying landscape of (nearly) any complexity on the genetic structure and 

composition of populations or metapopulations. Though natural selection does occur, 

individual fitness is also influenced by user-specified spatially-explicit fitness values for 

each genotype that is selected upon. Paradigmatic models have been used in the study of 

biological invasions, but they are less common than pragmatic models (see Section 2.3.2 

for examples). 
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We will now review the use of individual-based modelling in the study of 

biological invasions. We divide our discussion into two parts. We first discuss pragmatic 

models for biological invasions – which are quite common – and paradigmatic models for 

biological invasions – which are relatively rare. In this dissertation, EcoSim, introduced 

in Chapter 3, is used in Chapter 4 to determine how establishment success is impacted by 

genetic diversity of introduced populations. 

2.3.1 Pragmatic Models for Biological Invasions 

There are numerous examples of pragmatic models for biological invasions. Many of the 

early ecological IBMs were models of plants (e.g. JABOWA and its descendants; Botkin, 

Janak, and Wallis 1972) – and in invasion biology applications this was true as well 

(Higgins, Richardson, and Cowling 1996; Higgins and Richardson 1998; Higgins and 

Richardson 1999; Higgins, Richardson, and Cowling 2000; Buckley, Briese, and Rees 

2003; Goslee, Peters, and Beck 2006). An early example was a model of invasive pine 

trees dating back to 1996 (Higgins, Richardson, and Cowling 1996) which was 

subsequently expanded upon (Higgins and Richardson 1998; Higgins and Richardson 

1999). Their model aimed to elucidate the roles of a variety of factors in the spread of 

three invasive pine species in South Africa. Their model was spatially-explicit and time-

discrete, with a two-dimensional 150x400 grid of cells (100x200 in the follow-up 

implementation) each representing approximately 100m2, and a time step of the 

simulation representing a year. Using their IBM was advantageous over reaction-

diffusion models because they were able to study impacts other than the rate of spread, 

such as the mean density of pines and the mean perimeter of the invasion front. Also, 

IBMs, unlike reaction-diffusion models could account for a wide variety of individual 

interactions, stochastic effects, and spatial relationships – reaction-diffusion models 

lacked this. In the 1996 paper, they found that mean seed dispersal distance was a key 

factor across all impacts, though adult fecundity and age of reproductive maturity were 

impactful as well. Comparatively, though there was empirical evidence that wildfires 

aided in the invasion of these pines, there was little impact of fire-related factors 

(frequency and survival rate of adult pines) on the impact measures they considered. In 

the 1998 model, which also incorporated disturbance regimes and multiple environment 

types, showed the dominance of invasive Pinus radiata in shrubs and grasslands, while 

Pinus strobus dominated the forests. Their model also predicted that disturbance most 

strongly affected how easily invaded the shrub and grassland environments were, while 

forest environments were most resistant to pine invasions overall. Interestingly, high 

disturbance led to smooth invasion fronts while low disturbance levels generated 

scattered invasion fronts. 
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  Pragmatic IBMs remain a useful option for modelling plant invasions (Travis et 

al. 2011; Murphy, Johnson, and Viard 2016; Xiao et al. 2016). Animal invasion 

modelling using IBMs became more prevalent later, likely because of the impetus to 

often incorporate more complex behavioural and biotic interaction models (Grimm and 

Railsback 2005). An interesting advancement in pragmatic modelling, both of plants and 

animals, was the incorporation of geographic information system (GIS) data in the 

models, such that very specific environments and locations could be accurately spatially 

modelled, for instance in terms of land use, obstruction, climate, or chemistry. An early 

study showed that an IBM could be useful in the preliminary testing of management 

strategies for the invasion of the American mink in conservation of the water vole in the 

UK (Bonesi, Rushton, and Macdonald 2007). American minks prey on water voles, and 

this interaction has led to the vole’s protected status in the UK. Their model was 

spatially-explicit and time-discrete, with direct mappings to real space and time, using 

GIS data to directly model the UK’s Upper Thames catchment and its surrounding 

region. The goal of their model was to determine the most effective trapping strategy for 

managing the invasive mink. In terms of trapping strategies, they varied number of traps 

and the seasonal temporal distribution of trap use, while also modelling immigration of 

minks from local regions. Unfortunately, when looking at control strategies aimed at vole 

conservation, only 24% of strategies led to 20-year conservation of the voles. 

Interestingly, their model determined that if female minks were held to a density 0.15/km, 

vole populations would generally persist. With high mink immigration, the strategy that 

prevailed was to trap in January, October, and November, whereas with low mink 

immigration, all strategies yielded similar effectiveness. The model showed that, barring 

unwavering and continuous commitment from conservation authorities, water vole 

extinction was imminent in the UK. Another model was produced to simulate 

management efforts in Brisbane, Australia, for the invasive red fire ant (Keith and Spring 

2013). They had a probabilistic model for the spread of ant nests and their discovery by 

management personnel. After calibration of the model against a rich dataset of the 

invasion history, they used their model to predict the ultimate outcome of the current 

management regime. Similar to the above study of the American mink, they found that a 

significant increase of management effort would be necessary to successfully eradicate 

the ants and that the current strategy was insufficient. 

 Another team of modelers developed several IBMs for the invasion of the brown 

plant hopper in the Mekong River Delta of Vietnam (Phan, Huynh, and Drogoul 2010; 

Nguyen et al. 2011). The brown plant hopper is a pest species that destroys rice crops via 

consumption and the spread of various diseases. Similar to the above models, these were 

also spatially-explicit and informed by real GIS data. Their model covered a 700 square 

mile region of the delta, and their models were calibrated using real life-history and 
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physical characteristics of the brown plant hopper. Their model also featured simple 

models for rice crops. With their model, they were able to produce a parameterization 

that accurately replicated the invasion that had occurred to date – the pattern-oriented 

modeling approach (Grimm et al. 2005) – and they subsequently used the model to 

conduct predictions of future spread (Phan, Huynh, and Drogoul 2010). In following 

work (Nguyen et al. 2011), they added climatological parameters (e.g. wind, temperature, 

etc.) and land use information to the model, with the aim to determine the impact of the 

brown plant hopper on rice production. They also aimed to discover rice planting regimes 

that would lead to maximum rice yield in the face of the ongoing brown plant hopper 

invasion. They found that with the addition of the new factors, their model produced 

more accurate estimations of brown plant hopper spread. A key finding was that if 

farmers temporally staggered their rice planting regimes, they could minimize the impact 

of the brown plant hoppers on rice yields because the brown plant hoppers would be 

unable to spread to adjacent mature rice crops.  

 Interestingly, pragmatic individual-based models, even in early stages of 

development, can be used to engage and inform stakeholders while also providing future 

direction to both research, management, and even the general public (Samson et al. 

2017). In this case, the modelers were producing an individual-based spread model, built 

on RangeShifter (Bocedi et al. 2014), for the round goby in and around the Baltic Sea. As 

mentioned earlier, biological invasions can affect people from all walks of life – in this 

case, the stakeholders consisted of management and government personnel, local 

recreational and professional fishermen, and others from the general public. There is 

typically a fear of losing credibility when presenting premature models to stakeholders, 

but in this case the development of the model took place alongside symposiums during 

which presentations of the model progress were delivered to stakeholders and feedback 

was received from them. In this case, developing the model alongside stakeholders 

allowed them to provide useful feedback – there were several qualitative parameters that 

the scientists were able to acquire from the stakeholders, several knowledge gaps were 

identified and filled in for all parties involved, and the modelers were able to determine 

the key focal points for the model in terms of what it should and need not predict. For 

example, the modelers were informed, through their early engagement with stakeholders, 

that gobies can disperse to deeper waters than they had originally thought, and 

particularly that this more often occurred during winter months. This had consequences 

for the model itself, and the scientists were able to incorporate this information into their 

model. Similarly, the stakeholders informed the scientists of the impacts of round gobies 

on the long-tailed duck via competition, which overwinters in certain habitats near the 

Baltic Sea. This allowed the researchers to identify sites where the long-tailed duck could 

overwinter, and inform conservationists of the predicted possibility and timing of spread 
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of round gobies to these sites. They used a pattern-oriented modelling approach to 

parameterize the model using historical invasion data in the Gulf of Gdansk, in 

conjunction with the use of empirical data and feedback from the stakeholders. Their 

model, in such early stages of development, did not produce results that generalized well 

to the invasion of the Baltic Sea – of course future work was needed to improve the 

model. Despite the poor generalization of the model, the study highlighted the importance 

of scientists working alongside stakeholders on equal footing in the context of biological 

invasions, as both parties typically have useful and different perspectives, and both 

parties stand to gain from each other’s involvement. There are many other recent 

examples of pragmatic IBMs modelling animal invasions, owing to the usefulness of the 

approach in modeling and subsequently predicting interactions between invasive 

individuals, native individuals, their environment, and even management or the general 

public (e.g. Van Petegem et al. 2016; Yoann et al. 2016; Anderson and Dragićević 2018; 

Bonte and Bafort 2018; Day et al. 2018). 

2.3.2 Paradigmatic Models for Biological Invasions 

There are several examples of paradigmatic IBMs that were produced for investigating 

theoretical aspects of biological invasions. Studies investigated, for example, evolution of 

dispersal (Travis and Dytham 2002; Travis et al. 2009; Fronhofer, Poethke, and 

Dieckmann 2015; Henriques-Silva et al. 2015), tracking of shifting suitable habitats 

(Santini et al. 2016), the role of learning versus evolution in exploring novel 

environments (Sutter and Kawecki 2009), the role of sex structure of introduced 

populations in establishment (Shaw, Kokko, and Neubert 2018), and the spatial 

distribution of alleles during range expansion (Klopfstein, Currat, and Excoffier 2006; 

Travis et al. 2007; Burton and Travis 2008; Peischl and Excoffier 2015). Travis et al. 

(2009) developed a spatially-explicit time-discrete IBM to elucidate how dispersal 

strategies evolved differently for individuals in the stationary range versus the expansion 

front. Dispersal is the movement of an organism from the position where it was born to a 

new position where it reproduces – this has great importance for individuals on the 

expanding or contracting front of their species’ range (e.g. due to novel colonization of a 

region, tracking a climatically-suitable spatial range, or other environmental changes). 

Their simulations took place on a 700 x 20 2D world, in which the invasive species was 

to expand its range along the x axis. The individuals in their model were haploid and 

asexual, having genotypes with three values that determine their density-dependent 

dispersal predispositions and fixed density-dependent behaviour for reproduction. 

Dispersal was stochastic, and the probability of dispersal was controlled by a sigmoid 

function which the three genes controlled – one value controlled the maximum dispersal 

probability, another controlled the thresholding location of the function, and the last one 

controlled the slope of the sigmoid curve. They ran the simulation in several ways. First, 
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they ran the simulation on a 20 x 20 world for 10000 time steps to observe the 

evolutionary equilibrium when the population was so physically constrained. They 

subsequently ran the model with the full 700 cells on the x-axis, starting at time-step 

10001, aiming to observe if and how individuals closest to the invasion front (the five 

columns most recently expanded upon) differed evolutionarily from the others. They also 

conducted the same experiments, but for comparison, the individuals’ dispersal was 

density-independent – dispersal probability was simply modelled explicitly as a single 

value. Their simulations in the restricted world showed that the genes for thresholding 

abundance and maximal dispersal were selected upon most strongly, while the gene 

controlling the slope of the curve was weakly selected upon. It also showed that a variety 

of dispersal strategies were viable. With the expansion range open, they found that 

individuals along the expansion front differed genetically from those in the stationary 

range, regardless of whether dispersal was density-dependent or independent. Their 

model also yielded different evolutionary strategies for density-dependent range 

expansion – typically one of the three genes differed dramatically such that it favoured 

dispersal more often. Finally, they found that during range expansion, dispersal at low 

abundance was favoured and typically higher maximum dispersal probability evolved, 

even despite increased cost of dispersal, which their model allowed them to easily test. 

With a relatively small-scale IBM, these authors were able to uncover novel evolutionary 

differences between individuals in the invasion front versus those in the stationary range 

of an invasion. There have been several other works investigating the evolution of 

dispersal using IBMs (e.g. Fronhofer, Poethke, and Dieckmann 2015; Henriques-Silva et 

al. 2015). In fact, a review by Hargreaves and Eckert (2014) noted that the vast majority 

of models of dispersal are paradigmatic, spatially-explicit IBMs in which demographics 

and patch occupancy are considered. Interestingly, though many models considered range 

expansion, few models considered the dynamics of population genetics along a 

contracting range. They also noted that most models have haploid, asexual individuals, 

limiting their applications in studying how mating systems might evolve alongside 

dispersal strategies. 

 Another example of a paradigmatic IBM studying invasions is that of Sutter and 

Kawecki (2009). Few theoretical works previously aimed to establish links between 

learning capacity and evolution aiding in the ability of populations to expand to novel 

environments. There was limited support of the idea that learning could be facilitated by 

evolution, and equally limited support of the theory that learning could suppress 

evolution. Individuals in their model lived on a 1D ring world, consisting of two 

environments (one in which the individuals began and another in which the individuals 

could expand to) and two transition regions. The environments were similar in that they 

each had limited resources of the same quantity, denoted A and B, but the resources were 
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of opposite and inversely-related quality in each environment. The transition zones 

created a gradient such that there was no spatial bias in their world. Their model had 

diploid individuals with eight binary-encoded loci, and the sum of the alleles determined 

preference for one of the two resources. Individuals in their model underwent several 

rounds of feeding, during which their learning rate allowed them to modify their 

preference as they fed in their location. After feeding, survival was computed, being 

density-dependent and related to the amount of energy accumulated from the feeding 

phase. Lastly, those that survived were able to reproduce, during which all individuals 

were considered hermaphroditic. Upon initialization, all individuals were placed in the 

starting environment with perfect preference for the high-quality resource in that 

environment. Over the course of simulations, they experimented with the learning rate 

and environmental parameters to determine how learning influenced the evolution of the 

individuals as they expanded their range from the starting environment. They ran a 

number of simulations for a wide range of parameter combinations, stopping the 

simulations at 5000 time steps or when an invasion across the novel environment was 

considered successful. Their simulations showed that rapid expansion was favoured in 

environments with a gradual transition between habitats, with individuals having high 

learning ability, and with weak selection on resource preference. They also found that 

learning had little effect on expansion with a gradual transition between habitats, whereas 

with a sharp transition between environments learning was extremely important (with the 

converse being true for evolution). They also determined that genetic diversity was 

greatest in local populations along transition zones, while genetic diversity was reduced 

in local populations in non-transitional regions. Finally, their research showed that 

learning reduced the degree to which populations evolved and also increased the amount 

of genetic diversity within the populations. 

Several related studies have been conducted investigating the spatial distribution 

of alleles through populations undergoing range expansions. Klopfstein, Currat, and 

Excoffier (2006) built on a pre-existing paradigmatic IBM (SPLATCHE; Currat, Ray, 

and Excoffier 2004), to construct an IBM in which an initial population of haploid 

individuals expanded horizontally along a lattice subject to cell carrying capacity, inter-

cell migration rate, and population growth rate. Their modification allowed users to 

specify the location and timing of the rise of a mutant neutral allele. This allowed the 

researchers to track the spread of this allele as the population experienced range 

expansion. Interestingly, over all parameter sets they tested, the spatial distribution of the 

neutral allele had a common characteristic – its density was highest at the location 

parallel to its initialization and nearest to the expansion front (a phenomenon they called 

expansion wave surfing). They were also able to determine that the probability of neutral 

allele survival and surfing was dependent on the characteristics of the population – low 
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carrying capacity, high migration, and high population growth rate led to increased rates 

of survival and surfing of the mutations. Lastly, their study showed that the neutral 

mutation propagated more effectively if it occurred shortly after the arrival of the 

expansion front to the target location – if the development of the mutation was delayed, it 

was unable to surf the expansion wave. A follow-up by Travis et al. (2007) found that 

deleterious mutation can also surf the expansion wave, but equally as intriguing, 

beneficial mutations cannot. The findings of Travis et al. (2007) with respect to the 

neutral and deleterious mutations were very similar to findings of Klopfstein, Currat, and 

Excoffier (2006) regarding the neutral mutation – the same relationships with respect to 

carrying capacity, migration rate, and intrinsic growth rate were discovered. However, 

they found that although the beneficial mutation did reach high abundance in the 

expanding populations, it lacked the propensity or necessity to surf the expansion wave. 

On the other hand, neutral and especially deleterious mutations needed to surf the 

expansion wave in order to persist. The authors also tested two types of mutations – those 

affecting survival and those affecting the number of offspring an individual could 

produce. Though both types of mutants experienced the same fate, the mutations 

affecting reproduction rate directly impacted the rate of expansion. The deleterious 

mutations, in this case, further relied on surfing as a means of propagation – but as the 

mutation itself impacted the rate of propagation of the population (i.e. via range 

expansion), the likelihood of survival of the mutation decreased drastically. The findings 

of both studies highlight an extremely interesting phenomenon that likely has importance 

in invasion biology – keeping such a spatial distribution of neutral and even deleterious 

mutations could aid in maintaining higher genetic diversity nearer to the invasion front, 

which they theorized could be instrumental in helping individuals reach fitness peaks. 

Another follow-up by Burton and Travis (2008) explored this theory with a similar 

experiment; they found that not only can the surfing of neutral and deleterious alleles 

maintain genetic diversity on the invasion front, but it could also help subpopulations on 

the invasion front to cross adaptive valleys and reach new fitness peaks in genomes 

exhibiting sign epistasis (where presence of some mutant allele in some genetic context is 

deleterious, but in other contexts is beneficial). 

2.4 Early Detection of Invasive Species 

As noted by Simberloff et al. (2013) and many others cited above, the most cost-effective 

and successful form of dealing with invasions is to prevent them outright; both efficiency 

and effectiveness decrease as an invasion progresses. Unfortunately, it is not always 

possible to prevent introductions, but it is still clearly important to detect them early and 

to respond to them as quickly as possible. So important, in fact, that the four research 

themes of the Canadian Aquatic Invasive Species Network (CAISN) – selected in 

collaboration with federal government agencies – included a theme of early detection and 
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another of rapid response. Surveillance, and particularly early detection, is imperative in 

successfully thwarting an invasion; however, when the number of introduced individuals 

is low it is difficult to detect their presence using traditional methods such as trawling, 

recruitment plates, netting, trapping, fishing, or electrofishing (Harvey, Qureshi, and 

MacIsaac 2009; Smart et al. 2015). Thus, a major advancement in surveillance of 

introduced species is the use of molecular methods for early detection (Ficetola et al. 

2008; Jerde et al. 2011). Molecular methods could include the detection of metabolites or 

RNA (Pochon et al. 2017), but DNA-based detection approaches have the advantage of 

the persistence of DNA in the environment and throughout processing (Barnes et al. 

2015; Pochon et al. 2017), and currently the taxonomic resolution DNA provides due to 

large databases cataloguing specific markers for a wide variety of species (Hebert et al. 

2002; Ratnasingham and Hebert 2013).  

DNA-based methods have been proposed for some time, but the advent of 

barcoding and metabarcoding (Fonseca et al. 2010; Ratnasingham and Hebert 2013) 

made these methods a reality. Barcoding involves the use of small genetic ‘barcode’ 

regions (Hebert et al. 2003) to assign taxonomy to genetic data. Metabarcoding extends 

the use of this barcoding approach to samples of mixed sequences, aiming to assign 

taxonomy usually to particular subsets of taxa in the sample. In conjunction with the 

arrival of next-generation (high-throughput) sequencing technology, a vast reduction in 

the resource requirements (i.e. time and money) to conduct these methods have rendered 

these genetic methods viable options for early detection (Zhan et al. 2013). Barcoding 

and metabarcoding approaches could be used in the context of detection of environmental 

DNA (eDNA), i.e. the detection of genetic matter from for instance shed skin, secretions, 

gametes, and carcasses in an environment (Ficetola et al. 2008). They could also be used 

alongside traditional methods such as netting or trawling (e.g. Chain et al. 2016); such 

traditional methods often rely on morphological taxonomic assignment, and many species 

can be morphologically variable throughout their lifespan or just difficult to identify. It is 

also possible that partial organisms are contained in a given sample, rendering 

morphological assignment impossible. Genetic methods could be used in place of 

morphological assignment in these traditional methods to greatly increase their 

sensitivity, accuracy, and efficiency. Metabarcoding, particularly, is an interesting 

prospect in early detection of invasive species because it can be used on huge, diverse 

eDNA or bulk samples to efficiently determine the presence of a wide range of taxa 

(Ficetola et al. 2008). 

Metabarcoding is not without its issues; despite improvements in the associated 

technology (e.g. sequencers) there are a huge number of potential sources of error in the 

barcoding or metabarcoding process for early detection of nonindigenous species (Xiong, 

Li, and Zhan 2016). These sources include sample contamination, primer selection, 
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marker selection, sequencing, and incomplete reference databases. To reduce the 

frequency and impact of these errors, computational processing of the sequence data is 

typically employed, for example to filter out likely erroneous sequences, group spurious 

reads with likely correct representative reads, and cluster groups of reads together to form 

operational taxonomic units (OTUs). Unfortunately, even this computational processing 

can be a source of error. A false positive error, for instance, might stem from falsely 

considering an erroneous read correct and assigning it to a species that does not exist in 

the sample. A false negative error, for example, might occur when a correct sequence is 

wrongly filtered out with no other representative sequences from the species in the 

sample. Clearly, either type of error (false positive or false negative) could be detrimental 

to early detection of nonindigenous species. The effects of this computational processing, 

and the best way to conduct it, are poorly understood but imperative to understand if this 

technology is to be used in practice. Chapter 5 consists of a study we conducted under the 

CAISN to aid in the computational processing of sequences, applied to conducting 

species richness assessments and early detection of nonindigenous species using the 

metabarcoding approach. 

2.5 Conclusion 

Biological invasions are extremely important but also difficult to study, often 

necessitating the use of computer simulations to generate data that are too difficult 

(sometimes impossible) to obtain naturally. These data can be used to make predictions 

regarding spread, interactions of native and introduced species involved, impacts caused 

by the introduced populations, and the effectiveness of control strategies. In this 

dissertation, a paradigmatic predator-prey ecosystem individual-based model called 

EcoSim was produced (Chapter 3). Subsequently, several novel variants of EcoSim were 

developed to determine how genetic diversity affects establishment success of introduced 

populations (Chapter 4). Finally, a simulation using real genetic data was employed to 

determine optimal parameterization of a sequence processing pipeline for usage in 

detecting aquatic invasive species and estimating species richness, and then test its 

performance (Chapter 5). This dissertation highlights the importance, effectiveness, 

necessity, and viability of usage of computer simulations for the study of biological 

invasions, ecology, and evolution. 
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CHAPTER 3 

EcoSim 

3.1 Introduction 

EcoSim is a large-scale evolving predator-prey paradigmatic ecosystem simulation that 

can be used to perform studies in theoretical biology and ecology (Golestani et al. 2012; 

Mashayekhi et al. 2014). It has been shown that EcoSim generates patterns of complexity 

similar to those observed in real ecosystems (Golestani and Gras 2010). Several studies 

have been done using EcoSim. Devaurs and Gras (2010) have shown that the behavior of 

this model is realistic by comparing the species-abundance patterns observed in the 

simulation with real communities of species. Furthermore, chaotic behavior (Golestani 

and Gras 2010) and multi-fractal properties (Golestani and Gras 2011) of the system have 

been demonstrated to be similar to those in real ecosystems (Seuront et al. 1996), and 

Golestani, Gras, and Cristescu (2012) measured the effect of small geographic barriers on 

speciation in EcoSim. The effect of the spatial distribution of individuals on speciation 

was investigated by Mashayekhi and Gras (2012). Khater et al. (2014) demonstrated that 

introduction or removal of predators in an ecosystem can have widespread effects on the 

survival and evolution of prey by altering their genomes and behavior. Mashayekhi et al. 

(2014) showed that the extinction mechanisms in EcoSim are similar to those of real 

communities. Lastly, a study by Gras et al. (2015) used EcoSim to explore the roles of 

natural selection and spatial isolation in the speciation process. They were able to 

unequivocally demonstrate that in order to observe genetic clusters (species), natural 

selection must be present. The number of individuals per species was much greater, 

species abundance distributions were far more even, the compactness and separation of 

genetic clusters were far greater, and hybrid production was far lower (after sufficient 

time had passed in the simulation) in runs where natural selection was present. 

Real ecosystems are extremely complex systems with numerous interacting 

components and feedback loops. No paradigmatic model has all of the features of real 

ecosystems; consequently, these artificial systems are restricted to a small spectrum of 

possible questions they could answer. EcoSim was already quite complex and diverse in 

the types of questions it could answer, but we have added specific features to further 

improve its realism and applicability. Our objective is to propose to the community an 

improved simulation platform that models as many of the important features of real 

ecosystems as possible. Of course, not every significant feature of real ecosystems could 

be integrated into such a simulation platform. However, we have chosen a set of features 

that seem most important in modelling a stable, long-term evolutionary ecosystem and 

providing the mechanisms needed to answer the largest possible spectrum of important 

theoretical questions. The three most important features we have added to EcoSim are 
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fertilization of soil via animal excretion, the ability of prey to defend against attacking 

predators (individually or cooperatively), and a female/male binary sex system with 

sexual reproduction. In previous iterations of EcoSim, individuals were of uniform sex 

and any two individuals of the same type (prey or predator) could attempt to reproduce. 

There is a vast array of indirect impacts of herbivores on plant community 

features (Augustine and McNaughton 1998; Olff and Ritchie 1998). Most importantly, 

herbivores affect the quantity and quality of organic matter returning to the soil (Hobbs 

1996; Bardgett et al. 1998; Bardgett et al. 2003; Wardle 2002). Generally, animal excreta 

facilitates decomposition through increasing soil microbial biomass (Frank and Evans 

1997; Bardgett et al. 1998) and net Carbon (C) and Nitrogen (N) mineralization (Molvar 

et al. 1993; Frank and Groffman 1998). Feces and urine also make it easier for plants to 

absorb, thereby increasing their growth rates (Hamilton and Frank 2001). Thus, 

herbivores are able to influence their own food supply (Hik and Jefferies 1990; Drent and 

Van der Wal 1999; Van der Wal et al. 2004) by producing negative feedback against the 

reduction of resources they consume. In order to include this complex feedback 

mechanism, we introduced a new concept to our simulated ecosystem called “fertilizer”, 

which models the effect of prey fertilizing their environment.  

There is limited experimental evidence in the ecological literature regarding 

mobbing behavior as a kind of reciprocal altruism between heterospecifics. Krams et al. 

(2006) and Krams et al. (2008) report that breeding Fecedula hypoleuca (pied 

flycatchers) engage in mobbing behavior primarily with heterospecifics as a form of 

defense against predation. As Krams et al. (2006) note, there is little empirical evidence 

for the existence of mobbing behavior as a form of reciprocal altruism. EcoSim could 

thus be used to test for mobbing behavior as a form of reciprocal defense in the presence 

of predation. In a related vein, an important unresolved debate in the biological literature 

is whether eusociality evolved via kin selection or group selection; Nowak et al. (2010) 

claim that group selection rather than kin selection (inclusive fitness) combined with 

haplodiploidy theory is the best way to explain eusociality. They suggest that there may 

be no real relation between haplodiploidy and eusociality, and they argue that inclusive 

fitness theory is not sufficiently general since it is a simple mathematical theory that has 

great limitations (Nowak et al. 2010). Furthermore, Nowak et al. (2010) argue that there 

is no empirical confirmation of inclusive fitness theory. On the other hand, Marshall 

(2016) and Abbott et al. (2010) argue that recent evidence helps to support inclusive 

fitness theory. Since there is apparently an argumentative stalemate regarding whether 

kin selection or group selection drives evolution, EcoSim could help to resolve this 

debate by testing the hypothesis that kin selection explains the evolution of eusociality 

and altruism. Finally, another important issue in evolutionary theory is whether predation 

selects for morphological defenses in prey. Bollache et al. (2006) argued that the main 
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reason that the invasive amphipod, Gammarus roeseli was eaten less than the native 

amphipod species Gammarus pulex was due to the presence of a spine on G. roeseli, as 

opposed to behavioral differences. EcoSim could be used to help resolve the debate 

regarding whether morphology or behavior is a key inducible defense against predators. 

Typically, in sexually reproductive species in which sexual dimorphism exists, 

females are generally choosier than males when selecting mates. Compared to males, 

females typically invest far more resources (time and energy) into offspring. For instance, 

females typically provide more parental care than males. Females also invest more in 

gametes for sexual reproduction; males produce the microgamete sperm, whereas females 

produce large, nutritious eggs. Moreover, unlike males, females only produce a limited 

number of eggs as long as they are reproductively active; therefore, there is more risk 

associated with mate choice (Andersson 1994). To broaden the applicability and increase 

the realism of EcoSim, we introduced a model for sexual reproduction into the 

simulation. Previously, there was no categorization of individuals by sex; any individual 

could attempt reproduction with any other of the same type (prey with prey, predators 

with predators). Now, prey and predator individuals are divided into two groups, males 

and females. Furthermore, we have made significant modifications to reproduction 

mechanisms such as selection of mates, energy dynamics, and genetic recombination; 

these changes reflect the information-gathering and decision-making process that is mate 

choice (Bateson 1983). These new improvements were aimed at unravelling some of the 

most complex issues in behavioral ecology, such as the evolution of female preference. 

In addition to presenting the new version of EcoSim following the updated 7-

points Overview, Design concepts, and Details (ODD) standard protocol (Grimm et al. 

2006, Grimm et al. 2010), we present and discuss data from EcoSim in its default 

configuration. We also analyze the divergence of two sister species in EcoSim. We then 

present a sensitivity analysis on three parameters of EcoSim: the amount of energy spent 

per time step for prey and predators, the maximum amount of grass held in cells, and the 

initialization of newly added social concepts related to defense. The purpose of this 

sensitivity analysis was to show how sensitive or robust EcoSim is to these parameters. 

Finally, we present a case study of EcoSim’s application; we determined the behavior and 

evolution of individuals under two conditions: reduced primary production (thereby 

increasing competition) and reduced energy expenditure. This study serves as an example 

of the types of study that are made possible by the EcoSim platform. 

3.2 ODD Description 

EcoSim is an individual-based ecosystem simulation (Gras et al. 2009; Mashayekhi et al. 

2014.b) for simulating animals’ behaviors in a dynamic, evolving ecosystem. The 

individuals of EcoSim are prey and predators acting in a simulated environment. A 
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description of the older version of EcoSim can be found in Mashayekhi et al. (2014.a, 

2014.b). In addition to the main features outlined above, EcoSim has been expanded by 

adding several smaller features, such as: new individuals' perceptions of their 

environment, new actions, new physical traits (governed by what we call the physical 

genome), sex-linked genes, various modes of reproduction, modified acting priority for 

individuals, new ways to control the dynamics of the environment, and new crossover 

and mutation operations that consider an individual’s sex. Below, we describe the new 

version of EcoSim following the updated 7-points Overview, Design concepts, and 

Details (ODD) standard protocol (Grimm et al. 2006; Grimm et al. 2010). EcoSim source 

code (in C++) can be obtained from the repositories at https://github.com/EcoSimIBM, 

and more information can be found at https://sites.google.com/site/ecosimgroup/home. 

3.2.1 Purpose 

EcoSim was designed to simulate animal behavior in a dynamic and evolving ecosystem. 

The main purpose of EcoSim is to study biological, ecological, and evolutionary theories 

by constructing a complex adaptive system that leads to a generic virtual ecosystem with 

behaviors like those found in nature. Due to the complexity, scale, and resource 

requirement of studying these theories in real biological systems, simulations of this 

nature are necessary. EcoSim uses a fuzzy cognitive map (FCM; Kosko 1986) to model 

an individual's behavior. Since the FCM is coded in the genome and heritable, behavior 

can evolve during the simulation. Importantly, the fitness of a given set of behaviours and 

physical traits is not pre-defined. Instead, fitness emerges from interactions between the 

model organisms and their biotic and abiotic environment. 

