100 research outputs found

    Nanosatellite Store-and-Forward Communication Systems for Remote Data Collection Applications

    Get PDF
    Due to compact design, cost-effectiveness and shorter development time, a nanosatellite constellation is seen as a viable space-based data-relay asset to collect data from remote places that are rather impractical to be linked by terrestrial means. While nanosatellites have these advantages, they have more inherent technical limitations because of limited space for subsystems and payloads. Nanosatellite S&F communication systems are notably challenging in this respect due to requirements on antennas, transceivers, and signal processing. Although nanosatellites can be scaled up for better resources and capabilities, smaller platforms (i.e., ≤6U CubeSat) tend to be used for cost-effectiveness and lower risk. This thesis dealt with the problem of designing a nanosatellite S&F communication system for delay-tolerant remote data collection applications considering: (a) technical constraints in hardware, processing capabilities, energy budget and space in both the nanosatellite and ground sensor terminal (GST) sides; (b) physical communication layer characteristics and constraints such as limited available bandwidth, LEO channel Doppler, attenuation and fading/shadowing effects, low transmit power and data rate, and multi-user interference among asynchronously transmitting terminals. We designed, developed, and operated an amateur radio payload with S&F communication and APRS-DP capabilities, and performed a post-launch communication failure investigation. We also investigated suitability of E-SSA protocol for IoT/M2M terminals to nanosatellite communication by analyzing performance and energy efficiency metrics. The thesis comprises nine chapters. Chapter 1 describes the research background, problem, objectives, state of research, potential contributions of this thesis, and a gist of methodology detailed in later chapters. Chapter 2 and 3 provide an extensive literature review. Chapter 2 reviews the previous research works on using nanosatellites for S&F communication for remote data collection, and the previous nanosatellite S&F missions. Such research works and nanosatellite missions were undertaken primarily in the context of non-commercial/civil applications. Then, Chapter 2 surveys the recent commercial nanosatellite IoT/M2M players and examines their proposed systems in terms of satellite platform, constellation design, communication technology, targeted applications, requirements, and performance. Chapter 3 presents a literature review on communication system architecture, physical layer and random-access schemes, protocols, and technologies relevant to satellite IoT/M2M systems. In the context of IoT/M2M applications, the constraints in energy budget, transmit power and available bandwidth limit the system’s capacity in terms of amount of data that can be received and number of GSTs that can be supported. In both nanosatellite and GST sides, there are stringent limitations in hardware complexity, processing capabilities and energy budget. Addressing these challenges requires a simple, spectrally and energy efficient asynchronous random-access communication protocol. This research investigated using the enhanced spread spectrum Aloha (E-SSA) protocol for satellite IoT/M2M uplink (terminal to satellite) communication and analyzed its performance and suitability for the said application. Chapter 4 discusses the BIRDS-2 CubeSat S&F remote data collection system, payload design, development, tests, and integration with the BIRDS-2 CubeSats. Chapter 5 discusses the investigation on communication design issues of BIRDS-2 CubeSat S&F payload, tackling both the methodology and findings of investigation. It is noted that there are only a few satellites that have carried an APRS-DP payload but even some of these failed due to communication, power, or software issues. In BIRDS-2 Project, considering tight constraints in a 1U CubeSat equipped with other subsystems and payloads, we developed a S&F/APRS-DP payload and integrated it with each of the three 1U CubeSats of participating countries. After launching the CubeSats from the ISS, several amateur operators confirmed reception downlink beacon messages, but full two-way communication failed due to uplink communication failure. Thus, this research not only studied the design and development of a S&F/APRS-DP payload suitable for a CubeSat platform, but also systematically investigated the causes of communication failure by on-orbit observation results and ground-based tests. We found that uplink failure was caused by two design problems that were overlooked during development, namely, the poor antenna performance and increased payload receiver noise floor due to satellite-radiated EMI coupled to the antenna. Chapter 6 first describes the enhanced spread spectrum Aloha (E-SSA) based nanosatellite IoT/M2M communication model implemented in Matlab and derives the mathematical definitions of packet loss rate (PLR), throughput (THR) and energy efficiency (EE) metrics. Then, it tackles the formulated baseband signal processing algorithm for E-SSA, including packet detection, channel estimation, demodulation and decoding. Chapter 7 presents the simulation results and discussion for Chapter 6. Chapter 8 tackles the S&F nanosatellite constellation design for global coverage and presents the results and findings. Chapter 9 describes the laboratory setups for validating the E-SSA protocol and then presents the findings. Finally, Chapter 9 also gives the summary, conclusions, and recommendations. Simulation results showed that for E-SSA protocol with the formulated algorithm, THR, PLR and EE metrics are more sensitive to MAC load G, received power variation σLN and Eb/N0, due to imperfect detection and channel estimation. With loose power control (σLN=3dB), at Eb/N0=14 dB, the system can be operated up to a maximum load of 1.3 bps/Hz, achieving a maximum THR of 1.25 bps/Hz with PLR<0.03. Without power control (σLN=6dB,9dB), at Eb/N0=14 dB, maximum load is also 1.3 bps/Hz, but achievable THR is lower than ~1 bps/Hz and PLR values can be as high as ~0.23. Worse PLR results are attributed to misdetection of lower power packets and demodulation/decoding errors. Both are caused by the combined effects of MUI, channel estimation errors, imperfect interference cancellation residue power, and noise. The PLR and THR can be improved by operating with higher Eb/N0 at the expense of lower energy efficiency. Then, laboratory validation experiments using a SDR-based platform confirmed that with G=0.1, Eb/N0=14dB, σLN=6dB, the formulated algorithm for E-SSA protocol can still work even with inaccurate oscillator (±2 ppm) at GSTs, obtaining experimental PLR result of 0.0650 compared to simulation result of 0.0352. However, this requires lowering the detection thresholds and takes significantly longer processing time. For the S&F nanosatellite constellation design, it was found that to achieve the target percent coverage time (PCT) of more than 95% across all latitudes, a 9x10 Hybrid constellation or a 10x10 Walker Delta constellation would be required.九州工業大学博士学位論文 学位記番号:工博甲第506号 学位授与年月日:令和2年9月25日1: Introduction|2: Nanosatellite S&F Research, Missions and Applications|3: Satellite S&F Communication Systems and Protocols|4: BIRDS-2 CubeSat S&F Data Collection System, Payload Design and Development|5: Investigation on Communication Design Issues of BIRDS-2 CubeSat APRS-DP/S&F Payload, Results and Discussion|6: E-SSA-based Nanosatellite IoT/M2M Communication System Model and Signal Processing Algorithm|7: Simulation Results and Discussion for E-SSA-based Nanosatellite IoT/M2M Communication System|8: Nanosatellite Constellation for Global Coverage|9: Experimental Laboratory Validation for E-SSA Protocol, Research Summary, Conclusions and Recommendations九州工業大学令和2年

