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ABSTRACT 

This dissertation proposes, studies and experimentally demonstrates novel liquid crystal 

(LC) optics to solve challenging problems in RF and photonic signal processing, freespace and 

fiber optic communications and microscopic imaging. These include free-space optical scanners 

for military and optical wireless applications, variable fiber-optic attenuators for optical 

communications, photonic control techniques for phased array antennas and radar, and 3-D 

microscopic imaging.  

At the heart of the applications demonstrated in this thesis are LC devices that are non-

pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-

pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC 

devices is varied through the use of high impedance layers. Due to the presence of the high 

impedance layer, there forms a voltage gradient across the aperture of such a device which 

results in a phase gradient across the LC layer which in turn is accumulated by the optical beam 

traversing through this LC device. The geometry of the electrical contacts that are used to apply 

the external voltage will define the nature of the phase gradient present across the optical beam. 

In order to steer a laser beam in one angular dimension, straight line electrical contacts are used 

to form a one dimensional phase gradient while an annular electrical contact results in a 

circularly symmetric phase profile across the optical beam making it suitable for focusing the 

optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear 

and the quadratic phase profiles that are required to either deflect or focus an optical beam. 

Clever use of the phase response of a typical nematic liquid crystal (NLC) is made such that the 
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linear response region is used for the angular beam deflection while the high voltage quadratic 

response region is used for focusing the beam.  

Employing an NLC deflector, a device that uses the linear angular deflection, laser beam 

steering is demonstrated in two orthogonal dimensions whereas an NLC lens is used to address 

the third dimension to complete a three dimensional (3-D) scanner. Such an NLC deflector was 

then used in a variable optical attenuator (VOA), whereby a laser beam coupled between two 

identical single mode fibers (SMF) was mis-aligned away from the output fiber causing the 

intensity of the output coupled light to decrease as a function of the angular deflection. Since the 

angular deflection is electrically controlled, hence the VOA operation is fairly simple and 

repeatable. An extension of this VOA for wavelength tunable operation is also shown in this 

dissertation. 

A LC spatial light modulator (SLM) that uses a photo-sensitive high impedance electrode 

whose impedance can be varied by controlling the light intensity incident on it, is used in a 

control system for a phased array antenna. Phase is controlled on the Write side of the SLM by 

controlling the intensity of the Write laser beam which then is accessed by the Read beam from 

the opposite side of this reflective SLM. Thus the phase of the Read beam is varied by 

controlling the intensity of the Write beam. 

A variable fiber-optic delay line is demonstrated in the thesis which uses wavelength 

sensitive and wavelength insensitive optics to get both analog as well as digital delays. It uses a 

chirped fiber Bragg grating (FBG), and a 1xN optical switch to achieve multiple time delays. 

The switch can be implemented using the 3-D optical scanner mentioned earlier.  

A technique is presented for ultra-low loss laser communication that uses a combination 

of strong and weak thin lens optics. As opposed to conventional laser communication systems, 
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the Gaussian laser beam is prevented from diverging at the receiving station by using a weak thin 

lens that places the transmitted beam waist mid-way between a symmetrical transmitter-receiver 

link design thus saving prime optical power. LC device technology forms an excellent basis to 

realize such a large aperture weak lens. 

Using a 1-D array of LC deflectors, a broadband optical add-drop filter (OADF) is 

proposed for dense wavelength division multiplexing (DWDM) applications. By binary control 

of the drive signal to the individual LC deflectors in the array, any optical channel can be 

selectively dropped and added. For demonstration purposes, microelectromechanical systems 

(MEMS) digital micromirrors have been used to implement the OADF. Several key systems 

issues such as insertion loss, polarization dependent loss, wavelength resolution and response 

time are analyzed in detail for comparison with the LC deflector approach.  

A no-moving-parts axial scanning confocal microscope (ASCM) system is designed and 

demonstrated using a combination of a large diameter LC lens and a classical microscope 

objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength 

focal spot is moved continuously over a 48 μm range with measured 3-dB axial resolution of 3.1 

μm using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used 

to image an Indium Phosphide twin square optical waveguide sample with a 10.2 μm waveguide 

pitch and 2.3 μm height and width. Using fine analog electrical control of the LC lens, a super-

fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be 

useful in various precision three dimensional imaging and profiling applications. 
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CHAPTER 1: INTRODUCTION 

Liquid crystals (LCs) are materials in which there exists a certain order in the 

arrangement of molecules. As a result there is anisotropy in the electrical and optical properties.1 

LCs combine the properties of solids and isotropic liquids and exhibit electro-optical 

phenomenon, which has led to their use in a vast variety of applications including optical 

switching,2 attenuators,3 displays,4 and spatial light modulators.5-7 The basis of majority of these 

applications lies in the reorientation of the director (the axis of preferred orientation of the 

molecules) in the macroscopic volume of the material under the influence of an externally 

applied field. The extent of this reorientation is controlled by the anisotropy of the electrical and 

visco-elastic properties of the LC as well as on the initial orientation of the director. The optical 

properties of the medium, e.g., the LC material optical anisotropy is changed as a result of this 

reorientation meaning that light polarized along the initial molecular director orientation will see 

an index that can be controlled by varying the externally applied electric field. The extent of the 

electric field strength required to reorient the molecular director is small compared to that 

required in bulk crystals such as Lithium Niobate. This makes LCs suitable candidates for use in 

light modulation schemes, not to mention their compactness and low drive power requirement. In 

this dissertation, we propose and demonstrate novel applications of LCs such as for optically 

controlled phased array antennas, freespace optical scanners, variable optical attenuators, low 

loss freespace laser communication, 3-D and biomedical imaging. In the following chapters we 

touch upon each of these topics in detail.  

At the heart of the applications demonstrated in this thesis are LC devices that are non-

pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-
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pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC 

devices is varied through the use of high impedance layers. Due to the presence of the high 

impedance layer, there forms a voltage gradient across the aperture of such a device which 

results in a phase gradient across the LC layer which in turn is accumulated by the optical beam 

traversing through this LC device. The geometry of the electrical contacts that are used to apply 

the external voltage will define the nature of the phase gradient present across the optical beam. 

In order to steer a laser beam in one angular dimension, straight line electrical contacts are used 

to form a one dimensional phase gradient while an annular electrical contact results in a 

circularly symmetric phase profile across the optical beam making it suitable for focusing the 

optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear 

and the quadratic phase profiles that are required to either deflect or focus an optical beam. 

Figure 1.1 shows the measured phase response in number of waves of a typical nematic liquid 

crystal (NLC) material (Merck BL006 at 20oC) with a 50 μm cell thickness at λ=1550 nm (see 

Appendix C). After the drive voltage has crossed a certain threshold, the phase response results 

in a linear phase change with respect to the drive voltage. The phase response changes into a 

quadratic curve as the voltage is further increased beyond the linear range. Clever use of the 

phase response of an NLC material is made in this thesis such that the low voltage linear 

response region is used for the angular beam deflection while the high voltage quadratic response 

region is used for focusing the beam.  
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Figure 1.1 The measured phase response in number of waves of a typical NLC material (Merck 

BL006 at 20oC) with a 50 μm cell thickness at λ=1550 nm. 

 

Organization of Thesis 

Chapter 2 proposes and demonstrates a unique photonic beamformer for phased array 

antennas in broadcast mode wireless communications. The system enables flexible antenna array 

upgrades via software and flexible front-head attachments. This array controller capability leads 

to user defined changes in number of antenna elements, antenna aperture shape, antenna aperture 

size and antenna carrier frequency. Experimental proof-of-concept flexible beamforming results 

are described that generate the desired set of phase shifted radio frequency signals. The flexible 

beamformer is particularly suited for generating multiple broadcast antenna beams. 
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In chapter 3 a variable fiber optic delay line (VFODL) is introduced that, to  the best of 

our knowledge, is the first time that a hybrid analog-digital VFODL is proposed to solve the 

dilemma of efficiently enabling many settable and long duration time delays together with 

continuous and short time delays. In essence, this VFODL can provide near continuous high 

resolution time generation across an entire long time delay band. The VFODL is based on the 

concept of cascaded wavelength sensitive and wavelength insensitive time delays. A proof of 

concept VFODL built demonstrates near continuous 0.5 ps resolution time delay control across 

an entire 25.6 ns time delay band generating a total of 51,200 measurable time delay bins. The 

experimental VFODL also gives a 4.95 dB total optical loss and a 1ms time delay control setting 

speed.  The proposed VFODL can be used in applications such as radio frequency (RF) photonic 

signal processing and radar testing. 

In chapter 4, a Fast digital-analog control polarization-based optical scanner is presented 

with three-dimensional beamforming programmability. Features include low power consumption 

and large aperture liquid crystal-based optics, digital repeatability, and time multiplexed accurate 

analog beamforming. Analog frequency and amplitude control of the nematic liquid crystal 

beamformer cells allows continuous fine scan programmability over a 0.66 mrad horizontal-

deflection, 0.75 mrad vertical deflection, and an infinity to 1.84 m focal length longitudinal scan. 

First time demonstrations include an 8-point volumetric scan and a 2-bit digital lens scan, both at 

1310 nm, with a 35 μs random-access time. 

Chapter 5 presents an extension of our work on Polarization Multiplexed Optical 

Scanner. Design and demonstration of a versatile liquid crystal-based scanner is shown for 

steering a laser beam in three dimensions. The scanner consists of a unique combination of 

digital and analog control polarization-based beamforming optics resulting in both continuous 
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and random fashion beam steering. The design features a novel device biasing method, large 

aperture beamforming optics, low electrical power consumption, and ultra-fine as well as wide 

angle coarse beam steering. Demonstrations include one, two and three dimensional beam 

steering with a maximum of 40.92o continuous scan, all at 1550 nm. The minimum scanner 

aperture is 1 cm diameter and uses a combination of ferroelectric and nematic liquid crystals in 

addition to Rutile crystal birefringent prisms. 

Chapter 6 demonstrates a compact, low component count, no-moving parts Variable 

Optical Attenuator (VOA) using beam spoiling implemented via an electrically reconfigurable 

non-pixelated Nematic Liquid Crystal (NLC) deflector. The VOA design features an in-line 

alignment polarization insensitive design without the use of bulky polarization splitting and 

combining optics. The proof-of-concept VOA at 1550 nm demonstrates 30 dB attenuation range, 

2.5 dB insertion loss, ≤0.8 dB polarization dependent loss (PDL) and a 1 second maximum 

attenuation reset time. The VOA design can counter performance reducing environmental effects 

such as excess loss increase due to temperature variations. 

Chapter 7 presents an extension of our VOA work described in chapter 6. A fiber optic 

module is proposed using a hybrid liquid crystal-mirror mechanics beam control mechanism that 

provides the dual functions of optical attenuation controls and wavelength selection with a high 

degree of sensitivity, all within one compact in-line module. Experimental module uses a liquid 

crystal deflector and a mechanically tuned bulk mirror as the hybrid optics. The module 

demonstrates a 1520-1570 nm coarse tuning range, a 1.44 nm fine tuning range, a >30 dB 

attenuation range,  a 3.7 dB optical insertion loss, < 0.1 dB polarization dependent loss, and a 

Full Width Half-Maximum (FWHM) wavelength resolution of ≤0.3 nm. Module applications 

include tunable gain controlled optical transmitters and receivers. 
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In Chapter 8, for the first time, to the best of our knowledge, a no-moving-parts axial 

scanning confocal microscope (ASCM) system is designed and demonstrated using a 

combination of a large diameter liquid crystal (LC) lens and a classical microscope objective 

lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is 

moved continuously over a 48 μm range with a measured 3-dB axial resolution of 3.1 μm using a 

0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an 

Indium Phosphide (InP) twin square optical waveguide sample with a 10.2 μm waveguide pitch 

and 2.3 μm height and width. Using fine analog electrical control of the LC lens, a super-fine 

sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful 

in various precision three dimensional (3-D) imaging and profiling applications. 

In chapter 9 theory and design is presented for a technique for ultra-low loss laser 

communication that uses a combination of strong and weak thin lens optics, hence obeying the 

paraxial approximation. As opposed to conventional laser communication systems, the Gaussian 

laser beam is prevented from diverging at the receiving station by using a weak thin lens that 

places the transmitted beam waist mid-way between a symmetrical transmitter-receiver link 

design. The weak lens can be a fixed optic for static link distances or programmable for mobile 

scenarios. The programmable weak optic can be a single pixel or multi-pixel lens made by LC or 

mirror technologies. The proposed link design is appropriate for low air turbulence links such as 

short-range or indoor links and space based links. 

For comparison with LC technology, in chapter, 10 we demonstrate an optimized optical 

add-drop filter (OADF) for dense wavelength-division-multiplexing (DWDM) systems using the 

Texas Instruments (TI) micro-electro-mechanical systems (MEMS) digital micromirror device 

(DMD)™. This OADF features a polarization insensitive fault tolerant broadband operation, low 
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loss, and the ability to selectively add/drop with high wavelength resolution multiple channels in 

C telecommunications band. The proof-of-concept OADF designed for the C band demonstrates 

low insertion loss, 0.15 dB polarization dependent loss (PDL), 3-dB wavelength resolution of 0.4 

nm and an average crosstalk of better than 30 dB. With the use of a reference mirror, the OADF 

becomes a multi-wavelength 2 x 2 routing switch. An analysis of the MEMS and LC approaches 

is conducted to summarize this chapter. 
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CHAPTER 2: LIQUID CRYSTALS BASED FLEXIBLE BEAMFORMING 
FOR OPTICALLY CONTROLLED PHASED ARRAY ANTENNAS 

Unique photonic beamformer and remoting head for phased array antennas in broadcast 

mode wireless communications is proposed that enables flexible antenna array upgrades via 

software and flexible front-head attachments. This array controller capability leads to user 

defined changes in number of antenna elements, antenna aperture shape, antenna aperture size 

and antenna carrier frequency. Experimental proof-of-concept flexible beamforming results are 

described that generate the desired set of phase shifted radio frequency signals. The flexible 

beamformer is particularly suited for generating multiple broadcast antenna beams. 