3.2.2 Entities, State Variables, and Scales 

Individuals 

EcoSim has two types of individuals: prey and predators. Each individual possesses two 

types of traits: acquired and inherited traits (Table 3.1). The former varies depending on 

the environmental conditions and the latter is encoded in an individual’s genome and is 

fixed during its lifetime. The Age (number of time steps that the individual has been alive 

in the simulation) and Speed (number of cells the individual moved in a given time step) 

are initialized to zero for newborn individuals, while energy, a crucial property of the 

individual, is initialized based on the amount of energy invested into a newborn by its 

parents at reproduction time (State of Birth or SOB – see Reproducing under Submodels). 

Afterward, energy is provided to the individuals by resources (food) they find in their 

environment. Prey consume grass, which is dynamic in quantity and location (see 

Submodels for grass diffusion model), whereas predators hunt for prey individuals or 
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scavenge their remains when they die. Strength of an individual is calculated based on its 

current energy (Energy), maximum energy (MaxEnergy), age (Age), maximum age 

(MaxAge) and reproductive age (RepAge). Young (Age is less than RepAge) and old 

individuals (Age is greater than or equal to MaxAge minus RepAge) have less Strength. 

Strength can range from 25% of an individual’s MaxEnergy (if the individual is too 

young or old and has energy approaching zero) to 100% of the individual’s MaxEnergy 

(if the individual has energy greater than or equal to 1/3 of its MaxEnergy and the 

individual is not too young or old). 

Table 3.1. Several physical and life history characteristics of individuals from five independent runs. The values for the 

inherited features are the values at initialization, and for the acquired features they are the average values over 20,000 time 

steps. 

Type Characteristic Male Predator  Female Predator Male Prey Female Prey 

In
h

er
it

ed
 

Maximum Energy 3000  3000 2500 2500 

Maximum Age 50  50 46 46 

Vision 20  20 8 8 

Maximum Speed 20  20 6 6 

Minimum Age 

of Reproduction 

5  5 6 6 

State of Birth 14  18 12 16 

Defense N/A  N/A 0.05 0.05 

Cooperative 

Defense 

N/A  N/A 0.05 0.05 

A
cq

u
ir

ed
 Average Energy 2312.2  2211.4 1664.9 1678.3 

Average Age 16.5  13.7 14.3 12.3 

Average Speed 3.4  2.9 6.5 6.0 

Average Strength 3306.3  3107.9 2478.9 2439.7 

 

Each individual performs one unique action during a time step, based on its 

perception of the environment and state (see Emergence under Design Concepts). At each 

time step, each individual spends energy depending on its selected action (e.g., 

reproduction, eating, moving), the complexity of its behavioral model (number of 

existing edges in its FCM; see Adaptation under Design Concepts for details), and its 

physical characteristics (encoded in its physical genome; see Adaptation under Design 

Concepts for details). To achieve a realistic rate of energy expenditure we involved as 

many of its contributory factors as possible and used empirically-determined 

physiological scaling rates (see Eq. 3.1, per time step energy penalty for prey, and Eq. 

3.2, per time step energy penalty for predators). In general, any action performed by a 

living organism is involved in spending some amount of energy (Butler et al. 2004), 

dependent on what the action is (Blaxter 1989). Thus, the action performed was included 

as a contributing factor in energy expenditure (Eqs. 3.1 and 3.2). Moreover, the size of a 

living organism plays a fundamental role in its metabolic rate (Chapman and Reiss 1999). 
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In EcoSim, the size of each individual is modelled through its MaxEnergy and Strength. 

MaxEnergy is a heritable limit on an individual’s capacity to store energy, whereas 

Strength is a slightly more complex proxy of size, being derived from an individual’s 

MaxEnergy, Energy, and Age. Experimental and empirical investigations have 

demonstrated that there is a nonlinear relationship between an adult animal’s body mass 

and their metabolic rate, which is best described by a ¾ scaling exponent (Kleiber 1932; 

Hemmingsen 1960; Kleiber 1961; Stahl 1965; Stahl 1967; Pedley 1977; Prothero 1979; 

Schmidt-Nielsen 1984; Peters 1986; Niklas and Enquist 2001). Consequently, the 

metabolic rate of an individual in EcoSim is quantified through a power function of 

coefficient ¾ on its MaxEnergy (Eqs. 3.1 and 3.2). Energy expenditure associated with 

movement is also modelled in EcoSim using the kinetic energy equation (KE), and here 

we use Strength as a proxy of mass (KE = mass ×  speed2, Eqs. 3.1 and 3.2). The 

complexity of an organism's behavioral model increases an individual’s energy 

expenditure, because it has been accepted that species belonging to a higher-level 

taxonomic affiliation require more energy to survive (Mueller and Diamond 2001; Nagy 

2005). Individuals with a larger brain also require more energy, as the brain is an 

expensive organ in terms of specific chemical and thermoregulatory needs (Wheeler 

1984; Falk 1990). Consequently, possessing a large brain leads to a heavier metabolic 

requirement (Safi et al. 2005). The complexity and the size of the brain vary in different 

species; while some species possess a very simple and small brain, many higher 

vertebrates have a brain so large and complex that it is considered the most complex 

organ in these species (Shepherd 1994). Therefore, we also include this parameter in 

calculating the energy spent by an individual. Taking these points into consideration, the 

energy spent by prey (1) and predators (2) at any time step is given by the following 

equations: 

(3.1) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑝𝑒𝑛𝑡 𝑏𝑦 𝑃𝑟𝑒𝑦 

= (0.8 ×  𝑚𝑎𝑥((𝑁𝑏𝐴𝑟𝑐𝑠 −  100)0.75, 1)) +
(𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ × 𝑆𝑝𝑒𝑒𝑑2)

10000

+ (
𝑀𝑎𝑥𝐸𝑛𝑒𝑟𝑔𝑦

5.5
)

0.75

+ (𝑉𝑖𝑠𝑖𝑜𝑛 ×  5.0)0.75 + (𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑 ×  5)0.75  

+  (𝐷𝑒𝑓𝑒𝑛𝑠𝑒 ×  100)0.75 +  (𝐶𝑜𝑜𝑝𝐷𝑒𝑓𝑒𝑛𝑠𝑒 ×  75)0.75 + (𝑚𝑎𝑥(0, 8 − 𝑅𝑒𝑝𝐴𝑔𝑒))2.3, 

(3.2) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑝𝑒𝑛𝑡 𝑏𝑦 𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟

= (0.8 ×  𝑚𝑎𝑥((𝑁𝑏𝐴𝑟𝑐𝑠 −  130)0.75, 1)) +
(𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ × 𝑆𝑝𝑒𝑒𝑑2)

11000

+ (
𝑀𝑎𝑥𝐸𝑛𝑒𝑟𝑔𝑦

5.5
)

0.75

+ (𝑉𝑖𝑠𝑖𝑜𝑛 ×  5.0)0.75 + (𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑 ×  5)0.75  

+  (𝑚𝑎𝑥(0, 7 − 𝑅𝑒𝑝𝐴𝑔𝑒))2.3, 
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where NbArcs is a measure of the complexity of the individual’s brain based on the 

number of edges in its FCM (see Adaptation under Design Concepts for details), Vision 

refers to the distance up to which the individuals can see (which is initially 8 cells for 

prey and 25 cells for predator), Defense quantifies the ability of the prey individuals to 

protect themselves when they are attacked by predators, CoopDefense quantifies the 

ability of a prey individual to protect other prey in its cell, and RepAge is the Age at 

which the individuals can start reproducing. 

All individuals first perceive their environment (all the surrounding cells in their 

vision range) before using their behavioral model to choose a single action (see 

Emergence under Design Concepts for details of how individuals choose actions). After 

perceiving its environment (including grass resources, prey, predators, etc.), the possible 

actions for a prey individual are: evade (escape from predator), search for food (if there is 

not enough grass available in its cell, move to another cell to find grass), socialize (move 

to the closest prey in the vicinity, move to the cell with strongest prey, move to the cell 

with the greatest total prey Strength, or move to a cell with the least total prey Strength), 

explore, rest (to save energy), eat, or reproduce. Predators also perceive their 

environment to gather information used to choose an action among: hunt (to catch and eat 

a prey), move to the cell with strongest prey, move to the cell with the least total prey 

Strength, move to the cell with the weakest prey, search for food, socialize (move to the 

closest predator in the vicinity or move to the cell with strongest predator), explore, rest, 

eat, or reproduce. See the Submodels section for a full description of actions. Every 

individual takes one action per time step, after which its energy level and Strength are 

adjusted. The Age of all individuals is also increased by one unit at each time step. In 

addition to the acquired physical traits mentioned above, each individual has many state 

variables that, together, represent its state of mind. These variables are the values held in 

the nodes of each individual’s FCM. Each FCM node has a single value that is its 

activation level (degree of stimulation) of its represented concept. Concepts can either be 

sensory, such as the individual’s perception of local food, internal, such as the 

individual’s hunger, or action, such as the individual’s willingness to perform the eat 

action (see Emergence, Adaptation, and Submodels for more information).  

Time Step 

Each time step involves each individual perceiving its environment, making a decision, 

and performing one action. In addition, species memberships are updated and all relevant 

variables (e.g., quantity of available grass) are recorded (see Process Overview and 

Scheduling for algorithm). 

Cells and Virtual World 
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The smallest units of the environment are cells. Each cell represents a large space, which 

may contain an unlimited number of individuals, some limited amount of food, and some 

limited amount of fertilizer. The number of individuals a cell can host, therefore, is 

indirectly limited by the amount of food a cell contains. There are two types of food: 

grass, which only prey can eat, and meat, which only predators can eat. Grass amounts 

are controlled by a grass diffusion and growth model, and meat is generated when 

predators kill prey (see Submodels for grass diffusion model and meat generation). 

Fertilizer is produced by individuals residing in a cell (see Submodels for fertilizer 

dynamics). The virtual world consists of a matrix of 1000×1000 cells. The world is large 

enough that an individual moving in the same direction over the course of its entire life 

could not even cross half of it, and thus high-level movement patterns can be observed. 

The virtual world wraps around to remove any spatial bias. In addition, the dimensions of 

the world are adjustable, but expanding the dimensions increases the computational 

requirements (time and memory) of the simulation.  

Species 

By default, numerous prey and predators coexist in the simulation at any time step. 

Alternatively, the simulation can be run without predators. For each type, there is some 

number of species determined by the genetic makeup of the sets of individuals. There is 

at least one prey species and one predator species unless an extinction occurs, and at most 

there can be one species per individual. A species is a set of individuals with sufficiently 

similar genomes (see Collectives under Design Concepts for more details about 

speciation). 

3.2.3 Process Overview and Scheduling 

At each time step, the value of the state variables of individuals and cells are updated. 

The overview and scheduling of every time step is as follows: 

1. For prey individuals:  

1.1. Perceive environment  

1.2. Compute next action 

1.3. Increase Age 

1.4. Females that chose to Reproduce act in order of decreasing Strength (to simulate 

female choice in mate selection) 

1.5. Remaining prey act in order of decreasing Strength 

1.6. Update list of prey (as some may have died due to depletion of Energy or 

maximum Age)  
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2. For predator individuals: 

2.1. Perceive environment  

2.2. Compute next action 

2.3. Increase Age 

2.4. Females that chose to Reproduce act in order of decreasing Strength (to simulate 

female choice in mate selection) 

2.5. Remaining predators act in order of decreasing Strength 

2.6. Update list of predators and prey (for predators, some may have died due to 

depletion of Energy, maximum Age, or combat with prey; for prey, some may 

have died due to predation) 

3. Sort prey in order of decreasing Strength 

4. Sort predators in order of decreasing Strength  

5. Update prey species 

6. Update predator species 

7. For every cell in the world 

7.1. Update Fertilizer level 

7.2. Update Grass level  

7.3. Update Meat level  

The complexity of the simulation algorithm is mostly linear with respect to the 

number of individuals. If we consider that there are N1 prey and N2 predators, then the 

complexity of parts 1 and 2 of the above algorithm, including the clustering algorithm 

used for speciation, will be O(N1) and O(N2), respectively (Aspinall and Gras 2010). The 

sorting parts (parts 3 and 4) have a complexity of O(N1log(N1)) and O(N2log(N2)) but are 

negligible in computational time so we will exclude them from the complexity 

computation. The complexity of parts 5 and 6 will be O(N1 + N2). The default virtual 

world of the simulation has 1000 x 1000 cells, therefore the complexity of part 7 will be 

O(k = 1000 × 1000). As a result, the overall complexity of the algorithm is O(2N1 + 2N2 

+ k), which is O(N = 2N1 + 2N2). In terms of computational time, the speed of simulation 

per time step is related to the number of individuals. Recent executions of the simulation 

produced approximately 20,000 time steps in 60 days.  

3.2.4 Design Concepts 

Basic Principles 
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The genome of each individual consists of two parts: a physical genome and a behavioral 

genome. An individual’s genome is fixed at birth. When a new offspring is created, it 

receives a genome that combines the genomes of its parents with some possible 

mutations. An individual’s physical genome determines its physical characteristics and its 

behavioral genome determines its behavioral characteristics. An individual’s physical 

genome comprises values that represent its physical attributes (see Table 3.1, inherited 

traits). 

The behavioral model of each individual is encoded as an FCM (Gras et al. 2009) 

(Figure 3.1). Formally, an FCM is a directed graph that contains a set of nodes C and a 

set of edges I (Figure 3.1; Kosko 1986). Each node Ci represents a concept and each edge 

Iij represents the influence of the concept Ci on the concept Cj. A positive weight 

associated with the edge Iij corresponds to an excitation of the concept Cj from the 

concept Ci, whereas a negative weight represents inhibition. A zero value indicates that 

there is no influence of Ci on Cj. The edges of an FCM can be represented by an n×n 

matrix, L, in which n is the number of concepts and Lij is the influence of the concept Ci 

on the concept Cj. If Lij = 0, there is no edge between Ci and Cj. An individual’s 

behavioral genome is its set of FCM edges (its matrix L). Since the edges of the FCM are 

encoded in the genome, the behavioral model is heritable, mutable, and subject to 

evolution. Individuals act at each time step by using their FCM to compute their action 

(see Emergence). The activation level (degree of stimulation) of each concept, 

represented as the value held in its corresponding node, is dynamic in each individual. 

Collectively, the activation levels of every one of an individual’s nodes represent the 

individual’s behavioral state. In each FCM, three kinds of concepts are defined: sensory 

(such as distance to foe or food, amount of energy, etc.), internal (fear, hunger, curiosity, 

satisfaction, etc.), and action (evade, socialize, explore, reproduce, etc.). At each time 

step, the activation level of a sensory concept is computed by performing a fuzzification 

of the information that the individual perceives in the environment (changing its real 

scalar value into a fuzzy value, i.e., transforming the input value by a potentially 

nonlinear function). Subsequently, for an internal or action concept C, the activation level 

is computed from the weighted sum of the current activation level of all input nodes by 

applying a defuzzification function (another nonlinear function transforming the fuzzy 

input value into the final 'real' value). 
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Fig. 3.1. An example FCM of a predator (a) and prey (b). Red edges between nodes indicate negative association (inhibition) 

of a concept (where the edge begins) with another (where the edge points to), and blue edges indicate positive association 

(excitation). The thickness of the edges represents the magnitude of the gene. The leftmost column of nodes is sensory 

concepts, the middle is internal concepts, and the rightmost is action concepts. There are many unconnected nodes because we 

aim to observe evolution in action; over time, new edges may form and others may disappear. 

We will illustrate the operation of the FCM with a simplified example prey FCM 

(Figure 3.2) consisting of only four nodes (EnemyClose, EnemyFar, Fear, and Evade). 

EnemyClose and EnemyFar are sensory concepts, whereas Fear is internal and Evade is 

an action. All sensory nodes appear in pairs, like EnemyClose and EnemyFar; the 
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activation level of one of these nodes is always equal to 1 - a, where a is the activation 

level of the other. The individual perceives its environment to get a raw value for the 

distance to the nearest predator; this raw value is fuzzified to compute values between 0 

and 1 for the activation levels of EnemyClose and EnemyFar by nonlinearly transforming 

it. To compute the activation level of Fear, a weighted sum of the activation levels of all 

nodes with incident edges to Fear is computed and the weights are the edge values from 

the behavioral genome. From our example, Fear has incident edges from EnemyClose 

and EnemyFar, thus we use edge weights from the behavioral genome for 

EnemyClose→Fear and EnemyFar→Fear to compute the weighted sum. The same 

computation is performed for the activation level of Evade. Finally, if Evade is the action 

selected by the individual (if, of all action concepts, it has the highest activation level), 

the speed of evasion is computed by defuzzifying the activation level of Evade. In the 

behavioral genome where no edge exists between two nodes (for instance, 

EnemyClose→Evade), the corresponding genes have values of zero. However, as 

individuals evolve, new edges can be added and pre-existing edges could be removed. 

 

Fig. 3.2. A simplified example prey FCM for detection of predators (bottom left), with fuzzification (top left) and 

defuzzification (top right) functions, and its matrix (bottom right), which is the behavioral genome of the individual. 

EnemyClose and EnemyFar are sensory concepts, Fear is an internal concept, and Evade is an action concept. The edges of 

the FCM show influence of the activation level of a node on another. In the matrix, rows represent influencing concepts and 

columns represent those that are influenced. Row and column indices of 0 represent EnemyClose, 1 represent EnemyFar, 2 

represent Fear, and 3 represent Evade. 

Emergence 
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The FCM representation of the behavioral model allows for the appearance of positive 

and negative feedback loops. For instance, an individual may evolve a positive edge 

between the internal concept Fear and itself – this positive feedback loop can allow 

complex phenomena such as paranoia to emerge. Similarly, negative feedback loops can 

evolve that stabilize individual behavior. For instance, a negative association between 

EnergyHigh and Hunger with a positive association between Hunger and Eat means that 

after an individual replenishes its energy by performing the Eat action, it is less willing to 

eat again until its energy levels are lower. The fuzzification and defuzzification 

mechanisms allow for nonlinear transformations of the perception signal, which permits, 

for example, the representation of saturation of information. An individual’s action is 

selected based on the action node with the highest activation level. Because of the way in 

which the behavioral genome determines the behavior of individuals and how the 

physical genome determines their physical capabilities, the evolution of behavioral and 

physical properties of individuals is emergent and it also influences other emergent 

properties of the system such as number of individuals, spatial compactness of 

individuals (a proxy of competition for resources), and number of species. 

At the initiation of the simulation, prey and predators are scattered randomly all 

around the virtual world (see Stochasticity for a description of this process). Through the 

course of the simulation, the distribution of the individuals in the world changes based on 

many different factors such as behavior selection (prey escaping from predators, 

individuals socializing to form groups, and individuals moving to find food resources). In 

addition, emergent high-level migration phenomena and grouping patterns with spiral 

waves can be observed because of these complex interactions between the individuals 

and their environment. The distribution of individuals forming spiral waves is one 

property of prey-predator models (Golestani and Gras 2012; Figure 3.3). 
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Fig. 3.3. A cropped image of an EcoSim run at time step 20000. Hungry predator individuals (red) chase fleeing prey 

individuals (green), one of the many contributory factors to the emergent high-level movement patterns we observe. 

Adaptation 

The behavioral genome’s maximal length is fixed (663 genes for prey and 756 for 

predator), where each site corresponds to an edge between two concepts of the FCM. 

However, many edges have an initial value of zero; only 117 edges for prey and 131 

edges for predators have non-zero values at initialization. Each gene of the behavioural 

genome follows the continuum-of-alleles model (Bürger 2000) and can take values 

between -12 and 12. These alleles represent the strength of the positive or negative 

influence of one concept on another, such as the strength of the association between level 

of hunger and willingness to eat. In addition to the behavioral genome, every individual 

has a physical genome that describes its physical characteristics, with each trait coded by 

one gene. Maximum energy (MaxEnergy), maximum age (MaxAge), vision (Vision), 
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maximum speed (MaxSpeed), minimum reproductive age (RepAge), and state of birth 

(StateOfBirth) are physical traits that both prey and predators possess. Prey have two 

more traits: defense (Defense), and cooperative defense (CoopDefense), so they can 

protect themselves from predators. The mechanisms involving the various physical traits 

are described further below and under Submodels. 

Both genomes have two representations – a lightweight byte vector representation 

used for efficient storage in save files and for the computing of evolutionary distances 

and evolutionary operations, and a floating-point vector representation used for all other 

computing (activation levels, action selection, physical distances, energy dynamics, etc.). 

The mapping between these representations differs between the genomes. Both 

representations are fixed at birth for the individual’s lifespan. For the behavioral genome, 

the byte value of zero maps to the floating-point value of zero. Any byte value less than 

128 is reduced by 128 and then divided by 10 to get its associated floating-point value. 

Any byte value greater than or equal to 128 is reduced by 127 and then divided by 10 to 

get its associated floating-point value. Thus, byte values from zero to 127 take the range 

of [-12.7, 0] and byte values from 128 to 255 take the range of [0.1, 12.8]. For example, 

under this representation, a byte value of 76 yields a floating-point value of -5.2 ((76-

128)/10) and a byte value of 200 yields 7.3 ((200-127)/10). For the physical genome, the 

floating-point representation of each gene has a minimum and a step. For byte value k, its 

floating-point equivalent is minimum + (k × step). For instance, MaxEnergy has a 

minimum of 100 and a step of 25. Thus, a byte value of 17 for MaxEnergy yields a 

floating-point value of 525.0. 

The genomes of two parent individuals are transmitted to an offspring individual 

after recombination and potentially some mutations. EcoSim incorporates genetic 

recombination through crossover, and in the behavioral genome this includes epistasis 

(e.g., multiple stimuli can influence a given drive) but no pleiotropy (each gene 

influences only one link between nodes). To model this form of linkage, alleles of the 

behavioral genome are transmitted by blocks. All incident edges for a given FCM node 

are transmitted together from a randomly selected parent with equal probability (there is 

no recombination among genes representing edges to a given node). Sex-linkage occurs 

for perception nodes, as the selected parent is of the same sex as the offspring. Sex-

linkage of MaxEnergy occurs as it is a weighted sum of that of its parents. The parent 

with the same sex as the offspring has five times the influence on the offspring’s 

MaxEnergy as the other parent (Eq. 3.3; MaxEnergy is abbreviated to ME; subscripts o, 

m, and f represent offspring, mother, and father, respectively). Sex-linkage occurs for 

StateOfBirth as well, as an offspring’s StateOfBirth is equal to that of its parent of the 

same sex. All genes in the physical genome are potentially mutated after crossover with 

some probability (p = 0.001). A mutation on a gene in the physical genome is a 
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modification of its byte value (randomly drawn from a truncated normal distribution 

between -6 and +6). Mutations in the behavioral genome occur due to the formation of 

new edges (with a probability of 0.001), removal of existing edges (with a probability of 

0.0005), and changes in the weights associated with existing edges (with a probability of 

0.005). The effect of a given mutation is modification of the value randomly drawn from 

a truncated normal distribution between -0.6 and +0.6 on the floating-point value of a 

gene. The probability of mutation in the behavioral genome is doubled for old individuals 

(Age > MaxAge – RepAge). New genes may emerge from the initial pool of edges with a 

zero value. This emergence and disappearance of the genes in FCM is due to natural 

selection and genetic drift, which leads to the adaptability of individuals (Gras et al. 

2015). 

𝑀𝐸𝑜 =  {

 5 ×𝑀𝐸𝑚+𝑀𝐸𝑓

6
, 𝑖𝑓 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑖𝑠 𝑓𝑒𝑚𝑎𝑙𝑒

 5 ×𝑀𝐸𝑓+𝑀𝐸𝑚

6
, 𝑖𝑓 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑖𝑠 𝑚𝑎𝑙𝑒.     

             (3.3) 

Fitness 

To measure the capacity of an individual to survive and produce offspring that can also 

survive, the fitness of a species is calculated as the average fitness of its individuals. The 

fitness of an individual is defined as the age of death of the individual plus the sum of the 

age of death of its direct offspring. Accordingly, the fitness value represents the 

individual's ability to survive and produce well-adapted offspring. There is no pre-

defined explicit fitness-seeking process in the simulation; rather, fitness is a consequence 

of natural selection. Individuals who are better adapted to the environment sustain a 

higher level of energy, live longer, are able to have more offspring, and transfer their 

efficient genomes to them (Gras et al. 2009; Gras et al. 2015). The fitness value is only 

computed for analysis of the results of the simulation and is not used in process during 

the simulation. 

Prediction 

So far, there is no learning mechanism for individuals, and they cannot predict the 

consequences of their decisions. The only information available to an individual for 

decision-making comes from its perception at a given time step and the value of the 

activation level of the internal and action concepts at the previous time steps. The 

activation levels of the concepts of an individual are never reset during its lifetime. As the 

previous time step activation level of a concept is involved in the computation of its next 

activation level, this means that the previous states of an individual participate in the 

computation of its current state. Therefore, an individual has a basic memory of its own 

past that will influence its future behaviour. As the action undertaken by an individual at 
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a given time step depends on the current activation level of the action concepts, the 

behavior of the individual depends on a complex combination of the individual's 

perception, the current internal states, the past states it went through during its life, and its 

genome. 

Sensing 

Every individual in EcoSim can perceive its local environment inside of its range of 

vision. Some of these senses are common between prey and predator; both can perceive 

nearby friends and foes, how close food is, their energy level, the amount of food in their 

cell, how many potential reproductive partners are in their cell, and their Age. 

Additionally, new to EcoSim, all individuals can perceive their Strength and the 

maximum Strength of potential mates in their cell. Also new to EcoSim, prey individuals 

can sense the sum of Strength of prey in their cell and the sum of Strength of the cell 

within vision range that has the highest sum of prey Strength. Similarly, predator 

individuals can sense the sum of Strength × (1 + Defense) of prey in their cell, the 

distance to the cell in vision range with the highest sum of prey Strength × (1 + Defense), 

and the maximum Strength × (1 + Defense) in their cell. These new sensory concepts 

serve several purposes related to the notion of prey defending against predators, new to 

EcoSim. With these new sensory concepts, prey can use strength-related sensory 

information to join a cell with other strong prey to bolster cooperative defenses. 

Similarly, predators can use strength-related information to avoid conflict with stronger 

prey individuals or groups of strong prey. Alternatively, if the predator is very strong, it 

may use this information to gain a larger energy reward for killing stronger prey. 

Individuals can only reproduce with individuals of the same type in their current cell. 

Having the ability to sense strong individuals and move to them means that (with the 

right combination of edges) there is potential to improve the chance of reproducing with 

strong individuals. Thus, these concepts can also lead to some potentially interesting 

evolutionary phenomena, such as a strength-based evolutionary arms race between prey 

and predator populations. 

Interaction 

In EcoSim, there are direct and indirect interactions amongst individuals and between 

individuals and their environment. These interactions stem from actions that prey and 

predator individuals can perform. The only direct interaction that requires a coordinated 

decision by two individuals is Reproduction. Reproduction occurs between two prey or 

two predators. For Reproduction to be successful, the two parents need to be in the same 

cell, have sufficient Energy, choose the Reproduction action, and be genetically similar. 

The individuals cannot determine their genetic similarity with their potential partner; they 
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try to mate and if the partner is too dissimilar (the dissimilarity between the two genomes 

is greater than some percentage of the speciation threshold, by default 62.5%), the 

reproduction fails. See Reproducing under Submodels for more details of the 

Reproduction action. 

The Hunting action of predators is a direct interaction that occurs between a 

predator and some number of prey existing in a cell. For Hunting to succeed, the predator 

must be able to move to the cell containing its target prey individual and it must have 

greater Strength than its target’s Energy. Should the Hunt succeed, the prey target is 

killed and the predator receives some amount of Energy. The predator also receives an 

Energy penalty if the target prey tries to defend itself, or if other prey in the cell were 

defending the target. See Hunting under Submodels for more details of the Hunting 

action. 

Lastly, there are several ways that individuals can indirectly interact with each 

other and their environment. An individual’s perception of its local environment causes 

its actions and movement to be influenced by the distribution of other individuals and 

food resources. Moreover, individuals that share a cell compete for the limited resources 

that the cell contains (food and mates), and this yields density dependence. Competition 

generally comes in two main forms, which represent opposites along a gradient. Contest 

competition arises when a single individual claims all of its local resources, leaving other 

individuals with nothing (Brännström and Sumpter 2005). This allows individuals to 

potentially monopolize resources because strong individuals continue to claim resources 

while the weak starve and ultimately perish. Scramble competition, in contrast, occurs 

when individuals share resources equally and are thus equally penalized by local density 

increases (Brännström and Sumpter 2005). Competition in EcoSim, like in most 

ecosystems, is neither purely contest or scramble competition; elements of both forms of 

competition can be observed.  

Stochasticity 

To produce variability in the ecosystem simulation, several processes involve 

stochasticity. At initialization, the number of grass units is determined for each cell 

following a uniform random distribution (a value between 1 and MaxGrass). Similarly, at 

initialization, individuals are randomly distributed across the world in clusters. The 

simulation takes as input a clustering radius and a number of prey and predator 

individuals per cluster (see Initialization and Input Data). Let x and y be random 

coordinates for the center of a cluster, ClusteringRadius be the clustering radius, and k be 

the number of prey individuals in a cluster. Then, for each of the k prey individuals, xn 

and yn (the x and y coordinates for the position of the nth individual in the cluster) are 

produced by taking x and y and subtracting from or adding to them a random value 
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between zero and ClusteringRadius. This process occurs until the entire initial set of prey 

individuals is placed in the world. The same process then occurs for the predators. The 

Age of an individual is also determined randomly at birth from a uniform distribution in 

[1, 24] for prey and [1, 35] for predators. Similarly, the initial energy of an individual is 

randomly generated in a uniform distribution, ranging from 40% to 100% of the initial 

maximum energy of the individual. Age and Energy are randomly generated in this 

manner to avoid apparition of synchronicity in action selection and death cycles early in 

runs that would cause instability, leading to extinction of prey or predators. The sex of an 

individual at initialization or at birth is randomly generated with equal probability to be 

male or female. Stochasticity is also included in several kinds of actions of the 

individuals (see Submodels for full descriptions of each action). For instance, if a hunting 

predator cannot find a prey within its vision range, the direction of its movement will be 

random. Furthermore, the direction of the exploration action is always random. 

Mutation and crossover both involve stochasticity, as described under Adaptation. 

Furthermore, when individuals perceive their environment, they perform a radial sweep 

about their position along the four cardinal directions. The sweep begins at a distance of 

one and increments to the individual’s vision range. The starting cardinal direction and 

the direction of the radial sweep are randomly generated to remove any biases in 

perception and movement. Lastly, stochasticity is incorporated into the grass diffusion 

model (see Submodels for elaboration). To understand the extent of stochasticity in 

EcoSim, Golestani and Gras (2010) examined whether chaotic behavior (one signal of 

non-randomness) exists in time series generated by the simulation. The authors concluded 

that the overall behavior of the simulation generates emergent patterns that are non-

random and instead like those observed in complex biological systems (Kantz and 

Schreiber 1997).  

Collectives 

An EcoSim run persists while there is at least one prey individual. If all prey die, the run 

is complete due to extinction as the predators can only eat prey. EcoSim can be run with 

or without predators, though typically there are predators as it is designed to observe 

predator-prey interaction. A typical EcoSim run has 60000-1000000 prey and 2000-

30000 predators at any time step, depending on the parameterization of the run. 

In EcoSim, it is necessary to compute the genetic distance between any two 

genomes of the same type (prey or predator) in order to establish the notion of species. 

This distance calculation does not include sex-linked genes (see Reproducing under 

Submodels). To compute this distance, it is first initialized to zero. For every element of 

the behavioral genome in its byte vector form, the absolute difference between the pair of 

corresponding values from each genome is added to the distance. Subsequently, for every 
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gene of the physical genome, a weight is computed by taking the absolute difference of 

corresponding floating-point values and then dividing by the range of values for that 

gene. This weight is then multiplied by the difference between genes, multiplied by five, 

and added to the distance. 