    DCT-based Air Interface Design for Function Computation

    Get PDF
    With the integration of communication and computing, it is expected that part of the computing is transferred to the transmitter side. In this paper we address the general problem of Frequency Modulation (FM) for function approximation through a communication channel. We exploit the benefits of the Discrete Cosine Transform (DCT) to approximate the function and design the waveform. In front of other approximation schemes, the DCT uses basis of controlled dynamic, which is a desirable property for a practical implementation. Furthermore, the proposed modulation allows to recover both the measurement and the function in a single transmission. Our experiments show that this scheme outperforms the double side-band (DSB) modulation in terms of mean squared error (MSE). This can also be implemented with an agnostic receiver, in which the function is unknown to the receiver. Finally, the proposed modulation is compatible with some of the existing transmission technologies for sensor networks.Comment: Paper accepted in IEEE Open Journal of Signal Processing (2023

    Spread spectrum modulation recognition based on phase diagram entropy

    Get PDF
    Wireless communication technologies are undergoing intensive study and are experiencing accelerated progress which leads to a large increase in the number of end-users. Because of this, the radio spectrum has become more crowded than ever. These previously mentioned aspects lead to the urgent need for more reliable and intelligent communication systems that can improve the spectrum efficiency. Specifically, modulation scheme recognition occupies a crucial position in the civil and military application, especially with the emergence of Software Defined Radio (SDR). The modulation recognition is an indispensable task while performing spectrum sensing in Cognitive Radio (CR). Spread spectrum (SS) techniques represent the foundation for the design of Cognitive Radio systems. In this work, we propose a new method of characterization of Spread spectrum modulations capable of providing relevant information for the process of recognition of this type of modulations. Using the proposed approach, results higher than 90% are obtained in the modulation classification process, thus bringing an advantage over the classical methods, whose performance is below 75%

    Interference Management and System Optimization with GNSS and non-GNSS Signals for Enhanced Navigation