 

2.1 Introduction 

With the growth in demand for high bandwidth communication services, phased array 

antennas (PAAs) are becoming an attractive choice for broadcasting multiple radio frequency (rf) 

beams such as in programmable satellite television distribution. Moreover, the alternative of a 

moving antenna in a spacecraft can result in vibrations and momentum due to movement that can 

produce an undesired change in the spacecraft speed and direction. In the last decade, research 

has been carried for PAA control using optical techniques.1 In particular, liquid crystal (LC) 

technology has shown promise for phased array control.25 Previously reported PAA optical 

control designs utilized pixelated, electrically addressed, LC devices to generate RF beam 

steering information. In such systems, number and size of individual LC pixels dictated the size 

of the optical head and in turn the number of elements in the antenna array. Such an approach 
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poses strict limitations on the antenna upgradeability in terms of number of elements in the 

antenna array. An effort to change the number of elements in the antenna array would require 

replacement of the existing LC devices in the beamformer with the ones having the proper 

number of pixels. This will require a new optical head, not to mention the changes to the 

beamformer controller system in order to match the new LC device size. Furthermore, pixelation 

causes diffraction with light from one pixel leaking into a detector or fiber collimator placed in 

front of an adjacent pixel, consequently sending wrong phase information to the corresponding 

antenna element.  

It would be highly beneficial to develop a photonic beamforming approach where all 

aspects of the antenna control are flexible; namely, choice of antenna carrier frequency, number 

of RF phase/time delay shifters in the beamformer, and number and spatial distribution of the 

light sampling elements in the optical-to-RF interface remoting head. Recently we proposed such 

a unique flexible photonic beamforming concept.6,7 In this work, the flexible beamforming 

concept is demonstrated using a compact system and experimental results are validated. With the 

proposed design, a PAA system will become upgradeable without requiring major hardware 

changes, thus expediting the use of smart PAAs in the wireless arena. 

 

 

2.2 Flexible Beamforming Architecture  

Fig. 2.1 shows the classic generalized 1:1 mapping between a pixelated spatial light 

modulator (SLM)-based beamformer and the antenna array front-end. This approach to  
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Figure 2.1. Traditional interface between a pixelated beamformer and an antenna front-end 

showing the fixed 1:1 mapping between optical phase shifter array and antenna array. Example 

shows a transmissive LC pixelated array device. Any other type of pixelated device can also be 

accommodated in this interface. MMF: Multimode Fiber. 

 

beamforming  causes several PAA system limitations that includes (a) fixing the number of 

antenna elements, (b) system loss and inter-fiber crosstalk due to pixel-based diffraction, (c) no 

system flexibility via fixed precision area mapping between pixel array and fiber-lens array, and 

(d) zero tolerance to fiber array fabrication errors and assembly misalignments. In addition, if 

direct interfacing of beamformer output light to the joint photodetector array-RF antenna array 

chip is used, the pixelated beamformer fixes the antenna aperture size, shape and number of 

antenna elements. In particular, this limitation is severe on multi-aperture antenna systems where 

no flexibility is left for system designers. 
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Fig. 2.2 shows a schematic of the proposed flexible beamforming approach involving 

three flexible sub-systems, namely:  

I. Flexible RF Carrier Generation, 

II. Flexible Beamformer, and 
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Figure 2.2. Block Diagram of the Proposed Flexible Photonic Beamforming Concept for PAAs. 

BS: Beam Splitter. The dot (.) represents the s polarized beam while the transversal arrow (  ) 

represents the p polarized beam. 
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The carrier generation system is based on well known heterodyne mixing and is flexible 

as tuning of the phase-locked lasers can generate any desired RF from DC to 200 GHz.8 As 

shown in Fig. 2.2, this design setup utilizes two laser sources with slightly different frequencies 

ν1 and ν2 (or angular frequencies of ω1and ω2) that are phase locked with each other. Note that 

the dot (.) represents the s polarized beam while the transversal double arrow (  ) represents the p 

polarized beam. A beam splitter (BS) is used to split the incoming s and p polarized collinear 

light beams into two parts. Part of light from the BS is used to generate the reference signal (top) 

for phase-locking whereas the rest of light goes straight to the beamforming sub-system.  For 

simplicity, the analog/digital data modulation optics in this subsystem is not shown in Fig. 2.2, 

although can be added via either optical phase modulation of one of the lasers or amplitude 

modulation of the beam pair.  

As an example, the design in Fig. 2.2 utilizes LC technology for realizing the flexible 

beamformer sub-system. Specifically, an optically addressed, non-pixelated, reflective Parallel 

Aligned Nematic Liquid Crystal (PANLC) SLM module is used as the film-like non-pixelated 

flexible phase shifter array to realize the desired flexible photonic beamformer. The Hamamatsu 

PANLC-SLM device consists of two SLMs, one transmissive and the other reflective (see Fig. 

2.3).9 As the name, Parallel Aligned Nematic Liquid Crystal, suggests, both the SLMs are 

parallel rub nematic liquid crystal (NLC) devices. The transmissive SLM is pixelated while the 

reflective SLM is non-pixelated. The transmissive SLM is a high space-bandwidth product (e.g., 

half a million pixels) electrically addressed, amplitude mode device, or to put it simply, an 

optically generated phase based image former. A computer generated spatial intensity pattern (in 

grey-scale) that corresponds to the desired PAA phase map (e.g. black: 0 phase, white: 2π phase) 

is written on this transmissive SLM via computer control. A HeNe laser beam at 632.8nm with a  
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Figure 2.3. The non-pixelated Hamamatsu LC-SLM structure. 

 

uniform irradiance is incident on this transmissive SLM. Hence, after traversing this SLM, the 

laser beam gets intensity modulated (hereafter called the Write beam) in the spatial domain. The 

two SLMs are coupled using a 1:1 imaging system (not shown in Fig. 2.3). The non-pixelated, 

reflective SLM is slightly different from an ordinary liquid crystal cell in that between one 

transparent electrode and the liquid crystal, there is sandwiched a layer of photo-sensitive 

amorphous silicon. As the intensity of the write beam is increased by controlling the transmissive 

SLM intensity pattern from the control computer, the impedance of the amorphous silicon layer 

decreases (and vice versa), causing a high electric field to be applied across the reflective SLM. 

A high E-field applied across a parallel rub NLC causes the molecules to lie along the E-field 
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direction. Thus, the NLC birefringence can be controlled by varying the grey-scale intensity 

pattern generated by the computer.  

The SLM write light carries the required RF phase information image that is embedded 

via a high space bandwidth product (e.g., half a million pixels) electrically addressed, amplitude 

mode pixelated, transmissive LC SLM or an optically generated image former. The reflective 

non-pixelated SLM structure is critical to the approach in realizing a flexible interface between 

the RF front-end and the photonic beamformer. Because the SLM is film-like, essentially any 

desired spatial phase shifter structure can be generated via software leading to a truly flexible 

interface between the antenna elements and the beamformer. With reference to the known 

PANLC-SLM device, one of the two incident polarizations on the read side of the SLM picks up 

the desired phase information written from the write side of the SLM.9  

The two orthogonally polarized beams incident on the pixel free reflective SLM can be 

expressed as  

                                                         )(

                                       )(
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where A is the field amplitude, ν1 and ν2 are phase-locked optical frequencies, α is the fixed 

relative phase shift, and x and y are the Cartesian coordinates of the two orthogonal polarization 

direction vectors. Based on the direction of the nematic director of the SLM (either x or y), the 

appropriate optical field (Either Ex or Ey) acquires a SLM programmed phase shift φ(x, y). For 

instance, for a nematic director in the y-direction, 

]222[
1

1

)(
dntj

x

o

AetE λ
π

απυ ++

= and , where n )],(2[ 2),,( yxtj
y AetyxE φαπυ ++= o is the ordinary index of 

refraction of the NLC material, d is the SLM NLC layer thickness, and λ1 and λ2 are the optical 
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wavelengths of the fields at frequencies ν1 and ν2 respectively. Also the SLM programmed 

optical phase shift at (x, y) SLM location is given as 2d .  y)I(x, n 2  y)(x, ][e
2λ
πφ =  where ne[I(x, 

y)] is the refractive index induced on the (x, y) SLM location via write light optical intensity I(x, 

y). The combined optical field corresponding to the SLM phase modulation at the x, y 

coordinates after the 50:50 BS and the 45o combining polarizer is given by 

  ][
2

),,( yx EEAtyxE +=
 

The photo-current generated by the phase-detector that samples the SLM optical phase 

modulated location (x, y) is given by  
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Hence the photocurrent produced contains the appropriate antenna carrier frequency ν1-ν2 

and the PAA element phase shift d
nn

yx
yxIeo ][4),(

21

)],([

λλ
πθ −=  required for antenna control.  

The third flexible subsystem is the antenna interface sub-system that is antenna 

dependent. This plug-in plug-out subsystem contains an optical interconnection system that 

matches and maps the antenna array to the read SLM face. This optical interconnection can be of 
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the direct type where a photodetector array chip is flip-chip bonded to the RF antenna array chip 

(see Fig. 2.4). Another interconnection is of the indirect kind where a multi-mode fiber (MMF) 

or lenslet array chip is interfaced via optical fibers to the given antenna array (see Fig. 2.5). In 

both cases, when a given antenna array requires photonic beamforming, this antenna’s optical 

interface-head subsystem is plugged into the flexible beamformer sub-system, and via software 

control of the non-pixelated SLM phase shifter sites, antenna steering is achieved.  In short, the 

proposed three sub-systems acting together form the overall flexible beamforming architecture.  

 

Antenna ArrayDetector Array 

Laser Beam 
From Flexible 
Beamformer 

RF 
 

 

 

Figure 2.4. Configuration for a flip-chip bonded optical head for a 6x6 elements phased array. 

2.3 Experimental Demonstration 

Fig. 2.6 shows the experimental setup used to realize a proof-of-concept demonstration. 

The system uses a p or horizontally polarized 514.5 nm laser read beam with an irradiance of 4 

mW/cm2, an Acousto-optic Deflector (AOD), a PANLC-SLM from Hamamatsu, and other 

beamforming optics. The AOD is fed with a 70 MHz RF signal and serves the purpose of 

splitting and recombining the optical beam(s) forming a coherent high stability heterodyne  
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Figure 2.5. Configuration for a fiber remoted antenna array for a 6x6 elements phased array. 
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Figure 2.6. Experimental setup of the proposed flexible beamforming concept implemented 

using acousto-optics and nematic LC technology. ν: Optical Frequency; f: Focal Length of Lens 

L; AOD: Acousto-optic Deflector; M: Mirror. 

 

interferometer. This AOD-based system provides a setup to generate a tunable RF antenna 

carrier signal at the eventual photo-diode output where the heterodyne detected RF equals twice 

18 



 

the AOD drive frequency; in this case, 140 MHz. The AOD deflects the incident Bragg-matched 

laser beam into two parts; the undiffracted DC beam and the negative Doppler shifted -1 order 

diffracted beam. The DC beam passes through a Quarter wave plate (QWP) at 45o and reflects 

back from the mirror M2. The effect of this QWP and mirror combination is that the polarization 

of the DC beam impinging on the AOD for the second time is orthogonal to that in the first 

through the AOD. The DC beam now undergoes a +1 diffraction. The two diffractions from the 

AOD are now collinear but orthogonally polarized. These collinear laser beams enter the 

beamforming sub-system where one polarized beam picks up the RF phase information from the 

PANLC-SLM. A photo-detector on a translational stage is used to simulate the flexible interface 

head or third sub-system in the overall PAA controller. This detector positioned in two 

dimensional space is tracked via software changes on the location of the RF phase map 

embedded on to the PANLC-SLM. Fig. 2.7 shows the RF signals generated from the fixed 

reference photo-detector and the movable output port detector for a given output port photo-

detector location. These oscilloscope traces clearly indicate the ability of the proposed controller 

to provide desired phase shifts for PAAs with any antenna front-end interface. Figs. 2.7(a) shows 

the in-phase signals while (b)-(e) show the phase shifts of π/2, π, 3π/2 and 2π with respect to the 

reference signal from the beamformer. Fig. 2.8 shows the measured RF phase shift data provided 

by the flexible beamformer, showing continuous 2π phase shift control obtained using an SLM 

write beam of input intensity upto ~3mW at 632.8nm. 
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(a) (b) 

(d) (c) 

(e) 

 

 

 

 

 

 

 

Figure 2.7. 140 MHz oscilloscope traces from the Flexible Beamformer: (a) in-phase, (b) π/2, (c) 

π, (d) 3π/2 and (e) 2π radians phase shifted signals from the detectors. The top trace is from the 

reference detector whereas the bottom trace is the desired 
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Figure 2.8. The measured RF phase shift data from the flexible beamformer showing 2π phase 

shift control versus the write laser (λ = 632.8nm) intensity on the write SLM of the Hamamatsu 

device. 