Species emerge from the evolving sets of prey and predators. Species membership 

is strictly used in data analysis – it is not used to govern any mechanics related to 

reproduction. There is a separate genetic similarity threshold used for reproduction which 

is much lower than the speciation threshold, and this allows hybridization (reproduction 

between members of different species) to occur (see Reproducing under Submodels). At 

initialization of EcoSim, there is one species per type. Species can become extinct if all 

their members die. EcoSim implements a species based on the genotypic cluster 

definition (Mallet 1995) in which a species is a set of individuals sharing a high level of 

genomic similarity. In addition, in EcoSim, each species is associated with the average of 

the genetic characteristics of its members, called the ‘species center’. The speciation 

mechanism implemented in EcoSim is based on the gradual divergence of individual 

genomes. The speciation method begins by finding the individual A in a species S with 

the greatest genetic distance from the species center. Next, the individual B in S with the 

greatest distance to A is found. If this distance is greater than a pre-defined threshold for 

speciation, a 2-means clustering is performed (Aspinall and Gras 2010), otherwise S stays 

unchanged. 

 To initialize the 2-means clustering process, one center is assigned to a random 

individual, denoted Ir, and the other center is assigned to the individual who is the most 

genetically different from Ir. After eight cycles of the 2-means clustering algorithm, two 

new sister species are created to replace S. Each species for each type in EcoSim has a 

unique species identifier, starting at one and incrementing automatically when a new 

species is formed. Of the two sister species replacing S, one retains the species identifier 

of S and the other obtains the next available identifier.  

Observation 

EcoSim produces a large amount of data at each time step, recording many statistics like 

the number of individuals, the characteristics of each individual, and the status of each 

cell of the virtual world. Information regarding individual characteristic include spatial 

position, level of energy, choice of action, species identity, parents, FCM, etc. 

Information about the individuals, species, and virtual world for every 20 time steps are 

stored in a file, optionally using the HDF5 format (The HDF Group 2000) with an 

average size of 6 gigabytes. Also, there is a possibility of storing all of the values of 

every variable in the current state of the simulation in a separate file, creating the 

possibility of restoring the simulation from that state afterwards. The overall size of this 
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file, which is only stored every 20 time steps (by default, this frequency can be modified 

in the parameters file), is a few gigabytes depending on the numbers of individuals and 

species. All of the data is stored in a compact special format, to facilitate storage and 

future analysis. There are also several utility programs that can be used, for example, to 

analyze the simulation outputs, to calculate the species and individual fitness, to generate 

images of the world for each time step of the simulation, to generate the video of the 

world throughout a run or some portion of it, and to draw the FCM of the individuals. 

Initialization and Input Data 

A parameter file (with filename “Parameters1.txt”) is defined for EcoSim, which is used 

to assign the values for each state variable at initialization of the simulation. Example 

parameters include the width and height of the world, initial numbers of individuals, 

thresholds of genetic distance for prey/predator speciation, speed of grass growth, 

probability of grass diffusion, initial maximum age, initial maximum energy, initial 

maximum speed, initial maximum vision range, initial values of FCM edges for 

prey/predators, and the characteristics of the fuzzification functions for sensory input. 

Any of these parameters can be changed for specific experiments and scenarios. 

Initialization involving stochasticity (such as the initial distribution of individuals in the 

world) is described under Stochasticity, above. Many of these initial parameters are only 

important in stabilization of the simulation in its early stages, before the emergent 

properties of the system are observable. These parameters have been tested extensively to 

ensure that EcoSim is stable in a wide variety of scenarios (if grass levels are low, if grass 

levels fluctuate regularly over time, if grass diffusion probability is reduced, if prey 

reproduce asexually rather than sexually, etc.). EcoSim is designed to be highly 

generalized. Typically, the emergent properties of at least two sets of runs initialized 

identically (or very similarly) with few mechanical differences are studied and compared, 

to observe the effect of these few mechanical differences on the evolution of the 

populations. Thus, the physiological scaling rates are informed by empirical biological 

studies (as noted above under Individuals), but the aim of the initial parameters of 

EcoSim is to produce a stable system and thus they are largely arbitrary. An example of a 

list of common user-specified parameters for the initial running of EcoSim are presented 

in Table 3.2. 

Table 3.2. Values for user-specified parameters. 

User-Specified Parameter Used Value 

Number of Prey 80000 

Number of Predators 4000 

Max Grass Quantity in each cell 4000 

Prey Maximum Energy 2500 
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Predator Maximum Energy 3000 

Prey Vision Range 8 

Predator Vision Range 20 

 

Output 

EcoSim produces a wide variety of outputs. As EcoSim runs, it prints out updates 

of its progress. In standard output, it prints out the current time step, followed by the 

action it is currently processing (e.g. “Individuals updating”, “Prey seeing world”) and 

the time it takes to process the action. It also generates three main save files – 

WorldSaves, MinSaves, and MaxSaves. WorldSaves display the entire “world” vector, 

and are saved every time step. For each cell in the world, the WorldSave contains its 

coordinates along with its current level of Grass, Meat, and Fertilizer. MinSaves hold the 

current dynamic state of every individual alive in the simulation, and they are printed 

every time step. MinSaves and WorldSaves are used for post-processing and data 

analyses. MaxSaves are EcoSim’s largest outputs – they save the entire state of an 

EcoSim run and are typically saved more rarely (e.g. every 20 time steps). MaxSaves 

serve as restore points so that a run can be paused and continued at the user’s discretion. 

Further, MaxSave files can be duplicated to run identical EcoSim runs with different 

treatments, starting from any time step.  

3.2.5 Submodels 

Food Sources: Grass and Meat 

There are dynamic processes for the resources in each cell, such as grass growth, grass 

diffusion, and variation in the amount of meat at each time step. At initialization, there is 

no meat in the world and the amount of grass energy units is randomly determined for 

each cell, as described under Stochasticity.  

The grass growth rate in each cell is regulated by several factors: 

SpeedGrowGrass (200 by default), ProbaGrowGrass (0.035 by default), MaxGrass 

(4000 by default), and Fertilizer. The first, SpeedGrowGrass, is a parameter in the 

EcoSim parameter file that determines the speed of grass growth. For a cell not already 

containing grass, grass can diffuse from an adjacent cell with a probability of 

ProbaGrowGrass at a rate of SpeedGrowGrass, provided that one of the eight cells 

around the cell contains a non-zero amount of grass. Fertilizer, a feature new to EcoSim, 

is derived from the excretions of individuals. AmountOfFertilizer, the amount of fertilizer 

in a cell, is proportional to the sum of maximum energy (MaxEnergy) of the prey and 

predators residing in that cell, limited to a total of 20000. If AmountOfFertilizer is less 
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than SpeedGrowGrass, then the fertilizer does not have any effect. Otherwise, the rate of 

grass growth is equal to AmountOfFertilizer and limited to triple SpeedGrowGrass. For a 

cell already containing grass, the rate of grass growth is simply added to the amount of 

grass currently in the cell at a given time step. AmountOfFertilizer decreases at a rate of 

10% per time step. The amount of grass in a cell is limited to MaxGrass. 

Another new EcoSim feature is that MaxGrass can be set to fluctuate cyclically 

following a cos wave by setting the FluctuatingResources parameter in the parameter 

file. The period, minimum (as a ratio of MaxGrass), and amplitude (as a ratio of 

MaxGrass) of the wave can be set using the parameters FluctuationCycle, 

FluctuationMinimumRatio, and FluctuationAmplitudeRatio, respectively. Another new 

feature is that MaxGrass can be set such that it creates regularly positioned circular 

patterns throughout the world using the CircularFoodGrowth parameter. The diameter of 

the circles, the maximum grass level at the center of the circle (as a ratio of MaxGrass, 

though still limited by MaxGrass), and the minimum amount of grass in any cell (as a 

ratio of MaxGrass) are set using the FoodCircleDiameter, FoodCircleMaxRatio, and 

FoodCircleMinimumRatio parameters. FoodCircleMaxRatio is used to increase the rate 

at which MaxGrass increases closer toward the center of a circle, and MaxGrass 

increases following a cos wave from FoodCircleMinimumRatio to FoodCircleMaxRatio 

from the edge of a circle to the center. 

The amount of meat in each cell is limited to MaxMeat (4000 by default) and 

increases every time step by the Strength of the prey killed in that cell during that time 

step. It also decreases at each time step by 1000, even if no meat has been eaten in this 

cell. 

Actions 

For each movement action M, the movement speed (Speed) is equal to MaxSpeed × 

ActivationLevel(M), thus the speed at which an individual moves during the action 

depends on its willingness to perform it. Speed is the straight-line distance that an 

individual can move in a single time step. Each action has its own corresponding 

submodel: 

1. Evading (for prey only). An evading prey moves in the direction opposite to the 

barycenter of the five closest predators within its vision range, with respect to its 

position. If no predator is within the vision range of the prey, the direction is chosen 

randomly. 

2. Hunting (for predators only). The predator selects the closest cell (including its current 

cell) that contains at least one prey and moves toward that cell. If it reaches the 

corresponding cell based on its Speed, the predator selects a prey target and tries to kill 
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it. When there are several prey in the destination cell, one of them is chosen randomly 

as the target. If the Speed of the predator is not enough to reach the cell, it moves at its 

Speed toward the cell and the hunt has failed. Similarly, the hunt has failed if there is 

no prey in the vicinity. When a predatorʼs hunt succeeds, the Strength of the killed prey 

is added to the cell in meat energy units. Afterward, the predator consumes the meat to 

gain its required energy, min(MaxEnergy – Energy, MeatUnits), where MeatUnits is 

the number of meat energy units produced by the killed prey. The remaining units of 

meat energy are allocated to the cell and can be consumed by other predators using 

their Eat action. Prey have a defense capability as well as cooperative defense and use 

them in a battle against the predator (Arnold 2000).  

Prey defense and cooperative defense is passive; prey defend automatically if they 

have a non-zero Defense value and are targeted by a predator, or if they have a non-

zero CoopDefense value and share a cell with a target. Prey spend energy when trying 

to defend, and predators receive an energy penalty (P in Eq. 3.4, AP.D and AP.S are 

Defense and the Strength of the attacked prey; CPi.D, CPi.CD, and CPi.S are the 

Defense, CoopDefense, and Strength of the prey i in the same cell) when they attempt 

to attack a prey individual with non-zero Defense or a cell containing prey defending 

cooperatively. It is even possible for a predator to be killed by defending prey, 

particularly if the predator already has low Energy. Additionally, the prey that are 

involved in a cooperative defense also lose some amount of Energy based on the 

strength of the predator (0.2 × PredatorStrength / NumberOfDefenders). The target 

prey loses Energy equal to 100% of the attacking predator’s Strength if it is not 

cooperatively defended, otherwise it loses 80% of the attacking predator’s Strength. If, 

after the attack, the prey’s Energy is greater than zero, the prey survives and the hunt 

has failed. 

𝑃 = 𝐴𝑃. 𝐷 ×  𝐴𝑃. 𝑆 + ∑ (𝐶𝑃𝑖 . 𝐷 ×  𝐶𝑃𝑖 . 𝐶𝐷 ×  𝐶𝑃𝑖 . 𝑆)𝑖           (3.4) 

3. Searching for food. The direction toward the closest food (grass for prey, meat for 

predators) within the vision range is computed. If the individual’s Speed is high enough 

to reach the food, the individual is placed in the cell containing this food. Otherwise, it 

moves at its Speed toward this food. If no food is within vision range, the individual 

moves in a random direction. 

4. Socializing. The direction toward the closest possible mate within the vision range is 

computed. If the individual’s Speed is high enough to reach this mate, the individual is 

placed in the cell containing this mate. Otherwise, the individual moves at its Speed 

toward this mate. If no mate is within vision range, the individual moves in a random 

direction. 
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5. Exploring. A direction is computed randomly. The individual moves at its Speed in this 

direction. 

6. Resting. Nothing happens. 

7. Eating. If the current amount of grass (meat) in the prey’s (predator’s) cell is greater 

than 0, the prey (predator) consumes the grass (meat) to gain its required energy, 

min(MaxEnergy – CurrentEnergy, EnergyUnits), where EnergyUnits is the number of 

grass (meat) energy units in the cell. EnergyUnits is decreased by the amount 

consumed by the individual. 

8. Reproducing. Chromosomes in eukaryotic cells are usually present in pairs (diploid 

organisms). The chromosomes of each pair separate in meiosis, one going to each 

gamete. In many animal species, sex is determined by a special pair of chromosomes 

called sex chromosomes (allosomes), the X and Y. All other chromosomes are called 

autosomes. The sex chromosomes are an exception to the rule that all chromosomes of 

diploid organisms are presented in pairs of morphologically similar homologs. While 

females have two X chromosomes, the males have one X chromosome along with a 

morphologically unmatched chromosome, called the Y chromosome. All somatic cells 

in male and female organisms have a complete set of autosome and sex chromosomes. 

Every egg cell contains an X chromosome, while only half of sperm cells contain an X 

chromosome and the other half contain a Y chromosome. This difference is a 

chromosomal mechanism for determining sex at the time of fertilization. In other 

words, while autosome chromosomes are randomly obtained from both parents; the Y 

chromosome in male offspring is exclusively acquired from the father (Hartl and Jones 

2004). Individuals in EcoSim, in contrast to the common case, are haploid. That is, 

their chromosomes are present as singletons that are generated from specialized 

evolutionary operations described below. To model more realistic individuals, we 

made it so that all perception genes, MaxEnergy genes, and StateOfBirth genes exist on 

allosomes (that is, they are sex-linked), while all other genes exist on autosomes. Thus, 

there is an evolving differentiation between male and female behavior. 

As per the section Process Overview and Scheduling, females intending to reproduce 

act first. This is because females initiate reproduction in EcoSim, to simulate female 

choice. Females can attempt to reproduce with any male in their cell, however, success 

is not guaranteed and individuals always act in order of decreasing Strength. There are 

several ways a reproduction attempt can fail in EcoSim. Reproduction fails if there are 

no males in the current cell. Otherwise, the female randomly selects a potential male 

partner. A reproduction attempt with a single male can fail if: the male has already 

reproduced (with a different, stronger female), the male has selected a different action 

(e.g., Eat or Evade), the male is below reproduction age, the male has insufficient 
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energy to reproduce, or the genetic distance between the female and male is too great. 

The genetic distance threshold for reproduction failure is greater than the speciation 

threshold, therefore individuals from different species can reproduce to generate hybrid 

offspring. In this case, the hybrid offspring is assigned to the species that has the 

smaller genetic difference between its average genome and the genome of the 

offspring. The female can attempt to reproduce with each male in the current cell, but 

loses two Energy for each failed attempt. If reproduction succeeds, the process of 

generating a new offspring consists of the following steps. When a new offspring is 

created, it is given a genome that is a combination of the genomes of its parents using a 

specialized crossover operation along with some possible mutations (as explained 

under Adaptation). The sex of the offspring is randomly determined with equal 

probability of being male or female. Then, the initial Energy (Energy0) of the offspring 

is computed (Eq. 3.5) based on the parents’ MaxEnergy (abbreviated to ME in the 

equation) and StateOfBirth (abbreviated to SOB in the equation).  

𝐸𝑛𝑒𝑟𝑔𝑦0 =  
𝑀𝐸𝑓 × 𝑆𝑂𝐵𝑓 × 𝑀𝐸𝑚 × 𝑆𝑂𝐵𝑚

100
                                                          (3.5) 

Finally, the Energy of the two parents is decreased. The energy penalty for the mother, 

penaltym, is calculated based on Eq. 3.6, where the subscript m and f mean mother and 

father, respectively. The parameter Energy is the newborn individual's Energy. FPP is 

the first-time pregnancy penalty for the mother, which is five percent of its energy and 

zero for the subsequent pregnancies. The energy penalty for the father is based on Eq. 

3.7. 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑚 =  
𝑆𝑂𝐵𝑚 × Energy × 1.05

SOB𝑚 + SOB𝑓
+ 𝐹𝑃𝑃                                                       (3.6) 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑓 =  
𝑆𝑂𝐵𝑓 × Energy × 1.05

SOB𝑓 + SOB𝑚
 .                                                                 (3.7) 

9. Move2StrongestPrey/Predator (for prey/predators, respectively). The direction toward 

the strongest possible mate within the vision range is computed. If the Speed of the 

individual is high enough to reach the mate, the individual is placed in the cell 

containing this mate. Otherwise, the individual moves at its Speed toward this mate. If 

no mate is within the vision range of the individual, the direction is chosen randomly. 

10. Move2StrongestPreyCell (for prey only). This action is similar to 

Move2StrongestPrey/Predator, except that the direction of movement is toward the 

cell with the highest cumulative Strength of prey individuals. This allows prey to 

benefit from cooperative defense against predators. 
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11. Move2WeakestPreyCell (for prey only). This action is similar to 

Move2StrongestPreyCell, but the direction of movement is toward the cell with the 

lowest cumulative Strength of prey individuals. This allows prey to have a higher 

chance of success in competition with other prey individuals in accessing food or 

mates. 

12. Move2StrongestPreyDistance (for predators only). The predator moves toward the 

strongest prey individual to acquire more energy after possible hunting. If the Speed of 

the individual is high enough to reach the prey, the individual is placed in the cell 

containing this prey. If the Speed of the predator is not enough to reach the prey, it 

moves at its Speed toward this prey. 

13. Move2WeakestPrey (for predators only). This action is similar to 

Move2StrongestPreyDistance, with the exception that the direction of movement is 

toward the weakest prey individual for easier hunting in the future. 

14. Move2WeakestPreyCell (for predators only). This action is similar to 

Move2WeakestPrey, but the direction of movement is toward the cell with the lowest 

cumulative Strength of prey individuals to minimize the possible effect of cooperative 

defense by prey individuals.  

3.3 Ecological and Evolutionary Properties 

Time-series data are generated automatically by EcoSim per time step, as explained 

above. We computed ten runs of EcoSim in the default configuration (which we hereby 

refer to as Default) to 20000 time steps. Using external tools that already existed, we 

computed the mean of several important measures for these ten runs. We computed the 

number of prey and predator individuals, the number of prey and predator species, the 

mean distance evolved of all female individuals, and three physical attributes for all 

female individuals (MaxEnergy, MaxSpeed, and Vision). Distance evolved is computed 

by first computing the mean genome for all individuals at a given time step, and 

subsequently computing the genetic distance from this genome to the prey genome that 

the simulation was initialized with. 

As expected, there was a dependency between number of prey and predators 

(Figure 3.4). At initialization of the simulation, the number of prey is greater than the 

number of predators (80000 and 4000, respectively). Therefore, we tend to observe an 

early spike in the number of prey, which subsequently sharply declines when the number 

of predator individuals rises. The increasing number of prey provides a good chance for 

the predators to have access to more food, resulting in an increase in their Energy and 

reproduction rate. The resulting increase in hunting by predators accompanied by local 

food resource shortages for prey decreases the number of prey, and consequently the 
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number of predators, ultimately leading to stabilization of the system. A similar 

phenomenon occurs at finer spatial scales; local population explosions and extinctions 

yield fine-scaled fluctuations in numbers of individuals over time, with a time lag 

between the fluctuations in number of prey and predators. This dependence of predator 

population on prey population is known as the Lotka-Volterra, model as outlined in 

Berryman (1992) and empirically corroborated by Piana et al. (2006), where they fitted 

the model to a time series dataset of 16 species of neotropical fish that were classified as 

either predators or prey. These time series mostly stabilize with these small fluctuations, 

resulting in 268871 prey (SD = 80804) and 10388 predators (SD = 2613.4). As Britten et 

al. (2014) observed, this stabilization can be jeopardized if there is a sudden decline in 

predator species in such a predator-prey system. 

 

Fig. 3.4. The number of prey (left y-axis) and predators (right y-axis) in the world, over the course of the simulation. 

The number of species more strongly correlated with the number of individuals for 

predators than for prey (Figure 3.5). Generally, an increase in the number of individuals 

allows for a corresponding increase in diversity within the gene pool, and this increased 

diversity tends to lead to increased speciation (Khater and Gras 2012). However, with the 

number of prey individuals so high, the gene flow is also very high, which results in 

overall genetic convergence. Spatial separation in individuals reduces gene flow. With 

fewer predator individuals in the world, there is greater spatial separation overall amongst 

predators, providing a greater opportunity for the subpopulations to genetically 

differentiate and ultimately yield new species. As Hoskin et al. (2005) argued, reduced 

gene flow in allopatry results in the gradual emergence of reproductive isolation and 

subsequently new species; this has been observed in EcoSim as well (Golestani, Gras, 

and Cristescu 2012). 
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Fig. 3.5. The number of prey and predator species throughout the course of the simulation. 

The prey and predator distance evolved were comparable by the end of the simulation 

(Figure 3.6). However, at the end of the simulation, the rate of predator evolution was 

greater than that of prey. In fact, nearly halfway through the simulation, the distance 

evolved for prey hit a plateau. This highlights an important distinction – that the prey 

(with such a high number of individuals) evolved rapidly but in a convergent manner, 

whereas the predators evolved more slowly but with high differentiation across all 

individuals. As Brodie and Brodie (1999), as well as Brodie et al. (2002) observe, 

predators that pursue prey with multiple defenses will tend to adapt evolutionarily, which 

may in part explain the higher rate of evolution of predators versus prey. Two main 

factors are responsible for the convergent evolution in prey: the aforementioned high 

gene flow and the fact that natural selection occurs in EcoSim since there is no pre-

defined fitness function (Gras et al. 2015, Khater et al. 2014). The fitness landscape in 

EcoSim is dynamic overall; both the prey and predators evolve simultaneously and the 

world state is constantly changing. However, many aspects of the world remain constant, 

such as MaxGrass, the functions that govern energy expenditure of the individuals, and 

the rules that govern processes like reproduction. Thus, some genetic convergence should 

be expected – certain behavioral and physical genotypes will be desirable regardless of 

the world state at any given time step. The high genetic divergence accumulated early by 

the predators (apparent in the number of species over time) led to faster overall evolution 

later in the simulation. Another factor contributory to the fast evolution of predators later 

in the simulation is that there is more potential for divergence in the predator behavioral 

genome; the prey behavioral genome has 663 elements, whereas that of predators has 

756. It is inevitable that predators will eventually evolve in a more convergent manner as 

well; this is observable in the subtle decrease in predator evolutionary rate over time. 



 

55 
 

 

Fig. 3.6. The distance evolved for prey and predators throughout the course of the simulation. 

MaxEnergy evolved similarly for both prey and predators (Figure 3.7). In both cases, it 

monotonically increased from the initial values of 2500 for prey and 3000 for predators to 

an average of 3763 (SD = 505.7) and 4310 (SD = 372.3), respectively. As Strength is 

related to MaxEnergy, this could represent a type of evolutionary arms race because of 

the possibility of prey fighting back against predators when they attack. Alternatively, a 

higher maximum energy capacity may be strictly beneficial for the individuals, because it 

allows individuals to survive longer between Eat actions. Moller (2009) performed 

estimates of basal metabolic rate (BMR) of 76 bird species that were pursued by 

predators. The author reports that birds with longer flight initiation distances used to 

escape predators also had higher BMRs, from which he concludes that predation creates a 

selection pressure on species to develop higher BMRs (Moller, 2009). Thus, it is possible 

that the higher maximum energy capacity is necessary in individuals due to an increased 

BMR. Furthermore, the energy dynamics of each physical attribute is governed in part by 

the energy consumption functions for prey and predators. Thus, it is possible that with a 

more heavily penalized MaxEnergy, it might be less prone to such a runaway. Vision and 

MaxSpeed are related in that individuals must both perceive a resource (a mate, food, 

etc.) and be able to move to it in order to use it immediately. Otherwise, the individual 

will have to wait for at least one time step until it can use the resource it desires, which 

may be too late depending on the state of the individual and the environment around it. 

Thus, we should expect that Vision and MaxSpeed evolve in a related and intuitive 

manner. Predator Vision and MaxSpeed appeared to be heavily related in the way we 

expected (Figure 3.8). That is, both Vision and MaxSpeed evolved to slightly increase and 

then slightly decrease, nearly in unison, with Vision always greater than MaxSpeed. This 

is intuitive because it is particularly imperative for predators to perceive their resources; 

potential mates are far less abundant for predators, and their food resources are constantly 

changing positions in the world. This observation has been empirically corroborated in a 
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study of predatory bird species conducted by Garamszegi et al. (2002) in which it was 

found that predatory species evolved increased visual acuity along with larger brains to 

detect prey. On the other hand, it is less important for prey to perceive their resources, but 

it is important for prey to move quickly to evade predators. Potential mates and food 

resources are far more abundant for prey, and their food resources are static in the world 

(unless a cell’s grass is fully consumed before the prey can reach it). Furthermore, over 

time, we observed that prey tended to perform the Evade action decreasingly while they 

increasingly performed Explore instead (Figure 3.9). The directionality of the Explore 

action is randomly generated, and with the high prey density it is possible that when they 

Explore they can randomly discover mates or food resources while they simultaneously 

evade predators. If all prey in a particular wave performed Evade when faced with a 

predator, many of the prey individuals would move in a similar direction, which could 

increase competition for resources. On the other hand, increasingly performing Explore 

may be evidence of the evolution of altruism; if a small percentage of prey purposely 

sacrifice themselves by moving towards the wave of predators (using Explore rather than 

Evade), it keeps the wave of predators away from the highest-density prey regions. 

 

Fig. 3.7. The evolution of MaxEnergy for prey and predators throughout the course of the simulation. 
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Fig. 3.8. The evolution of Vision and MaxSpeed for prey and predators throughout the course of the simulation. 

 

Fig. 3.9. Selection of actions by prey over time. Prey evolved to Evade less and Explore more, while simultaneously reducing 

their reproduction failure rate (ReproduceFailed). Evolution of an increase in Move2StrongestPreyCell and 

Move2StrongestPrey is also observed. 
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CHAPTER 4 

Exploring the Effects of Genetic Diversity on Establishment Success in EcoSim 

4.1 Introduction 

Studies of biological invasions are certainly important from a practical standpoint; 

understanding invasions allows us to more effectively minimize the spread of invasive 

species and their impacts. However, invasions are also becoming increasingly recognized 

as interesting to study in light of theoretical evolutionary ecology (Sax et al. 2007; 

Lawson Handley et al. 2011; Bock et al. 2015). Introduced populations are subject to 

ecological conditions that are likely different from those in their native ranges, and so the 

introduced organisms must either be exapted (i.e., having evolved traits in the native 

range that yield fitness advantages in the introduced range, solely by chance; Hufbauer et 

al. 2012) to these circumstances or able to rapidly adapt to them in order to establish. 

Ecological interactions and their outcomes are undoubtedly influenced by the genetics of 

the populations involved; in biological invasions, these interactions are unique in terms of 

the species involved and the genetic and demographic dynamics of the introduced 

populations (Dlugosch et al. 2015).  

Evolutionary-ecological studies of species introductions have provided 

researchers with two non-mutually-exclusive main types of genetic insights (Bock et al. 

2015). The first is evolutionary rate information (e.g. Simmons and Thomas 2004; 

Carroll et al. 2005), potentially in conjunction with genetic bottlenecks and possibly 

evolutionary rescue (e.g. from multiple introductions or even multiple sources of 

introduction, e.g. Kolbe et al. 2004). The second type of insight is regarding the 

phenotypes, corresponding genotypes, or evolutionary processes that allow certain 

species or populations to establish, expand, and become invasive. There are numerous 

examples of these studies, including the aforementioned ones (Travis and Dytham 2002; 

Klopfstein, Currat, and Excoffier 2006; Travis et al. 2007; Zayed, Constantin, and Packer 

2007; Burton and Travis 2008; Burton, Phillips, and Travis 2010; Colautti and Lau 2015; 

Peischl and Excoffier 2015; Chen et al. 2018; Lustenhouwer, Williams, and Levine 

2019). Kanarek and Webb (2010), for example, showed that evolutionary rescue from 

Allee effects was possible, and that considering invasions only from ecological 

perspectives (i.e. without considering evolution) could lead to underestimation of the 

potential for invasion. Zhang et al. (2019) found evidence in the invasive alligator weed 

for the evolution of increased competitive ability (EICA) hypothesis. 

Despite numerous insights from studying invasions, there exist many unanswered 

questions in the field of invasion biology. An important question that arises in the 

discussion of establishment success is the role of genetic diversity of introduced 
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populations. It is theorized that introduced populations should be subject to a 

demographic and genetic bottleneck (Roman and Darling 2007; Bock et al. 2015; Estoup 

et al. 2016; Briski et al. 2018); introduced populations can originate from extremely 

small nonrandom (e.g. spatially biased) samples of a source population and this should 

have short- and long-term consequences on their establishment success. In the short term, 

the probability of suitable genotypes for the novel region should increase with genetic 

diversity of introduced populations (Bock et al. 2015; Briski et al. 2018). A corollary of 

this is that the importance of genetic diversity for introduced populations should increase 

with the degree of adaptive challenge encountered (Estoup et al. 2016), for instance, 

degree of similarity or harshness of environments, or degree of similarity of competitors 

in native and introduced ranges (Hufbauer et al. 2012; Hufbauer et al. 2013; Fridley and 

Sax 2014; Rius and Darling 2014; Estoup et al. 2016). Affecting the longer term, low-

diversity introduced populations have less “raw material” with which evolution can work 

to produce well-adapted genotypes in the novel range (Bock et al. 2015).  This long-term 

effect need not take many generations to begin to manifest. For instance, Christie et al. 

(2016) found prominent signs of selection occurring in domesticated steelhead trout after 

only one generation. Similarly, in a lab experiment, Krause, Dinh, and Nielsen (2017) 

found increased tolerance to oil exposure in Acartia tonsa after only the second 

generation. 

There exists empirical evidence for a positive effect of genetic diversity on 

establishment success (Forsman 2014 and references therein). Hufbauer et al. (2013) 

found in whiteflies that outbred introduced populations established more successfully 

than inbred populations in a novel, “harsh” environment. In a reciprocal transplant 

experiment between populations accustomed to two different environments, red flour 

beetles exhibited increased establishment success with increasing genetic diversity, and 

this effect was more pronounced with small propagule sizes (Szűcs et al. 2017). In a 

meta-analysis of 18 studies by Forsman (2014), genetic diversity had an overall positive 

effect on establishment of both plant and animal populations, evidenced in multiple ways 

(e.g. number of individuals produced after some time, proportion of colonies successfully 

established, plant biomass produced over time, etc.). Some of this evidence was 

circumstantial; propagule pressure, for instance, was not controlled across all cited 

studies (Forsman 2014). Further, some of the experiments had difficulty or failed outright 

to demonstrate that the actual genetic diversity differed between tested groups (Forsman 

2014). Other studies have proposed that high genetic diversity in founding populations or 

subsequent admixture via multiple introductions may have aided in their establishment 

(e.g. Kolbe et al. 2004; Præbel et al. 2013), but these claims are speculative as the 

hypothesis was not tested outright. Rius and Darling (2014) discussed several important 

potential consequences of genetic diversity including increased heterozygosity, which 
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could allow the masking of recessive deleterious mutations, increased hybrid vigour, and 

the arrival of genotypes non-existent in the parental population which could lead to novel 

phenotypes that enhance fitness or adaptation.  

On the other hand, it is possible that introduced populations, even relatively small 

ones, may actually not exhibit a substantial loss of genetic diversity compared to their 

source populations. Roman and Darling (2007) reviewed the genetic diversity and 

establishment success of aquatic invaders, finding that only 37% of the cases they 

reviewed involved significant loss of genetic diversity. Further, in successful 

introductions involving significant diversity loss, 63% of the species could reproduce 

without sexual recombination whereas only 19% exhibited this capacity in established 

populations that did not take a significant diversity loss. This suggests that asexual 

populations may not be impacted by genetic diversity loss. Similarly, Wares, Hughes, and 

Grosberg (2005) found that introduced populations from a variety of taxa retained over 

80% of their genetic diversity as measured by heterozygosity and allelic richness. 

However, here too, evidence was circumstantial because both reviews included studies 

for which multiple introductions were either possible or even confirmed. 