    Get PDF
    In the last few decades, Global Navigation Satellite System (GNSS) has become an indispensable element in our society. Currently, GNSS is used in a wide variety of sectors and situations, some of them offering critical services, such as transportation, telecommunications, and finances. For this reason, and combined with the relative ease an attack on the GNSS wireless signals can be performed nowadays with an Software Defined Radio (SDR) transmitter, GNSS has become more and more a target of wireless attacks of diverse nature and motivations. Nowadays, anyone can buy an interference device (also known as a jammer device) for a few euros. These devices are legal to be bought in many countries, especially online. But at the same time, they are illegal to be used. These devices can interfere with signals in specific frequency bands, used for services such as GNSS. An outage in the GNSS service at a specific location area (which can be even a few km2) could end up in disastrous consequences, such as an economical loss or even putting lives at risk, since many critical services rely on GNSS for their correct functioning. Fundamentally, this thesis focuses on developing new methods and algorithms for interference management in GNSS. The main focus is on interference detection and classification, but discussions are also made about interference localization and mitigation. The detection and classification algorithms analyzed in this thesis are chosen from the point of view of the aviation domain, in which additional constraints (e.g., antenna placement, number of antennas, vibrations due to movement, etc.) need to be taken into account. The selected detection and classification methods are applied at the pre-correlation level, based on the raw received signal. They apply specific signal transforms in the digital domain (e.g., time-frequency transformations) to the received signal. With such algorithms, interferences can be detected at a level as low as 0 dB Jamming-to-Signal Ratio (JSR). The interference classification combines transformed signals with previously trained signals Convolutional Neural Network (CNN) and/or Support Vector Machine (SVM) to determine the type of interference signal among the studied ones. The accuracy of such a classification methodology is above 90%. Knowing which signal causes interference we can better optimize which mitigation and localization algorithm we should use to obtain the best mitigation results. Furthermore, this thesis also studies alternative positioning methods, starting from the premise that GNSS may not always be available and/or we are certain that we can not rely on it due to some reason such as high or unmitigated interferences. Therefore, if one needs to get a Position Velocity and Time (PVT) solution, one would have to rely on alternative signals that could offer positioning features, such as the cellular network signals (i.e. 4G, 5G, and further releases) and/or satellite positioning based on Low Earth Orbit (LEO) satellites. Those systems use presumably different frequency bands, which makes it more unlikely that they will be jammed at the same time as the GNSS signal. In this sense, positioning based on LEO satellites is studied in this thesis from the point of view of feasibility and expected performance

    A Feasibility Study for Signal-in-Space Design for LEO-PNT Solutions With Miniaturized Satellites

    Get PDF
    The global navigation satellite systems (GNSSs) are increasingly suffering from interferences, such as coming from jammers and spoofers, and their performance is still modest in challenging urban and indoor scenarios. Therefore, there are efforts worldwide to develop complementary positioning, navigation, and timing (PNT) solutions. One such complementary method under current research is the so-called LEO-PNT, namely, PNT solutions based on low-Earth orbit (LEO) satellites, and in particular on small-sized or miniaturized satellites. Such satellites have low-to-moderate costs of building, launching, and maintenance. Several challenges are to be overcome when designing a new LEO-PNT solution, concerning all three satellite segments: 1) the signal-in-space (SIS) or space segment; 2) the ground segment; and 3) the user/receiver segment. This article presents a survey of the SIS design challenges under the inherent constraints of wireless-channel propagation impairments as well as some design recommendations for SIS features. We address different constellation types, achievable coverage limits, and geometric dilution of precision (GDOP) bounds, as well as achievable carrier-to-noise ratios (CNRs) under a realistic wireless channel model, based on a MATLAB Quadriga simulator. We also discuss several optimization criteria regarding LEO-PNT SIS design, by taking into account the tradeoff between a low cost/low number of satellites in orbit on the one hand, and a sufficient coverage and good CNR for PNT purposes on the other hand.publishedVersionPeer reviewe

    Liquid Crystal Optics For Communications, Signal Processing And 3-d Microscopic Imaging