2.4 System Issues 

An important point shown in Fig. 2.9 is the high space bandwidth product (SBWP) 

benefits of the Hamamatsu device.  Specifically, the image generation LC device has a very large 

number, i.e., 480 x 480 = 230,400 pixels, with each pixel being a small 41.7 micron x 41.7 

micron. The active area of the optically addressed LC device is 2 cm x 2 cm. This area is used 

for generating the desired spatial distribution N RF phase shifters for the N elements of the PAA. 

Typically, N is from 50 to 5000. Since we have 230,400 pixels and much fewer antenna 

elements, as little as 46 pixels and as many as 4,608 LC pixels are required to create a phase  
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Figure 2.9. The very high count of 230,400 pixels of the write amplitude-mode LC device in the 

Hamamatsu LC device module gives “Flexible Beamforming” additional powers such as high 

resolution phase averaging and overall system fault-tolerance via the macro-pixel per RF phase 

shifter concept. 

 

shifter site on the SLM for 50 to 5000 elements PAA, respectively. Hence, a macro-pixel effect 

is used to realize the RF phase shifters via optical means, giving greater flexibility to RF phase 

control versus previous single pixel phase control approaches. This high LC SLM SBWP adds to 

the overall phase control power of the proposed flexible beamforming approach by giving it a 

super-phase resolution capability. Phase resolution depends on the interferometric stability of the 

system and the phase control sensitivity of the SLM via its write-optics. A better than 1.4o phase 

accuracy using an 8-bit gray-scale LCD write-optics is demonstrated for our system. With such a 

large SBWP, an antenna designer can design the array and the optical head without worrying 

about the beamforming optics. The beamformer can then be programmed to match the designed 

optical head which can be any shape, as shown in Fig. 2.10. Moreover, signal processing for 
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multiple antenna arrays can be performed in a single beamformer due to the large available 

SBWP.  

(a) 

(b) 
 

Figure 2.10. Examples of remoting head flexibility, (a) within the antenna array remoting head 

and (b) across multiple independently steered antenna array remoting heads. 

 

Due to 480x480 pixels available on the write side of the PANLC-SLM, there is a large 

number of pixels available for phase control. The SLM pixel count does not need to match the 

antenna count as done in previous work in this field. What we propose is having a very large 

super pixel made up of many tiny pixels, thus giving the effect of a smooth pixel-free effect. 

More importantly, the output sampling plane is directly linked to the SLM surface that is indeed 

smooth and pixel free and hence we can sample the output plane without worrying about pixel 

effects like diffraction. In 1:1 mapped pixelated systems, a pixel failure will result in RF 
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wavefront distortion giving RF beam pointing error. In addition, the macro-pixel approach adds a 

unique fault-tolerance feature to the RF phase shifter, eliminating catastrophic RF phase shifter 

failure due to single LC pixel failure. 

Another important parameter in a PAA is the time needed to reconfigure the antenna 

pattern. Since the Hamamatsu SLM device is controlled using software, the speed with which the 

antenna pattern can be reconfigured is the update rate of the SLM and corresponds to 25msec for 

the Hamamatsu device.9 The software controlled nature of the Hamamatsu PANLC-SLM device 

also minimizes output port alignment sensitivity. In other words, the position of the photo-

detector/ fiber array can be tracked by simply changing the computer generated spatial intensity 

pattern that corresponds to the PAA phase map. Currently, our system uses 514nm wavelength. 

It is expected that this system will finally be implemented in the near infrared region, such as 

1.06 microns, 1.3 micron, or 1.55 microns as high speed microwave band modulators and 

photodetectors are readily available. The Hamamatsu SLM also works in this region, although 

some modifications need to be made to get full 2π phase control.  

The response time of the system is limited by the response time of the SLM. This in turn 

defines the time taken by the system to steer an RF beam from one destination to another. This is 

fundamentally limited by the strong inter-molecular forces in the NLC that is used in this SLM. 

A better material (e.g. NLC with lower viscosity) can reduce the response time. Note that the 

reflective nature of the SLM reduces the response time of this SLM by nearly half of what would 

be in a transmissive SLM with the same NLC material and same amount of phase modulation. 

Ferro-electric LC materials can also be employed to achieve analog optical phase modulation. 

These have a superior response time as compared to NLC's but are limited to small amount of 
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phase modulation. For example the BNS 512 X 512 SLM from Boulder Nonlinear Systems has a 

1000Hz frame rate and can be used to achieve π/2 phase modulation.   

To get an idea of the current hardware capabilities, Table 2.1 presents an example of an 

optical remoting head design using a micro-lens array such as SELFOC® micro-lens from NSG 

America. Moreover, by optical magnification of the read SLM light, one can increase the number 

of micro-lenses/antenna elements in the optical head.  

 

Table 2.1: Example of optical remoting head design. 

Micro-lens diameter 1.0 mm 

Micro-lens diameter tolerance  +5.0 mm / -10.0 mm 

Hamamatsu LC-SLM clear aperture 2 cm x 2cm 

Micro-lens pitch (micro-lens diameter + diameter tolerance) (1+0.005) mm 

Micro-lens-pitch for a 5% assembly tolerance 1.005 x (1+0.05) = 1.055 mm

Number of micro-lenses in Optical Head along x-direction  2 cm/1.055 mm ~ 19 

2-D array size in Optical Head  (Number of Antenna 

Elements) 19 x19  

Number of pixels available per phase shifter site in x-direction 480/19 ~ 25  

Total number of pixels available per phase shifter site 25 x 25 = 625 

 

Note: This design uses specifications from SELFOC® micro-lenses from NSG America. 
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2.5 Conclusion 

In conclusion, we have proposed and experimentally demonstrated the basics of the 

concept of flexible photonic beamforming. The system proposed using a non-pixelated SLM is 

particularly appropriate for broadcast mode RF phase-steered PAAs. The demonstrated LC 

device-based beamformer has the capability to provide modulo-2π RF phase shifts desired for 

narrowband beamforming with a response time of 25 msec. The experimental results attest to the 

functionality and applicability of the system in smart antennas for efficient wireless 

communication.10,11 In addition, the proposed flexible beamformer can be directly interfaced 

with antenna apertures of various size, shapes and antenna sub-apertures, giving increased 

flexibility to the antenna designer. Future work relates to the optimization of the controller 

hardware. The flexible beamforming concept can be extended to photonic true time delay 

systems and other SLM device technologies. 
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CHAPTER 3: HYBRID ANALOG-DIGITAL VARIABLE FIBER-OPTIC 
DELAY LINE 

A variable fiber optic delay line (VFODL) is introduced that, to  the best of our 

knowledge, is the first time that a hybrid analog-digital VFODL is proposed to solve the dilemma 

of efficiently enabling many settable and long duration time delays together with continuous and 

short time delays. In essence, this VFODL can provide near continuous high resolution time 

generation across an entire long time delay band. The VFODL is based on the concept of 

cascaded wavelength sensitive and wavelength insensitive time delays. A proof of concept 

VFODL built demonstrates near continuous 0.5 ps resolution time delay control across an entire 

25.6 ns time delay band generating a total of 51,200 measurable time delay bins. The 

experimental VFODL also gives a 4.95 dB total optical loss and a 1ms time delay control setting 

speed.  The proposed VFODL can be used in applications such as radio frequency (RF) photonic 

signal processing and radar testing. 

29 



 

3.1 Introduction  

A variable fiber optic delay line (VFODL) is a highly sought after component with 

applications ranging from microwave/millimeter wave analog photonic signal processing to 

digital optical communication systems based on packet switching. The ideal VFODL is able to 

efficiently and continuously generate time delays with high temporal resolution over any given 

long time delay range. Over the years, efforts have been made to realize these VFODLs, 

particularly for microwave photonics applications where an RF signal riding on an optical carrier 

needs to be provided with a desirable delay. One way to efficiently generate many time delays 

over a long time delay range uses an N-bit switched binary architecture that employs 2×2 digital 

switches to select given binary paths connected in a serial cascade (architecture).1 Here, based on 

the delay range required, free-space, solid-optic, and fiber-based delay paths have been deployed 

in both serial and parallel switched architectures using a variety of switching technologies such 

as  liquid crystals,2-3 Lithium Niobate-integrated-optics,4-5 micromechanics,6-7 acousto-optics,8-9 

Gallium Arsenide-integrated-optics,10 and Indium Phosphide and Silica-on-Silicon-integrated-

optics.11 Because of the digital switched nature of these VFODLs, time delay resolution is 

quantized to a discrete value and there is a tradeoff between resolution and number of binary 

switched stages. In effect, getting smaller resolutions across larger time delay ranges means 

adding more cascading, leading to higher losses and greater module complexity. Hence a 

dilemma exists to get both high resolution and long time delay range. Another approach for 

generating large delays is via resonant optical devices although this method has a tradeoff 

between delayed signal bandwidth and delay time.12 A more recent and attractive technology for 
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generating time delays involves the use of wavelength tuning and Fiber Bragg Gratings (FBGs). 

Initially discrete FBGs positioned along specified fiber paths were used to produce discrete time 

delays based on the wavelength chosen.13-14 Later the concept was extended to use a chirped 

FBG to generate near continuous time delay, but over short delay range due to the fabrication 

size limitations of FBGs and the laser tuning range.15-16 To get more delay settings within an 

efficient structure, multi-wavelength fiber time delay processing was proposed using discrete 

FBGs delay segments within a serial optical switched structure.17-18 In addition, wavelength 

tuning in combination with wavelength division multiplexer devices was also proposed to realize 

VFODLs.19-20 So far, all these efforts, to the best of our knowledge, have not realized a VFODL 

that can deliver near continuous time delays over an arbitrary large time delay range. In this 

chapter, we describe such a desired VFODL that solves the prior resolution-range dilemma. 

 

3.2 Hybrid Variable Fiber-Optic Delay Line Design 

Fig. 3.1 shows one version of the proposed hybrid VFODL. The module has one 

electrical input port and one electrical output port from where emerges the given delayed 

electrical waveform riding on a delayed optical carrier. The module has two delay control ports; 

one to control the analog time delay while the other to control the digitally switched optical 

delay. Hence, the proposed structure is a cascade of an efficient digitally switched optical delay 

line in combination with an analog controlled optical delay line. This hybrid combination solves 

the earlier resolution-range dilemma as the digital delay is excellent for providing the long time 

delay range while the analog delay is excellent in providing the near continuous high resolution 
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delay between the discretized delays of the switched delay line. In effect, a near continuous time 

delay control can be generated across a large time delay range. Reflective Optical Fibers (ROFs) 

are used at the output ports of the optical switch that eliminates the need for alignment sensitive 

fiber-to-freespace coupling with bulk mirror optics. This reflective nature of the proposed ROF-

based VFODL reduces optical loss, packaging cost, and size. 
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Figure 3.1.  Schematic Diagram of the proposed hybrid analog-digital VFODL realized as a 

Parallel N-Bit Digital-Analog Time Delay Unit. TL: Tunable Laser; M: Modulator; PD: 

Photodiode Detector; ROFs: Reflective Optical Fibers. 

Earlier, we proposed the use of a wavelength sensitive delay line in cascade with a 

wavelength insensitive delay line to realize a hardware efficient optical beamformer.17 In Fig. 

3.1, this same concept is extended, but with the use of a single input wavelength to realize the 

desired VFODL. Specifically, a wavelength sensitive chirped FBG is used in combination with 
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precisely cut N ROFs interconnected to a 1xN polarization and wavelength independent switch. 

The maximum value of time delay obtained from the analog time delay unit sets the design value 

for the time delay T in the digital time delay unit obtained through ROFs. If desired, it is possible 

to use non-fiber delays such as integrated-optic, solid-optic, and free space delays to achieve the 

desired results. Also, the 1xN switch can be assembled in any technology, as per requirements of 

the application. The digital switch operation picks a specific fiber delay to give the longer 

desired time delay from 0 to (N-1)T. The first fiber in the switch connections (the top one in Fig. 

3.1) acts as a reference time delay fiber. The other fibers increase in length so as to increase the 

time delay by T. Hence the second fiber when engaged by the switch provides a T delay; 

similarly, the third fiber provides a 2T delay; the fourth fiber a 3T delay, and eventually the Nth 

fiber provides a (N-1)T delay. Tuning the laser adjusts the analog time delay over a T time delay  
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Fig. 3.2: Schematic Diagram of another version of the proposed VFODL realized as a Serial N-

bit Digital-Analog Time Delay Unit. BL: Broadband Laser; M: Modulator; PD: Photodiode 

Detector; TF: Tunable Filter. 
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step across any of the discrete (N-1) T time delay regions picked by the digital optical switch and 

thus provides a near continuous time delay from 0 to NT. Hence, the desired goal of making a 

VFODL with near continuous analog time delay control over an arbitrary long time delay range 

is realized. 

The procedure to generate any desired time delay requires the setting of the analog delay 

control signal and the digital delay control signal. Given a time delay T1 such that 0<T1<NT, the 

appropriate switching port is determined by calculating NT/T1.  When using the parallel 

architecture for the required digital delay, the integer part gives the port number to be used and 

the remainder gives the information about the specific wavelength to be used by the analog part 

of the VFODL. Note that the two control switching mechanisms are independent of each other 

and can be performed in parallel. Hence the VFODL random access switching speed is the 

greater of the two control switching values and not the sum of the two switching speeds. The 

operating speed of the VFODL depends upon the speed of the optical switch and the tunable 

laser. If we use analog tunable devices, the worst case scenario for the analog generated time 

delay will be the time required to switch from one end of the tuning range to the other end, while 

for the switch this will be the time required to go from port 1 to port N. This situation can be 

avoided by using all-digital parallel drive devices, leading to a fixed and short random access 

time delay setting time for the proposed VFODL. 