Some other studies provide evidence that perhaps the consequences of genetic 

diversity reduction are not always dire, and in fact sometimes beneficial. For instance, 

Suarez, Holway, and Tsutsui (2008) showed that a genetic bottleneck aided in the 

invasion of Argentine ants in California. Similarly, Mergeay, Verschuren, and Meester 

(2006) found that the entire African population of the asexual and invasive American 

water flea was sourced by a single clone. Zayed, Constantin, and Packer (2007) theorized 

that the source of an invasive bee population in North America was a single female. 

Szűcs et al. (2014) found no relationship between establishment success and genetic 

diversity of introduced populations of the red flour beetle; however, they did find that 

genetic diversity positively affected growth rate of established populations. Briski et al. 

(2018) noted that selection during the transportation phase of an introduction may yield 

extremely fit but low-diversity introduced populations if the novel environment is similar 

to that in the transport vector. Rius and Darling (2014) also discussed potential negative 

consequences of genetic diversity: outbreeding depression can occur from loss of 

beneficial parental genotypes or from unfit intermediate genotypes, genetic 

incompatibilities can exist between extremely different genotypes, and dilution of 

exapted genotypes if native and novel ranges are similar. 

One thing that is clear from the above studies is that it is extremely difficult to 

study the role of genetic diversity on establishment success of introduced populations. 

There also exist other sources of difficulty (e.g. lack of control over diversity, potential 

confounding effects of propagule pressure or multiple introductions). One issue is that 

genetic diversity does not necessarily imply functional diversity. For instance, genetic 
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diversity is often approximated by analysis of specific neutral genetic markers which may 

not have any bearing on the success of invasions (Roman and Darling 2007; Wellband et 

al. 2018). Many invasion studies utilize comparisons of closely related but different 

species, or comparisons of the same species at different locations, or analysis only of 

successful invasions. This makes it unclear as to whether there is a causal relationship 

between diversity and success, whether the observed genetic diversity is a byproduct of 

the success (e.g. via expansion load), or if there is a relationship between genetic 

diversity and establishment success whatsoever.  

 One way to circumvent the above difficulties is to test the relationship between 

genetic diversity and establishment success in an individual-based model (IBM). Many 

practical studies in invasion biology have been conducted using IBMs. IBMs are a 

popular choice in predicting spread (Goslee, Peters, and Beck 2006; Phan, Huynh, and 

Drogoul 2010; Samson et al. 2017), preliminarily exploring management regimes 

(Bonesi, Rushton, and Macdonald 2007; Keith and Spring 2013), and predicting 

interactions between the introduced species and resident species (e.g. Bonesi, Rushton, 

and Macdonald 2007; Nguyen et al. 2011; Xiao et al. 2016). Theoretical studies can also 

be conducted using IBMs. For instance, studies on expansion load and gene surfing 

(Klopfstein, Currat, and Excoffier 2006; Travis et al. 2007; Burton and Travis 2008; 

Peischl and Excoffier 2015) were all conducted using IBMs. IBMs have also been used to 

investigate the evolution of dispersal (Travis and Dytham 2002; Travis et al. 2009; 

Fronhofer, Poethke, and Dieckmann 2015; Henriques-Silva et al. 2015), the relative roles 

of learning and evolution in exploring novel environments (Sutter and Kawecki 2009), 

the role of sex structure of introduced populations in establishment (Shaw, Kokko, and 

Neubert 2018), and the ability of populations to persist in changing environments (Santini 

et al. 2016). 

 In this study, we used EcoSim (see Chapter 3), a predator-prey ecosystem IBM in 

which its individuals can evolve, to study the effects of genetic diversity on introduced 

populations. We tested two main hypotheses. Hypothesis I was that, with all other factors 

held constant, increasing genetic diversity of introduced inocula increases their 

establishment success. Hypothesis II, a corollary of hypothesis I, was that genetic 

diversity is more impactful on establishment success when populations are introduced to 

an environment different from that in which they evolved. In this chapter we also 

introduce two novel variants of EcoSim – EcoSim Niches and EcoSim Invasions – which 

were used in this study but can be used in other future studies. EcoSim generates many 

types of data and large amounts of it – we can directly observe essentially any variable, 

for the introduced or the natives, at the scale of individuals, species, regionally, or 

globally. This allowed us to fully account for successful and failed introductions. Further, 

using EcoSim allowed us to directly circumvent many of the classical problems that 
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affect similar studies. In addition to testing the two main hypotheses, we used statistical 

and machine learning methods to determine if there are differences in what drives 

establishment success given the varying levels of genetic diversity. 

4.2 Methods 

To simulate biological invasions in EcoSim, we developed a new variant of EcoSim 

(EcoSim Invasions) which differed from the standard variant only in that it allowed users 

to transfer prey and predator individuals between two EcoSim runs. With EcoSim 

Invasions, invasion parameters were designed to be entirely customizable – invasions 

could involve any number of individuals, subject to any selection process (e.g. transfer a 

randomly selected subset of individuals with a specific fitness value) or modifications 

(e.g. set energy level of all introduced individuals to 1000), occurring at any regular or 

irregular frequency (e.g. every 20 time steps, starting at 10000 time steps, for 2000 time 

steps). To test hypothesis II, we developed another EcoSim variant – EcoSim Niches – 

which we also modified such that individuals could be transferred between runs. In 4.2.1, 

we provide a brief overview of the current study. EcoSim Invasions is detailed in 4.2.2, 

including all the modifications to standard EcoSim that were made to produce EcoSim 

Invasions. In 4.2.3, we describe EcoSim Niches, which produced a vastly different 

environment from that of standard EcoSim. In 4.2.4, we provide the remaining details of 

the current study; before we get into these details it is necessary to introduce the overall 

study design, EcoSim Invasions, and EcoSim Niches. Lastly, in 4.2.5, we discuss the data 

analysis we conducted. 

4.2.1 Brief Overview 

Our study consisted of a reciprocal transplant experiment with two different 

environments simulated in EcoSim (standard EcoSim and EcoSim Niches, detailed in 

Chapter 3 and 4.2.3 respectively), across which prey populations were transplanted with 

five levels of genetic diversity, with 10 replicates each, occurring over a fixed time 

interval. With EcoSim Invasions, we held constant propagule size (number of prey 

individuals introduced per event) and propagule number (number of introductions). In 

this study, we simulated invasions involving a fixed number of introductions (50), each 

of same propagule size (100 prey individuals), occurring with the same frequency (every 

100 time steps), and over the same time period across all simulations (over 5000 time 

steps). In total, 10000 introduction events took place. Prey were introduced into four run 

types, covering each combination of source and receiver of introduced populations. The 

four types were standard receiving standard prey (hereby denoted S→S), standard 

receiving Niches prey (hereby denoted N→S), Niches receiving standard prey (hereby 

denoted S→N), and Niches receiving Niches prey (hereby denoted N→N). For a given 
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run type, five sets of ten runs were produced such that each set of runs always received 

introduced prey populations of a fixed genetic diversity level (Figure 4.1). There were 20 

EcoSim Invasions runs generating samples – ten standard and ten Niches. There were 

four types of runs to which prey were introduced, each with five sets of runs of different 

genetic diversity levels, with ten runs per set, amounting to 200 more EcoSim Invasions 

runs. Thus, there were 220 EcoSim runs in total.  

 

Fig. 4.1. Depiction of the experimental design. Ten standard EcoSim runs (left, “Standard”, red boxes) and ten EcoSim Niches 

runs (left, “Niches”, purple boxes) were used to generate prey samples to be introduced into standard EcoSim and EcoSim 

Niches runs (right). Arrows represent the transfer of prey individuals. There were four types of runs receiving prey 

populations, with five levels of genetic diversity of introduced prey populations and 10 runs for each combination of type and 

genetic diversity level (colored boxes on right, numbers indicate level of genetic diversity). Thus, there were 220 total EcoSim 

runs. 

 There were several ways we could test Hypothesis I – that establishment success 

of introduced populations increases with their genetic diversity – in EcoSim. 

Establishment success is classically difficult to quantify, and presence/absence is often 

used because of its simplicity. We quantified both the short-term and long-term 

establishment success of the introduced populations. To quantify short-term 

establishment success, we recorded presence/absence of introduced individuals 60 time 

steps after each fresh inoculation (an inoculation into a simulation in which there were no 

living introduced individuals). Also, we recorded presence/absence of introduced 

individuals 100 time steps after introductions ceased (time step 20200) to determine long-

term establishment of the introduced populations. With hypothesis I, we expected that 

both short-term and long-term establishment success would increase with genetic 

diversity, with diminishing returns, for populations introduced into the environment in 

which they evolved (i.e. populations from standard EcoSim inoculated into another 

standard EcoSim run, populations from EcoSim Niches inoculated into another EcoSim 

Niches run). Hypothesis II – that genetic diversity should be more impactful when the 

environment of the introduced range is dissimilar to that of the native range – was tested 

in the same manner as hypothesis I. However, with hypothesis II, we instead tested the 
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establishment success of populations in environments different from that which they 

evolved in (i.e. populations from standard EcoSim in EcoSim Niches and vice versa) and 

compared this with what was observed when we tested hypothesis I. We expected that the 

relationship between genetic diversity and establishment success would be of similar 

shape in all cases, but that the relationship would be more pronounced for populations 

introduced into environments different from that in which they evolved. We also 

analyzed the impact of other factors on establishment success (see Section 4.2.5). 

4.2.2 EcoSim Invasions 

Here, we describe only the features of EcoSim relevant to this study. EcoSim is described 

in ODD format in Chapter 3. In EcoSim Invasions, the invasion process (Figure 4.2) 

occurs as follows. Let NR (native range) and IR (introduced range) be two types of 

distinct EcoSim runs. NR runs are those that produce individuals that will be introduced 

to IR runs. At a given time step t, a select set of individuals from an NR run are 

transferred to an IR run. All state variables of the individuals are transferred such that 

they can be exactly reconstructed in the IR run.  

 

Fig. 4.2. Depiction of the invasion process in EcoSim Invasions. The left and right panels of the image are snapshots of two 

different EcoSim runs called NR and IR at the same time step (t). Green and red dots represent prey and predators native to 

each respective EcoSim run. Individuals from NR are subsampled at time step t – these individuals are introduced to IR at time 

step t. In the right panel, blue and purple dots represent the prey and predators, respectively, that were introduced to IR from 

NR.  

To produce this variant of EcoSim, several important modifications were made 

which we outline below. We added parameters isDonator and isAcceptor to determine 

whether a run would be donating or receiving introduced individuals. Two more 

parameters, numberPreyInvaders and numberPredInvaders, controlled the number of 

prey and predator individuals transferred between runs. Another parameter called 

invasionFrequency was added to determine how often individuals should be transferred 
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between runs. Finally, a parameter clonesOnly was produced, allowing users to create 

inocula such that a single randomly-selected prey and a single randomly-selected 

predator are duplicated numberPreyInvaders and numberPredInvaders times, 

respectively (when clonesOnly = 1). Otherwise, numberPreyInvaders randomly-selected 

prey individuals and numberPredInvaders randomly-selected predator individuals 

comprise the inoculum. Further, custom inocula can be produced from any EcoSim run 

(standard, Invasions, or other) by writing external scripts that traverse MinSave files and 

extract prey and predator individuals, subject to any desired selection criteria. For 

instance, individuals can be sampled from specific physical regions or species, or with a 

specific fitness or energy level. Further, the introduced individuals can be subject to any 

modifications; for instance, their energy levels could be all maximized or set to an 

identical level, or physical properties such as vision could be reduced or enhanced.  

 We added an isInvasive flag to individuals, so that native and introduced 

individuals could be separately tracked. Importantly, outside of reproduction, the 

isInvasive flag was implemented such that it had no bearing on perception or decision-

making of prey or predator individuals in EcoSim Invasions. To elaborate, any prey 

(native or non-native to an IR run) will perceive all other prey (and similarly, all 

predators) the same way. This has some important consequences (Table 4.1). For 

instance, a non-native prey may socialize or try to reproduce with a native prey; a native 

prey will be equally scared of a native or non-native predator; a non-native predator will 

be equally willing to hunt a native or non-native prey, and will be equally successful in 

doing so. Users can modify the code such that the relationships between native and non-

native individuals are different from above (perhaps, for instance, such that native and 

non-native individuals can learn to or already know how to distinguish each other). With 

respect to reproduction, native and non-native individuals could not reproduce with each 

other. That is, native individuals can only reproduce with native individuals and non-

native individuals can only reproduce with non-native individuals. This was implemented 

as a reproduction failure condition, thus the individual attempting reproduction incurred 

an energy penalty but could still attempt reproduction with other local individuals (see 

Actions under Submodels in Section 3.2.5).  

Table 4.1: Key Simplifications regarding EcoSim Invasions, and their potential consequences. 

Regarding… Simplification Potential Consequence 

Perception Natives and non-natives register 

identically to each other 

Reduced fitness at expansion front 

Social 

Actions 

Natives and non-natives can 

socialize with each other 

Reduced effectiveness of social 

actions at expansion front 

Reproduction Natives and non-natives may 
attempt but never succeed in 

reproduction with each other 

Reduced reproduction success along 

expansion front 

Hunting, 

Escaping, 

Any predator can hunt any prey 

Any prey can escape any pred 

Introduced prey/preds always have 

potential food source 
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and Eating Any prey can eat any grass Possible prey enemy release 

In this particular study, as we wanted to test the effect of genetic diversity of 

introduced populations on their establishment, we wanted to remove any biases regarding 

genetic distance between mating individuals. EcoSim, by default, has a genetic distance 

threshold that determines whether two individuals can successfully reproduce. For 

EcoSim Invasions runs, we disabled this threshold for introduced individuals so that high 

genetic distance between mating individuals, which would be more common in high-

diversity introduced populations, would not be disproportionately penalized. On a related 

note, all introduced individuals were assumed to be of the same species, regardless of 

species membership in their native range. Species designations are emergent and arbitrary 

in EcoSim, and purely used for analysis; they have no bearing on the actions of the 

individuals. This simplified our sampling process, provided us with greater control over 

the genetic diversity of inocula, and increased the range of genetic diversity that we could 

explore in this study. Study of the effects of assortative and disassortative mating in 

introduced populations, by differentially modifying mating success based on genetic 

distance, could be done in future work. 

4.2.3 EcoSim Niches 

To test hypothesis II, that genetic diversity is more impactful on establishment success 

when the introduced range has an environment different from that of the native range, we 

required an EcoSim variant that produced an environment different from that of standard 

EcoSim. Thus, we developed EcoSim Niches, which was a variant of EcoSim in which 

the 2D world was divided into quadrants that each had unique circular MaxGrass 

patterns. In each circular pattern, MaxGrass was maximum in the center of the circle, 

decreasing nonlinearly to some minimum level as distance from the center of the circle 

increased. The circular patterns were unique in terms of the maximum MaxGrass levels 

they each possessed, as well as the rate at which MaxGrass decreased as individuals 

travelled away from their centers (Figure 4.3). Because the minimum MaxGrass level 

was lowest at the outer edges of the quadrants, they effectively produced barriers that 

physically and reproductively isolated the populations within them. As each of the 

quadrants were designed to be drastically different from each other, we anticipated that 

these regions formed a wide variety of ecological niches to be adapted to by the residents 

of the simulation – hence the name, EcoSim Niches. 
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Fig. 4.3. Comparison of Grass levels (left) and individual distributions (right) between a standard (top) and a Niches (bottom) 

EcoSim run, both at time step 15000. On the left, intensity of green increase with Grass level of the cell. On the right, green 

dots represent prey and red dots represent predators. Due to the Grass diffusion model, in a given cell, Grass levels can reach 

a maximum level (MaxGrass) that is spatially uniform throughout the world in standard runs. In EcoSim Niches runs, 

however, MaxGrass levels in the world are non-uniform and due to their spatial distribution, interesting ecological niches 

form. Note that the bottom right quadrant in the Niches run at this time step was mostly not yet exploited. 

 Few changes were required to create the EcoSim Niches variant from the standard 

variant of EcoSim. Standard EcoSim and EcoSim Niches were parameterized entirely the 

same. The only difference between standard EcoSim and EcoSim Niches was that 

MaxGrass had an additional multiplier that was computed based on the position of a cell. 

Where standard EcoSim consulted the MaxGrass variable to enforce a uniform Grass 

limit in each cell, EcoSim Niches consulted a MaxGrassArray variable which was a 2D 

array of size equal to that of the world (i.e. 1000x1000 by default). When a run was 

started or continued, this MaxGrassArray was populated using the following function:  
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(4.1) 

 

𝑀𝑎𝑥𝐺𝑟𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦(𝑥, 𝑦)  =  min (max ((sin (𝑝𝑖 ×
x

D
) × sin (𝑝𝑖 ×

y

D
)) × 𝑀𝑎𝑥𝑅𝑎𝑡𝑖𝑜 + 𝑀𝑖𝑛𝑅𝑎𝑡𝑖𝑜,

− (sin (𝑝𝑖 ×
𝑥

𝐷
) × sin (𝑝𝑖 ×

𝑦

𝐷
)) × 𝑀𝑎𝑥𝑅𝑎𝑡𝑖𝑜 + 𝑀𝑖𝑛𝑅𝑎𝑡𝑖𝑜), 1.0), 

where x and y are the x and y coordinates of a cell, D is the size of the quadrants (e.g. 

D=500 creates four quadrants in a 1000x1000 world, D=250 creates 16 quadrants, etc.), 

MaxRatio controls the rate at which MaxGrass increases towards the center of a circle, 

MinRatio controls the minimum value of MaxGrass, which occurs at the edges of 

quadrants. A cross-sectional view, across the center of a quadrant with D=250, provides a 

demonstration of the effect of the parameters MaxRatio and MinRatio (Figure 4.4). 

 

Fig. 4.4. Demonstration of the function used to initialize MaxGrassArray in EcoSim Niches. In this demonstration, D=250 and 

a cross-section across the center of a quadrant is depicted (i.e., forcing the multiplier produced by the sin function to 1 across 

the entire cross-section). The function limits MaxGrassArray at any index to 1.0, occurring at the center of a quadrant. 

MinRatio controls the minimum multiplier held in MaxGrassArray, which occurs at the edges of quadrants. MaxRatio 

increases the rate at which MaxGrass increases as individuals move towards the center of the quadrants. 

 To produce subquadrants in EcoSim Niches, as observed in Figure 4.3, 

conditional logic based on cell position was used to parameterize Eq. 4.1 in different 

ways depending on location. The bottom-right quadrant for instance, as in Figure 4.3, 

was purposely designed with a low MaxGrassRatio. Interestingly, prey individuals are 

initially unable to exploit this resource but can evolve the capacity to exploit it. Further, 

with the parameterization of each quadrant, prey individuals tend not to cross the harsher 

boundaries until they evolve sufficiently high MaxSpeed and Vision, or the capacity to 

exploit the relatively low-resource regions between quadrants. This produces physical 

and reproductive isolation.  
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4.2.4 Details of the Current Study 

In this section, we will first elaborate further on the study design. We will then describe 

the process we used for selection of prey to be introduced across simulations, given that 

we needed to control genetic diversity of the introduced prey populations while 

simultaneously maintaining fitness distributions as much as possible.   

Study Design 

To be consistent with the abbreviations in 4.2.2, let NRj be a source run and IRk-l 

be a destination run, with respect to transferred prey samples. NRj produced five samples 

of 100 prey individuals (i.e. holding propagule size constant) every 100 time steps over 

5000 time steps (from time step 15100 to 20100; i.e. holding propagule number constant). 

Each of the five samples at time step t targeted a specific level of genetic diversity, 

ranging from zero (i.e., all prey individuals in the sample are clones) to a maximum 

determined empirically for samples of 100 individuals (details of sampling process and 

empirically determined maximum diversity follow under Sampling Process). In 

preliminary work, we tested several propagule sizes and determined that establishment 

success widely varied with 100 individuals – we did not want establishment to be too 

easy (e.g. 100% success rate) or too difficult (e.g. 0% success rate). Consider a sample 

from NRj, InvaderSavej-k-t, where j was the run number of origin, k was the level of 

genetic diversity (increasing from one to five), and t was the time step during which the 

sample was taken. When run IRk-l reached time step t, it loaded InvaderSavej-k-t, where 

l=11-j (Figure 4.5). The rationale for the relationship between NR and IR run numbers 

follows. 
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Fig. 4.5. Depiction of the sample transfer process. Prey samples taken from NR simulations at time step t are transferred to IR 

simulations and loaded in them when they reach time step t. There are five samples taken, corresponding to five sets of IR 

simulations – each sample and corresponding IR run are dedicated to a level of genetic diversity (labelled 1-5, from lowest to 

highest genetic diversity). Samples produced in NRj is transferred to corresponding IRl, where l = 11-j. 

All standard EcoSim simulations and all EcoSim Niches simulations were 

duplicates of a single set of standard and Niches simulations, respectively. Let SO and 

NO be the set of original standard and EcoSim Niches simulations, respectively. SO and 

NO simulations were executed to 15000 time steps and then duplicated into all other 

simulation directories (NR standard, NR Niches, IR standard receiving standard, IR 

standard receiving Niches, etc.). From time step 15000 they were all executed as EcoSim 

Invasions simulations. Transfers always occurred from some simulation number j into 

another simulation number l=11-j, as mentioned above, so that no individuals would be 

transferred into the exact simulation in which they were produced. 

Sampling Process 

 As mentioned in 4.2.2, custom scripts can be written to sample in any way a user 

may need. We leveraged this capability to perform our sampling for this study. As per 

above, sampling was carried out at specific time steps, and samples were taken of prey 

individuals that were alive in the simulation at the given time step. The sampling process 

consisted of three main steps – fitness-based sampling, hierarchical clustering on 

Shannon entropy of individual genomes, and resampling from a selected cluster with a 

target entropy level. The steps are details below.  

The goal of the fitness-based sampling was to ensure that the fitness distribution 

of the sample reflected that of the population. The output of the fitness-based sampling 

was a sample of 1000 prey individuals, whose fitness distribution closely reflected that of 

the population. To obtain this sample, we first computed fitness of all prey individuals at 

time t (sample fitness histogram in Figure 4.6). We defined fitness for an individual as 

the number of direct children plus the number of grandchildren as per Barbosa et al. 

(2012). Subsequently, a fitness histogram was generated with seven bins (Figure 4.7). 

The bins were 0 fitness, 1-4 fitness, 5-8 fitness, 9-16 fitness, 17-32 fitness, 33-64 fitness, 

and 65+. These bins were designed in preliminary work such that all bins were likely to 

have non-zero representation if resampled with 1000 individuals while also considering 

resolution across the possible fitness values, which we have observed to range from zero 

to approximately 250. Using these histograms, the percentage of representation of each 

bin in the original sample was computed, and quotas were generated for a sample of 1000 

prey individuals (Figure 4.8). That is, if the 65+ bin represented 9% of the original 

sample, 90 individuals would be sampled from the set of individuals with fitness over 65 

to satisfy the quota for a sample of 1000 individuals. Finally, sampling took place such 

that 1000 individuals were obtained, adhering to these quotas. 
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Fig. 4.6. Fitness histogram (log scaled on y-axis) at time step 15100 for a run that produced introduced populations. Same run 

and time step used in Figures 4.7 and 4.8.  

 

Fig. 4.7. Fitness histogram rebinned for fitness-based sampling. Same run and time step as Figures 4.6 and 4.8.  

 

Fig. 4.8. Quotas for each fitness bin for fitness-based sampling, to produce a sample of 1000 individuals with which to 

hierarchically cluster based on genetic diversity. Same run and time step as Figures 4.6 and 4.7. 
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Once fitness-based sampling was complete, hierarchical clustering of the sample 

was performed. Hierarchical clustering is an algorithm that aims to produce a hierarchy 

of clusters, such that the clusters are produced in order of an increasing or decreasing 

metric. This was ideal for our purposes, as we needed to produce subsamples of prey 

individuals that existed on a high-resolution gradient of genetic diversity. Thus, we chose 

Shannon entropy of prey genomes (GE, Eq. 4.2; hereby referred to as genetic entropy), 

measured in bits, as our measurement of genetic diversity as per Khater, Salehi, and Gras 

(2011).  

Hierarchical clustering can be computed in an agglomerative (bottom-up) or 

divisive (top-down) manner. The agglomerative algorithm, which we used, was 

computed as follows: 

1. Randomly partition original set of 1000 individuals into n clusters containing 

k individuals each (we used k = 4 to produce n = 250 initial clusters, informed 

by preliminary work described below), add each cluster to vector of clusters, 

clusters 

2. While size of clusters > 1: 

a. Compute pairwise genetic entropy for all pairs of clusters as if they 

were combined 

b. Find the pair of clusters minimizing genetic entropy when combined, 

C1 and C2 

c. Combine C1 and C2 into Cnew 

d. Remove C1 and C2 from clusters, add Cnew to clusters 

3. Output all clusters generated throughout the process, sorted in terms of 

increasing genetic entropy 

We kept a record of every cluster that was created during this process, along with its 

genetic entropy, the individuals it contains, and its fitness histogram using the fitness bins 

defined above. This allowed us to subsequently select clusters with genetic entropy levels 

closest to target genetic entropy levels, which we could resample and use as populations 

to introduce across EcoSim simulations (Figure 4.9). We used empirical data to devise 

our entropy targets for the introduced samples, described below. Thus, we controlled for 

genetic diversity of our introduced populations.  

Genetic entropy was computed as follows: 

(4.2) 

𝐺𝐸(𝑋)  = − ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔2(𝑝𝑖𝑗)

𝑚−1

𝑗=0

𝑛−1

𝑖=0

, 
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where X is a set of genetic sequences (i.e. vectors of bytes) of length n, i is a particular 

gene (i.e. zero-indexed position in the vector), and there are m potential alleles following 

the continuum-of-alleles model (Kimura 1965). As there are 663 elements in the prey 

behavioural genome and 8 elements in the prey physical genome, n=671. As the genetic 

sequences are byte vectors, m=256. Finally, pij is thus the probability of allele j at gene i 

in the set of sequences X (i.e. the probability of a particular byte value at a given index of 

the sequence vector). The minimum GE for a set of genetic sequences is zero, occurring 

when all sequences are exactly the same. As we know the size of the space of 

possibilities for genomes, we can compute a theoretical maximum GE. The theoretical 

maximum GE represents the GE when there is perfectly even representation of every 

possible genome in the set of sequences. With n=671 and m=256, the maximum GE is 

5368. 

In preliminary work, we performed hierarchical clustering on samples of 1000 

prey individuals, produced with our fitness-based sampling method (described above). 

The samples were obtained from ten EcoSim simulations at time steps 15100 to 20100, 

every 100 time steps. Our aim was to determine potential genetic entropy targets for our 

introduced populations while simultaneously tuning k and n of our hierarchical clustering 

algorithm to maximize efficiency and maintain a high resolution of genetic diversity 

across the clusters we produced. We found that k = 4 and n = 250 produced a reasonably 

high-resolution gradient of genetic diversity, and that genetic diversity targets of 0 

(hereby denoted L1), 105 (hereby denoted L2), 210 (hereby denoted L3), 315 (hereby 

denoted L4), and 420 (hereby denoted L5) bits would be feasible on most population 

samples (Figure 4.10). Hierarchical clustering was only used to obtain samples for L2-

L5, while L1 samples were obtained by randomly selecting a single individual as 

described below. The output of the hierarchical clustering process was the sorted list of 

all clusters generated throughout the process, which we ranked from 1 to 499 in terms of 

increasing genetic entropy. With respect to the edge cases, obtaining a rank-1 cluster with 

≤105 bits of genetic entropy was feasible in 92.9% of samples, while obtaining a rank-

499 cluster (out of 499 clusters) with ≥420 bits of genetic entropy was feasible in 84.1% 

of samples. Because of the high resolution of the diversity gradient with k = 4 and n = 

250, this meant that the above diversity targets would likely be sufficiently achieved. The 

mean genetic entropy of the resultant selected clusters were 0, 107.33, 210.12, 315.01, 

and 419.52 bits, with respective standard deviations of 0, 11.55, 1.86, 0.23, and 2.91 bits. 
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Fig. 4.9. Hierarchical clustering toy example, for illustrative purposes. Circles represent initial clusters, ovals represent 

intermediate clusters. Numbers within circles and ovals represent cluster genetic entropy (GE). Start with six initial clusters 

each containing four randomly selected prey individuals. During hierarchical clustering process, per iteration, combine the two 

clusters yielding minimum genetic entropy when combined. Continue this process until only one cluster remains. When 

clustering is complete, sort clusters based on genetic entropy and select those exhibiting genetic entropy closest to target 

entropy values (105, 210, 315, and 420 bits). Selected clusters are shown in green, discarded clusters are shown in red. 

 

 

Fig. 4.10. Genetic entropy of clusters by rank, in order of increasing genetic entropy, with k = 4. Minima, maxima, mean, and 

standard deviation of genetic entropy are shown for each rank, across 510 samples from ten EcoSim simulations. 

The ranked clusters produced by the hierarchical clustering process had a variable 

number of individuals per cluster. We required that our prey samples had a fixed number 

of individuals (100). Thus, we resampled the four selected clusters (the clusters with 

genetic entropy closest to our non-zero target entropy levels, L2-L5), with replacement, 

to produce four corresponding samples to introduce into other EcoSim simulations. By 

definition of genetic entropy, assuming perfectly even resampling of the individuals, 

entropy should remain exactly the same after the resampling process. Although our 
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sampling was naturally imperfect in terms of evenness, genetic entropy of the resultant 

samples was almost completely unaffected by this resampling process (Figure 4.11). To 

obtain the sample with zero bits of entropy at each time step, we simply selected a single 

individual and resampled it 100 times. When generating samples, only genetic 

information (i.e. physical and behavioural genomes) of the individuals was copied. All 

other state variables (i.e. sex, energy level, speed, etc.) were obtained by randomly 

sampling the variables from the original source population and, where necessary, clipped 

to be within the range specified by their associated genes (e.g. MaxEnergy, MaxSpeed, 

etc.). Thus, the distribution of all non-genetic state variables in the original population 

was approximately preserved in the introduced sample. 

 

Fig. 4.11. Strong concordance of genetic entropy of clusters from hierarchical clustering process (x-axis) and that of 

corresponding introduced samples (y-axis) after resampling the clusters to produce samples of 100 individuals. 

4.2.5 Data Analysis 

To compare between standard EcoSim and EcoSim Niches, we collected various time-

series data up to 15000 time steps (i.e. just prior to reciprocal transplantation between the 

simulations) and examined them for significant differences between the two EcoSim 

variants. Behavioural and physical genome elements (i.e. genes) were also obtained from 

a sample of 40000 prey and 1500 predator individuals that were alive at time step 15000 

from a single run of each variant. For each gene, between the two variants, we conducted 

a t-test and Levene’s test to test for difference in mean and variance, respectively. 

Bonferroni correction was used to account for the extremely high number of comparisons 

(663 for prey, 756 for predators). 

 With data from IR simulations, we first analyzed the time series data for 

introduced log(abundance) and genetic entropy throughout the course of introductions for 

3500 time steps (as eight simulations did not progress much further due to extinctions), 

per IR run type and across the five genetic diversity levels. This provided us with a high-

level view of how the invasions progressed and how the genetic diversity of the 
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introduced populations changed over time. The data were highly variable and noisy due 

to repeated failed introduction attempts, so each time-series was smoothed using a rolling 

average with a window size of 100. We then computed the means and standard deviations 

for each time step across all simulations of a given treatment (combination of run type 

and genetic diversity) and plotted the results as time series. 

 With respect to hypotheses I and II, biologists typically use presence/absence or 

abundance estimates to measure the ability of an introduced population to establish. With 

EcoSim, we can assess establishment success in a variety of ways that are typically 

infeasible in studies of real invasions. We quantified short-term establishment success in 

IR simulations by recording the proportion of introduction events, during which the 

current abundance of introduced individuals in the run was zero (which we henceforth 

refer to as a fresh inoculation), in which the introduced population persisted after 60 time 

steps (henceforth referred to as short-term establishment success). Further, we quantified 

the proportion of simulations of a given group in which the abundance of introduced 

individuals was greater than 1000 at time step 20200, as a proxy of its long-term 

establishment (henceforth referred to as long-term establishment success). For short-term 

and long-term establishment success, we conducted z-tests for proportions within groups 

created by run type to determine significance of difference in proportions across genetic 

diversity levels. Similarly, we conducted z-tests for proportions between groups created 

by run type to test for significant differences in overall proportions across run types, for 

both establishment success measures. 