    Get PDF
    This dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of the applications demonstrated in this thesis are LC devices that are non-pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC devices is varied through the use of high impedance layers. Due to the presence of the high impedance layer, there forms a voltage gradient across the aperture of such a device which results in a phase gradient across the LC layer which in turn is accumulated by the optical beam traversing through this LC device. The geometry of the electrical contacts that are used to apply the external voltage will define the nature of the phase gradient present across the optical beam. In order to steer a laser beam in one angular dimension, straight line electrical contacts are used to form a one dimensional phase gradient while an annular electrical contact results in a circularly symmetric phase profile across the optical beam making it suitable for focusing the optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear and the quadratic phase profiles that are required to either deflect or focus an optical beam. Clever use of the phase response of a typical nematic liquid crystal (NLC) is made such that the linear response region is used for the angular beam deflection while the high voltage quadratic response region is used for focusing the beam. Employing an NLC deflector, a device that uses the linear angular deflection, laser beam steering is demonstrated in two orthogonal dimensions whereas an NLC lens is used to address the third dimension to complete a three dimensional (3-D) scanner. Such an NLC deflector was then used in a variable optical attenuator (VOA), whereby a laser beam coupled between two identical single mode fibers (SMF) was mis-aligned away from the output fiber causing the intensity of the output coupled light to decrease as a function of the angular deflection. Since the angular deflection is electrically controlled, hence the VOA operation is fairly simple and repeatable. An extension of this VOA for wavelength tunable operation is also shown in this dissertation. A LC spatial light modulator (SLM) that uses a photo-sensitive high impedance electrode whose impedance can be varied by controlling the light intensity incident on it, is used in a control system for a phased array antenna. Phase is controlled on the Write side of the SLM by controlling the intensity of the Write laser beam which then is accessed by the Read beam from the opposite side of this reflective SLM. Thus the phase of the Read beam is varied by controlling the intensity of the Write beam. A variable fiber-optic delay line is demonstrated in the thesis which uses wavelength sensitive and wavelength insensitive optics to get both analog as well as digital delays. It uses a chirped fiber Bragg grating (FBG), and a 1xN optical switch to achieve multiple time delays. The switch can be implemented using the 3-D optical scanner mentioned earlier. A technique is presented for ultra-low loss laser communication that uses a combination of strong and weak thin lens optics. As opposed to conventional laser communication systems, the Gaussian laser beam is prevented from diverging at the receiving station by using a weak thin lens that places the transmitted beam waist mid-way between a symmetrical transmitter-receiver link design thus saving prime optical power. LC device technology forms an excellent basis to realize such a large aperture weak lens. Using a 1-D array of LC deflectors, a broadband optical add-drop filter (OADF) is proposed for dense wavelength division multiplexing (DWDM) applications. By binary control of the drive signal to the individual LC deflectors in the array, any optical channel can be selectively dropped and added. For demonstration purposes, microelectromechanical systems (MEMS) digital micromirrors have been used to implement the OADF. Several key systems issues such as insertion loss, polarization dependent loss, wavelength resolution and response time are analyzed in detail for comparison with the LC deflector approach. A no-moving-parts axial scanning confocal microscope (ASCM) system is designed and demonstrated using a combination of a large diameter LC lens and a classical microscope objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously over a 48 [micro]m range with measured 3-dB axial resolution of 3.1 [micro]m using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium Phosphide twin square optical waveguide sample with a 10.2 [micro]m waveguide pitch and 2.3 [micro]m height and width. Using fine analog electrical control of the LC lens, a super-fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in various precision three dimensional imaging and profiling applications

    Wireless Antenna Sensors for Biosimilar Monitoring Towards Cyber-Physical Systems : A Review of Current Trends and Future Prospects

    Get PDF
    The integration of wireless antenna sensors for cyber-physical systems has become increasingly prevalent in various biosimilar applications due to the escalating need for monitoring techniques that are efficient, accurate, and reliable. The primary objective of this comprehensive investigation is to offer a scholarly examination of the present advancements, challenges, and potentialities in the realm of wireless antenna sensor technology for monitoring biosimilars. Specifically, the focus will be on the current state of the art in wireless antenna sensor design, manufacturing, and implementation along with the discussion of cyber security trends. The advantages of wireless antenna sensors, including increased sensitivity, real-time data gathering, and remote monitoring, will next be discussed in relation to their use in a variety of biosimilar applications. Furthermore, we will explore the challenges of deploying wireless antenna sensors for biosimilar monitoring, such as power consumption, signal integrity, and biocompatibility concerns. To wrap things off, there will be a discussion about where this subject is headed and why collaborative work is essential to advancing wireless antenna sensor technology and its applications in biosimilar monitoring. Providing an in-depth overview of the present landscape and potential developments, this article aims to be an asset for academics and professionals in the fields of antenna sensors, biosimilar development, wireless communication technologies, and cyber physical systems.© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed
    corecore