Fig. 3.2 shows an alternate design of the proposed VFODL. Here, wavelength selection 

instead of wavelength tuning of a single source is used to generate analog time delay control. 

One advantage of this approach is that within a given analog T delay interval, multiple time 

delay signals can be generated for possible signal processing uses such as transversal filtering 

using array signal summation. Also note that this design uses an N-bit switched binary serial 
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delay structure versus a parallel 1xN switched structure; thus forming an efficient design when 

many switched delays are required. Specifically, parallel design gives N different digital delays 

while an N-bit serial design with N switching stages gives the more efficient 2N different digital 

delay settings. 

It is well known that when light passes through some medium of non-uniform refractive 

index, it undergoes dispersion, i.e., different wavelength components travels with different 

speeds and hence there appears a time delay between propagating light signals of different 

wavelengths. This time delay, called the Group Delay (GD), depends upon the wavelength 

spread of the optical signal and the properties of the material in which light waves are 

propagating. If we consider a fiber of length L, then the GD is given by:21
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where c is the velocity of light in vacuum, λ is the optical wavelength, n1 is the refractive index 

of fiber core, n  is the refractive index of fiber cladding, k2 o = 2π/λ, β = kon, b is the material and 

geometry dependent constant, and n is the effective refractive index of the fiber. τg consists of 

two components; τm, the material dispersion delay and τ w, the waveguide dispersion delay. In 

single mode fibers, τw is an order of magnitude lower than τ and is usually neglected.21
m  Hence 

we will consider only the material dispersion delay τm that can be expressed as: 
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Here the term (n – λ0dn/dλ0) is defined as the group index n  of the optical fiber.22
g  So (2) can be 

written as:  
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where Vg is called the group velocity. However, if we have a wavelength spread of Δλ in the 

input light signal, then according to (2), there will be a time delay between these components that 

can by calculated by taking the differential of τm with respect to the wavelength. This wavelength 

spread dependent time delay is given by: 
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where Dm is called the material dispersion constant and is usually expressed in ps/nm/km.   

Analog control of the time delay in the proposed VFODL relies upon the chirped FBG. As is well 

known, an FBG is a piece of optical fiber with a grating written inside it. This grating reflects a 

particular wavelength that satisfies the Bragg condition and is given by:23

geffBragg n Λ= 2λ ,                                                             (5) 

where is the grating period and ngΛ eff is the effective refractive index inside the FBG. In a 

continuously chirped grating, is varied continuously throughout the length of the grating. 

This results in a different GD for each wavelength due to the fact that different wavelength 

components are reflected from different physical positions along the length of the grating. If we 

have a chirp of Δ  in the grating period, then the corresponding chirped wavelength range is 

given by: 

gΛ

chirpΛ

chirpeffchirp n ΔΛ=Δ 2λ .                                                       (6) 

If we take a reference wavelength at the center of the chirped wavelength range of the grating, 

the time delay is expressed by: 
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where Lg is the length of the chirped grating and a factor of two appears due to the fact that the 

grating is traveled twice when light is reflected back in our proposed VFODL. Here we can 

define the grating dispersion constant as D eff
chirp

g n
c

L
λΔ

2
=cg . Note that in this expression, the 

length of the grating is also included and therefore Dcg is usually expressed in ps/nm. Combining 

(4) and (7), the total time delay due to the chirped grating can be expressed as: 

cgm τττ Δ+Δ=Δ .                                                          (8) 

 is an order of magnitude higher than Usually cgτΔ mτΔ  because chirp gratings are designed to 

give high D  values, so the time delay is calculated using: cg

cgeff
chirp

g Dn
c

L
λ

λ
λτ Δ=

Δ
Δ=Δ

2

.                                          (9) 

Equation 9 is the design equation for calculating time delays in the analog time delay unit of our 

VFODL. When light travel through a fiber of length L and effective refractive index neff, the 

absolute time delay is given by t = Ln /c. But we know that the light also suffers a time delay due 

to the dispersion in the medium. Hence the total time delay for an ROF such as used in the 

VFODL can be expressed by using (4) as:  

m
eff DL

c
Ln

T 02
2

λΔ+
Δ

=Δ
,                                              (10) 
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where ΔL is the incremental change in length of successive ROFs and ΔT is the corresponding 

digital time delay step. Here the second term contributes to the timing jitter associated with the 

digital delay unit of the VFODL. It will be shown later that this timing jitter term is negligible 

compared to the first term in (10), and hence is neglected for designing the digital part of the 

demonstrated hybrid VFODL. Therefore, ΔL can be approximated as: 

effn
TcL

2
Δ

=Δ
 .                                                                     (11) 

This equation is the design equation for the digital part of the VFODL. 

 

3.3 Experimental Demonstration  

The VFODL in Fig. 3.1 is designed and demonstrated in the laboratory. A mechanically 

tuned laser with a 1510-1600 nm tuning range is fiber-connected to a C-band (1530-1560 nm) 

Lithium Niobate Integrated-optic amplitude modulator. This modulator is fed by the RF signal 

that requires a given delay generated by the proposed hybrid VFODL. This delayed RF signal is 

produced by the high speed photo-diode connected to the fiber grating interconnected circulator. 

 

The chirped grating used in our experiment has an average reflectivity of 92% (loss of 0.36 dB) 

with a bandwidth Δλ of 22.88 nm at center wavelength of 1548.682 nm. The value of Dchirp cg 

supplied by the manufacturer is 35.2 ps/nm. Hence, using (9), the maximum time delay that can 

be achieved by this grating by tuning the wavelength is  22.8 × 35.2 = 805.37 ps, which agrees 

closely with the experimentally measured value of 800 ps. Fig. 3.3 shows the VFODL 
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demonstrated time delay over a 800 ps range using wavelength tuning from 1536 nm to 1560 

nm. The resolution of the VFODL is limited by the wavelength resolution of the tunable laser. 

The tunable laser with a 1ms tuning speed used in this experiment has a tuning resolution of 0.01 

nm which using (9) corresponds to a time resolution of 0.35 ps. The measured value on 

oscilloscope is 0.5 ps that is limited by the bandwidth of the oscilloscope and agrees well within 

the limitations of oscilloscope. The design N is chosen to be 32 by employing a 1x32 optical-

mechanical fiber-optic switch with a 1 ms switching speed and a measured 0.47 dB average 

optical loss and a ±0.3 dB loss variation overall all 32 switch settings. The circulator connected 

to the switch has a three port optical loss of 1.29 dB while the circulator connected to the chirped 

grating has a 2.13 dB 3-port optical loss. 
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Fig.  3.3: Analog-only mode demonstrated VFODL operation demonstrating high resolution near 

continuous time delay over a 800 ps range using wavelength tuning from 1536 nm to 1560 nm. 

 

As the tunable wavelength is offset from 1536 nm to 1560 nm, the delay from the chirped 

FBG kicks in, providing the 800 ps analog fill step between the 32 digital delay steps. A designed 
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basic step of 800 ps delay is required for the digital part of the VFODL; therefore using (11), we 

get ΔL = 8 cm. Here we have used a typical value of neff = 1.4682 for Corning ® SMF-28™.24 

The switch port 1 is used as a reference time delay and an arbitrary fiber length of 40 cm is 

chosen for the VFODL design. The fibers connected to the consecutive ports are increased in 

length by 8 cm. This 8 cm fiber segment on double pass retroreflective delay is designed to give 

a 800 ps time delay. Hence, the lengths of ROFs are selected as 40 cm, 40+8=48 cm, 40+2×8=56 

cm,…, 40+8×31= 288 cm, for the 32 state digital part of the VFODL. Note that each ROF is a 

specially fabricated fiber with a gold reflective tip at its end, making a highly effective and 

compact light reflector. The ROF coating is a broadband reflective coating with an average 

measured reflectivity of 87.5% (or optical loss of 0.7 dB). By switching through the 32 switch 

settings, the time delay goes from 0, 800 ps, 1600 ps,…to 24,800 ps, given that the wavelength is 

set for 1536 nm or alternatively from 800 to 25,600 ps when the wavelength is set to 1560 nm. 

The total optical loss of the demonstrated VFODL is 4.95 dB calculated as 1.29 dB (first 

circulator) + 2.13 dB (second circulator + 0.47 dB (optical switch) + 0.7 dB (ROF) + 0.35 dB 

(FBG) = 4.95 dB. In effect, this loss can be further reduced by 1-2 dB using lower loss and 

optimized components.  

Table 1 shows the designed and demonstrated VFODL delays. Six switch ports, namely, 

port numbers 1, 2, 3, 30, 31, and 32 are engaged in the proof-of-concept measurements to 

demonstrate both short time delay control and long time delay control. As shown in Table 1, a 

combination of the digital switch setting and the laser wavelength can adjust the time delay 

across an entire 0 to 25.6 ns band, thus illustrating the power of the proposed VFODL. A 

mechanically tunable laser is used with a tuning speed of 1 ms over the 24 nm tuning range of 

the FBG while the random access switching speed of the optical switch is 1 ms. Hence, as 
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mentioned earlier, the worst case random access switching speed of the VFODL is 1 ms. 

Considering that the designed time delay step is 0.35 ps due to the tuning step of the laser, a total 

of ~ 73,142 time delay bins can be generated across 25.6 ns via the designed VFODL. This in 

effect is a better than 16-bit VFODL realization. Because the deployed oscilloscope could 

measure upto a 0.5 ps resolution, the demonstrated time bins capacity of the VFODL is 51,200. 

Fig. 3.4 shows a sequence of time delay oscilloscope traces produced by analog plus digital 

mode operation of the designed VFODL. The top traces are the reference RF signal that feed the 

VFODL and are time aligned with the VFODL output at the wavelength of 1536 nm and ROF at 

port 1 of switch in operation. The lower traces indicate the optically delayed signal from the 

VFODL. In Fig. 3.4(a), the switch is set to engage the ROF at port 1, and the wavelength is set to 

1560 nm. This setting should generate a relative delay of 800 ps, as indicated by the trace 

markers. In Fig. 3.4(b), the switch is set to port 2, with the wavelength set to 1547.2 nm. In this 

case, the relative delay is 800 ps from the ROF and 400 ps from the wavelength sensitive delay, 

giving a total of 1200 ps, as indicated in the traces. For the Fig. 3.4(c) situation, the switch is 

engaged for port 2 and wavelength of 1553 nm, generating a relative time delay of 1400 ps. In 

this case, 800 ps is from the ROF while 600 ps is from the chirp FBG. In Fig. 3.4(d), switch is set 

for port 3 with wavelength at 1536 nm, generating a time delay of 1600 ps, due only to the ROF. 

Finally in Fig. 3.4(e), the switch activates port 32 with a wavelength of 1542 nm, producing a 

total delay of 25,000 ps, where 24,800 ps is via the ROF and 200 ps is due to the chirp FBG. 

Hence, the data indicates that via hybrid analog-digital control of the proposed VFODL, a near 

continuous time delay can be generated efficiently and simply over a long time delay range.  

In the analog time delay unit, the timing jitter is due to the finite line width of the laser. The 

spectral linewidth of the laser used in the experiment is 220 KHz that corresponds to a linewidth 
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(a) (b) (c) 

(d) (e) 

of 2×10-6 nm. Using (4), the timing jitter associated with this line width is ±2×10-6×35.1 = ±0.07 

fs. This value is negligible in comparison to the tuning step-based resolution limit of 350 fs. In 

the digital time delay unit, the timing jitter is associated with the material dispersion delay of the 

fiber. The maximum length of the fibers used is < 3 m and the bandwidth is 22.88 nm. Using 

typical values of Dm = 17.92 ps/nm/km,24 the timing jitter due to material dispersion is 1.23 ps 

for a maximum time delay of 25.6 ns. This corresponds to a 0.005% time jitter in the digital part 

of the demonstrated VFODL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.4: Proposed VFODL operations using the hybrid analog-digital mode. Top trace is the 

reference signal from the RF signal generator that is time aligned with the VFODL reference 

output for a λ = 1536 nm and switch set to port 1. The bottom traces are the time delayed 
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VFODL outputs for VFODL setting of (a) λ = 1560.00 nm and switch active for port 1 (b) λ = 

1547.20 nm and switch active for port 2 (c) λ = 1553.00 nm and switch active for port 2 (d) λ = 

1536.00 nm and switch active for port 3 (e) λ = 1542.00 nm and switch active for port 32.  

 

 

Table 3.1: Demonstrated VFODL design and delays. 