 To determine how other factors significant for establishment success might 

change given genetic diversity, we gathered mean values for select features descriptive of 

the introduced population for every fresh inoculation. The means were obtained over five 

time steps, starting five time steps after the inoculation event, to allow the population to 

settle into their novel environment and to reduce stochasticity. We analyzed these data, 

per run type, for differences in distribution across genetic diversity levels, separately for 

all, successful, and failed short-term establishment attempts (as defined above), using 

Kruskal-Wallis tests. Upon rejection of the null hypothesis for a given feature using 

Kruskal-Wallis (i.e., the feature showed a significantly different distribution for some 

genetic diversity level across all, successful, or failed establishments attempts), we 

conducted pairwise Conover’s post hoc tests, with p-values adjusted using Holm 

correction, to find which genetic diversity levels that yielded significant differences in 

distribution for the given feature. 

 To select the features that we analyzed using the above process, we used a 

combination of permutation importance (Strobl et al. 2007) and Spearman’s rank-order 

correlation as follows. We first devised a set of 29 population-wide features that we 
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anticipated to have bearing on the establishment success of the introduced populations 

(e.g. speed, compactness, Energy, MaxSpeed, MaxEnergy, Vision, proportion of 

individuals performing each action, etc.). In addition to these 29 features, we used the 

short-term establishment outcome as the classification target. We computed permutation 

importance of each feature with random forests (Breiman 2001) using the Scikit-Learn 

and ELI5 Python packages (https://scikit-learn.org/, https://eli5.readthedocs.io/en/latest/) 

to classify the samples, as follows. We first split the entire dataset into a training set and 

testing set, and developed a random forest trained using the training set. The random 

forest had 1000 trees, and all other parameters were left to their default values. With this 

random forest as a benchmark, we obtained the classification area under the receiver 

operating characteristic curve (AUROC), computed using the testing data. For each 

feature, we randomly permuted the data for the selected feature while holding all other 

features as they were, and trained sets of ten random forests with the same 

parameterization to observe the loss in testing AUROC of these random forests. The 

greater the loss in testing AUROC, the more important the feature was in generally 

characterizing establishment success. The output of the process was the ranked 

importance of each feature along with its corresponding mean and standard deviation of 

loss, when randomly permuted, over the ten random forests. Correlated features suffer 

asymmetrically using permutation importance (Strobl et al. 2007); that is, both correlated 

features may suffer some loss in perceived importance, but the loss in importance for 

each feature is unequal. So, in conjunction with this process we computed pairwise 

Spearman’s rank-order correlations across all features. For each pair of features yielding 

absolute(rho)≥0.5, we removed the less important feature given the ranking from above. 

With the less-important correlated features removed, we then recomputed the feature 

importance using permutation importance again and selected the most important features. 

4.3 Results 

We divide the results into four main sections, and the discussion loosely follows this 

format as well. First, we provide results pertaining to the differences between standard 

EcoSim and EcoSim Niches. We then provide a high-level view of the invasion progress 

for each run type and genetic diversity level. We then present results pertaining to 

hypothesis I – that genetic diversity has a positive relationship with establishment success 

– and hypothesis II – that genetic diversity has a stronger impact when the introduced 

populations’ native and novel regions greatly differ. Finally, we provide other insights 

about a variety of factors leading to success or failure of establishment, in light of the 

amount of genetic diversity of the introduced populations. 
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4.3.1 Comparison of standard EcoSim and EcoSim Niches 

Standard EcoSim and EcoSim Niches produced different environments and consequently 

different individuals. Based on the formulation of EcoSim Niches (Section 4.2.3) there 

were clear differences in resource availability and distribution. We sought to determine 

whether these differences impacted the evolution of prey and predator individuals in the 

simulations. 

 Grass per cell differed significantly between the two variants throughout the 

simulations (Figure 4.12). Standard EcoSim yielded higher Grass levels than EcoSim 

Niches, as intended. Having fewer global resources in EcoSim Niches effectively reduces 

its carrying capacity, and consequently there were significantly fewer prey (Figure 4.13) 

and predator (Figure 4.14) individuals. Despite the disparity in number of prey and 

predators between the two variants, differences between the two variants in prey species 

richness (number of prey species in the virtual world; Figure 4.15) and predator species 

richness (not depicted) were often insignificant. 

 

 

Fig. 4.12. Comparison of amount of Grass per cell (left y-axis) between standard EcoSim and EcoSim Niches. Difference 

between variants was significant for nearly the entirety of the simulations. Grass levels in both variants stabilized at 

approximately 10000 time steps. Significance shown in orange as 1-p from t-test (right y-axis). Error bars denote one standard 

deviation of the mean. 
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Fig. 4.13. Comparison of number of prey individuals (left y-axis) between standard EcoSim and EcoSim Niches. Difference 

between variants was significant for nearly the entirety of the simulations. Quasi-stationarity was observed from 

approximately 10000 time steps. Significance shown in orange as 1-p from t-test (right y-axis). Error bars denote one standard 

deviation of the mean. 

 

Fig. 4.14. Comparison of number of predator individuals (left y-axis) between standard EcoSim and EcoSim Niches. 

Difference between variants was significant for nearly the entirety of the simulations. Quasi-stationarity was observed from 

approximately 10000 time steps. Significance shown in orange as 1-p from t-test (right y-axis). Error bars denote one standard 

deviation of the mean. 
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Fig. 4.15. Comparison of prey species richness (number of prey species in the virtual world; left y-axis) between standard 

EcoSim and EcoSim Niches. The disparity in prey species richness was disproportionate to the disparity in number of prey 

individuals (Figure 4.14), and convergence was apparent in species richness. Significance shown in orange as 1-p from t-test 

(right y-axis). Error bars denote one standard deviation of the mean. 

 Energy spent by prey per time step differed significantly for most of the duration 

of the simulations (Figure 4.16), and prey in standard EcoSim tended to spend more 

energy than those in EcoSim Niches. Differences in Energy spent by predators (not 

depicted) was sometimes significant, with those in standard EcoSim spending more than 

those in EcoSim Niches. Further, predators in standard EcoSim usually had significantly 

more Energy than those in EcoSim Niches (Figure 4.17), while the differences in prey 

Energy (not depicted) were mostly insignificant. 
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Fig. 4.16. Comparison of Energy spent per time step by prey (left y-axis) between standard EcoSim and EcoSim Niches. 

Difference between variants was significant for nearly the entirety of the simulations. Significance shown in orange as 1-p 

from t-test (right y-axis). Error bars denote one standard deviation of the mean. 

 

Fig. 4.17. Comparison of predator Energy levels (left y-axis) between standard EcoSim and EcoSim Niches. Difference 

between variants was usually significant. Significance shown in orange as 1-p from t-test (right y-axis). Error bars denote one 

standard deviation of the mean. 

 Between the two variants, there were significant differences in MaxSpeed for prey 

(Figure 4.18) and predators (Figure 4.19). Similarly, prey Speed exhibited significant 
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differences between the two variants (Figure 4.20), as did Vision for prey (Figure 4.21) 

and predators (Figure 4.22). In all cases, the value in standard EcoSim was greater than 

that in EcoSim Niches. Predator Speed did not show significant difference (not depicted). 

Distance evolved for prey (Figure 4.23) was significantly greater in standard EcoSim 

than in EcoSim Niches, while predator compactness (the mean number of individuals per 

cell containing at least one individual, Figure 4.24), predator distance evolved (Figure 

4.25), prey number of FCM edges (Figure 4.26), and predator number of FCM edges 

(Figure 4.27) were all significantly greater in EcoSim Niches than in standard EcoSim. 

 

Fig. 4.18. Comparison of prey MaxSpeed (left y-axis) between standard EcoSim and EcoSim Niches. Difference between 

variants was significant for nearly the entirety of the simulations. Significance shown in orange as 1-p from t-test (right y-

axis). Error bars denote one standard deviation of the mean. 
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Fig. 4.19. Comparison of predator MaxSpeed (left y-axis) between standard EcoSim and EcoSim Niches. Difference between 

variants was significant for nearly the entirety of the simulations, and in general high variance was observed for both variants. 

Significance shown in orange as 1-p from t-test (right y-axis). Error bars denote one standard deviation of the mean. 

 

Fig. 4.20. Comparison of prey Speed (left y-axis) between standard EcoSim and EcoSim Niches. Difference between variants 

was significant for nearly the entirety of the simulations. Significance shown in orange as 1-p from t-test (right y-axis). Error 

bars denote one standard deviation of the mean. 
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Fig. 4.21. Comparison of prey Vision (left y-axis) between standard EcoSim and EcoSim Niches. Difference between variants 

was significant for nearly the entirety of the simulations. Significance shown in orange as 1-p from t-test (right y-axis). Error 

bars denote one standard deviation of the mean. 

 

Fig. 4.22. Comparison of predator Vision (left y-axis) between standard EcoSim and EcoSim Niches. Difference between 

variants was typically significant. High variance in Vision was generally observed. Significance shown in orange as 1-p from 

t-test (right y-axis). Error bars denote one standard deviation of the mean. 

 



 

85 
 

A 

Fig. 4.23. Comparison of prey distance evolved (left y-axis) between standard EcoSim and EcoSim Niches. Prey individuals 

in standard EcoSim evolved from their initial genome faster than those in EcoSim Niches. Significance shown in orange as 1-p 

from t-test (right y-axis). Error bars denote one standard deviation of the mean. 

 

Fig. 4.24. Comparison of predator compactness (left y-axis) between standard EcoSim and EcoSim Niches. Predator 

compactness was significantly greater in EcoSim Niches for the majority of simulation duration. Significance shown in orange 

as 1-p from t-test (right y-axis). Error bars denote one standard deviation of the mean. 
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Fig. 4.25. Comparison of predator distance evolved (left y-axis) between standard EcoSim and EcoSim Niches. Predator 

individuals in EcoSim Niches evolved from their initial genome faster than those in standard EcoSim initially, but ultimately 

their evolutionary trajectories were almost identical. Significance shown in orange as 1-p from t-test (right y-axis). Error bars 

denote one standard deviation of the mean. 

 

 

Fig. 4.26. Comparison of number of FCM edges for prey (left y-axis), between standard EcoSim and EcoSim Niches. 

Difference between variants was significant at approximately 10000 time steps, and divergence was apparent as time 

progressed. Significance shown in orange as 1-p from t-test (right y-axis). Error bars denote one standard deviation of the 

mean. 
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Fig. 4.27. Comparison of number of FCM edges for predators (left y-axis), between standard EcoSim and EcoSim Niches. 

Difference between variants was significant at approximately 3000 time steps, though convergence seemed to be occurring 

from approximately 13000 time steps and onward. Significance shown in orange as 1-p from t-test (right y-axis). Error bars 

denote one standard deviation of the mean. 

 

 In addition to the above differences between the two variants, we discovered that 

behavioural and physical gene distributions exhibited numerous differences in mean and 

variance. Overall, 93.4% of prey behavioural genes exhibited significant differences in 

mean (p < 0.05/663, t-test with Bonferroni correction) while 81.7% of behavioural genes 

showed significant differences in variance (p < 0.05/663, Levene’s test with Bonferroni 

correction).  Further, in genes where the difference in variance was significant, prey from 

EcoSim Niches exhibited the greater variance 55.4% of the time. For predators, 90.3% of 

behavioural genes had significant differences in mean (p < 0.05/756, t-test with 

Bonferroni correction) while 87.8% of behavioural genes exhibited significant 

differences in variance (p < 0.05/756, Levene’s test with Bonferroni correction). Of the 

genes exhibiting significant differences in variance, 66.0% showed greater variance in 

EcoSim Niches than in standard EcoSim. 

4.3.2 Invasion progress over time 

The invasions for each run type progressed in different ways, and temporal relationships 

between levels of genetic diversity and abundance of the introduced individuals were 

inconsistent across the different run types (Figure 4.28). The abundance of introduced 

individuals in N→S (8429) was approximately five times greater than that of S→S 
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(1520), on average, 3500 time steps into the introductions. A similar relationship was 

observed when comparing the number of introduced individuals in N→N (72 individuals) 

and S→N (17 individuals), at the same point in simulation time. S→S versus S→N and 

N→S versus N→N each differed by approximately two orders of magnitude. In all cases, 

variation in the time-series data was extremely high; in many cases the abundance in a 

given run was upwards of 400,000 individuals while in another run it was zero. In all but 

S→S, L1 (i.e., each inoculation was a population of clones) and L5 (i.e. each inoculation 

was of maximal genetic diversity) genetic diversity levels yielded the highest mean 

abundance after 3500 time steps. On the other hand, intermediate diversity levels 

(particularly L2 and L3) tended to yield lower abundances. Particularly in S→S and 

N→S, it appears as though the introduced abundance has reached the carrying capacity 

for the respective simulations.  

 In terms of genetic diversity of introduced populations, S→S and N→S yielded 

increasing trends for all inoculation diversity levels (Figure 4.29) with L1 showing the 

greatest increases – even temporarily surpassing the diversity of L2 in S→S and 

surpassing that of L2 and L3 in N→S. In S→N, only L1 showed an increasing trend, 

eclipsing the genetic diversity of L2 populations, while all other diversity levels were 

stable. N→N, genetic diversity of L1, L2, and L4 showed increasing trends while L3 and 

L5 were stable.  
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Fig. 4.28. Introduced individual abundance, log10-scaled, over time. Top left: S→S. Top right: N→S. Bottom left: S→N. 

Bottom right: N→N. Lines represent means for different genetic diversity levels, while corresponding shaded areas represent 

mean ± one standard deviation. 

 



 

90 
 

 

Fig. 4.29. Genetic diversity of introduced populations over time. Top left: S→S. Top right: N→S. Bottom left: S→N. Bottom 

right: N→N. Lines represent means for different genetic diversity levels, while corresponding shaded areas represent mean ± 

one standard deviation. 

4.3.3 Hypotheses I and II 

The differences in short-term establishment success between run types (i.e. aggregated 

across genetic diversity levels) were all highly significant (p ≤ 0.0014 in all comparisons, 

z-test for proportions; Figure 4.30). Standard EcoSim yielded environments that were 

more invasible in the short term than EcoSim Niches as evidenced by significant 

differences in short-term establishment success between the two environments for each 

source of introduced individuals. Similarly, EcoSim Niches produced populations that 

were more capable of establishing over the short term, as evidenced by significant 

differences between sources when transferred to the same environments. Overall, N→S 

yielded the highest short-term establishment success with a success rate of 77.9%, S→S 

yielded 70.7%, N→N yielded 52.6%, and S→N yielded 38.8%. There were some weakly 

significant differences across genetic diversity levels for short-term establishment 

success. In S→S, L3 (76.7%) short-term establishment success was slightly higher than 
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that of L2 (68.9%; p = 0.093, z-test for proportions) and L5 (68.5%; p = 0.077, z-test for 

proportions). In S→N and N→N, short-term establishment success slightly improved 

with increased genetic diversity. In S→N, L1 (36.5%) and L5 (43.1%) yielded different 

short-term establishment success (p = 0.067, z-test for proportions). In N→N, that of L1 

(47.2%) was lower compared to L3 (54.7%; p = 0.057, z-test for proportions), L4 (55.7%; 

p = 0.033, z-test for proportions), and L5 (56.2%; p = 0.026, z-test for proportions), while 

that of L2 (48.6%) was lower compared to L4 (p = 0.071, z-test for proportions) and L5 

(p = 0.057, z-test for proportions).  

 

Fig. 4.30. Short-term establishment success, measured by the proportion of inocula persisting for 60 time steps in simulated 

environments otherwise uninhabited by introduced individuals. S→S yielded a shape indicating that a moderate amount of 

genetic diversity was most favourable. S→N, and N→N yielded similar shapes, with high genetic diversity values being most 

favourable. Differences between run types (aggregated across genetic diversity levels) were all highly significant. Standard 

EcoSim environments were more invasible than EcoSim Niches, while individuals from EcoSim Niches showed greater 

invasiveness than those from standard EcoSim. 

Long-term establishment success (Figure 4.31) yielded patterns similar those 

observed in analysis of overall establishment success, in terms of comparisons made 

between run types. Significant comparisons were of S→S (74%) to N→S (p = 0.016), 

S→S to S→N (38%; p = 0.00029), S→S to N→N (p = 0.037), N→S (92%) to S→N (p = 

1.5x10-8), N→S and N→N (54%; p = 1.9x10-5). The comparison between S→N and 

N→N yielded insignificant difference (p = 0.11). Due to the small sample size, 

comparisons within a given run type (across genetic diversity levels) were not statistically 

significant, though the patterns observed in long-term establishment were quite different 

from those observed in short-term establishment. L2 of S→N yielded no long-term 

establishment. 
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Fig. 4.31. Long-term establishment success, measured by the proportion of simulations in which the abundance of introduced 

individuals was greater than 1000 at time step 20200. Aside from S→S, all run types yielded similar shapes, indicating that 

extreme diversity levels were most favourable while moderate genetic diversity was unfavourable. Standard EcoSim 

environments were more invasible than EcoSim Niches, while individuals from EcoSim Niches showed greater invasiveness 

than those from standard EcoSim. 

4.3.4 Other factors affecting establishment success 

Compactness (0.08±0.015; mean ± standard deviation of random forest AUROC loss 

when feature was randomly permuted), proportion of individuals attempting to eat 

(performance loss of 0.024±0.0041), and reproduction efficiency (performance loss of 

0.013±0.0068) were amongst the most important features in predicting establishment 

success prior to removal of correlated features. Due to high correlation, we removed 

proportion of population exploring (correlated with speed, ρ=0.93), distance evolved 

(correlated with MaxSpeed, ρ=0.93), energy spent per time step (correlated with speed, 

ρ=0.91), Energy (correlated with eat attempts, ρ=0.89), Vision (correlated with 

MaxSpeed, ρ=0.8), proportion of individuals failing to move to the strongest prey in their 

vicinity (correlated with proportion of individuals moving to the strongest prey in their 

vicinity, ρ=0.75), MaxEnergy (correlated with Strength, ρ=0.6), Speed (correlated with 

proportion of individuals attempting to reproduce, ρ=0.56), proportion of individuals 

attempting to eat (correlated with compactness, ρ=0.56), and reproduction efficiency 

(correlated with compactness, ρ=0.52). After removing these features, the most important 

features in determining establishment success were compactness (performance loss of 

0.23±0.020; Figure 4.32), proportion of population failing to socialize (performance loss 

of 0.017±0.0087; Figure 4.33), proportion of individuals socializing (performance loss of 

0.0125±0.006; Figure 4.34), and the proportion of individuals escaping from predators 

(performance loss of 0.0118±0.0027; Figure 4.35). The remaining factors were of 
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extremely low importance (i.e. <1% performance loss), and hence we restricted 

subsequent analysis to these four features. The benchmark random forest had an AUROC 

of 0.89 and an F1 score of 0.87 on the testing dataset, showing that the model performed 

extremely well and generalized to unseen data. 

 

Fig. 4.32. Compactness, the number of introduced individuals per cell in cells containing at least one introduced individual, 

for successful (blue) and failed (red) establishment attempts, grouped by run type. Horizontal line in interquartile range 

represents (IQR) median, white dot represents mean. Whiskers extend to 1.5xIQR, white dots outside whiskers are outliers. 

Compactness was the best predictor for short-term establishment success. Successfully-established introduced populations 

from EcoSim Niches exhibited significantly greater compactness than those from standard EcoSim, when compared within 

each introduced environment. 
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Fig. 4.33. Proportion of individuals failing to socialize for successful (blue) and failed (red) establishment attempts, grouped 

by run type. Horizontal line in interquartile range represents (IQR) median, white dot represents mean. Whiskers extend to 

1.5xIQR, white dots outside whiskers are outliers. This feature was ranked second for prediction of short-term establishment 

success. Proportion of successfully-established introduced populations failing to socialize was significantly lower in S→S 

compared to all other run types. 

 

Fig. 4.34. Proportion of individuals socializing, for successful (blue) and failed (red) establishment attempts, grouped by run 

type. Horizontal line in interquartile range represents (IQR) median, white dot represents mean. Whiskers extend to 1.5xIQR, 

white dots outside whiskers are outliers. This feature was ranked third for prediction of short-term establishment success. In all 

run types, the proportion of individuals socializing was greater in successful establishments than failed. Successfully-

established introduced populations from standard EcoSim exhibited significantly greater use of the socialize action compared 

to those from EcoSim Niches, when compared within each introduced environment. 
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Fig. 4.35. Proportion of individuals escaping from predators, for successful (blue) and failed (red) establishment attempts, 

grouped by run type. Horizontal line in interquartile range represents (IQR) median, white dot represents mean. Whiskers 

extend to 1.5xIQR, white dots outside whiskers are outliers. This feature was ranked fourth for prediction of short-term 

establishment success. In all run types, the proportion of individuals escaping was greater in failed versus successful 

establishments. The escape action was used significantly more often in populations introduced to standard EcoSim than to 

EcoSim niches due to greater predator density. 

 Subsequent analysis of these features yielded several significant differences in 

distributions across genetic diversity levels for certain run types, except for S→S. For 

N→S, the proportion of individuals socializing showed significant differences over 

genetic diversity (Figure 4.36; p = 0.0015 on combined successful and failed attempts; 

Kruskal-Wallis) with L2 yielding significant comparisons against L3, L4, and L5 (p = 

0.024, p = 0.0025, and p = 0.024 respectively; Conover’s test with Holm correction). For 

S→N, compactness yielded significant differences across genetic diversity (Figure 4.37; 

p = 0.038 on establishment failures, p = 0.030 on combined successful and failed 

attempts; Kruskal-Wallis) with L1-L4 yielding a significant comparison (p = 0.016 on 

establishment failures, p = 0.015 on combined successful and failed attempts; Conover’s 

test with Holm correction). In N→N, the proportion of individuals escaping from 

predators (p = 0.023 on failed attempts; Kruskal-Wallis) showed significant differences 

over genetic diversity with L1-L5 exhibiting significant difference (p = 0.026; Conover’s 

test with Holm correction). The proportion of individuals socializing showed significant 

differences in distributions in combined successful and failed establishments (p = 0.028; 

Kruskal-Wallis) with significant comparisons between L1-L2 (p = 0.04; Conover’s test 

with Holm correction). Similarly, compactness yielded significant differences over 

genetic diversity in combined failed and successful establishments (Figure 4.38; p = 

0.027, Kruskal-Wallis), with comparisons between L1-L2 yielding weak significance (p 

= 0.08; Conover’s test with Holm correction). 
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Fig. 4.36. Proportion of individuals socializing in N→S, for successful (blue), failed (red), and all (magenta) establishment 

attempts, grouped by genetic diversity. Horizontal line in interquartile range represents (IQR) median, white dot represents 

mean. Whiskers extend to 1.5xIQR, white dots outside whiskers are outliers. L2 proportion socializing was significantly 

different from L3, L4, and L5 for combined successful and failed establishments. 

 

Fig. 4.37. Compactness, the number of introduced individuals per cell containing at least one introduced individual, for S→N 

successful (blue), failed (red), and all (magenta) establishment attempts, grouped by genetic diversity. Horizontal line in 

interquartile range represents (IQR) median, white dot represents mean. Whiskers extend to 1.5xIQR, white dots outside 

whiskers are outliers. Comparing L1 versus L4 overall and for failed establishments yielded significant difference in 

distribution. 

 

Fig. 4.38. Compactness, the number of introduced individuals per cell containing at least one introduced individual, for N→N 

successful (blue), failed (red), and all (magenta) establishment attempts, grouped by genetic diversity. Horizontal line in 

interquartile range represents (IQR) median, white dot represents mean. Whiskers extend to 1.5xIQR, white dots outside 

whiskers are outliers. Comparison between L1 and L2 yielded significant difference in combined successful and failed 

establishments (magenta). 
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4.4 Discussion 

Hypothesis I stated that establishment success of introduced populations would increase 

with increasing genetic diversity of the inocula, with all other invasion parameters held 

constant. Hypothesis II, a corollary of hypothesis I, stated that this relationship would be 

stronger when the source and introduced ranges were vastly different. We found limited 

and circumstantial evidence of each hypothesis using our individual-based modelling 

approach. Short-term establishment in S→N and N→N showed significant differences in 

the extreme values of genetic diversity, with nearly monotonically-increasing 

establishment success with increasing genetic diversity (Figure 4.30). With S→S and 

N→S, however, such a relationship was not observed and instead inocula of extremely 

low diversity (i.e. inocula were formed of clonal populations) and medium-diversity (i.e. 

genetic entropy of ~210 bits) were favorable. These results were similar to those of 

Hufbauer et al. (2013), in which a similar experiment was conducted on whiteflies and 

differences in establishment success of introduced populations were attributable to 

genetic diversity more strongly when the populations were introduced to a “harsh” 

environment. Similar observations were made in a reciprocal transplant experiment by 

Szűcs et al. (2017) on red flour beetles, however in that study each transplanted 

population performed better in its natal environment. On the other hand, Szűcs et al. 

(2014) found no effect of genetic diversity on establishment success of red flour beetles 

in an experiment similar to that of Hubauer et al. (2013) and Szűcs et al. (2017) with a 

relatively less “harsh” environment, while demographics had an effect at low propagule 

size and propagule size was always extremely important. The relationship observed over 

genetic diversity in N→N supports hypothesis I, and the difference in relationship 

observed between S→S and S→N supports hypothesis II. However, the difference in 

N→S versus N→N directly contradicts hypothesis II. The observations in short-term 

establishment indicate that increasing genetic diversity of introduced populations aided 

more strongly in difficult (e.g. complex, heterogeneous, low-resource, as is EcoSim 

Niches) environments – rather than of those that are simply different from the origin of 

the introduced population. It has long been speculated that genetic diversity of introduced 

populations should positively influence their establishment success either as the 

difference between origin and novel environment increases, or as the complexity of the 

novel environment increases (Sakai et al. 2001; Bock et al. 2015; Dlugosch et al. 2015). 

We found evidence for the latter, and evidence directly against the former, at least in the 

earliest stages of establishment. 

 Subsequent analysis of the most impactful features in short-term establishment 

success mediated some potential insights regarding the above relationships. Introduced 

prey compactness is the number of introduced prey in a cell on average, for cells 

containing at least one introduced prey individual. Compactness was by far the most 
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important factor in determining short-term establishment success, based on our analysis 

using permutation importance on random forests. This was an expected result; the impact 

of Allee effects (positive density-dependent population growth at low abundance) in early 

invasions has long been studied in the invasion literature (Leung, Drake, and Lodge 

2004; Taylor and Hastings 2005; Kanarek and Webb 2010). Compactness was much 

greater in successful populations introduced to standard EcoSim, owing to the increased 

abundance of resources overall (Figure 4.32). Both successful and failed introduced 

populations from EcoSim Niches exhibited greater compactness than those from standard 

EcoSim in each introduced range. Patterns for successful usage of the socialize action 

(Figure 4.34), were similar to those of compactness, however successfully-establishing 

introduced populations from standard EcoSim used the socialize action more often than 

those from EcoSim Niches in each environment. These results indicate that Allee effects 

are clearly important in the establishment of the sexually reproducing populations in 

EcoSim, and better invaders (e.g. those from EcoSim Niches) are better able to maintain 

compactness to guard against Allee effects in the earliest stages of an invasion. In S→N 

and N→N, compactness showed significant differences between L1 and other genetic 

diversity levels overall, and in both cases L1 was the genetic diversity level that fared the 

worst in short-term establishment (Figures 4.32 and 4.33). The significant difference 

between L1 and others is because introduced populations are entirely clonal, and clonal 

individuals in a common location (e.g. under a similar set of stimuli) should behave 

similarly as they are genetically predisposed to, outside of differences in their state (i.e. 

Energy levels, Age, etc.). This leads to generally stronger synchronization of action 

selection, which is beneficial in terms of combatting Allee effects (i.e. by synchronizing 

socialization or reproduction actions and therefore increasing reproduction efficiency) but 

also more costly in the face of extremely low resources. The result of this effect is the 

emergence of temporally cyclical compactness, especially in the earliest stages of 

establishment, which was especially pronounced in L1 individuals from standard EcoSim 

(S→S, Figure 4.39; S→N, Figure 4.40). 
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Fig. 4.39. Resultant synchronization of compactness due to synchronization of action selection in S→S introduced prey. 

Stronger synchronization in L1 is due to the populations being clonal. Individuals with similar genomes behave similarly in 

similar circumstances in EcoSim. 

 

Fig. 4.40. Resultant synchronization of compactness due to synchronization of action selection in S→N introduced prey. 

Stronger synchronization in L1 is due to the populations being clonal. Individuals with similar genomes behave similarly in 

similar circumstances in EcoSim. 

With respect to long-term establishment (Figure 4.31), dominance of extreme 

genetically-diverse inocula was apparent aside from in S→S, though the comparisons 

between genetic diversity levels yielded insignificant results because of low sample size. 

Observations regarding genetic diversity of established populations over time indicated 

that, at the very least, it is possible for consistent extremely low-diversity inocula from a 
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single source to produce an extremely high-diversity established population – even 

exceeding diversity levels observed in other established populations produced from 

inocula of significantly greater genetic diversity – while all other invasion parameters are 

held constant. Other studies (e.g. Kolbe et al. 2004; Dlugosch and Parker 2008) have 

demonstrated examples of multiple introductions from single or multiple sources, leading 

to genetic diversity levels in the introduced range that are unprecedented in any one 

native range. To our knowledge, however, this is the first example in which such a 

comparison was made with invasion parameters fixed and genetic diversity levels of 

individual inocula controlled. Though it was an interesting observation, it was not the 

purpose of this study and certainly more experimentation on this front is warranted. In the 

case of N→S, for example, genetic diversity of the established L1 population nearly 

reached that of L4 after 3500 time steps (i.e. 35 inoculations; Figure 4.29). Populations 

stemming from inocula of other genetic diversity levels did see some gain in diversity in 

some cases (e.g. L2 in all but S→N, L3 and L4 in S→S and N→S), but generally none 

received gains in diversity like L1. Of course, L1 stands to gain the most genetic diversity 

through repeated introductions (as every inoculation itself has a genetic diversity of zero, 

so we should expect genetic diversity of the established population to increase with any 

subsequent introduction), but that alone does not explain the ability of L1 populations to 

ultimately reach or exceed the diversity levels of the other populations (i.e. in which each 

independent inoculum was far more genetically diverse). Thus, an interesting extension 

to this study would be to investigate this phenomenon further to explicitly observe the 

role of genetic admixture via multiple introductions in the long-term evolution of the 

introduced populations. It is probable that genetic admixture affects different established 

populations in different ways in the long term; perhaps, in cases of multiple 

introductions, there exists a relationship between genetic diversity of inocula and the 

relative benefit they provide to the pre-existing established population.  

On the other hand, perhaps, in multiple introductions, there is a relationship 

between genetic diversity of the established population and the relative benefit provided 

by each inoculum. It is possible that the resultant populations at 3500 time steps, 

stemming from inocula of lower diversity, contained alleles from a greater number of 

sources (i.e., genetic admixture contributed disproportionately to their ultimate gene 

pools). While we did not investigate this further in this study, it would certainly be an 

interesting subject of future investigation.   