 

   Active Fiber Length at 
switch port Time Delay Range Control Mechanism Switch Port  

0-800 ps Analog 1 40 cm  (0 to T) (1536-1560 nm) 

800-1600 ps  Analog+Digital 2 48 cm T  to 2T 
1.6-2.4 ns  Analog+Digital 3 56 cm 2T to 3T 

 23.2 – 24.0 ns Analog+Digital 30 272 cm 29T – 30T 
 24.0 – 24.8 ns Analog+Digital 31 280 cm 30T – 31T 
 24.8 – 25.6 ns Analog+Digital 32 288 cm 31T – 32T  
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3.4 Conclusion 

In this chapter, we have demonstrated, to the best of our knowledge, the first analog-

digital variable optical delay line that provides the highly desirable features of near continuous 

high resolution time delays with a large number of time delay settings, all with the capability of 

producing long time delays. The design scheme is simple and uses cascading of a wavelength 

insensitive digitally switched optical delay line with a wavelength sensitive analog tuned optical 

delay line. The proposed VFODL parameters can be adapted for specific applications by 

selecting the chirped FBG and optical switch specifications. For instance, engaging high speed 

optical switches25 and high speed tunable lasers26 can provide nanosecond regime high speed 

VFODL operations. More recently, digitally switched optical delay lines have become 

commercially available,27 and can help transition the proposed VFODL approach. The 

demonstrated VFODL has successfully shown a < 0.5 ps resolution over a 25.6 ns time delay 

range with a 1 ms time delay setting speed and a average 4.95 dB optical loss. The proposed 

VFODL can greatly impact applications such as phased array antenna controls, RF signal 

processing in the optical domain, biomedical optics, and radar testing. 
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CHAPTER 4: PROGRAMMABLE HIGH SPEED POLARIZATION 
MULTIPLEXED OPTICAL SCANNER 

 Fast digital-analog control polarization-based optical scanner with complete three-

dimensional beamforming programmability is presented. Features include low power 

consumption and large aperture liquid crystal-based optics, digital repeatability, and time 

multiplexed accurate analog beamforming. Analog frequency and amplitude control of the 

nematic liquid crystal beamformer cells allows continuous fine scan programmability over a 0.66 

mrad horizontal-deflection, 0.75 mrad vertical deflection, and an infinity to 1.84 m focal length 

longitudinal scan.  First time demonstrations include an 8-point volumetric scan and a 2-bit 

digital lens scan, both at 1310 nm, with a 35 μs random-access time. 
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4.1 Introduction 

Several technologies have been used to make devices for one dimensional (1-D) and two 

dimensional (2-D) laser beam steering, including nematic liquid crystals (NLCs) 1, ferroelectric 

liquid crystals (FLCs) 2, optical microelectromechanical systems (MEMS) technology 3, and 

ferroelectric electrooptic materials such as lead zirconate titanate 4,5. Certain applications can 

benefit from three dimensional (3-D) beam steering where a point of light can be both translated 

and focused/defocused. Following phased array radar 3-D beamforming methods, researchers 

have devised optical phased array devices where the 2-D planar structure of the optical device is 

populated with individually controllable optical phase shifter sites 6,7. Optical devices have been 

built using 1-D or 2-D pixel layout geometries with various electrode and driving electronic 

structures. Although 3-D steering has been achieved, it is accompanied by key system 

limitations. First, pixelation or discrete sampled spatial phase control across the scan aperture has 

been used because of finite size of the device electrodes or pixels. Due to pixelation, optical 

diffraction orders are formed that cause unwanted insertion loss and crosstalk for the scanned 

beam. Also, the discrete phase map nature leads to quantization noise in the beam map, resulting 

in a non-smooth beam profile. Finally limitations in throughput and beam quality over the scan 

range occur due to device fill factor and electric field fringing effects, respectively. All pixel 

sites on the device 2-D electrode map require accurate and repeatable analog phase control. 

Typically, a device may have a million pixels to effectively produce high fidelity scan beams in 

3-D. These requirements in-turn imply complex and costly drive electronics for what is supposed 

to be a highly compact 3-D optical scanner. A further drive circuitry complication arises if fast 
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(sub-milliseconds) speed is required to form the agile beam. Hence, a challenge exists to realize 

a simple to control, fast, high beam fidelity, 3-D optical beam scanner. Such a 3-D scanner is 

described in this work. 

 Specifically, a digital-analog, pixel-free, fast random-access beam scan time, fully 

programmable, high beam fidelity, ease in scalability, 3-D optical scanner is proposed and 

demonstrated 8,9. Specifically demonstrated is a near infrared band (e.g., 1310 nm) 3-D scanner 

suitable for fine beam controls as required in long range laser communications 10. Previously, 

digital cascaded polarization switched scanners have been proposed with visible band operations, 

but these scanners have been limited to 1-D and 2-D scans with other issues such as high drive 

voltages and bulky optics, pixelation, non-stackable (i.e., non-parallel glass cells) and non-

programmable birefringent plate designs 11-13. We begin with a description of a versatile digital-

analog polarization-based scanner architecture that can provide programmable coarse and fine 

scan controls. Specifically, the power of the fully programmable 3-D fine scan Polarization 

Multiplexed Optical Scanner (P-MOS) is demonstrated via experiments of voxel (volumetric 

picture element) scans and digital lens scans. The description concludes with the expected 

features possible using the proposed P-MOS. 

 

4.2 Proposed Architecture 

Applications such as inter-satellite laser links require both fine and coarse beam pointing. 

Long range (up to 40,000 km) links require one micro radian fine angle scan controls in order to 

maintain link with a typical satellite operating at a 7 km/s relative velocity 14. On the other hand, 
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several milli radians of coarse scan control enables agile reconfigurability with other satellite 

terminals. Fig. 4.1 introduces a 3-D scanner architecture called polarization multiplexed optical 

scanner or P-MOS that provides the best of both worlds of highly repeatable fast random-access 

digital scans with the fine tweeking and programmability of analog scans. The first stage of the 

P-MOS is a digital and analog controlled module consisting of N fast response digitally 

controlled 90o polarization rotators (PRs) and the N analog controlled slower response fine 

beamforming power optical cells. The second stage of the P-MOS consists of M−N PRs 

sandwiched between passive coarse beamforming power birefringent optical cells. Previously, 

the use of passive non-programmable birefringent crystal optics for coarse 2-D scans has been 

shown using the digital polarization switching method 11. Hence, the focus of this work is to 

demonstrate the first part of the P-MOS stage; namely, the fine beamforming controls fully 

programmable 3-D P-MOS module. 
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Fig. 4.1. P-MOS Architecture. 

Fig. 4.2 shows the basic 3-D single voxel scan hardware of the Digital-Analog Mode P-

MOS. Here a 3-D fully programmable optical beamformer is made by cascading three fast  
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Fig. 4.2. Basic single voxel scan hardware of the P-MOS module. 

electrically driven pixel-free 90o PRs with inter-dispersed three electrically controlled slower 

speed analog mode non-pixelated birefringent plates acting as variable deflectors D’s and a 

variable focal length lens L.  This 3-D voxel module can be cascaded with other 3-D voxel 

modules to generate 2K beams in space if K/3 3-D voxel modules are used where K is the total 

number of PRs in the entire P-MOS architecture. Because thin film planar liquid crystals optics 

is used to form the hardware, large (> centimeter diameter) scanner apertures using low (e.g., 

mW) level total powers is expected. Beam scanning is accomplished by two methods in the P-

MOS. First, only digital control of the PRs is implemented with the Ds and Ls preprogrammed 

for a given fixed setting. In this case, the scanner random-access time is the switching time of the 

PR. In the second case, all PRs are set such that only a given voxel P-MOS module is observed 

by the input linearly polarized beam with the other modules undergoing analog reprogramming 

of their Ds and Ls. In effect, any analog beamforming scanner state within the power of the 
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specific D and L can be generated using time multiplexed addressing of these birefringent plates. 

In this case, the scanner beam switching speed is given by T/P, where T is the time it takes to 

reprogram the analog mode D or L, and P is the number of 3-D voxel modules that make the P-

MOS. In this case, apriori scan information for the optical scanner is required. As shown later, 

birefringent-mode NLC can be used for making the D and L, with response time in the several 

milliseconds. Hence, the time multiplexed P-MOS can further reduce the scanner time to near a 

millisecond.  

Earlier, the use of a high resistance layer with two parallel electrodes was proposed to 

generate a smooth voltage ramp between electrodes to form a pixel-free deflector 15. Later, others 

proposed and demonstrated the use of a high impedance thin film layer intermeshed with the 

array electrode structure of an NLC beamformer device to produce smooth optical phase 

modulation between electrodes 16-18. As NLC molecules are much smaller than pixel feature size, 

a near smooth phase map is formed between electrodes. This design concept was extended using 

fewer specially designed electrodes (e.g., two) around the optical aperture of the NLC device, 

leading to a pixel free NLC device design 10,19. For the proposed fine P-MOS module, using the 

earlier principles of electrode meshing with high impedance substrates, electrically 

programmable NLC birefringent phase plates D and L (from OKO Tech. Holland) are realized 

and used in the P-MOS experiment. The liquid crystal cell is filled with Merck BL006 (see 

Appendix C) that has a birefringence (Δn=n o
e-n ) of 0.286 at 20o C and λ=589.3nm. The LC layer 

has a uniform thickness of 50μm. The clear aperture of the devices is 5mm. The substrates are 

deposited with two different electrodes. One substrate is deposited with a low impedance layer 

such as Indium Tin Oxide (ITO) for use as the ground electrode while the other substrate is 
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deposited with a uniform layer of high impedance material for use as the control electrode. To 

use these NLC cells as angular deflectors, voltage is applied between two parallel linear metallic 

contacts that are deposited at the edges of the control electrode which results in a linearly varying 

electric field between the front (control) and back (ground) electrodes causing the index to vary 

linearly across the clear aperture of the device. This index modulation can only be seen by that 

component of the input polarization that is along the director of the liquid crystal. Thus the PR 

half-wave plate can be used to control the input polarization for a desired deflection angle of the 

output beam. For using these NLC cells as reconfigurable lenses, an annular electrical contact is 

deposited on the periphery of the device aperture. When the control signal is applied, the voltage 

drops as we move from the edge to the center of the clear aperture in a quadratic fashion. The 

consequence of this is a lens-like index distribution between the front and back electrode that can 

be seen by only one polarization of the input laser beam. 

 

4.3 Experiment 

For the proof-of-concept experiment, the incident laser beam (λ=1.31μm) was expanded 

to 5 mm diameter, collimated, and linearly polarized. FLC PRs are used that show a fast 35μsec 

switching speed for the scanner at λ=1.31μm. For the voxel scan experiment, two NLC 

deflectors (D’s) and an NLC lens (L), both 5 mm in diameter are used, and each having its own 

FLC PR. The FLC PRs were antireflection (AR) coated and have a measured average insertion 

loss of 0.7 dB. This is mainly due to absorption. The non-AR coated NLC deflectors and lenses 

have an average insertion loss of 0.73 dB, half of which is due to Fresnel reflections. The proof- 
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Fig. 4.3. Output scanned beams from the demonstrated 8 point voxel scanner. (a) Incident; (b) x-

deflected by 0.66 mrad; (c) y-deflected by 0.75 mrad and (d) z-scan (1.84m P-MOS focal 

length), beams. 

of-concept results for 3-D scanning are shown in Fig. 4.3. Photos are taken at 1.84m distance 

from the P-MOS end face where the input 5 mm diameter beam focuses when the L is turned on 

for the focusing effect. Demonstrated are maximum 0.66 mrad and 0.75 mrad deflections in x 

and y directions, respectively. The Fig. 4.3 photos show slight beam shifts on the infrared (IR) 

camera due to the short distance between the P-MOS and camera. Slight blooming of the IR 

camera is observed while near circular scan beam quality is preserved. The demonstrated voxel 

scanner insertion loss is 4.3 dB and is estimated to be 2 dB given optimal cell designs. Fine 

continuous analog beamforming reconfiguration of the pixel-free deflectors and lens is also 

achieved by simply applying a different set of voltages and frequencies in the range of 2 to 10 V 

and 500Hz to 25 KHz, respectively. Fig. 4.4 shows the demonstration of the P-MOS module as a 

2-bit digital lens with four independent focus settings. In this case, two FLC cells and two NLC 
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lenses were used where the two NLC lenses were preprogrammed for given fixed focal lengths 

of 3m and 2m with a separation of 6.7 cm between them. These experiments indicate the basic 

programmability and ease of beamforming controls for the proposed P-MOS, with scanned 

beams observed via an IR camera showing essentially preserved beam profiles, a feature possible 

with the non-pixelated scanner design. 

(a) (b)

(c) (d)

 

 

 

 

Fig. 4.4. The demonstration of the P-MOS as a 2-bit digital lens. The four photos show the four 

focal length states of (a) infinity, (b) 3m, (c) 2m, and (d) 1.2m, of the P-MOS exit beam. The 

distance between the two lenses is 6.7cm. 

4.4 Conclusion 

In summary, a versatile high speed 3-D scanner design is proposed and demonstrated for 

optical beamforming applications such as laser communications, 3-D displays, scanning 3-D 

optical microscopy, data retrieval, and vision applications. The joint digital-analog controls 
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aspect of the fine P-MOS module is demonstrated via an eight point voxel scan and a 2-bit 

digital lens scan experiment. To the best of our knowledge, this is the first time such a scanner 

has been demonstrated. Note that because of the cascaded nature of the P-MOS, care must be 

taken to reduce voxel scan stages (e.g., ten) to keep losses minimal. 
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CHAPTER 5: DEMONSTRATION OF 3-DIMENSIONAL WIDE ANGLE 
LASER BEAM SCANNER USING LIQUID CRYSTALS 

 Design and demonstration of a versatile liquid crystal-based scanner is shown for 

steering a laser beam in three dimensions. The scanner consists of a unique combination of 

digital and analog control polarization-based beamforming optics resulting in both continuous 

and random fashion beam steering. The design features a novel device biasing method, large 

aperture beamforming optics, low electrical power consumption, and ultra-fine as well as wide 

angle coarse beam steering. Demonstrations include one, two and three dimensional beam 

steering with a maximum of 40.92o continuous scan, all at 1550 nm. The minimum scanner 

aperture is 1 cm diameter and uses a combination of ferroelectric and nematic liquid crystals in 

addition to Rutile crystal birefringent prisms. 
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5.1 Introduction 

An optical scanner is a device that can control the position of a light beam in one or more 

orthogonal spatial dimensions. As early as the 1960s, researchers have proposed and 

demonstrated several techniques with varying success that can be used to scan a laser beam. 

These include scanners based on birefringent crystals,1-9 10 nematic liquid crystals (NLCs),  

ferroelectric liquid crystals (FLCs),11 optical microelectromechanical systems (MEMS),12 and 

ferroelectric electrooptic materials such as lead zirconate titanate.13,14 Several applications can 

benefit from 3-D beam steering where a beam of light can be translated in two orthogonal spatial 

directions transverse to the beam propagation direction as well as be focused/defocused along the 

propagation direction. The focusing ability is highly desirable in applications where the received 

information-carrying beam is to be focused on a small detector area, as it will improve the 

signal-to-noise ratio and hence decrease the probability of error in the received signal. A number 

of polarization based scanners have been demonstrated which use the property of birefringent 

media to steer the optical beam in two different directions based upon the state of polarization of 

the incident light.15-20 A polarization switch is used to control the state of polarization of the light 

while a passive birefringent material prism is used to steer the beam into one of the two scanning 

destinations. By cascading several polarization switch-prism pairs, multiple scan spots can be 

obtained. The birefringent material prisms used so far have been passive devices whereby the 

linearly polarized beam incident upon them will generate one of the two fixed spots based upon 

the state of linear polarization of the incident beam. Apart from birefringent crystals,1-9,15 these 

passive birefringent devices have included liquid crystal (LC) filled prisms (i.e., the LC cell 
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enclosure is shaped like a glass prism).16,17 This fixed LC prism approach is effective for small 

(e.g., a few degrees) angular deflections as the preferred molecular orientation of the LC 

molecules can not be preserved in thicker high birefringence LC cells, leading to increased 

scattering losses. These previously demonstrated polarization based scanners (Refs. [1-9,15-17]) 

have been limited to 1-D and 2-D scans with discrete scan beam spots. Other limitations of these 

scanners have included high drive voltages, pixelation, and non-programmable birefringent plate 

designs. 

In certain applications it is desirable to have the ability to quickly reconfigure the scan directions 

to cover for errors in the overall scanning system. Such example applications are free-space 

optical wireless, inter-satellites links, optical microscopy, mobile military platforms, and 3-D 

displays. For example in free-space optical wireless links, reconfigurability is needed to counter 

for building sways or temperature and weather fluctuations that cause a variation in the index of 

the air medium and hence a change in the direction of the outgoing optical beam from the 

scanning device. In another case, inter-satellite links need fine angular scanning tunability of the 

order of 1�rad at high speeds (e.g., 1 KHz)21 to keep track of the fast moving destination 

satellite.22 o Yet another case of mobile military platforms needs a scan dynamic range of ±45 .23 

Hence, demand exists for a no moving parts, 3-D scanner that can provide both random and 

continuously addressable scanning over a large angular scan dynamic range with high resolution 

beam control.  

Recently, such a 3-D scanner was proposed that can continuously scan a large angular dynamic 

range and has the capability to address the third dimension; i.e., the ability to focus or defocus a 

beam of light along its direction of propagation.18 The demonstration showed how large aperture, 

non-pixelated liquid crystal devices can be used to form a fully programmable high speed 
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polarization based scanner.19 In this paper, the ref. 19 concept is extended to demonstrate a 3-D 

Polarization-Multiplexed Optical Scanner (P-MOS) for random as well as continuous optical 

scanning over a wide angular dynamic range while maintaining high resolution beam pointing 

control.20 Specifically, multiple proof-of-concept experiments at the telecommunications band 

wavelength of 1550 nm are carried out and results are presented. Video demonstrations of these 

experiments (Figs. 3,5,7,9 and 10) can be found in ref#20 and the Optics Express website. 

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-868 

 

5.2 Hybrid Analog-Digital P-MOS Design  

In the proposed hybrid analog-digital P-MOS, the state-of-polarization of a linearly 

polarized incident laser beam is controlled in orthogonal states to achieve beam scanning. As 

shown in Fig. 5.1, key elements of the proposed P-MOS are a polarization control element and a 

polarization dependent beam steering element. For polarization control, fast response digitally 

controlled 90o polarization switches (PSs) are used. For angular scanning, birefringent material 

prisms (Ws) are used to steer the beam into a desired spot. Using N polarization switch-prism 

pairs 2N scan spots can be obtained. For coarse angular scanning, passive birefringent crystal 

prisms are used. Multiple coarse stages are cascaded to achieve a large angular dynamic range 

with discrete scan spots. To fill the uncovered spaces between these discrete scan spots, analog-

mode electrically controlled NLC prisms are incorporated into the scanner design to realize a 

true analog-digital hybrid controls scanner. The Fig. 5.1 design shows a P-MOS capable of 

continuous 1-D scanning where the NLC device acts as an analog control programmable varying  
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Fig. 5.1. Design of the proposed hybrid analog-digital coarse-fine scan P-MOS module for 

continuous 1-D scanning. PS: 90o Polarization Switch, W: Passive Crystal Prism; WNLC; 

Nematic Liquid Crystal Electrically Programmable Prism set for a given drive voltage. Shown 

are four possible 1-D scan beams produced by digital only switching of the PSs. 

 

tilt prism. Specifically, by switching the electrode drive signal of the NLC device, the tilt 

direction can be flipped, thus leading to an effective doubling of the NLC prism effect by using 

just one NLC tilt prism. As later explained in detail, this idea is key to the design of the proposed 

P-MOS that can allow a high resolution beam scan between the discrete states of the P-MOS. 

Recall that in the P-MOS, one PS and one prism combine to form one deflection stage. 

Moreover, two such 1-D stages can be cascaded in the orthogonal orientation to achieve a 2-D 

scanner. As opposed to scanners that use pixelated elements for beam scanning where some 

power is coupled into higher diffraction orders resulting in lower throughput efficiency, the 

proposed P-MOS design utilizes large-aperture pixel-free devices resulting in diffraction order 

free beam steering.  
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LC based devices have also been used to demonstrate focusing/defocusing of laser 

beams. 18-21,26-27 Due to their birefringent nature, these devices work for only one polarization. If 

the input light polarization is parallel to the LC molecular director, the light gets 

focused/defocused; otherwise it passes through the LC cell un-perturbed. Hence, these LC based 

lenses can be effectively used in 3-D P-MOS scanning.  

In order to manipulate the laser beam position at a desired point in space, the linear 

polarization of the incident beam is controlled using for example, electrically switchable FLC 

half-wave plates. FLC polarization switches are used because of their fast switching speed 

(several microseconds), low voltage (e.g., ±5 V) digital operation, and thin cell design. 

Specifically, 90  polarization rotation is achieved by re-orientation of the FLC director due to 

Clarke-Lagerwall effect induced by the application of a bipolar electric field across the cell.  

The retardation for an FLC birefringent phase plate can be expressed by the relation:  

o

24

Γ = 2π Δn . d/λ                                                          (1) 

where Δn is the birefringence of the FLC material and d is the FLC cell thickness. For a given 

wavelength and FLC material, the thickness of the half wave plate is given as: 

d= (λ . Δn) /2                                                         (2) 

For λ=1550 nm, the FLC material has a birefringence of 0.14 (Δn=ne-no=1.62-1.48), giving a 

half-wave plate thickness of 5.54 μm.25 Thus a thin FLC cell is formed for effective cascading 

with the P-MOS design.

For the P-MOS, the NLC prism device is a homogeneously aligned NLC cell with 

uniform thickness.26-27 The design is slightly different from an ordinary NLC cell in that the glass 

substrates are deposited with two different electrodes. One substrate is deposited with a low 
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impedance layer such as Indium Tin Oxide (ITO) for use as the ground electrode while the other 

substrate is deposited with a uniform layer of high impedance material for use as the control 

electrode. To use these NLC cells as angular deflectors, voltage is applied between two parallel 

linear metallic contacts that are deposited at the edges of the control electrode. This results in a 

linearly varying electric field between the front (control) and back (ground) electrodes causing 

the index to vary in a near linear fashion across the clear aperture of the device. This index 

modulation can only be seen by that component of the input polarization which is along the 

director of the liquid crystal. As shown in Fig. 5.2, a ray polarized along the molecular NLC 

director passing through the NLC prism acquires a phase shift at the device position x that can be 

expressed as: 

φ(V, f, x) = [2π/λ] n(V, f, x) . d                                         (3) 

where λ is the optical wavelength, d is the NLC layer thickness, n(V, f, x) is the electrically 

controlled NLC refractive index the light sees, and V is the amplitude in Volts and f is the 

frequency in Hertz of the NLC device drive signal. Looking at the two extreme ray positions of 

x=0 and x=D, the beam deflection of the entire wavefront incident on the NLC prism can be 

studied. Specifically, the x=0 position ray suffers a phase shift given by: 

 = [2π/λ] n(V, f, 0) . d ,                                 (4) φ(V, f, x=0) = φο

while the extreme ray at x=D suffers a phase shift given by: 

φ(V, f, x=D) = φD = [2π/λ] n(V, f, D) . d .                               (5) 

Hence the phase shift between the edges of refracted plane wave exiting the NLC prism is given 

by:  
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ΔφΑ=φD-φ  ,                                                          (6) o

where between the x=0 and x=D points, the incident plane wave acquires a linearly increasing 

phase shift. For state A of the NLC deflector, at x=D, the applied voltage is below a certain 

threshold level, so the index seen by the incoming ray of p-polarization is essentially ne, the NLC 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Top views of the NLC prism used for continuous scan in P-MOS. NLC molecule 

orientations are shown for (a) zero control signal applied, (b) when a control signal is present 

that reorients the NLC molecules to induce a spatial prism-like refractive index change and (c) 

the interferogram of the NLC prism using a 1550 nm source. p: horizontally polarized light 

component. 
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material extraordinary index of refraction. Therefore φD = 2π/λ . (ne . d) and ΔφΑ becomes: 

ΔφΑ = (2π/λ) [ne-n(V, f, 0)] d .                                        (7) 

Similarly, note that at the x=0 location where the other device electrode is present in state A, V 

and f can be controlled to set n(V, f, x=0) = no , where no is the ordinary refractive index of the 

NLC material. In this case, the prism is generating its maximum birefringence Δn = ne-no and 

hence also produces the largest phase shift between rays across the device aperture D. This in 

turn leads to the maximum beam deflection angle θm for the programmable NLC prism. From 

phased array theory, the beam steered angle  due to an inter-element phase shift Δφ
1wθ Α is given 

by: 

(2πD/λ) sin
1wθ = ΔφΑ,                                              (8) 

where D is the phased array inter-element distance or in this case the NLC prism aperture. By 

equating equations (7) and (8), the electrically controlled prism angle 
1wθ  as seen by a wave 

polarized along the molecular director is written as: 

(2πD/λ) sin = (2π/λ) [n
1wθ e-n(V, f)] . d                               (9) 

This in turn leads to: 

D

d(V, f) = sin  {-1  [n
1wθ e-n(V, f)]},                                  (10) 

Since 
1wθ is a function of the control signal amplitude and frequency, the output can be steered in 

different directions by controlling the drive signal. This results in an actively reconfigurable 

prism where the prism apex angle and hence the steering beam direction can be programmed as 

per demand. 
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 A critical aspect of this NLC deflector device is exploited in the design of the proposed 

P-MOS; namely, the switching of the drive signals to the two control electrodes on the high 

impedance substrate of the cell. In effect, for state B of the NLC device, 

=φΔφΒ D-φ  ,                                                       (11) o

 = (2π/λ) [n(V, f, D)- nΔφΒ e] . d                                       (12) 

ΔφΒ = −ΔφΑ                                                        (13) 

Hence, equation (13) implies that in state B of the NLC deflector, the tilt direction is reversed 

and the tilt angle = - 
2wθ 1wθ = . In short, an input laser beam can be made to sweep a 

symmetric positive and negative angle about the laser beam input axis. Using electrical drive 

switching, thus, the given single NLC deflector device with a fixed maximum birefringence n

wθ

wθ

e-no 

can be used to produce double the tilt control as compared to the non-switched NLC deflector 

device. This specific benefit is exploited in the proposed P-MOS to enable a near continuous 

beam scan field.  