 All measurements of establishment success (abundance, short-term success, and 

long-term success) exhibited differences between the different IR run types (i.e. S→S, 

N→S, S→N, N→N). With respect to abundance of introduced individuals over time, the 

difference between any pair of run types was approximately an order of magnitude in 

most cases. It was anticipated that introduced populations would perform best in the 
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environments from which they were taken (i.e., standard EcoSim individuals would 

perform better in standard EcoSim and EcoSim Niches individuals would perform better 

in EcoSim Niches), but this was not observed. Instead, an asymmetrical relationship was 

observed in which EcoSim Niches individuals performed better than standard EcoSim 

individuals in both standard EcoSim and EcoSim Niches. Such asymmetrical 

relationships are observed in nature. Fridley and Sax (2014) highlighted asymmetry in 

reciprocal number of invaders between the Red Sea and the Mediterranean Sea as well as 

between Lake Ontario and the Hudson River. They proposed the evolutionary imbalance 

hypothesis, which stated that regions of higher diversity should not only produce better 

invaders – and more of them, even after accounting for differences in species richness – 

but that they should also be less invasible. They theorized that the biodiversity in a region 

is representative of the time that evolution has had to take its course on it; thus, greater 

diversity in a region is a manifestation of a greater number of “evolutionary 

experiments”. According to Fridley and Sax, one consequence is that the species 

inhabiting diverse regions will be more optimized to their respective niches. Another 

consequence is that there would be more genetic diversity not only among species but 

also within them (i.e. phylogenetic diversity), and this was anticipated to aid in invasion 

success as well. In EcoSim Niches, there was greater genetic diversity compared to 

standard EcoSim; behavioural genes exhibited more variance and there was a greater 

ratio of species richness to abundance for predators and prey. However, both run types 

were given the same amount of evolutionary time before reciprocal transplants occurred. 

Thus, our study corroborates the evolutionary imbalance hypothesis in observed outcome, 

but not necessarily in all theorized explanations (i.e., diversity did not indicate 

evolutionary time). 

Mechanically, among other factors, Fridley and Sax (2014) discussed the relative 

intensity of competitive environments in which the populations evolved as a potential 

explanation for such imbalance. Based on data presented in 4.3.1 and Appendix A, we 

conclude that standard EcoSim and EcoSim Niches produced significantly different 

environments and consequently the individuals produced by the two variants were also 

different behaviourally, physically, and in terms of measured properties that emerged due 

to their differences (e.g. Speed, Energy, energy spent, species richness). Regarding 

physical characteristics of the prey and predator individuals, in all cases where significant 

differences were observed (Figures 4.18, 4.19, 4.21, and 4.22), the magnitude of the 

property was larger in the individuals from standard EcoSim than in EcoSim Niches. As 

discussed in Section 3.2.2 under Individuals, all physical characteristics carry an energy 

cost that is exacted every time step, and this cost increases nonlinearly with increasing 

magnitude of each physical characteristic. These reduced physical characteristics in the 

prey from EcoSim Niches contributed to an efficiency advantage (Figure 4.16). 
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As previously mentioned, EcoSim Niches features a reduction in resource 

abundance compared to standard EcoSim (in addition to highly variable resource 

abundance per cell). This presents a challenge for prey individuals as they must compete 

amongst each other for sometimes minimal resources. Compactness of introduced prey 

from EcoSim Niches was greater than that of introduced prey from standard EcoSim in 

each environment (Figure 4.32), matching what was exhibited by the native populations 

in their respect native ranges. The benefit of maintaining high compactness is 

maintaining the ability to find a mating partner that is willing and able to reproduce, 

especially at low population densities as observed in EcoSim Niches. However, the cost 

to maintaining high compactness is increased intraspecific competition. The efficiency 

advantage due to reduced physical capacities in individuals from EcoSim Niches, noted 

above, reduced the cost associated with maintaining high compactness. This likely 

yielded a competitive advantage for populations from EcoSim Niches in the early stages 

of establishment, as they were able to effectively reduce the cost of guarding against 

Allee effects. Thus, our study provides corroboration for the mechanical explanation of 

the evolutionary imbalance hypothesis that environments with intense competition 

simultaneously yield better invaders and are less invasible themselves. 

A valid follow-up question is “why wouldn’t standard prey simply evolve to be 

like EcoSim Niches prey if their strategy is so advantageous in the standard EcoSim 

environment?” A potential explanation is that evolving the general strategies adopted by 

EcoSim Niches prey – which seem to align more with r-selection than k-selection – may 

require the traversal of a low-fitness region of the evolutionary fitness landscape in the 

general standard EcoSim environment that is not present in the general EcoSim Niches 

environment. That is, genome z (producing the strategy most common in EcoSim Niches) 

might be highly favourable in both standard EcoSim and EcoSim Niches, but in order to 

reach it from genome x (e.g. the initial genome of all prey), it would be necessary to cross 

genome y, which is favourable at some point in EcoSim Niches but not in standard 

EcoSim. 

There are some clear limitations to this work. Most importantly, this was a 

simulation study and although we showed that standard EcoSim and EcoSim Niches 

produced vastly different environments and individuals, it was not possible for us to say 

just how different they were. Real invasions involve the passing of introduced 

populations through a variety of potentially strenuous filters (Kolar and Lodge 2001; 

Colautti and MacIsaac 2004; Blackburn et al. 2011); in the novel territory, the first filter 

is the environment. In reality, introduced species need to be able to cope with 

temperature, chemistry, and a wide variety of other physical factors before establishment 

is even a possibility, and so our assumption here is that our introduced species are at least 

physiologically compatible with the novel environment and this could certainly explain 
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the difference between what we observed and what the theory predicts. Going forward, 

we could conduct a similar experiment but impose some efficiency penalty (either 

directly to the Energy expenditure function, or perhaps as a tax on consumption) for the 

introduced species to the dissimilar environment, so as to model reduced climate-

matching (e.g. suboptimal temperature or food resource composition). We could also 

extend this experiment to explore environment harshness (i.e. in our case the degree of 

spatially-dependent variation in resource abundance as another dimension), but this also 

creates a logistical problem due to computational constraints as this experiment already 

required enormous computational resources.  

On the other hand, though we were able to control for genetic diversity of the 

introduced populations, it was impossible to know ahead of experimentation whether the 

range of genetic diversity we produced (i.e. from genetic entropy of zero to ~420 bits) 

would be enough to mediate different responses during establishment. We did observe 

differences in both short-term and long-term establishment, but were we able to increase 

the genetic diversity of the inoculations further (e.g. genetic entropy of 1000 bits), we 

may have observed a stronger response. On a related note – and this is a classical 

limitation in studies of this nature (Roman and Darling 2007; Wellband et al. 2018) – 

though we were able to control the degree of genetic diversity of the inocula, we cannot 

possibly know the degree to which the genetic diversity of the inocula resulted in 

functional diversity. It is practically impossible to quantify, even in our simulation, the 

degree to which diversity in genotypes yields diversity in phenotypes.  

Another limitation was in the analysis of factors contributing to successful versus 

failed short-term establishment; as our inoculations occurred every 100 time-steps we 

were unable to analyze inoculations independently in cases where previous inocula 

remained intact in the introduced range, which is why we analyzed only “fresh” 

inoculations. The result was that once an introduced population established long-term, we 

were unable to analyze subsequent inoculations in this manner. This certainly led to a 

reduced sample size for that analysis; a better design for such analysis would be in which 

we performed every subsequent inoculation only when the previous inoculation ceased to 

exist, or created separate EcoSim simulations for independent inocula. Though, again, 

these designs bring logistical concerns in terms of our computational constraints. Lastly, 

another limitation was that we did only use ten simulations per treatment, again because 

of computational constraints. Thus, we were unable to say definitively that there was a 

relationship between long-term establishment and genetic diversity of the inocula; 

however, our study still provides sufficient reason to explore this further. This also has 

potential implications in our assessment of short-term establishment; we treated each 

“fresh” inoculum as an independent case though there may be a temporal dependency in 

the available genotypes from which we sampled the inocula (i.e., only ten simulations). 
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However, both the native range and novel range of the introduced individuals represent 

highly dynamic and evolving systems, thus we assumed each inoculum was independent 

and believe this treatment was valid here. 

 In conclusion, assuming that the introduced populations are physiologically 

capable of surviving in the novel environment, we found a positive relationship between 

genetic diversity and short-term establishment success when populations were introduced 

to a harsher environment with spatially-varying and lower resource abundance, but this 

relationship did not hold when the novel environment had uniform resource distribution. 

We also found evidence that genetic diversity of inocula affects long-term establishment 

of introduced populations, assuming multiple introductions from a single source, but that 

extreme diversity levels may be favourable for long-term establishment. Further, our 

study corroborates the evolutionary imbalance hypothesis and a mechanical explanation 

for it: introduced populations originating from EcoSim Niches outperformed those from 

standard EcoSim in both environments, and the difference in intensity of competition in 

the native ranges may explain why. Allee effects were found to be extremely important in 

the earliest stages of establishment as compactness was by far the most important factor 

in determining establishment success. Further, observed differences in compactness 

between introduced individuals and those in their respective native ranges, differences in 

costs associated with maintaining physical characteristics, and the associated differences 

in establishment success, highlighted the importance of reducing costs associated with 

guarding against Allee effects for establishing populations (i.e. increased intraspecific 

competition). We only transferred prey individuals in our simulations; it is possible that 

species of higher trophic levels may exhibit differences from what we observed here, and 

this warrants further research. Also, many real introductions have involved mixed 

communities (i.e. containing numerous species across different trophic levels; e.g. 

introductions via ballast water); it is also possible that different patterns may be observed 

when mixed communities are transferred. Future studies could make comparisons of the 

evolutionary trajectories taken by introduced populations receiving multiple introductions 

and those not. For us, this would require a set of EcoSim simulations in which admixture 

does not occur, and each simulated invasion is carried out over a long term such that we 

could observe evolution of each independent introduced population. Similarly, with 

multiple introductions, the degree to which admixture occurs in the introduced 

populations may be related to the genetic diversity of the inocula or in the established 

population, and this warrants further experimentation. Lastly, as called for by Dlugosch 

et al. (2015), admixture from multiple introductions could lead to different fitness 

responses based on genetic diversity of both the established populations and the inocula 

and further investigation is necessary on this front. 
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CHAPTER 5 

Optimization and Performance Testing of a Sequence Processing Pipeline Applied 

to Detection of Nonindigenous Species 

5.1 Introduction 

Newly introduced populations that colonize novel ecosystems are usually small and 

inconspicuous (Leung, Drake, and Lodge 2004). Detection of small and geographically 

restricted populations is technically challenging, yet critically important to management 

of aquatic invasive species (AIS; Beric and MacIsaac 2015). Traditional early detection 

relies on techniques such as recruitment plates, video, scuba diving, trawling, and netting 

– which may require tremendous amounts of sampling effort (Hoffman et al. 2011) – 

typically followed by morphological identification. Furthermore, they may be ineffective 

if the introduced species is small, cryptic, or morphologically variable (Ficetola et al. 

2008). These attributes characterize many AIS, rendering monitoring of underwater 

environments an especially challenging task. Generally, genetic approaches are 

promising in the early detection of AIS, circumventing numerous challenges of 

traditional surveillance (Smart et al. 2015).  

When applied to complex communities, genetic detection of AIS or 

characterization of species composition typically involves sampling whole organisms 

(bulk sampling) or environmental DNA (eDNA) shed by them. In either case, a small 

‘barcode’ region of the genome (Hebert et al. 2003) can be used to determine the 

taxonomic identity of mixed sequences (Cristescu 2014). There are two genetic 

approaches to detection of AIS. In the first, one must have a particular target (typically, a 

species) in mind (the “targeted” or “active” approach). Alternatively, metazoan 

metabarcoding (Fonseca et al. 2010) aims to recover a wide range of taxa in a community 

and passively discover AIS (the “passive” approach; Simmons et al. 2016). Metazoan 

metabarcoding typically involves the use of universal primers and PCR to amplify 

available genetic material aiming to recover all taxa from the captured sample. However, 

in reality, not all taxa are discovered with equal sensitivity due to primer design or 

choice, and consequently inconsistent amplification may occur (Creer et al. 2010; Xiong, 

Li, and Zhan 2016).  

The metabarcoding process begins with a bulk sample, which often involves the 

use of specific nets to capture targets. Genomic DNA is then extracted and amplified 

using primers that are specifically designed or selected for the study. The amplified DNA 

is then sequenced, and once the sequences are obtained this data can be subjected to 

computational processing that might involve processes like filtration, denoising, or 

clustering. Processed sequences are then run against reference databases to determine 
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their taxonomic identity. Owing to the complex process of metabarcoding metazoan bulk 

samples (Figure 5.1, applied to detection of AIS), many potential sources of both false 

positive (type I) and false negative (type II) errors have been identified. A non-exhaustive 

list of potential sources of errors in this process includes primer design (Freeland 2017), 

PCR (Piggott 2016), next-generation sequencing (Fonseca et al. 2010), sequence 

processing (Flynn et al. 2015), reference library preparation (Zhan, He, et al. 2014), and 

taxonomic assignment inconsistencies, though it is difficult to quantify the impact of each 

(Xiong, Li, and Zhan 2016). Fortunately, by appropriately selecting parameters in 

computational sequence processing, the impact and frequency of errors can be reduced 

(Zhan, Xiong, et al. 2014; Brown et al. 2015; Flynn et al. 2015). 

 

Fig. 5.1. Flowchart of the general metazoan metabarcoding process applied to bulk sampling in the context of aquatic 

invasions. In this study, we focus on the computational aspects of the process (sequence processing, BLAST, and 

identification of AIS). 

 Over the last decade, several sequence processing suites have been developed, 

including USEARCH (Edgar 2010), mothur (Schloss et al. 2009), QIIME (Caporaso et 

al. 2010), and RDP (Cole et al. 2014), each making simplifying assumptions that 

improve computational efficiency. Many of these suites share features, algorithms, or 

even programs. Intra-specific genetic variation within barcode regions can exist, so many 

programs allow users to cluster sequences into operational taxonomic units (OTUs) based 

upon genetic similarity (Schloss et al. 2009; Edgar 2013). OTUs are groups of sequences 

that share high similarity, typically at the species or genus level. UPARSE, which is built 

into the USEARCH program, can create clusters in order of decreasing sequence 

abundance after sequence dereplication (Edgar 2013). Although the most abundant 

sequence may not represent the true center of a species, this approach is computationally 

efficient and is more effective than other approaches (such as UCLUST or hierarchical 

clustering of mothur; Edgar 2013; Flynn et al. 2015). Other approaches to clustering – 

such as Bayesian (Hao et al. 2011), modularity-based (Wang et al. 2013), and 
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agglomerative clustering (Mahé et al. 2014) – may use different sequence identity 

definitions; that is, they penalize gaps in alignments differently. Several of these 

sequence processing suites have similar or shared features and algorithms, for example 

the clustering algorithms in QIIME are strictly third-party and some are closed-source 

(Caporaso et al. 2010). USEARCH is comprehensive and allows sequence trimming, 

minimum Phred score (Q) filtering, maximum expected error (MEE) filtering, clustering, 

denoising (Edgar 2016), and removal of sequences not meeting any arbitrary abundance 

threshold. These are all options that are regularly used in the related literature in some 

capacity, even in computational suites other than USEARCH (Bokulich et al. 2013; 

Pawlowski et al. 2014; Elbrecht and Leese 2015; Flynn et al. 2015; Brown et al. 2015; 

Brown et al. 2016; Chain et al. 2016; Hänfling et al. 2016; Port et al. 2016; Bista et al. 

2017). USEARCH also has many other utilities for analysis after sequences have been 

processed, suh as computation of diversity indices and phylogenetic analysis.  

The objective of sequence processing is to improve the integrity of results, but it 

may also be a source of error if performed poorly (Brown et al. 2015; Flynn et al. 2015; 

Xiong, Li, and Zhan 2016). Parameter selection in sequence processing involves a 

delicate balance between false positive and false negative error (Zhan et al. 2013). With 

overly stringent quality filtration, for example, sequences that identify truly present taxa 

in a sample may be removed, leading one to incorrectly infer absence of these taxa (false 

negative error). On the other hand, insufficient filtration can lead to false positive errors, 

because in downstream analyses, erroneous sequences could map to species not present 

in the sample. Filtering is discussed here for illustrative purposes; all other components of 

the pipeline (clustering, denoising, length cutoffs, abundance thresholds, etc.) similarly 

participate in this balance between false positives and false negatives and thus parameter 

selection is not straightforward. The optimal parameter sets (which minimize either or 

both types of error) depend on the aim of the study and are usually not known prior to 

processing. Currently, users have limited knowledge on which to base parameter 

selection. 

Though computational processing of sequences is an essential part of taxonomic 

assignment for genetic sequence data, very few studies have attempted to rigorously 

address the problem of parameter selection (e.g. Bokulich et al. 2013). Instead, few (or 

single) aspects of sequence processing have been previously tested – often with low 

resolution (i.e. Pawlowski et al. 2014; Brown et al. 2015; Flynn et al. 2015; Brown et al. 

2016) – though numerous processing steps and parameter values interact to produce the 

resultant set of sequences or OTUs. Parameter selection also depends on the goals and 

methods of the study (identification of AIS, species richness estimation, eDNA, bulk 

sampling, etc.). Thus, there is a need to test a wide range of processing steps and 

parameter values in concert and for different research scenarios.  
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We primarily sought to determine how users should select parameters when using 

a sequence processing pipeline (Figure 5.2) in a metazoan, bulk-sample, metabarcoding 

context. Simultaneously, we wanted to determine if and how research goals influence 

optimal parameter selection. Finally, we aimed to determine the performance of such a 

pipeline when parameters were appropriately selected given these research goals. 

Consequently, this study had two main investigations: Optimization, in which we 

searched for optimal parameter selection for the computational sequence processing 

pipeline, and Performance Testing, in which we performed simulations to assess the 

performance of selected ‘most optimal parameter sets’ in two ways: sensitivity and 

detectability (defined below under Performance Testing). In both parts of the study, we 

considered two common research applications of metabarcoding: accurate estimation of 

species richness and early detection of AIS. These research goals differ in how 

researchers will utilize sequence processing pipelines to shift the balance between 

protection against false positives and false negatives. Though it is always important to 

control for both types of errors, researchers estimating species richness via 

metabarcoding are typically concerned with minimizing both false positives and false 

negatives, while those involved in early detection of AIS are mainly concerned with 

minimizing false negatives. 

 

Fig. 5.2. Flowchart of the sequence processing pipeline used in this study. Relevant USEARCH commands and options used 

are shown in parentheses. The first step combines sequence trimming (truncation) and quality filtration (Phred score – Q, and 

maximum expected error – MEE). In the next step, sequences are dereplicated. Next, the sequences are sorted in terms of 

decreasing abundance (necessary for clustering and denoising) and singletons are removed. Clustering or denoising of the 

sequences may subsequently be performed. Finally, BLASTn is used to perform taxonomic assignment with a minimum 

identity threshold of 97% using BLASTn defaults. 

5.2 Materials and Methods 

Below, we give a brief overview of our study. We then describe our sequence processing 

pipeline, introduce our sequence datasets, explain the optimization process, and discuss 

our performance testing procedure. 
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First, we optimized a sequence processing and taxonomic assignment pipeline 

employing USEARCH v10.0.240_i86linux32 and BLASTn v2.6.0+ (Figure 5.2) using a 

mock (i.e. deliberately assembled) community of sequences from 20 AIS obtained via 

454 pyrosequencing. We used the USEARCH package because it is comprehensive, fully 

automatable through scripting, and exhibits strong performance and efficiency (Edgar 

2013). We optimized the pipeline separately for two common research goals: accurate 

estimation of species richness (which favors minimizing false negatives and false 

positives when sequences vary in abundance) and early detection of AIS (which favors 

sensitivity and minimizing false negatives, even for sequences of low abundance). This 

stage involved a search for parameter sets that generated OTUs that most accurately 

reflected the makeup of the mock community samples, which we described in detail 

below under the section “Optimization”. Secondly, we took some of the most optimal 

parameter sets from the optimization phase and tested their performance through 

simulation. We tested performance using 20 different AIS, community samples from 10 

ports, and the most effective 24 parameter sets (of 1050 total parameter sets tested), 

allowing us to observe dependencies between these factors. This allowed us to make 

recommendations for sequence processing parameter selection from a more general 

standpoint. 

5.2.1 Sequence Processing 

We defined a parameter set as a combination of sequence length, Q filter stringency, 

MEE filter stringency, clustering identity threshold (if clustering was used), denoising 

minimum sequence abundance (if denoising was used), and minimum sequence 

abundance after dereplication. The values we tested for each parameter can be found 

under Optimization. To elaborate, sequences shorter than the sequence length threshold 

were removed, while those longer than that length were trimmed accordingly. The Q 

filter we used was a minimum Q score filter, meaning that a sequence with any single 

base call with Q below the threshold was removed. The MEE filter computed the 

maximum number of expected errors across the entire sequence using Q scores of each 

base call. Sequences with an expected number of errors above the MEE threshold were 

removed. Clustering identity was the similarity threshold between an OTU’s 

representative sequence and all other sequences in that OTU using UPARSE. Denoising 

in USEARCH (UNOISE3) considered sequence abundance and number of differences 

between sequences to predict whether a sequence was correct or not (Edgar 2016). In 

UNOISE3, the probability of incorrectness of a sequence was computed based on the 

abundance skew ratio (ratio of abundance) and number of differences between it and 

other sequences already deemed correct, and sequences were compared in order of 

decreasing abundance for efficiency (see Edgar 2016 for algorithm details). Denoising 

minimum abundance was the minimum abundance for a sequence to not be considered 
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noise, which also affected abundance skew ratio ratios for retained sequences. With any 

given denoising minimum abundance, retained (but noisy) low-abundance sequences 

counted towards abundances of their ‘correct’ counterparts. This could impact 

classification of sequences at the denoising step and could also influence downstream 

abundance-based analyses. Further, as the lower limit on sequence abundance was 

increased, remaining sequences could be classified as noisy or correct with greater 

confidence with the UNOISE3 algorithm (Edgar 2016). We left the other clustering and 

denoising parameters to their default values. Minimum sequence abundance after 

dereplication was simplified by either allowing or removing singletons. 

We used the same sequence processing procedure in both optimization and 

performance testing (Figure 5.2). We used USEARCH for all sequence processing. This 

procedure took as input a single FASTQ file, though it could also be adapted for merged 

paired reads. In the first step, we truncated sequences, removed those not meeting the 

length requirement, and then filtered the sequences by quality. Next, we dereplicated and 

sorted sequences by abundance, which was necessary for the UPARSE clustering and 

UNOISE3 denoising algorithms built into USEARCH. In this step, if singletons were to 

be removed, only sequences with two or more replicates were retained. Whether 

clustering or denoising was performed or not was determined by the parameter set being 

tested (i.e., the iteration of the optimization stage or the selected parameter sets in 

performance testing). We did not test combining clustering and denoising due to 

computational constraints. A chimera detection algorithm is embedded in the denoising 

algorithm of USEARCH that we used (UNOISE3), so chimera detection occurred if 

denoising was performed using the defaults for UNOISE3. Once sequence processing 

was complete, we checked the resultant set of sequences (or OTU representative 

sequences) against precomputed BLAST results (see Dataset Preparation below for 

BLAST precomputing procedure). All computing was performed on the Shared 

Hierarchical Academic Research Computing Network (SHARCNET). 

5.2.2 Dataset Preparation 

We acquired four published metabarcoding datasets of 18S V4 rDNA sequences. The 

amplified fragment length was ≥ 400bp for our target taxa. Primers for this marker 

effectively amplify a broad range of zooplankton taxa, making 18S a suitable marker for 

zooplankton metabarcoding studies (Zhan, Bailey et al. 2014). Conversely, the COI 

marker is highly variable for these taxa (sometimes, even in the primer binding sites) 

which may make it more suitable for studies taking the targeted approach than for 

metabarcoding highly divergent communities (Deagle et al. 2014; Zhan, Bailey et al. 

2014; Hatzenbuhler et al. 2017). The drawback of 18S is that due to lower variability it 
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may be more difficult to assign identity at the species level. For each dataset, we obtained 

unprocessed sequences in FASTQ format.  

The first dataset, which we called D1, was a mock community of 20 AIS obtained 

from bulk zooplankton samples. All sequences of a given taxon were identically tagged 

by adding short sequences in the primers, unique to each taxon (Brown et al. 2015). This 

dataset was referred to as the “Tagged individual community” in the paper by Brown et 

al. (2015). The dataset originally contained 115902 sequences (unevenly distributed 

across the 20 taxa), with sequence length of approximately 400-600bp. This library was 

amplified using a primer pair developed by Zhan et al. (2013) and pyrosequenced using 

454 GS-FLX Titanium platform (454 Life Sciences, Branford, CT, USA) by Genome 

Quebec (see Brown et al. 2015 for more details of library production). We removed all 

sequences of the invaders Dreissena polymorpha and Ciona intestinalis because 

preliminary analyses indicated that these samples were likely contaminated. We 

BLASTed all sequences of this dataset and found that roughly half of those from D. 

polymorpha and C. intestinalis aligned best with different taxa also found in this dataset. 

However, we also acquired 18S sequences of two other AIS: the green crab Carcinus 

maenus, which is a marine AIS of global importance, and the quagga mussel Dreissena 

rostriformis bugensis, which is a major problem in lakes in Europe and North America. 

We obtained green crab sequences from Brown et al. (2015), while those of quagga 

mussels were detected in bulk zooplankton samples (Chain et al. 2016). Both research 

groups used the same library production protocol and sequencing platform as described 

above, though the latter used a primer designed by Zhan, Bailey, et al. (2014). We refer 

to the dataset consisting of the sequences from the 18 taxa from the mock community, 

plus green crab and quagga mussel sequences, as D1. Therefore, D1 consisted of different 

abundances of sequences from 20 taxa with varied relatedness. This dataset was used for 

both the optimization and performance testing stages. For optimization and performance 

testing, we separated this dataset into 20 separate sequence sets, each consisting of 

sequences from a single taxon (Table 5.1). The amplified fragment for all 20 taxa was ≥ 

400bp, and mean sequence length was 466bp. 

Table 5.1: Dataset D1, with sequences grouped by taxon. Proportion of sequences kept at length 350 bp given a Phred score 

(Q) filter or MEE filter of varying strengths are shown as a proxy of dataset quality. Sequences ranged greatly in quality and 

abundance, with Brachionus and Mesocyclops yielding sequences of lowest quality. With a Phred score filter of 20, no 

sequences of Brachionus or Mesocyclops were retained. 

Taxon Sequences Q = 10 Q = 20 MEE = 1 

Artemia salina 2145 0.9920 0.0490 0.8015 

Balanus crenatus 14732 0.9910 0.1310 0.8128 

Brachionus calyciflorus 207 0.9950 0.0000 0.0483 

Cancer sp. 1629 0.9940 0.1040 0.7185 

Carcinus maenas 200 1.0000 0.1750 0.9400 

Cercopagis pengoi 1222 0.9920 0.0110 0.7709 

Corbicula fluminea 46915 0.9900 0.2980 0.8952 
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Daphnia mendotae 706 0.9750 0.0160 0.6232 

Diacyclops thomasi 812 0.9900 0.0090 0.7106 

Dreissena rostriformis bugensis 200 1.0000 0.1550 0.9450 

Echinogammarus ischnus 7337 0.9820 0.2430 0.8327 

Epischura lacustris 10002 0.9900 0.1400 0.8465 

Leptodiaptomus ashlandi 5461 0.9890 0.0790 0.7539 

Mesocyclops edax 1055 0.9910 0.0000 0.2812 

Microsetella norvegica 814 0.9950 0.0530 0.8136 

Oikopleura labradoriensis 3545 0.9940 0.1090 0.8434 

Palaemonetes sp. 5170 0.9930 0.3630 0.9154 

Pleuroxus denticulatus 644 0.9800 0.0080 0.6182 

Senecella calanoides 348 0.9970 0.0140 0.4580 

Themisto libellula 4269 0.9830 0.5000 0.9311 

 

In performance testing, we also utilized a dataset that consisted of V4 18S rDNA 

derived from bulk zooplankton samples from ten Canadian ports (Chain et al. 2016). We 

kept each of these samples separated by port, and refer to this as D2 (Table 5.2). 

Sequences of D1 were computationally inoculated into samples from D2, as explained in 

more detail below under “Performance Testing”. Primers and tags were removed from all 

sequences. In cases where, after sequencing, the primer or tag of a sequence did not 

match any original primers or tags, the sequence was removed. 

Table 5.2: Dataset D2, containing sequences of ten Canadian ports sampled (see Chain et al. 2016). Number of sequences and 

proportion of sequences kept at length 350 bp given a Phred score (Q) filter of 10 and 20 or MEE filter of 1 are shown. 

Samples ranged greatly in quality and abundance. Churchill and Halifax yielded sequences of relatively low quality, whereas 

Hawkesbury, Sept Iles, and Thunder Bay yielded sequences of relatively high quality. With a Phred score filter of 20, no 

sequences of Churchill or Halifax are retained. 

Location Sequences Q = 10 Q = 20 MEE = 1 

Churchill 684163 0.2290 0.0000 0.0809 

Halifax 877078 0.2480 0.0000 0.0477 

Hamilton 686064 0.2660 0.0230 0.1750 

Hawkesbury 444315 0.6370 0.1110 0.5076 

Nanaimo 406215 0.6240 0.0200 0.4074 

Nanticoke 480962 0.5820 0.0570 0.4305 

Sept Iles 249663 0.9550 0.1900 0.8645 

Thunder Bay 556984 0.6910 0.1170 0.5798 

Vancouver 1008358 0.2670 0.0020 0.1359 

Victoria 456391 0.5720 0.0310 0.3976 

 

For optimization and performance testing, we needed to classify each sequence in 

D1 as correct, ambiguous, or incorrect. A correct sequence was one that aligned best with 

a reference sequence of its true identity, with identity ≥ 97%, whether alignments to other 

taxa were tied in similarity score or not. An ambiguous sequence was one that aligned 
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with a higher score to a reference sequence of a different taxon, though it still aligned to 

its correct taxon with identity ≥ 97%. An incorrect sequence aligned with a reference 

sequence of its true identity with identity < 97%. 

When the pipeline was performed on a sample with a given parameter set, a set of 

OTUs was generated each of which had a representative sequence. These representative 

sequences were run against a reference database using an alignment search tool to 

determine their taxonomic identity. Basic Local Alignment Search Tool (BLAST - 

Altschul et al. 1990) is one such computational tool. We used the NCBI nucleotide 

database as our reference (retrieved June 2017) and BLASTn (BLAST for nucleotide 

sequences). We precomputed the class of each sequence so we could efficiently classify 

each OTU generated in optimization and performance testing based on its representative 

sequence. For optimization, this was necessary to evaluate the quality of each parameter 

set based on the OTUs it produced from the optimization samples. For performance 

testing, this was necessary to determine if an inoculated taxon could be correctly 

recovered from a sample.  

We computed the list of all BLAST hits with ≥ 97% identity, which in BLASTn 

were sorted by decreasing hit similarity using the metrics E-value, bit-score, and identity. 

However, any number of hits may have had identical similarity scores using these 

metrics. Moreover, sequences (especially if they contained errors) may share more 

similarity with sequences of a different species than those of their own. Each of these 

situations made accurate identification of a sequence challenging. Worse yet, a sequence 

may not have aligned with sequences of its own species with sufficiently high alignment 

score, or the reference database may not have contained sequences of the queried species. 

Considering these complications, we classified each sequence in D1 as correct, incorrect, 

or ambiguous with the following definitions. A correct sequence was one that aligned 

best with a reference sequence of its true identity, with identity ≥ 97%, whether 

alignments to other taxa were tied in similarity score or not. An ambiguous sequence was 

one that aligned with a higher score to a reference sequence of a different taxon, though it 

still aligned to its correct taxon with identity ≥ 97%. An incorrect sequence aligned with a 

reference sequence of its true identity with identity < 97%.  

To classify each sequence, we first had to establish a ground truth BLAST 

identity for each taxon using our reference database (Table 5.3). Of the 20 taxa, 11 

BLAST identities matched their corresponding morphological identities to species and 

five matched to genus. Of the remainders, two taxa were assigned generic 18S metazoan 

identities, and two were assigned different identities altogether compared to their 

morphological identities. All samples in D1 obtained from Brown et al. (2016), where a 

sample is a set of sequences from a single taxon, were from specimens morphologically 

identified in that study. For these samples, if the majority of sequences aligned with 
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reference sequences of their morphological identity with ≥ 97% identity, the 

morphological identity was assumed correct. Otherwise, the taxon with the highest 

BLAST similarity score was assumed correct. In most cases, BLAST identity of 

sequences matched their morphological identity, though in some cases they did not, 

mainly because the morphological identity did not exist in the reference database. 