 In order to get scanning in the longitudinal direction (along the beam propagation 

direction), any NLC based lens can be used. The structure of the used NLC lens is very similar to 

that of the NLC deflector, except for an annular electrical contact that is deposited on the 

periphery of the device aperture instead of the linear contacts for the deflector. When the control 

signal is applied across the NLC lens cell using this annular contact, the voltage drops from the 

edge to the center of the clear aperture in a quadratic fashion. The consequence of this voltage 

variation is a lens-like index distribution between the front and back electrode of the device that 

can be seen only by the input light polarization which is parallel to the NLC molecular director. 
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For an NLC lens with a clear aperture of diameter D and a cell thickness of d, the focal length F 

using the Fresnel's approximation is given by:26

( )pc

2

ΔnΔn8d

D
F

−
=  ,                                                (14) 

where Δnc and Δnp are the birefringences at the center of the NLC lens cell and the periphery of 

the annular contact, respectively. Since, Δnc and Δnp are a function of the drive voltage and 

frequency, therefore the focal length F can be varied by varying the control signal. Moreover, the 

difference of these two can be made equal to the intrinsic birefringence Δn by controlling the 

drive signal. So, for an NLC lens cell with 50 μm cell thickness and 5 mm clear aperture 

diameter, the focal length F using Merck BL006 (Δn=0.229, see Appendix C) is 27.3 cm at 

λ=1550 nm. Notice that F will be different for different wavelengths following the birefringence 

dispersion of the NLC material used. By changing the amplitude and frequency of the applied 

signal, the lens power can be varied in a desired fashion to focus the laser beam at a desired spot 

along the propagation direction. Use of these NLC lenses with the earlier described deflectors 

can result in realizing 3-D beam scanning.  

As mentioned earlier, in order to get large angular deflections, the P-MOS also uses fixed 

birefringent crystal prisms. The optic axis (c-axis) of the birefringent crystal prism can be 

oriented such that the s and p polarizations each experience a different index of refraction. At the 

entrance face the following relation holds true: 

ninc sin θinc = no sin θ  = no e sin θe ,                                     (15) 

where ninc is the index of refraction of the material surrounding the birefringent crystal prism, θinc 

is the angle of incidence with respect to the normal to the prism entrance surface, and θ  and θo e 
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are the refracted angles inside the birefringent material as seen by the ordinary no and extra-

ordinary ne indices, respectively. At the exit face we have: 

θexit[o] = sin-1[n  sin (θ +α)/no o inc ] - (α+θinc)                              (16) 

 θexit[e] = sin-1[ne sin (θe+α)/ninc ] - (α+θinc) ,                            (17) 

where α is the apex angle of the prism and θexit is measured from the incident beam direction. In 

the case when ninc =1 and the first prism (in a cascade of such birefringent crystal prisms) 

interface is normal to the incident light propagation direction, θinc = 0, equations (16) and (17) 

reduce to: 

θexit[o] = sin-1[n  sin (α)] - α                                          (18) o

θexit[e] = sin-1[ne sin (α)] - α                                          (19) 

Δθ = θexit[e] - θexit[o] .                                                (20) 

Successive application of the boundary conditions gives the exit angles from a 

birefringent crystal prism. As seen from equations (16-20), the angular separation, Δθ, between 

the ordinary and the extra-ordinary components of the light emerging from the prism depends 

upon the angle of incidence, the two indices and the apex angle of the prism. For large index or 

large apex angle the angular separation is larger. Also, higher birefringence will result in larger 

separation. Another important point to note is that two different materials with the same value for 

birefringence Δn but with different average index will result in different values for angular 

separation where we assume the same apex and incidence angles. Although large index of 

refraction is desirable as it results in thinner angular prisms, these prisms must be carefully 

coated with anti-reflection layers to reduce Fresnel reflections from the prism surfaces. Fresnel 
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reflections are an important aspect to consider in a cascaded design as they can cause high 

insertion losses for the proposed scanner. Moreover, one needs to make sure that the absorption 

coefficient of the material is small in the wavelength band of operation of the P-MOS.  

 

5.3 Experiments 

The goals of the P-MOS experiment are to demonstrate large angular scans as well as 3-D scans 

in both random and continuous fashion. Multiple experiments were conducted to demonstrate 

beam deflection in one, two and three dimensions. All the experiments were conducted at the 

telecommunications band wavelength of 1550 nm using a 0.5 mm 1/e2 diameter collimated beam 

from a fiber coupled semiconductor laser. In the first experiment, 1-D beam deflection is 

demonstrated in digital (random access) fashion where a single birefringent crystal prism made 

of Rutile (n =2.454, ne o=2.71 @ λ=1550 nm) and an NLC (Merck BL006, Δn =0.229 at 1550 nm 

and 25o C, see Appendix C) prism are used to scan the beam into 22 = 4 spots. The Rutile prisms 

have a clear aperture of 2 cm x 2 cm and are anti-reflection (AR) coated. The non-AR coated 

NLC cell used has a 5 mm aperture and a 50 μm thickness. The configuration used is exactly that 

of Fig. 5.1. Two FLC polarization switches are used to control the polarization of the 1550 nm 

laser beam in digital fashion in order to address these 4 spots. Figure 5.3 shows the resulting 

experimentally measured far-field spot pattern for this experimental configuration. The two 

yellow spots show the birefringent crystal prism deflection spots whereas the white spots are 

from the NLC prism deflection. Notice that in this demonstration the NLC prism is always 
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turned on with a given fixed voltage/frequency drive and only the beam polarization is controlled 

to produce the scanning far field spot pattern.  
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Fig. 5.3. Experimentally obtained far-field spot pattern for a basic 2-stage 1-D coarse-fine P-

MOS demonstration at 1550 nm. 

 

An important aspect of the NLC prism cell is highlighted in Fig. 5.4(a); namely the bias 

switching controls for the NLC prism as discussed earlier in Eq. (13). In Fig. 5.4(b-d), effective 

NLC cell shape and beam deflections for a two stage P-MOS are shown where one NLC prism 

and one birefringent crystal prism have been used as outlined in the design of Fig. 5.1. In Fig. 5.4 

(b), when the drive signal is in the OFF state, the NLC cell acts as an ordinary birefringent 

material cell, causing a uniform phase retardation throughout the NLC cell aperture. The 

birefringent crystal prism in Fig. 5.4(b) causes the beam to be steered into two different spots K 

and L depending upon the polarization of the incoming laser beam. For simplicity, the FLC PSs 

have not been shown in Fig. 5.4. In Fig. 5.4(c), when the switch is thrown to state A (i.e., when 
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Fig. 5.4. (a). Proposed Biasing Technique for the NLC prism. (b-d): The effective NLC cell 

shape and beam deflections for a two stage P-MOS where one NLC prism and one birefringent 

crystal prism have been used as shown in Fig. 4.1. Shown are NLC device states when (b): drive 

signal is OFF, (c): switch is set to state A (i.e., when VA>VB), and (d): switch is in state B (i.e., 

when V >VB A). Dark spots along the Y-axis represent the far-field spots as produced by the 

76 



 

shown NLC device state while the white spots represent the total scan spots possible including 

those from the alternative NLC device states. 

 

VA>VB), an index ramp is formed across the NLC cell aperture converting it into an effective 

prism that will deflect the light polarized along the NLC molecular director. This process in-turn 

causes the two deflections from the birefringent crystal prism to be shifted to the L and M 

positions and the angular scan to be doubled in the small angle approximation regime (i.e., sin 

θ ≅ θ) as compared to the case when only a single birefringent crystal prism is used. Figure 5.4 

(d) shows the case when the switch is set to state B (i.e., when V >VB A) causing an index ramp in 

the direction opposite to the previous case, resulting in the output beam from the two stage P-

MOS to be steered into positions J and K. These corresponding far-field spots are shown at the 

right of Figs. 5.4(b-d). As can be seen from the far-field spot pattern in Fig. 5.4(d), the scan zone 

is three times the scan zone when the NLC prism was not used. If instead of the NLC prism 

device, another birefringent crystal prism is used with the same apex angle, the total scan zone is 

only doubled and not tripled. In addition, when using the fixed apex angle prisms (such as 

birefringent crystal prisms or LC filled passive prisms), there is no mechanism for covering the 

intermediate space between the spots from these prisms. Hence, the unique electrode bias 

switching not only increases the scan zone, but via NLC device drive signal amplitude and 

frequency control actively covers the intermediate space between the birefringent crystal prism 

scan spots (as demonstrated in a later video, Fig. 5.7).  

In the second experiment, 1-D large angular beam deflection is demonstrated where four 

birefringent crystal prisms and four FLC polarization switches are used to scan the beam into 24 

o= 16 spots. The angular scan dynamic range is 33.11  as shown by the red star * data-set in Fig.  
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Fig. 5.5. Experimentally obtained far-field spot pattern for 4-stage 1-D coarse digital P-MOS 

demonstration at 1550nm. α ο ο ο ο and α= −9.95 , α = 19.95 , α = 4.951 2 3 4 = 9.95  using Rutile prisms 

(ne=2.454, n =2.71 @ λ=1550nm). α: apex angle of prism. o

 

5.6 and the video image in Fig. 5.5. The maximum angular separation between any two spots in 

this experiment is 7.12o as shown by the difference between polarization states#15 and 16 (see 

Fig. 5.6). As noted from equations (16-20), the linear approximation to Snell's law can not be 

applied for large angles and hence as the deflection angle increases, so does the non-linearity in 

the angular separation between scan points. In order to cover for such non uniform angular 

separation of the far field spot pattern, an NLC prism is introduced at the input to the first stage 

in the P-MOS setup. The NLC device molecular director is oriented along the incident laser 

beam polarization direction (p in this case). Computer based simulation are carried out in order 

to determine the desired electrically controlled angle of the NLC prism device to completely fill 
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the gaps between the spot pattern. As shown in Fig. 5.2, since the NLC prism has two linear 

contacts at the edges of the control electrode marked A and B, one of the contacts is set at the 

threshold voltage for the NLC cell. At the other contact, a higher voltage is applied such that an 

index ramp is formed in the NLC cell along, say, +x-dimension which results in a thin optical 

prism that can be seen by only one polarization component (p in this case). Controlling the  

the gaps between the spot pattern. As shown in Fig. 5.2, since the NLC prism has two linear 

contacts at the edges of the control electrode marked A and B, one of the contacts is set at the 

threshold voltage for the NLC cell. At the other contact, a higher voltage is applied such that an 

index ramp is formed in the NLC cell along, say, +x-dimension which results in a thin optical 

prism that can be seen by only one polarization component (p in this case). Controlling the  
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Fig. 5.6. Simulated steering angles for a 4-stage coarse and one stage fine 1-D digital P-MOS at 

1550 nm that can continuously access any spot within a 40.92o wide scan domain. 
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potential difference between these two metallic contacts results in varying the optical prism apex 

angle. As mentioned earlier, by swapping the voltage levels between these two contacts, the 

index ramp and hence the prism angle can be formed along the -x-dimension. The simulation 

was carried out keeping in mind this dual nature of the given NLC device prism angle. From the 

conducted simulation, the NLC prism angle ±θw needed for completely filling this experimental 

design spot pattern is found out to be ±0.35o. The resulting range of angles that can be accessed 

by this experimental P-MOS scanner are shown in Fig. 5.6 by the dataset labeled green star * and 

blue cross + for -θw and +θw, respectively. The NLC prisms used had a cell thickness of 50 μm 

and a clear aperture of 5 mm. The maximum prism angle θw that was obtained from these 
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Fig. 5.7. Demonstration of continuous steering using NLC prism in the 4-stage coarse 1-D P-

MOS scanner of Fig. 5.5. α oο = ±0.35  (NLC: Merck BL006, Δn =0.229 at 1550 nm and 25NLC  C, 

see Appendix C). 
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devices was 0.131o, so three of the NLC prism devices were cascaded to form an equivalent NLC 

wedge in order to achieve a continuously tunable scan of 0.35o. The experimental scanning 

demonstration works as follows: All the PSs are controlled such that the scanner output beam 

corresponds to a certain polarization state#, say, for example 1. The NLC wedge module is 

driven with voltages that result in θ = -0.35o
w . The output beam from the scanner corresponds to 

the initial or starting point for the scan domain. The polarization switches are kept in the same 

state and the NLC drive signal is varied such that θw decreases gradually from -0.35o to 0o which 

is also the state corresponding to the spot generated by the bulk crystal prisms in the absence of 

the NLC prism in polarization state#1. Then the voltage levels between the two metallic contacts 

A and B are inter-changed so that the NLC index ramp corresponds to a positive angle +θw and 

the drive signal is varied such that θw increases from 0o to +0.35o. Once, the maximum0.35o has 

been reached, the control state of the PSs is varied such that they correspond to polarization 

states#2. Again, the NLC prism angle θw is varied, following the same sequence as in 

polarization state#1, i.e., from -0.35o to +0.35o. Once the maximum θw is reached, the 

polarization state can be switched to the next higher level and the same sequence of steps is 

followed until the whole scan domain is accessed in this manner. It can be noticed from Fig. 5.6 

that in some of the polarization states, the steering angle values overlap with the adjacent 

polarization states. This means that in order to scan the angular zone corresponding to such a 

polarization state, scanning will start with an intermediate value of θw. A look-up table for NLC 

drive specifications versus steering angle can be followed in this regard to avoid overlapped 

scanning zones. Similarly, in the final polarization state#16, the maximum steering angle 

(40.92o o) is achieved with a value of θw=0.199  which is less than the maximum value of θw as in 
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this configuration of the scanner, any value of θw higher than 0.199o results in total internal 

reflection inside the last birefringent crystal prism. Hence, by controlling the polarization state 

and the NLC prism drive signals, a total steering angle of 40.92o can be obtained in the current 

configuration. For demonstration purposes, in Fig. 5.7, continuous scanning is shown between 

the final two polarization states (i.e., #15 & #16) since they constitute the worst case scenario 

where 7.12o of angular separation lies between these two spots.  