Sequences of Dreissena and Carcinus were identified through BLAST in Chain et al. 

(2016). 

Table 5.3: Morphological and assumed BLAST identities of sequences from dataset D1, separated by taxon. Correct 

sequences were those that BLASTed to the assumed identity with rank 1 (using the BLASTn default sort method) and identity 

> 97%. Ambiguous sequences were those that BLASTed to the assumed identity with rank > 1 and identity > 97%. Incorrect 

sequences were those that did not BLAST to the assumed identity with identity > 97%. All taxa except Epischura, 

Mesocyclops, and Senecella had fewer than 1% incorrect sequences. For Mesocyclops, most sequences that were labelled 

incorrect did BLAST to Mesocyclops, but with an identity of less than 97%. Carcinus sequences exhibited high identity with 

many reference sequences. 

Morphological 

Identity 

Assumed BLAST 

Identity 

Correct 

Sequences 

Ambiguous 

Sequences 

Incorrect 

Sequences 

Correct + 

Ambiguous (%) 

Incorrect 

(%) 

Artemia salina Artemia salina 2137 0 8 99.6 0.4 

Balanus crenatus Balanus crenatus 14724 0 8 99.9 0.1 

Brachionus 

calyciflorus 

Brachionus 

calyciflorus 
207 0 0 100.0 0.0 

Cancer sp. Cancer sp. 1620 4 5 99.7 0.3 

Carcinus maenas Carcinus maenas 43 157 0 100.0 0.0 

Cercopagis pengoi Cercopagis pengoi 1217 0 5 99.6 0.4 

Corbicula fluminea Corbicula fluminea 46842 0 73 99.8 0.2 

Daphnia mendotae Daphnia sp. 694 11 1 99.9 0.1 

Diacyclops thomasi 
Diacyclops 

bicuspidatus 
0 812 0 100.0 0.0 

Dreissena 

rostriformis 

bugensis 

Dreissena rostriformis 

bugensis 
200 0 0 100.0 0.0 

Echinogammarus 

ischnus 

Chaetogammarus 

ischnus 
7280 0 57 99.2 0.8 

Epischura lacustris Eurytemora affinis 9628 248 126 98.7 1.3 

Leptodiaptomus 

ashlandi 

Leptodiaptomus 

ashlandi 
5414 25 21 99.6 0.4 

Mesocyclops edax 
Mesocyclops 

pehpeiensis 
56 0 999 5.3 94.7 

Microsetella 

norvegica 

Uncultured Metazoan 

Partial 
809 2 3 99.6 0.4 

Oikopleura 

labradoriensis 

Uncultured Eukaryote 

18S 
3543 0 2 99.9 0.1 

Palaemonetes sp. Palaemonetes sp. 5163 1 6 99.9 0.1 

Pleuroxus 

denticulatus 
Pleuroxus denticulatus 642 0 2 99.7 0.3 

Senecella 

calanoides 
Euchirella sp. 340 2 6 98.3 1.7 

Themisto libellula Themisto libellula 4246 1 11 99.5 0.3 



 

115 
 

 

For each taxon sample in D1, we generated five new samples by trimming the 

original sample to each of the lengths tested in this study (300bp, 325bp, 350bp, 375bp, 

and 400bp). We ran BLASTn on each of the trimmed samples for each taxon with a 97% 

identity cutoff. We then parsed all the BLAST results and classified each sequence 

according to the definitions above. To save these classifications, we generated three 

“BLAST cache” files for each taxon-length combination – one for correct, one for 

ambiguous, and one for incorrect sequences. In these files, we wrote the sequence labels 

for all sequences of the given class, for fast reference in the future. With a given OTU 

from optimization or performance testing, we could then search the cache files for the 

matching sequence label to determine its class. 

5.2.3 Optimization 

We tested 1050 parameter sets (see summary, Table 5.4). It is important to note that we 

tested 150 parameter sets without clustering or denoising, but tested 450 parameter sets 

with clustering and 450 with denoising because we explored three values for each 

clustering and denoising parameter. Testing fewer parameter sets without clustering or 

denoising implies that we explored a smaller space of possibilities for that method of 

processing, which can potentially lead to reduced observed optimality for this method. 

However, it was more important that, for each common parameter across the processing 

methods, we tested the same parameter values to keep the methods comparable. The 

parameters and values we tested were informed by related studies in the field and the 

characteristics of our sequence datasets. 

Table 5.4: Synopsis and values used of the six sequence processing parameters tested in this study. In total, 1050 parameter 

sets were tested in the optimization stage. Clustering and denoising steps were optional and mutually exclusive. 

Parameter Synopsis Values Tested 

Sequence Length Length of sequences – shorter 

sequences discarded, longer 

sequences trimmed 

300, 325, 350, 375, 400 

Minimum Phred Score (Q) Minimum quality score per 

base call 

10, 20, 30 

Maximum Expected Error 

(MEE) 

Sequence-wide expected error 

score 

1.0, 1.5, 2.0, 2.5, 3.0 

Clustering Identity Threshold 

(Optional) 

Intraspecific genetic identity 

threshold 

97%, 98%, 99% 

Denoising Minimum 

Abundance Threshold 

(Optional) 

Minimum abundance of a 

sequence to not be considered 

noise 

2, 4, 8 

Singletons Do we keep unique sequences Yes, no 

 

 Generally, we tested more lenient parameter values than those used in related 

studies (Bokulich et al. 2013; Pawlowski et al. 2014; Elbrecht and Leese 2015; Flynn et 

al. 2015; Brown et al. 2015; Brown et al. 2016; Chain et al. 2016; Hänfling et al. 2016; 
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Port et al. 2016; Bista et al. 2017) because our reads were comparatively long and 

variable in quality, and sequence quality decreases with sequence length. Aside from the 

studies by Brown et al. (2015) and Elbrecht and Leese (2015), the minimum length cutoff 

used in all related studies was less than 300bp. Q filters ranged from 20-30 depending on 

strategy (per base call, sliding window, mean across full sequence etc.) and sequence 

length. MEE filters ranged from 0.5-1.0 (Flynn et al. 2015; Brown et al. 2015; Port et al. 

2016; Bista et al. 2017). Clustering identity thresholds ranged from 97%-99% across a 

variety of clustering algorithms (Flynn et al. 2015; Brown et al. 2015; Brown et al. 2016; 

Chain et al. 2016; Port et al. 2016; Bista et al. 2017; Clarke et al. 2017). Some studies 

discarding singletons while others kept them (Elbrecht and Leese 2015; Flynn et al. 2015; 

Brown et al. 2015; Brown et al. 2016; Chain et al. 2016; Port et al. 2016; Bista et al. 

2017; Clarke et al. 2017). The UNOISE3 denoising algorithm (Edgar 2016) was more 

recently developed and thus none of the aforementioned studies used this algorithm. 

Optimization consisted of two parts. In both parts, ranking of parameter sets was 

based on the number of correct, ambiguous, incorrect, and redundant OTUs generated by 

the pipeline. Redundant OTUs were defined, for a each taxon, as those for which a 

correct or ambiguous OTU was already found. For a given taxon, if we had a correct and 

an ambiguous OTU, the correct OTU took precedence and the ambiguous OTU was 

reclassified to redundant. Thus, a sample could yield at most 20 correct or ambiguous 

OTUs in total (one for each taxon), and any remaining correct or ambiguous OTUs were 

considered redundant. We considered the number of redundant OTUs in optimization for 

two reasons. First, it could take significantly more processing (manual work) to 

determine the identity of an OTU, particularly if it was correct but had multiple high-

scoring hits in BLAST, or if it was ambiguous. Secondly, more computational time 

would have been necessary for downstream analysis if there were more OTUs with which 

to work. In each part of the optimization stage, to find optimal sets, we ranked the 

parameter sets in order of decreasing optimality based on the following criteria. Part I 

was designed to find parameter sets that most accurately estimated species richness (i.e. 

minimized false negatives and false positives with varied sequence abundances) from a 

bulk zooplankton sample (Figure 5.3a). Part II was designed to find parameter sets with 

high sensitivity (i.e. minimized false negatives with low sequence abundances, Figure 

5.3b), which is more useful in the detection of AIS. In part I, we combined the samples 

from all 20 taxa from D1 to construct a single mock community sample. The number of 

sequences for each D1 taxon ranged from 200 to 46915. In part II of optimization, we 

generated 100 samples, each consisting of 1000 sequences. We generated these samples 

by randomly resampling D1, aggregating subsamples of 50 sequences from each taxon to 

form mock communities with low sequence abundance. Using only 50 sequences from 

each taxon forced the optimization process to favor more sensitive parameter sets – those 



 

117 
 

that could successfully recover taxa even with low sequence abundance – which was 

more appropriate when minimization of false negative error was vital. In both part I and 

part II, we then tested all 1050 parameter sets on all samples and computed the number of 

correct, ambiguous, incorrect, and redundant OTUs generated by the pipeline using the 

given parameter set across all samples. Finally, we ranked the parameter sets according to 

the optimization ranking scheme described below. 

 

Fig. 5.3. The optimization method for accurate species richness estimates (a), early detection of AIS (b), and the performance 

testing method (c). Different colored boxes represent different taxa in dataset 1 (D1), and different colored circles represent 

different community samples in dataset 2 (D2). For performance testing of parameter sets optimized for accurate species 

richness estimates, k = 100. For performance testing of parameter sets optimized for early detection of AIS, k = 50. For a 
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given iteration i, where 1 ≤ i ≤ k, different random subsamples with i sequences from a given taxon were used to inoculate 

each community. 

In both parts of the optimization process, parameter set a was considered more 

optimal than parameter set b if the former’s total number of correct and ambiguous OTUs 

was greater than the latter’s. In the case of a tie, the parameter set with the greater 

number of correct OTUs was more optimal. Missing correct or ambiguous OTUs 

constitutes a false negative error, which is problematic in estimating species richness but 

potentially catastrophic in early detection of AIS. If two parameter sets were still tied, the 

parameter set with the fewest incorrect OTUs was considered more optimal. The more 

incorrect OTUs generated by a parameter set, the more likely a user could have been to 

commit a false positive error using that parameter set. If the number of incorrect OTUs 

was equal as well, the parameter set with fewer redundant OTUs was more optimal. If all 

OTU counts were equal, the parameter sets performed equally. For each part of the 

optimization process, we grouped the optimization results by parameter sets that 

performed clustering, denoising, or neither so that we could compare these three 

sequence processing methods. 

To determine the concordance of parameter set rankings between the two research 

goals, we computed the Kendall rank correlation coefficient on the ranked parameter set 

lists for each sequence processing method. Furthermore, we determined the relative 

contribution to false negative and false positive errors of each of the parameters for six 

cases: three sequence processing methods across two research goals. In each case, we 

performed a multiple regression analysis using optimization results. The predictors were 

the parameter values and the response variables were the number of correct + ambiguous 

OTUs (which indicates increasing false negative error as it decreases from 20) and the 

number of incorrect OTUs (which indicates increasing false positive error as it increases 

from zero). We standardized parameter values for each regression, which allowed us to 

use the magnitude of the regression coefficients to rank parameters by their relative 

contributions. In each case, we reported the regression coefficients (to indicate relative 

contribution) and associated p values (to indicate significance of their contributions). 

5.2.4 Performance Testing 

We ran a series of simulations to test performance of the pipeline in detecting target 

sequences that were computationally inoculated into real bulk zooplankton samples using 

24 selected parameter sets from optimization (Figure 5.3c). The “target” sequences were 

a subset of sequences all belonging to a single AIS from D1. We chose 12 parameter sets 

from optimization part I and 12 from part II. We did not simply choose the top 12 

parameter sets from each part of optimization because many of the top parameter sets 

were quite similar. For both parts of the optimization stage, we chose four parameter sets 
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for each processing method – clustering, denoising, and neither clustering nor denoising. 

We always chose the top parameter set for a processing method, and subsequently 

selected parameter sets that performed the next best but were at least two parameters 

different from any other previously selected parameter set until we had a total of four 

parameter sets for that category. We conducted performance testing in two parts, 

mirroring the two parts of optimization. In part I, a simulation consisted of inoculating 

each port sample in D2 with target sequences, iterating from 1-100 randomly selected 

sequences of a target taxon from D1. We did this for every taxon in D1. We then ran the 

pipeline with all selected parameter sets from optimization part I on the simulated data. 

For each combination of target taxon, port, and parameter set, we performed 25 

simulations. For each simulation, we recorded if the target was detected with up to 100 

sequences inoculated into the sample and, if so, how many sequences were required to 

detect it. Therefore, we defined two measures of performance: detectability and 

sensitivity. Detectability was defined as the ratio of simulations in which the target was 

found given some number of target sequences inoculated into a community sample. 

Sensitivity was defined as the number of sequences required to detect the target. 

Sensitivity was not recorded if the target was not detected. Part II was identical to part 

one, except we used selected parameter sets from optimization part II and inoculated only 

up to 50 sequences of the target into the sample because the parameter sets from 

optimization part II were expected to be far more sensitive. We inoculated up to 50 

sequences of the target due to computational constraints and because we found in 

preliminary work that if the target was not found with 50 sequences in the sample, it was 

likely undetectable. 

5.3 Results 

5.3.1 Optimization 

Classification of sequences prior to optimization revealed that D1 could yield, at most, 

1484 incorrect OTUs and trimming alone could be responsible for false negative error. 

D1 ranged from 749 incorrect sequences at length 400bp to 1484 at length 325bp, with 

the remaining sequences classified as correct or ambiguous. At most, only 19 taxa could 

possibly be recovered (18 correct and one ambiguous) using sequence lengths of 300bp 

and 325bp, whereas at lengths 350bp, 375bp, and 400bp all 20 taxa could be recovered 

(19 correct and one ambiguous). The samples we used to optimize for early detection of 

AIS ranged from a mean of 53.9 (SD = 2.1) incorrect sequences at length 325bp to 25.9 

(SD = 4.0) at length 400bp, with the remaining sequences classified as correct or 

ambiguous. The mean total number of taxa that could be recovered was 19.00 (SD = 

0.00) at lengths 300bp and 325bp (18 correct and one ambiguous), 19.97 (SD = 0.17) at 
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length 350bp (18.97 correct and one ambiguous) and 20 (SD = 0) at lengths 375bp, and 

400bp.  

When optimizing for species richness estimation without clustering or denoising, 

incorrect OTUs ranged from 19 to 613 for 27 parameter sets that recovered all taxa 

(Figure 5.4a). With clustering, 18 parameter sets that recovered all taxa yielded from four 

to 184 incorrect OTUs (Figure 5.4b). Only the top 22 parameter sets using denoising 

recovered all 20 taxa without any incorrect OTUs (Figure 5.4c). With denoising, 46 

parameter sets recovered all taxa with a maximum of 8 incorrect OTUs. When optimizing 

for early detection of AIS, no parameter set recovered all taxa without allowing some 

incorrect OTUs to pass through. Without clustering or denoising, 13 parameter sets 

recovered all taxa however they yielded a mean of 11.1 incorrect OTUs as well (Figure 

5.5a). Further, 43 parameter sets without clustering or denoising recovered at least 19 

taxa on average. No parameter set involving clustering recovered all taxa in all replicates; 

however, 15 recovered a mean of over 19 taxa and yielded a mean of 3.5 incorrect OTUs 

with a maximum of 9.1 incorrect OTUs (Figure 5.5b). With denoising, the top four 

parameter sets recovered all taxa while only yielding at most a mean of 0.25 incorrect 

OTUs (Figure 5.5c). 
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Fig. 5.4. Number of correct + ambiguous and incorrect OTUs for parameter sets optimized for accurate estimates of species 

richness using no clustering or denoising (a), clustering (b), and denoising (c), by optimization rank. Note the difference in 

scale on the y axis and that we tested fewer parameter sets using no clustering or denoising. 
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Fig. 5.5. Number of correct + ambiguous and incorrect OTUs for parameter sets optimized for high sensitivity using no 

clustering or denoising (a), clustering (b), and denoising (c), by optimization rank. Note that we tested fewer parameter sets 

using no clustering or denoising. 

The most optimal parameter sets favored longer sequences with relatively weak 

filtering. For example, of the top 20 parameter sets from each category (clustering, 

denoising, or neither, for estimation of species richness or early detection of AIS – 120 

parameter sets in total), 106/120 (88.3%) trimmed sequences at length ≥ 375bp. 

Trimming at shorter lengths was only viable if no clustering or denoising was performed, 
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and even then it was suboptimal. No top 20 parameter set in any category used a Q filter 

with strength > 10. Of top ten parameter sets from each category, the mean MEE filter 

was 2.23, which was relaxed with respect to the range tested and relative to the literature 

(Flynn et al. 2015; Brown et al. 2015; Port et al. 2016; Bista et al. 2017). When aiming to 

optimize species richness estimation, the MEE filter had a mean of 2.12 (Table 5.5, 

selected parameter sets), whereas for early detection of AIS it was 2.33 (Table 5.6, 

selected parameter sets). When denoising, the MEE filter in top ten parameter sets was 

more relaxed, particularly for early detection of AIS (mean MEE = 2.60). The top 12 

parameter sets for accurate species richness estimation for pipelines without clustering or 

denoising all discarded singletons, as did the top five optimized for early detection of 

AIS. For pipelines involving clustering, the top eight parameter sets discarded singletons 

when seeking to optimize species richness estimation. Conversely, the top nine parameter 

sets with clustering kept singletons when optimizing for early detection of AIS. For 

denoising, keeping or discarding singletons did not matter because the minimum 

denoising abundance threshold tested was two. Using clustering, the top 18 parameter 

sets for accurate species richness estimation used an identity threshold of 99%, whereas 

the top 24 parameter sets for early detection of AIS also used an identity of 99%.  For 

denoising, the top 14 parameter sets for species richness estimation used a minimum 

abundance threshold of eight, whereas the top 12 parameter sets for early detection of 

AIS used a threshold of two sequences.  

Table 5.5: Selected high-ranking parameter sets from optimization using all sequences in D1 in a single sample. This 

optimization aimed to determine parameter sets that most accurately reconstruct a community with low false positive error. 

We selected four parameter sets per processing method (clustering, denoising, or neither) by selecting the best one and 

subsequently selecting those that had at least two parameters different from any previously selected (to reduce redundancy for 

performance testing). Correct operational taxonomic units (OTUs) were those that BLASTed to the assumed identity with rank 

1 (using the BLASTn default sort method) and identity > 97%. Ambiguous OTUs were those that BLASTed to the assumed 

identity with rank > 1 and identity > 97%. Incorrect OTUs were those that did not BLAST to the assumed identity with 

identity > 97%. Correct and ambiguous OTUs were combined here because the correct identity of ambiguous OTUs could be 

determined downstream. Trim length is the length of sequences in base pairs (bp), Q filter is the strength of the Phred score 

filter, MEE filter is the strength of the maximum expected errors filter, and clustering ID is the clustering identity threshold. 

For processing methods, C represents Clustering, D represents Denoising, and NCOD represents No Clustering Or Denoising. 

These parameter sets were used for performance testing. Overall, 17/1050 parameter sets recovered all 20 AIS with only 50 

sequences from each taxon in all 100 replicates. 

Optimized for Accurate Species Richness Estimates 

Trim 

Length 

(bp) 

Q 

Filter 

MEE 

Filter 

Processing 

Method 

Clustering ID 

(%) or 

Denoising 

Minimum 

Abundance 

Singletons Correct + 

Ambiguous 

OTUs 

Incorrect 

OTUs 

Redundant 

OTUs 

375 10 1.5 D 8 No 20 0 15 
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Table 5.6: Selected high-ranking parameter sets from optimization with 50 sequences of each taxon from D1 per sample, with 

100 replicates. This optimization aimed to determine parameter sets that yielded high sensitivity. We selected four parameter 

sets per processing method (clustering, denoising, or neither) by selecting the best one and subsequently selecting those that 

had at least two parameters different from any previously selected (to reduce redundancy for performance testing). Correct 

operational taxonomic units (OTUs) were those that BLASTed to the assumed identity with rank 1 (using the BLASTn default 

sort method) and identity > 97%. Ambiguous OTUs were those that BLASTed to the assumed identity with rank > 1 and 

identity > 97%. Incorrect OTUs were those that did not BLAST to the assumed identity with identity > 97%. Correct and 

ambiguous OTUs were combined here because the correct identity of ambiguous OTUs could be determined downstream. 

Trim length is the length of sequences in base pairs (bp), Q filter is the strength of the Phred score filter, MEE filter is the 

strength of the maximum expected errors filter, and clustering ID is the clustering identity threshold. For processing methods, 

C represents Clustering, D represents Denoising, and NCOD represents No Clustering Or Denoising. These parameter sets 

were used for performance testing. Overall, 17/1050 parameter sets recovered all 20 AIS with only 50 sequences from each 

taxon in all 100 replicates. 

375 10 3.0 D 8 Yes 20 0 16 

400 10 2.0 D 8 No 20 0 24 

400 10 2.5 D 8 Yes 20 0 25 

400 10 1.5 C 99 No 20 4 59 

375 10 2.0 C 99 No 20 8 110 

400 10 1.5 NCOD N/A No 20 19 4250 

400 10 1.0 C 99 Yes 20 32 562 

375 10 2.0 NCOD N/A No 20 36 4345 

350 10 2.5 NCOD N/A No 20 54 4299 

375 10 1.5 C 99 Yes 20 78 1826 

400 10 1.0 NCOD N/A Yes 20 95 14155 

Optimized for Early Detection of AIS 

Trim 

Length 

(bp) 

Q 

Filter 

MEE 

Filter 

Processing 

Method 

Clustering ID 

(%) or 

Denoising 

Minimum 

Abundance 

Singletons Correct + 

Ambiguous 

OTUs 

Incorrect 

OTUs 

Redundant 

OTUs 

400 10 3 D 2 No 20 0.2 21.3 

400 10 2.5 D 2 Yes 20 0.3 21.1 

400 10 2.5 NCOD N/A No 20 1.0 59.2 

375 10 2 NCOD N/A No 20 2.3 50.6 

400 10 1.5 NCOD N/A Yes 20 8.2 349.1 

375 10 2.5 NCOD N/A Yes 20 22.6 409.1 

400 10 2.5 C 99 Yes 19.8 5.8 37.0 
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We observed concordance of parameter set rankings determined by optimization 

for the two research goals. When clustering was used, the Kendall tau was 0.80, 

signifying strong concordance (p < 0.001). The Kendall tau was 0.79 when denoising was 

used and 0.77 when no clustering nor denoising was used (p < 0.001 in each case). 

Multiple regression analysis determined that parameter selection accounted for less 

variation in the number of correct + ambiguous OTUs recovered when determining 

species richness (80%, 89%, and 80%, when clustering, denoising, or neither, 

respectively; see Table 5.7 for summary of multiple regression results) than when aiming 

for early detection of AIS (95%, 94%, and 95% respectively). Conversely, given either 

research goal, parameter selection accounted for comparable amounts of variation in the 

number of incorrect OTUs recovered (41%, 51%, and 47% for estimation of species 

richness, 48%, 55%, and 50% for early detection of AIS). 

Table 5.7: Coefficients and p values for multiple regression given standardized parameter values to predict the number of 

correct + ambiguous OTUs and the number of incorrect OTUs for each sequence processing method and for each research 

goal. Coefficient magnitude signifies importance of the corresponding parameter in determining the predicted value, and p 

value indicates significance of impact. “Q” denotes Q filter, “Length” denotes sequence length, “Singletons” denotes whether 

singletons were kept or discarded, “MEE” denotes maximum expected error filter, “ID” denotes clustering identity threshold, 

and “DMA” denotes denoising minimum abundance. 

   Correct + Ambiguous Incorrect 

Research 

Goal 

Processing Method (adj. r-

squared correct + 

ambiguous, adj. r-squared 

incorrect) Parameter Coefficient p value Coefficient p value 

S
p

e
ci

es
 R

ic
h

n
es

s 

Clustering (0.80, 0.41) 

Length -0.474 <0.001 -4.29 0.007 

Q -5.746 <0.001 -21.21 <0.001 

MEE 0.035 0.797 6.47 <0.001 

ID 0.163 0.225 6.46 <0.001 

Singletons -0.42 0.002 -15.46 <0.001 

Denoising 

(0.89, 0.51) 

Length -0.5 <0.001 -0.494 <0.001 

Q -6.294 <0.001 -1.5749 <0.001 

MEE 0.091 0.399 0.1542 0.082 

DMA -0.995 <0.001 -0.9596 <0.001 

Singletons <0.001 1 <0.001 1 

Neither (0.80, 0.47) 

Length -0.44 0.085 -12.97 0.165 

Q -6.12 <0.001 -86.02 <0.001 

MEE 0.028 0.911 26.11 0.006 

Singletons -0.421 0.099 -59.2 <0.001 

375 10 3 D 2 Yes 19.75 0.4 18.8 

375 10 2.5 D 2 No 19.73 0.4 18.7 

375 10 3 C 99 Yes 19.6 9.1 61.9 

400 10 3 C 99 No 19.3 0.0 1.4 

375 10 2.5 C 99 No 19.0 0.3 2.6 
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Clustering (0.95, 0.48) 

Length -0.5478 <0.001 -0.2049 0.001 

Q -7.1928 <0.001 -1.0415 <0.001 

MEE 0.065 0.404 0.2399 <0.001 

ID 0.107 0.169 0.2183 0.001 

Singletons -0.8472 0 -0.664 0 

Denoising (0.94, 0.55) 

Length -0.6302 0 -0.1134 0 

Q -7.3123 0 -0.2579 0 

MEE 0.1327 0.13 0.024 0.049 

DMA -1.4029 0 -0.0425 0.001 

Singletons 0 1 0 1 

Neither (0.95, 0.50) 

Length -0.52 0.001 -0.762 0.077 

Q -7.627 0 -4.331 0 

MEE 0.065 0.661 1.149 0.008 

Singletons -0.873 0 -2.643 0 

We found that, regardless of research goal or processing method, Q filter strength 

most strongly determined both the number of correct + ambiguous OTUs recovered and 

the number of incorrect OTUs recovered (p < 0.001 in each case; coefficient and p 

values, Table 5.7; ranking of parameter importance, Table 5.8). Generally, MEE filtration 

had little contribution to correct + ambiguous OTU counts, and was most significant (p = 

0.13) when denoising was used for early detection of AIS. Conversely, MEE filtration 

was generally important in reducing the number of incorrect OTUs (p < 0.05 in all cases, 

except when denoising for species richness estimates), always ranking third except when 

denoising was performed (in which case it ranked fourth). Sequence length was generally 

important in determining correct + ambiguous OTUs (p < 0.05 except when no clustering 

nor denoising was used for species richness estimation), with a mean rank of three. On 

the other hand, sequence length generally had a weaker contribution to the number of 

incorrect OTUs (mean rank = 3.8), and was insignificant when neither clustering nor 

denoising was used for either research goal (p>0.05 in both cases). Keeping or discarding 

singletons was insignificant in determining either OTU count (correct + ambiguous or 

incorrect) when denoising was used, for either research goal. Otherwise, its mean rank 

was 2.5 for recovering correct + ambiguous OTUs and 2.0 in all cases for recovering 

incorrect OTUs (p < 0.05 in all cases except when no clustering or denoising was used 

for estimation of species richness). When clustering was used, identity threshold ranked 

fourth for each research goal and OTU count, and was not significant in determining the 

number of correct + ambiguous OTUs (otherwise, p < 0.05). Conversely, clustering 

identity threshold strongly impacted the number of incorrect OTUs (p < 0.05 for each 

research goal). When denoising was used, the denoising minimum abundance had a 

significant impact in all cases (p < 0.05) with a mean rank of 2.3. 

Table 5.8: Parameter rankings (denoted as “Rank”) for each goal (estimation of species richness or early detection of AIS) 

and for each sequence processing method (clustering, denoising, or neither), in terms of relative impact on the two 

optimization criteria (correct + ambiguous OTUs, incorrect OTUs). “Q” denotes Q filter, “Length” denotes sequence length 
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cutoff, “Singletons” denotes whether singletons were kept or discarded, “MEE” denotes maximum expected error filter, “ID” 

denotes clustering identity threshold, and “DMA” denotes denoising minimum abundance. See Table 5.7 for coefficients and p 

values related to parameter impacts, determined by standardized multiple regression. Asterisk denotes significant impact at α = 

0.05. 

  Rank 

Correct + 

Ambiguous Incorrect    Rank 

Correct + 

Ambiguous Incorrect 
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 1 Q* Q*  
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 1 Q* Q* 

2 Length* Singletons* 2 Singletons* Singletons* 

3 Singletons* MEE*  3 Length* MEE* 

4 ID ID*  4 ID ID* 

5 MEE Length*  5 MEE Length* 

D
en

o
is

in
g

 1 Q* Q*  

D
en

o
is

in
g

 1 Q* Q* 

2 DMA* DMA*  2 DMA* Length* 

3 Length* Length*  3 Length* DMA* 

4 MEE MEE  4 MEE MEE* 

5 Singletons Singletons 5 Singletons Singletons 

N
ei

th
er

 1 Q* Q*  

N
ei

th
er

 1 Q* Q* 

2 Length Singletons* 2 Singletons* Singletons* 

3 Singletons MEE*  3 Length* MEE* 

4 MEE Length  4 MEE Length 

 

5.3.2 Performance Testing 

Distributions of the number of sequences necessary to detect targets varied by parameter 

set and exhibited positive skewness (i.e. parameter sets optimized for early detection of 

AIS without clustering or denoising, Figure 5.6 – long tails above the mean and fewer 

samples below). No distribution for any single taxon, port, or parameter set (optimized 

for either research goal) was normal (Kolmogorov-Smirnov test for normality, p < 0.05 in 

all cases), yielding generally high variance.  
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Fig. 5.6. Distributions of number of sequences required (x-axis) to detect target taxa in community samples for parameter sets 

optimized for the early detection of AIS using no clustering or denoising. Frequency was the number of simulations in which 

the target was detected at a given number of sequences inoculated. Each color represents a selected parameter set. Parameter 

sets are in the format “length/Q filter/MEE filter/minimum abundance”. 

For parameter sets optimized for species richness estimation, detectability with 10 

target sequences inoculated into the port sample was nearly perfect without clustering or 

denoising for all taxa aside from Brachionus, Dreissena, and Mesocyclops (Figure 5.7a, 

left column). The latter species detectability was poor owing to the low quality of their 

sequences relative to those for other taxa. A similar pattern was observed with clustering, 

though several ports (e.g. Hamilton, Nanticoke, and Thunder Bay) yielded low 

detectability for several taxa (Figure 5.7b, left column). Detectability across all 

combinations of port and taxon was very poor when denoising was used (Figure 5.7c, left 

column).  

 

Fig. 5.7. Detectability of taxa in mock samples, given as a value between 0 (no detectability of the target taxon at the port; red) 

and 1 (perfect detectability of the target taxon at the port; yellow) for parameter sets optimized for estimation of species 

richness (left column) and parameter sets optimized for early detection of AIS (right column) using no clustering or denoising 

(a), clustering (b), and denoising (c), across all ports and taxa, with 10 sequences of each taxon inoculated into the original 

port sample. Detectability for a given port and taxon was computed using all replicates involving the given port and taxon 

(that is, across all parameter sets tested). See Table 5.3 for species names. 

A similar but slightly improved detectability pattern was observed for parameter 

sets optimized for early detection of AIS not using clustering or denoising, when 
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compared to those optimized for species richness (Figure 5.7a). Detectability of 

Brachionus and Mesocyclops were significantly improved across ports for parameter sets 

using clustering optimized for early detection of AIS when compared to those optimized 

for estimation of species richness (p < 0.001), otherwise there were no significant 

differences in detection for any port or taxon (p > 0.05). A similar detectability pattern 

was observed for clustering using parameter sets optimized for early detection of AIS as 

compared to those optimized for estimation of species richness (Figure 5.7b), though a 

slight overall improvement was observed (only Brachionus detectability was significantly 

improved; p < 0.001). Overall, we observed high variation in recovery ratio across ports 

and target when clustering or denoising was performed with parameter sets optimized for 

early detection of AIS (Figure 5.7b and 5.7c, right column). For example, the freshwater 

ports of Nanticoke, Thunder Bay, and Hamilton yielded low detectability, as recovery 

ratios were only 0.806, 0.887, and 0.939, respectively, when clustering was used. When 

denoising, the respective recovery ratios were even lower, only 0.648, 0.782, and 0.765. 

We observed no cases where a taxon could not be detected if 10 target sequences were 

present in the sample when clustering was optimized for early detection of AIS. Though 

the pattern for denoising was similar to that of clustering, many combinations of taxon 

and port yielded no detectability (Figure 5.7c, right column). Nevertheless, denoising 

parameter sets optimized for early detection of AIS yielded a significant improvement in 

detectability over those optimized for estimation of species richness for all taxa and all 

ports (p < 0.05).  

Using parameter sets optimized for species richness estimation, detectability 

confidence reached 90% and 95% with the fewest sequences required using pipelines 

without clustering or denoising (Figure 5.8a). On average, 6.3 and 8.5 sequences were 

required to detect the target in 90% and 95% of replicates, respectively, when neither 

clustering nor denoising were used. With clustering, these values rose to 8.6 and 16.6 

sequences, respectively. Denoising performed much worse, requiring 69.8 target 

sequences to reach 90% detectability while 95% detectability was unattainable. 

Detectability confidence was maximized in parameter sets optimized for early detection 

of AIS when clustering and denoising were not performed (Figure 5.8b). Without 

clustering or denoising, only 5.3 and 6.6 sequences were required for 90% and 95% 

detectability respectively, 15.2% and 22.6% lower than when parameter sets were 

optimized for species richness estimates. These values rose to 6.8 and 11.3 target 

sequences, respectively, when clustering was used (11.2% and 31.8% lower than 

parameter sets optimized for species richness estimates, respectively), and 10.6 and 43.4 

target sequences when denoising was used (84.9% fewer sequences for the 90% interval 

than parameter sets optimized for species richness estimates).  
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Fig. 5.8. Overall detection probability of taxa for parameter sets optimized for estimation of species richness (a) and early 

detection of AIS (b) using no clustering or denoising (“NCOD” – red), clustering (green), and denoising (blue), per number of 

target sequences inserted into the original sample. Detection probability was computed using all combinations of taxon, port, 

and parameter sets, across 25 replicates. Shown as dotted lines are 90% and 95% detection for each sequence processing 

method. Note the difference in x-axis labels. For estimation of species richness using denoising, 95% detection was not 

achieved. 

With parameter sets optimized for species richness estimation, sensitivity was far 

worse if denoising was used than if clustering or neither clustering nor denoising were 

used. Without clustering or denoising, only 3.9 (SD = 3.1) sequences were required to 

detect the target. This increased to 4.5 (SD = 7.0) sequences when clustering, and to 25.3 

(SD = 16.4) when denoising. As expected, sensitivity improved with the top parameter 

sets that had been optimized for early detection of AIS. We found that 3.6 (SD = 4.9) 

reads were required to detect AIS (when they were detectable) using clustering, whereas 

denoising required 5.5 (SD = 5.8) reads. Without clustering or denoising, the pipeline 

was very sensitive, requiring only 2.9 (SD = 2.2) sequences. With clustering, we detected 

the AIS in only 98.5% of cases with 50 sequences inoculated. In contrast, denoising and 

neither clustering nor denoising detected the AIS in 95.5% and 100% of cases, 

respectively.  
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For parameter sets optimized for early detection of AIS, four taxa (Daphnia, 

Diacyclops, Dreissena, and Leptodiaptomus; Figure 5.9a – sensitivity for parameter sets 

optimized for early detection of AIS across taxa) required more than five sequences to be 

detected if clustering was used. This value rose to nine taxa if denoising was used, with 

the highly invasive Dreissena requiring the most sequences (mean 10.3; SD = 6.0). 

Without either clustering or denoising, only one taxon (Brachionus) required more than 

five sequences for detection (5.8; SD = 3.5). Variance in sensitivity was greater in taxa 

that yielded reduced sensitivity.  

Using parameter sets optimized for early detection of AIS, we found that 

sensitivity varied little across ports (Figure 5.9b; sensitivity for parameter sets optimized 

for early detection of AIS across ports) except for Nanticoke when clustering (sequences 

required = 6.3; SD = 9.3) or denoising (sequences required = 11.2; SD = 12.9) was 

performed. Hamilton and Thunder Bay also yielded relatively lower sensitivity when 

clustering was done, requiring 3.9 (SD = 5.4) and 5.2 (SD = 8.1) sequences, respectively, 

or 6.6 (SD = 7.8) and 6.5 (SD = 7.5) sequences when denoising was performed. 

Sensitivity across ports was very consistent with or without clustering and denoising.  
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Fig. 5.9. The sensitivity per taxon across all ports (a) and per port across all taxa (b), for parameter sets optimized for early 

detection of AIS using no clustering or denoising (“NCOD” – red), clustering (green), and denoising (blue). Error bars show 

standard deviation from the mean. See Table 5.3 for species names. 

5.4 Discussion 

In this study, we sought to assist users to optimally select processing steps and parameter 

values for sequence processing pipelines during metabarcoding of bulk zooplankton 

samples for the 18S marker on the 454 platform. Generally, we observed that trimming 

sequences to 375-400bp was most favorable when a 400-600bp fragment was sequenced, 

and mild sequence quality filtration (1.5 ≤ MEE ≤ 3.0, Q = 10) worked best when overall 

sequence quality varied across samples (see summary of our findings on optimal 

parameter selection in Table 5.9). In optimization, denoising outperformed pipelines 

using clustering or neither clustering nor denoising regardless of the research objective. 

However, performance testing revealed that sequences – particularly at low abundance – 

of some taxa could wrongly be classified as noise during denoising, which resulted in 

false negative errors (see Figure 5.7). Denoising pipelines also yielded very different 



 

133 
 

distributions for sensitivity when compared to those that used clustering or neither 

clustering nor denoising. Denoising could drastically reduce sensitivity, particularly if the 

minimum abundance threshold for denoising was high (eight sequences). However, a 

high denoising minimum abundance threshold did reduce false positive errors, which 

indicated that it was useful for species richness estimates but not for early detection of 

AIS (when sensitivity and detectability are imperative). Naturally, without clustering or 

denoising, the pipeline was most sensitive and yielded highest detectability, as the AIS 

targets were detected in every case. Both clustering and denoising reduced false positive 

errors in optimization, however these errors could be mitigated with further processing, 

so skipping clustering and denoising proved the best way to process metabarcoding 

sequences for the early detection of AIS. 

Table 5.9: Summary of optimal sequence processing pipeline parameter selection for zooplankton 18S metabarcoding, given 

two research goals: estimation of species richness and early detection of AIS. “Q” denotes Q filter, “Length” denotes sequence 

length cutoff, “Singletons” denotes whether singletons should be kept or discarded, “MEE” denotes maximum expected error 

filter, and NCOD denotes “No Clustering or Denoising”. Note that keeping or discarding singletons in the early detection of 

AIS depends on whether the user will be clustering the data or not. 

 

Parameter/Option Estimation of  

Species Richness 

Early Detection of AIS 

Length 375-400 bp 375-400 bp 

Q 10 10 

MEE 1.5-2.5 2-3 

Singletons Discard Depends on processing 

method. NCOD? Discard. 

Clustering? Keep. 

Clustering Identity 99% 99% 

Denoising Minimum 

Abundance 

8 2 

Processing Method Denoising No Clustering or Denoising 

 

Our study is the first to optimize such a sequence processing pipeline for 

metazoan bulk sample metabarcoding. In addition, we tested 1050 parameter 

combinations for two different research objectives (i.e. estimating species richness and 

early detection of AIS). Other studies have focused on a single aspect of the sequence 

processing pipeline (Zhan, Xiong, et al. 2014; Brown et al. 2015), tested relatively few 

combinations of parameters (Flynn et al. 2015), tested the ordering of processing steps 

(May et al. 2014), or tested bulk sample processing prior to sequencing, with mostly 

fixed sequence processing parameters (Zhan et al. 2013; Piggott 2016). Brown et al. 

(2015) focused specifically on clustering sequence identity, and found that a 97% identity 

threshold was sufficient in UPARSE to recover most taxa. Testing many parameter 

combinations also allowed us to explore interdependency between parameters and 

processing methods, even though it was computationally intensive. For example, even 

with high parallelization (~200 concurrent runs) of optimization and performance testing, 
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the computational time required for this project was approximately two months on a 

high-performance computing network (with CPU speeds of 2.2-2.7 GHz). 

 Further, our study is novel in that we tested the performance of optimized 

pipelines by computationally inoculating sequences of 20 species into real community 

samples to determine what can be expected for sensitivity and detectability given 

different combinations of community structure and ecosystem. In related work, Zhan, 

Xiong, et al. (2014) spiked biomass of two AIS into two community samples. They found 

that relationships between false negative errors and exclusion of singletons, doubletons, 

and tripletons with varied Phred score filters and biomass of target species spiked into 

real community samples. With strong filtering (Q = 30), spiked biomass of the marine 

scallop Argopecten irradians could not be detected in a real freshwater sample collected 

at Nanticoke, Lake Erie, though doubletons were usually recovered, provided relatively 

weak filtering was done (Q ≤ 20) and sufficient biomass was present (Zhan, Xiong, et al. 

2014). Flynn et al. (2015) tested the ability of a similar pipeline to determine species 

richness of a mock zooplankton community using relaxed (length 250-600bp, average Q 

≤ 20) and stringent (length ≥ 400bp, MEE ≤ 0.5) filtering methods, in combination with 

three different clustering algorithms with fixed clustering identity (97%). They concluded 

that UPARSE creates clusters most precisely and that stringent filtering was needed to 

accurately describe species richness. With a deeper optimization of this pipeline, we have 

corroborated their suggestions with respect to sequence length; however, our findings 

indicate that filtration can be more relaxed than they suggested. They also speculated that 

relaxed filtering might be necessary to recover rare taxa or sequences (i.e. in detection of 

AIS), a finding we explicitly tested and confirmed in this study. 

Here, optimization of the pipeline revealed that keeping singletons generally did 

not reduce false negative errors except when using clustering in the context of early 

detection of AIS (in which the best nine parameter sets all kept singletons). Otherwise, 

removing singletons was a simple and uncostly means of reducing false positive errors. 

Generally, during optimization, retaining singletons increased redundancy and false 

positive errors without decreasing corresponding false negative errors. Though singletons 

could represent extremely rare taxa (see Zhan et al. 2013; Brown et al. 2015), they were 

more likely to be artifacts (Edgar 2013; Flynn et al. 2015). Owing to the high sensitivity 

of the pipeline despite removal of singletons, we recommend that the advantages of 

reduced redundancy and false positive errors outweigh the disadvantage of slightly 

reduced sensitivity. Thus, singletons can generally be removed with little negative 

impact.  

Previous studies covering different taxa, amplified fragments, and applications 

have utilized sequence processing strategies that included more stringent Q filtering, 

typically between 20 and 30 (Bista et al. 2017; Elbrecht and Leese 2015; Hänfling et al. 
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2016). In our study, with moderate filtering (Q ≥ 20, MEE ≤ 1.5), and especially at longer 

sequence lengths, all sequences of some species (particularly Brachionus and 

Mesocyclops) were removed, resulting in false negative errors whether the aim was to 

estimate species richness or to maximize sensitivity. This finding corroborated that of 

Zhan, He, et al. (2014), who noted that rare taxa were more likely to be lost with 

increasing Q filter strength and informational sequences (those that represented otherwise 

undetected taxa) were removed at any stringency. Relaxed filtration allowed longer 

sequences to be analyzed downstream, as sequence quality generally decreased with 

sequence length. This is important because longer sequences generally provided greater 

taxonomic resolution and accuracy, allowing more appropriate definition of clusters (if 

clustering is used), more appropriate classification of a read as noisy (if denoising is 

used), and more accurate taxonomic assignment during BLAST. The downside of relaxed 

filtration was that it can increase false positive error.  

We found that the most optimal parameter sets for estimating species richness 

allowed slightly more stringent filtration, which corroborated findings of Flynn et al. 

(2015). If the aim of the study is to accurately estimate species richness, sacrificing 

sensitivity and detectability (i.e. increasing false negative error) to decrease false positive 

error is justifiable. However, users should not increase the stringency of the Q filter as it 

is extremely sensitive and will remove a sequence if it has a single low-quality base call. 

Conversely, if the objective is the early detection of AIS, false negative error is typically 

more costly than false positive error (a false positive error can potentially be mitigated 

downstream e.g. when identifying sequences in BLAST), so filtration should be relaxed. 

Therefore, with respect to filtration and sequence length, we recommend mild MEE 

filtration (1.5-2.5 for species richness estimation, 2.0-3.0 for early detection of AIS), 

relaxed Q filtration (10 at most), and trimming sequences ≥ 375bp. The upper bound on 

MEE and lower bound on Q filtration holds regardless of sequencing platform, as we 

used 454 pyrosequencing but cutting-edge sequencers may improve read quality. The 

lower bound on MEE filtration could be reduced with newer sequencing technology, but 

Q filtration strength should not be increased for the reasons outlined above. The optimal 

sequence length depends on the amplified fragment and the length of sequences in the 

sample (which depends on sampling method and sequencing technology). Our amplified 

fragment was at least ~400bp in target taxa – and 98% of target sequences were ≥400bp – 

because we used 454 pyrosequencing of DNA extracted from bulk samples (eDNA 

sequences will likely be shorter due to degradation). Hence, it is sensible that our optimal 

sequence length (375-400bp) was close to the minimum amplified fragment length in our 

taxa; taxonomic resolution was maximized while very few sequences were wrongfully 

excluded due to failing to meet the length cutoff. In studies where most sequences reach 

the minimum amplified fragment length in target taxa, we recommend using a length 
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cutoff of approximately 90-100% of the minimum amplified fragment length in target 

taxa.  

We found that both clustering and denoising were useful in reducing false 

positives in the estimation of species richness. However, both should be avoided in the 

context of early detection of AIS because both sensitivity and detectability were reduced. 

We also found that a 99% clustering identity threshold was more optimal than the 

commonly-used 97% identity threshold for bulk zooplankton 18S metabarcoding for 

either research goal, and a denoising minimum abundance threshold of 8 was best for 

estimation species richness. 

 Typically, 97% is considered a standard for clustering identity thresholds (see 

Edgar 2013). Through optimization, we found that 99% clustering identity performed 

better for zooplankton using the 18S V4 fragment. There were two highly related taxa, 

Carcinus and Cancer, which impacted the optimality of parameter sets using clustering. 

In practice, this situation may occur where two distinct species in a sample share very 

high identity (> 97%). Users of such sequence processing pipelines will not know in 

advance what the appropriate clustering threshold is, as it depends on the relatedness of 

taxa in their sample, and incorrect assignment of the threshold can be a source of errors 

that have dire consequences (particularly for early detection of AIS; Brown et al. 2015). 

In our study, sensitivity and detectability were reduced when clustering because clusters 

form that contain sequences from both the community sample and AIS sequences that we 

introduced to the sample. In real applications of this pipeline, clustering may create 

clusters with sequences from more than one species, hiding sequences of taxa and 

inadvertently rendering them undetectable downstream. Fortunately, with modern 

computers, clustering when a reference database exists is often unnecessary; one could 

use a parallel computing strategy (e.g. in BLAST) that could reduce computational time 

and keep processing of metabarcoding data tractable. Our findings suggest that clustering 

reduces taxonomic resolution and removes potentially informational sequences from the 

dataset prior to taxonomic assignment. Thus, we support suggestions of Brown et al. 

(2016) and Chain et al. (2016) to avoid clustering altogether if early detection of AIS is 

the project goal. However, false positive errors were reduced by clustering spurious reads 

with their correct counterparts, which is especially beneficial when estimating species 

richness. Thus, if clustering is necessary or desired, we recommend using a higher 

similarity threshold than what has been classically used – 99% instead of 97% – to reduce 

false negatives while simultaneously reducing spurious OTUs. 

With respect to denoising, the current version of USEARCH uses UNOISE3, 

which is a relatively new algorithm and is technically a form of clustering itself. Its 

likeness to clustering was evident in its performance. In terms of detectability, the 

combinations of taxa and ports that clustering struggled with were nearly the same as 
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denoising, though the latter performed slightly worse. For problematic combinations of 

taxa and ports, denoising usually fared worse than clustering. Further, denoising yielded 

slightly lower sensitivity than clustering. For early detection of AIS, these characteristics 

are potentially problematic. False negative errors could occur by incorrectly flagging 

valid sequences as noise. On the other hand, with respect to species richness estimates, 

incorrect sequences were removed more effectively through denoising than through any 

other processing method. The default minimum abundance threshold was 8, which we 

found worked very well for conducting species richness estimates. However, we also 

found that this default threshold was not viable when aiming for early detection of AIS. 

Thus, our recommendation for denoising is like that of clustering. If this pipeline is being 

used for early detection of AIS, either avoid denoising or use a conservative minimum 

abundance threshold (for instance, minimum abundance of 2-4 rather than 8). If, on the 

other hand, the pipeline is being used to estimate species richness, denoising with a 

minimum abundance threshold of eight will remove a high proportion of spurious reads 

and serve to reduce false positives. The denoising algorithm of USEARCH does allow 

users to save all OTUs (including those flagged as chimeric or noisy). Thus, an 

alternative is to denoise but be cognizant that some sequences may be wrongly flagged as 

chimeric or noisy. Then, further analysis could then reduce false negatives even after 

denoising (e.g. by running BLAST with the chimeric or noisy sequences, aligning them 

against denoised OTUs, or applying an evolutionary model to the denoised OTUs and 

chimeric or noisy sequences). 

Application of next-generation sequencing in surveillance of AIS requires careful 

consideration of many options including sequencing technology, genetic marker, and 

computational pipeline. Choice in sequencing technology has complex implications, 

manifested primarily in differences in sequence quality and length. We used 454 

pyrosequencing in our study, though newer sequencing platforms could reduce 

sequencing errors. When this pipeline is used to determine species richness, one can 

potentially utilize more stringent filtering, though two or three base call errors in a 

sequence of length ≥ 375bp is unlikely to cause a serious problem. Regardless, longer 

sequences improve taxonomic resolution and weaker filtration allows rare (and 

potentially otherwise undetectable) taxa to be discovered, thus care must be taken to not 

filter too strongly in the context of surveillance for AIS.  

With respect to marker choice, we used 18S in our study but COI has shown 

higher sequence variability and improved taxonomic assignment (Tang et al. 2012; Zhan, 

Bailey, et al. 2014; Hatzenbuhler et al. 2017). This variability can be a double-edged 

sword; as it is apparent even in primer binding sites, COI can have issues with primer 

generality (Ficetola et al. 2010; Deagle et al. 2014; Zhan, Bailey et al. 2014; 

Hatzenbuhler et al. 2017). Consequently, false negative errors may be more likely to 
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occur because of inconsistent amplification which would be particularly detrimental to 

early detection of AIS. In the metabarcoding context, the variability of COI relative to 

18S may impact sequence clustering, denoising, and taxonomic assignment (e.g. through 

BLAST). With a higher-resolution marker, sequences of different species will be more 

likely to be split into different OTUs during clustering (given some arbitrary identity 

threshold) and some sequences when denoising may be less likely to be considered noise 

because of increased sequence divergence. Downstream, taxonomic assignment in 

BLAST may be more confident for some taxa when using COI. Therefore, higher-

resolution markers could increase sensitivity and reduce false negatives whether 

clustering or denoising are used (because of the aforementioned advantages in sequence 

processing). However, even with a higher-resolution marker (for example COI), we do 

not recommend clustering or denoising when conducting early detection of AIS for the 

reasons mentioned above. Many computational sequence processing suites offer similar 

(if not identical) features or algorithms for trimming, filtering, clustering, and denoising 

(Schloss et al. 2009; Edgar 2010; Caporaso et al. 2010; Cole et al. 2014). Consequently, 

many of our findings are generalizable to different sequence processing suites.  

 Regardless of marker and despite advancements in next-generation sequencing 

technologies, sequence quality and processing are, and will continue to be, important 

issues (van Dijk et al. 2014; O’Rawe, Ferson, and Lyon 2015). Benchmarking and 

optimizing computational pipelines for experiments that use different markers and target 

aquatic taxa will be helpful for refining metabarcoding analytical guidelines. Testing with 

different markers may yield different recommendations in terms of sequence length – as 

it depends on marker length and variability of target regions – and quality filtration – as it 

depends on sequence length. Testing with different taxa may yield different results across 

the entire pipeline, depending on the marker used. Because of the prevalence of 

metabarcoding in current research (and accordingly, the prevalence of computational 

sequence processing), there is a need for more studies that deeply explore and optimize 

sequence processing pipelines for different applications. We advise users conducting 

biological invasions research with metabarcoding to test multiple parameter sets when 

processing data and, when possible, skip clustering or denoising. One can obtain a 

consensus from multiple runs with different parameters, improving confidence and 

gaining different perspectives of the data. In the context of early detection of AIS and 

across the range of parameters tested, we observed no situation where a parameter did not 

contribute to either false positive or false negative error in a significant manner (aside 

from singletons when denoising was used, Table 5.7). Thus, all parameters should be 

carefully considered in this context. 

One important implication of our study is that, in metabarcoding, there will 

almost always be some false positive error and some false negative error. To fully 
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eliminate false negative error – especially with low sequence abundance for some taxa, as 

is ideal in the context of early detection of AIS – there will almost surely be some false 

positive error and it can become a serious issue. Given the potential difficulty in 

balancing false positive and false negative errors in this context, does metabarcoding 

have a place in the early detection of AIS? We believe it does, though it may be difficult 

to confirm that a target AIS is in a sampled waterbody using metabarcoding (or a single 

marker) alone. A more effective strategy for conservation or AIS management 

applications would be to first use metabarcoding with the sequence processing strategy 

that we suggested, followed by a targeted genetic approach using highly species-specific 

markers and primers (e.g. using COI) or traditional sampling methods to confirm the 

presence of the species with greater confidence. For a given combination of marker, 

target taxon, and sampling method, until a deep optimization is performed, analyzing 

sequence retention given length and filtering strength can provide some information with 

which to start a small search for good parameters.  
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CHAPTER 6 

Summary, Conclusion, and Future Work 

6.1 Summary 

In summary, Chapter 2 of this dissertation introduced simulations and artificial life, 

which are large and interdisciplinary fields that allow us to develop, analyze, describe, 

and conduct experiments on simplified systems that emulate real systems. It then 

discussed the basics of biological invasions, their importance, prediction, and 

management. It discussed individual-based models as a useful tool in their prediction, not 

only practically but also theoretically. Most practical applications of individual-based 

models involve conservation of a species that interacts directly with an invader, the 

testing or outcome predictions of management schemes, or the prediction of spread of the 

invasive species mapped to real time and space. Theoretical studies, on the other hand, 

touch a wide variety of aspects of biological invasions but are mostly studies of selection 

pressures faced by populations early in introduction and expansion. We discussed the 

importance of early detection when the inevitable occurs and species are introduced and 

highlighted the use of DNA metabarcoding to identify species in samples (eDNA or 

bulk). Chapter 3 introduced EcoSim, the individual-based model used as an experimental 

platform in Chapter 4, using the ODD protocol and provided some results from the 

standard variant of EcoSim. Many of the results produced by the standard EcoSim variant 

corroborated observations made in the real world. EcoSim has been shown to produce 

interesting and realistic predictions concerning eco-evolutionary theories, and the latest 

rendering of EcoSim shows promise for future experimentation. 

In Chapter 4, EcoSim Niches was introduced as a new subvariant of EcoSim. 

EcoSim Niches was interesting in that it produced an environment with greater 

complexity, which we correctly hypothesized would produce greater genetic diversity 

and corresponding diversity in adaptive strategies. We also produced a variant called 

EcoSim Invasions, which was used to simulate a scenario of multiple introductions of 

prey populations across two environments reciprocally, and over a gradient of genetic 

diversity ranging from zero (completely clonal inocula) to an empirically-determined 

maximum level of diversity. EcoSim Invasions was the first iteration of an EcoSim 

variant designed to simulate biological invasions occurring across ecosystems evolving in 

time; the simulation showed great promise in allowing us to study theoretical eco-

evolutionary phenomena in the context of biological invasions. Finally, in Chapter 5, we 

optimized parameter sets for a sequence processing pipeline used in the context of 

estimation of species richness or early detection of aquatic invasive species. We 

conducted simulation experiments with real 18S bulk zooplankton metabarcoded 

community sequence datasets, involving computationally inoculating the bulk samples 



 

141 
 

with sequences from known invaders and attempting to recover them via a common 

sequence processing pipeline using parameterization determined to be optimal earlier in 

the study.   

6.2 Conclusion 

The field of ALife has blossomed from basic cellular automata into the vision put forth 

by von Neumann and Langton, in which simulated living, reproducing, and evolving 

systems would complement studies of real living systems. EcoSim, one of the most 

advanced individual-based ALife models, yielded many insights in Chapters 3 and 4 

which are parallel to observations in nature. These parallel observations further cemented 

its viability in usage as an experimental platform in evolutionary ecology, along with the 

previous works involving the simulation (e.g. Golestani, Gras, and Cristescu 2012; 

Mashayekhi and Gras 2012; Gras et al. 2015; Khater, Murariu, and Gras 2015). It also 

provided novel insights in Chapter 4; most importantly, we found circumstantial evidence 

that genetic diversity aids in the short-term establishment of introduced populations. 

Unexpectedly, we found that the degree of difference between native and introduced 

range for populations did not affect observed establishment success given genetic 

diversity as previously theorized (Hufbauer et al. 2012; Fridley and Sax 2014; Rius and 

Darling 2014; Estoup et al. 2016). Instead, the abundance and variation in spatial 

distribution of resources in the environment yielded stronger relationships between 

diversity and establishment success, corroborating studies by Hufbauer et al. (2013) and 

Szűcs et al. (2017) while contrasting a study by Szűcs et al. (2014). Further, low-

diversity introduced populations were found to potentially benefit disproportionately 

from multiple introductions in the long term, and multiple introductions have long been 

proposed as a means of rescuing low-diversity populations from genetic bottleneck 

(Kolbe et al. 2004; Præbel et al. 2013). Introduced populations that minimized Allee 

effects were more successful than those that could not, which was expected based on 

prior theory and studies (Sakai et al. 2001; Kanarek and Webb 2010; Bock et al. 2015), 

and the evolutionary imbalance hypothesis (Fridley and Sax (2014) was strongly 

corroborated in this dissertation.  

In Chapter 5, with respect to genetic sequence processing we found differences in 

the optimal parameter sets that users should select given the application, as proposed by 

Flynn et al. (2015); stringent filtration was required to get accurate species richness 

counts, while relaxed filtration was necessary to maintain the sensitivity required in order 

detect aquatic invasive species in the context of early detection. Furthermore, clustering 

and denoising processes were not viable in the context of early detection, but they were 

found to useful in reducing false positive errors in estimations of species richness, which 

supported suggestions of Brown et al. (2016) and Chain et al. (2016) regarding the 
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preprocessing of sequence data for these tasks. Through our simulation experiments, we 

observed differences in the number of inoculated species recovered by the pipelines given 

differences in parameter selection. Parameter sets optimized for early detection 

performed better at recovering taxa, as expected. However, when using the 

metabarcoding approach for early detection, in sequence processing an extremely delicate 

balance between type I and type II errors exists (Xiong, Li, and Zhan 2016). 

Consequently, in the current state of the associated technology, we recommend usage of 

the metabarcoding only as a first pass using extremely weak filtration, no clustering, and 

no denoising. Suspected detections should be, where possible, followed up with a 

targeted barcoding approach to confirm the presence of the suspected invader. 

As mentioned previously, biological invasions are incredibly important to study 

(Colautti et al. 2006; Vilà et al. 2011; Simberloff et al. 2013) and the number of 

translocated species is not reaching saturation (Seebens et al. 2017). Many practical and 

theoretical questions in biological invasions lend themselves to being studied with 

modelling and simulations approaches (e.g. Travis and Dytham 2002; Klopfstein, Currat, 

and Excoffier 2006; Travis et al. 2009; Fronhofer, Poethke, and Dieckmann 2015; 

Henriques-Silva et al. 2015; Van Petegem et al. 2016; Yoann et al. 2016; Anderson and 

Dragićević 2018; Bonte and Bafort 2018; Day et al. 2018). High-performance 

computational systems are becoming more ubiquitous and more powerful; simulation 

software are taking advantage of this by becoming more sophisticated (e.g. through the 

use of real GIS data), more complex (by incorporating more submodels, and more 

computationally complex ones), and larger (handling more individuals and interactions 

simultaneously, and over longer time periods). The studies presented in this dissertation, 

for instance, used a total CPU uptime of well over ten years parallelized over thousands 

of jobs. In conclusion, the study of biological invasions, particularly using computer 

simulations, is an extremely important field that is constantly expanding and evolving 

with technology. Indeed, it was technology that has allowed such translocation of species 

so far from their native regions; now technology must be used to help us keep species 

where they ought to be. 

6.3 Future Work 

With respect to the relationship between genetic diversity and establishment success, 

there are numerous opportunities to be explored. As we transferred just prey individuals, 

species from higher trophic levels may exhibit differences in how genetic diversity aids 

in establishment in novel regions. Further, real introductions often contain mixed 

communities (e.g. ballast water; Briski et al. 2014); some of the relationships we 

observed might change if mixed communities were instead transferred between 

environments. We now have data for simulated invasions involving multiple 
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introductions; a similar study, which is called for in the literature, can be conducted in 

which the introductions are entirely independent in order to comparatively determine how 

multiple introductions affect the evolutionary trajectories of the established populations 

(Kolbe et al. 2004; Bock et al. 2015; Dlugosch et al. 2015). We can also use the data 

generated in this dissertation to explore differences in genetic admixture over the gradient 

of genetic diversity of the introduced inocula (Bock et al. 2015; Dlugosch et al. 2015); do 

low-diversity inocula lead to populations that retain alleles from a greater number of 

sources in the long term and over multiple introductions? This work represents only the 

first attempts at simulating biological invasions with EcoSim, and there are many eco-

evolutionary theoretical questions that EcoSim can potentially help to answer. 

Advancements to the technologies associated with barcoding and metabarcoding 

(e.g. sequencing, computational processing pipelines, etc.) will only improve the 

usefulness of these approaches in early detection (van Dijk et al. 2014; O’Rawe, Ferson, 

and Lyon 2015; Xiong, Li, and Zhan 2016). The related work presented in this 

dissertation certainly advances our understanding of the current usefulness of the 

approach, but in the future the dynamics of the situation might change such that 

metabarcoding can be trusted on its own in the context of early detection (Cristescu and 

Hebert 2018). As we showed, the barcoding (i.e. targeted or active) approach should be 

performed alongside early screening conducted in a passive manner (i.e. metabarcoding) 

as the balance between type I and type II error is currently too fine. Further, our study 

optimized and tested the computational pipelines on zooplankton bulk 18S samples that 

were pyrosequenced; this did allow us to garner some general insights, but it is a 

relatively specific case in the space of possibilities. Undoubtedly, the future of early 

detection of aquatic invaders lies in the usage of environmental DNA (eDNA), which 

presents its own unique challenges (e.g. degradation in the environment; Xiong, Li, and 

Zhan 2016; Cristescu and Hebert 2018). Further, other markers (i.e. COI) are of different 

lengths and exhibit varying degrees of diversity across taxa (Deagle et al. 2014; Zhan, 

Bailey et al. 2014; Hatzenbuhler et al. 2017). Our study involved the detection 

zooplankton, but similar techniques can be certainly applied to fish or any other taxa. 

Lastly, we used pyrosequencing, which is of the most primitive high-throughput 

sequencing technologies; this allowed us to present our results as a “worst-case” scenario, 

that is, the performance should only improve from what we observed. That all being said, 

there is a large space of possibilities yet to be explored using a similar optimization-via-

simulation approach.  
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