Throughput efficiency was measured for the far field spot pattern for the 16-point random 

scan (dataset * of Fig. 5.5) as shown in Fig. 5.8. It is observed that the throughput efficiency 

remains more or less constant in a broad angular range and decreases gradually as the steering 

angle reaches the maximum. The insertion loss for the experimental non-AR coated NLC prism 

was measured to be 0.73 dB which includes 0.35 dB loss from Fresnel reflections. The average 

insertion loss for the 1" diameter FLC PS's was measured to be 0.7 dB at 1550 nm while their 

average optical polarization extinction ratio was 28 dB. The Rutile prisms had a 2 cm x 2 cm 

face area, were AR coated and had an average insertion loss of 0.04 dB. The insertion loss for 

these prisms varies as the angles of incidence and exit vary as shown by experimental data in 

Fig. 5.8. For the demonstrated 4-stage hybrid analog-digital P-MOS, the total average insertion 

loss is ~5 dB (=3*0.73 (For 3 NLCs) + 4*0.7 (For 4 FLC PSs)). This number is reduced to ~3.93 

dB when a single AR coated NLC device is used instead of three NLC devices. 

Experiments were also carried out to demonstrate the capability of the P-MOS to steer the 

beam in two and three dimensions. Fig. 5.9 shows a 4-stage P-MOS, where two birefringent 

crystal prisms and two NLC prisms are used to digitally access 16-spot pattern (4-bit) in a two 

dimensional grid in the far-field. Recall that each stage has its own polarization switch. One 

birefringent crystal prism and an NLC prism are used to address each dimension. In the Fig. 5.10  

82 



 

0 5 10 15 20 25 30 35
-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

 

Fig. 5.8. Experimentally measured scanner optical throughput variation for the 4-stage 1-D 

coarse digital P-MOS demonstration at 1550 nm. 
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Fig. 5.9. Experimentally obtained 2-D far-field spot pattern for 2-stage coarse and 2-stage fine P-

MOS demonstration at 1550 nm. 
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demonstration, a 2-stage coarse and 3-stage fine P-MOS is used to address all three dimensions 

in a single scanner. The two coarse stages consist of birefringent crystal prisms while the three 

fine stages consist of two NLC prisms and a single NLC lens device.19 The NLC lens is used to 

scan the third dimension; i.e., to focus or defocus the beam along its direction of propagation. 

The goal of this experiment was to demonstrate the capability of the P-MOS to scan all three 

dimensions in a desired fashion. 
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Fig. 5.10. Experimentally obtained 3-D spot pattern for 2-stage coarse and 3-stage fine P-MOS 

demonstration at 1550 nm. 

 

 

 

 

 

Fig. 5.11. Experimentally measured rise time for the FLC PS used in P-MOS demonstration at 

1550 nm. 
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In the parallel drive P-MOS architecture, the scanner response time will depend upon the 

slowest device in the system. In a P-MOS where only birefringent crystal and fixed drive voltage 

LC prisms are used for scanning with actively driven FLC PSs, the scanner response time will be 

equal to a single FLC PS's response time. Figure 5.11 shows the measured 50 μsec fast response 

of the demonstrated FLC half wave plate at λ=1550 nm, alongwith the corresponding drive 

signal. Hence in the hybrid P-MOS where both birefringent crystal prisms and actively driven 

NLC prisms are used for scanning, the limiting factor for the response time is the NLC prism.  

oIn order to get the relatively large NLC prism angles such as 0.35  with a fast response 

time, multiple thin NLC cells can be cascaded in order to achieve the total angle of 0.35o. In this 

way, a scanning speed of the order of a few milliseconds can be achieved with the NLC device 

although at the expense of throughput efficiency. Today, research is being conducted in the area 

of high birefringence materials that have low viscosity.28 Use of such materials will further 

reduce the response time of the NLC prism down into the sub-millisecond regime. 

 

5.4 Conclusion 

In summary, we have demonstrated a versatile polarization based scanner design that is 

well suited for optical beamforming applications such as freespace laser communications, 3-D 

displays, scanning 3-D optical microscopy, and data retrieval applications. Specifically, for the 

first time, 1550 nm band random as well as continuous mode large 40.92o angle beam steering is 

experimentally demonstrated using a unique hybrid analog-digital mode P-MOS architecture that 

possesses high beam quality and minimal pixel-based high order diffractive effects. In particular, 
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a unique electrical biasing control of the active NLC prism devices is used to provide a near 

continuous and high resolution beam scan over a wide angular dynamic range. Video 

demonstrations include one, two and three dimensional beam steering experiments. 
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CHAPTER 6: LIQUID CRYSTAL DEFLECTOR BASED VARIABLE 
FIBER-OPTIC ATTENUATOR 

A compact, low component count, no-moving parts Variable Optical Attenuator (VOA) 

is demonstrated for the first time using beam spoiling implemented via an electrically 

reconfigurable non-pixelated Nematic Liquid Crystal (NLC) deflector. The VOA design features 

an in-line alignment polarization insensitive design without the use of bulky polarization splitting 

and combining optics. The proof-of-concept VOA at 1550 nm demonstrates 30 dB attenuation 

range, 2.5 dB insertion loss, ≤0.8 dB polarization dependent loss (PDL) and a 1 second 

maximum attenuation reset time. The VOA design can counter performance reducing 

environmental effects such as excess loss increase due to temperature variations. 
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6.1 Introduction 

As the demand for high data rate telecommunication networks increases, optical devices 

are sought that are low in cost, utilize little drive power, and have broadband robust operation. 

The Variable Optical Attenuator (VOA) is one such component that is needed in wavelength 

division multiplexed (WDM) systems to dynamically control the channel power per wavelength. 

A variety of technologies have been proposed to realize single channel VOAs such as micro-

mirrors1, acousto-optics2, and thermo-optics3,4. Liquid crystals (LCs), because of their no moving 

parts, low loss, and low power consumption nature have long been considered an excellent 

alternative for making optical components.5 Specifically analog operation 6-8 and all-digital 

operation LC VOAs 9,10 have also been proposed. An issue with polarization controlled LC 

VOAs is their need to use bulky polarization beam displacement and combining optics such as 

crystal beam displacement prisms (BDPs) to enable polarization independent designs. In 

addition, these VOAs are extremely sensitive to polarization extinction changes such as due to 

temperature swings in the LC cells that in-turn lead to unwanted VOA light throughput 

fluctuations. In effect, any deterioration in LC cell polarization extinction ratios causes useful 

signal light to be rejected via the combining BDP. Thus, an LC VOA that can counter this excess 

loss variation problem would be highly desirable. 

Recently, a simple LC VOA structure was proposed that forms a compact VOA that does 

not use BDPs and moreover can eliminate the extinction ratio-based loss throughput problem.11 

Specifically, this VOA design implements attenuation via the use of LC-based optical beam 
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spoiling. The rest of the work for the first time describes the design and demonstration of this 

fiber-optic VOA using a non-pixelated NLC deflector device to implement beam spoiling.  

 

6.2 Variable Optical Attenuator Theory 

Figure 6.1(a) shows one in-line design of the proposed Nematic Liquid Crystal (NLC) 

deflector-based VOA using self-imaged identical fiber Gradient Index (GRIN) rod lenses.12 The 

two GRIN lenses are separated by 2d, where d is the beam waist location distance leading to a 

low loss design. Two NLC deflectors with orthogonal NLC directors are placed between the 

GRIN lenses. Figure 6.1(b) shows the second approach to realize the VOA using a dual fiber 

collimator, a single NLC deflector, and a 45o power Faraday rotator-mirror pair. This reflective 

design results in a compacter architecture as compared to that of Figure 6.1(a). Finally, Figure 

6.1(c) shows the third proposed in-line VOA design that takes advantage of today's highly low 

loss (e.g., <1 dB) compact optical circulator devices. In the absence of any NLC device control 

signal, all input light is directed to the desired VOA output port. For VOA control, the amplitude 

and frequency of the NLC deflector electrical drive signals are varied to implement beam 

deflections leading to the desired VOA attenuation level.  

The NLC deflector is different from an ordinary parallel rub NLC cell in that instead of 

having the NLC layer sandwiched between two Indium Tin Oxide (ITO) electrodes, the NLC 

material is sandwiched between an ITO electrode which acts as the ground electrode, and a high 

impedance control electrode (see Fig. 6.2(a)). Earlier, the use of a high resistance layer with two 

parallel electrical contacts was proposed to generate a smooth voltage ramp between these 
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Fig. 6.1. Top views of proposed NLC beam-spoiling VOA designs using (a) two fiber collimators 

and two NLC deflectors with orthogonal NLC directors, (b) a dual collimator and a single NLC 

deflector with 45o Faraday rotator-mirror pair, and (c) an optical circulator, single fiber 

collimator with a single NLC deflector and 45o Faraday rotator-mirror pair. λ/4: Quarter wave 

plate. 
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Fig. 6.2. Top views of the NLC deflector used to realize the VOAs. NLC molecule orientations 

are shown for (a) zero control signal applied and (b) when a control signal is present that 

reorients the NLC molecules to induce a spatial wedge-like refractive index change. p: 

horizontally polarized light component. 

 

contacts to form a pixel-free deflector.13-14 At the edges of the control electrode, linear electrical 

contacts are deposited which are used to apply the drive signal. When a signal is applied to one 

of these linear electrical contacts, the voltage drops linearly across the high impedance layer. The 

resulting E-field present across the NLC layer varies linearly across the aperture of the device 

leading to an index modulation that varies across the aperture of the device in a near-linear 

fashion (see Figure 6.2(b)). Notice that this index modulation is along the NLC director and thus 

can be seen only by that component of the input polarized light which is along the NLC director. 
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As a consequence, a scheme is needed to cater for both orthogonal polarization components of 

the input light entering via the VOA fiber-optics. In Figure 6.1(b, c), the 45o power Faraday 

rotator (or a quarter wave plate) with a mirror makes the reflective VOA design polarization 

insensitive. For the transmissive Figure 6.1(a) design, two orthogonal director NLC deflectors 

cater for both the components of the input polarization, making a polarization independent VOA. 

Thus a thin optical wedge formed in the NLC layer results in the refraction of the laser beam 

away from its original path, causing it to deflect along one dimension and hence un-optimize 

light coupling with the receiving GRIN lens.  

Specifically in Figure 6.1(a), one orthogonal polarization component deflects in the x-

direction while the other orthogonal polarization component deflects in the y-direction. This is 

because the NLC deflectors used are identical design devices, except being physically flipped by 

90o with respect to each other for alignment purposes. This can be overcome by having two NLC 

cells with orthogonal directors but with the linear metallic electrical contacts parallel in both the 

cells such that the resulting phase ramp and hence the beam deflection for both the polarizations 

is in the same direction. Because of the symmetry of the VOA design, attenuation levels due to 

beam spoiling of both polarizations is the same, leading to a polarization insensitive design. 

Nevertheless, note that since two NLC deflectors are used with possible independent drive 

signals, any non-uniformity due to fabrication of the two cells can be cancelled by using two 

calibrated and independent drive signals for the two cells. For the Figure 6.1(b, c) designs, both 

polarizations undergo 1-D deflections in the x direction and so using a single NLC deflector is 

sufficient to deliver the polarization independent VOA operation. Next, the theoretical 

foundations are laid for the proposed NLC deflector-based VOA. 
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With reference to Figure 6.2, a ray polarized along the molecular NLC director passing 

through the NLC deflector device acquires a phase shift at the device position x that can be 

expressed as: 

 

(1) φ(V, f, x) = [2π/λ] n(V, f, x) t 

 

where λ is the optical wavelength, t is the NLC layer thickness, n(V, f, x) is the electrically 

controlled NLC refractive index the light sees, and V is the amplitude in Volts and f is the 

frequency in Hertz of the NLC device drive signal. Looking at the two extreme ray positions of 

x=0 and x=D, the beam deflection of the entire wavefront incident on the NLC deflector can be 

studied. Specifically, the x=0 position ray suffers a phase shift given by: 

(2) φ(V, f, x=0) = φ  = [2π/λ] n(V, f, 0) t , ο

while the extreme ray at x=D suffers a phase shift given by: 

(3) 

(4) 

(5) 

φ(V, f, x=D) = φD = [2π/λ] n(V, f, D) t . 

Hence the phase shift between the edges of refracted plane wave exiting the NLC deflector is 

given by:  

Δφ=φD-φ  , o

where between the x=0 and x=D points, the incident plane wave acquires a linearly increasing 

phase shift. At x=D, the applied voltage is designed via the electrode structure to be zero, so the 

index seen by the incoming ray of p-polarization is essentially ne, the NLC material 

extraordinary index of refraction. Therefore φD = 2π/λ (ne t) and Δφ becomes: 

Δφ = (2π/λ) [ne-n(V, f, 0)] t . 

96 



 

Similarly, note that at the x=0 location where the other device electrode is present, V and f can 

be controlled to set n(V, f, x=0) = n  , where no o is the ordinary refractive index of the NLC 

material. In this case, the NLC deflector is generating its maximum birefringence Δn = ne-no and 

hence also produces the largest phase shift between rays across the device aperture D. This in 

turn leads to the maximum beam deflection angle θm for the programmable NLC deflector. From 

phased array theory, the beam steered angle θw due to an inter-element phase shift Δφ is given 

by: 

(2πD/λ) sinθ

(9) 

(8) 

(10) 

(11) 

(7) 

(6) w = Δφ,  

where D is the phased array inter-element distance or in this case the NLC device aperture. By 

equating equations (5) and (6), the electrically controlled deflector angle θw as seen by a wave 

polarized along the molecular director is written as: 

(2πD/λ) sinθw  = (2π/λ) [ne-n(V, f)] t 

This in turn leads to: 

D
t

 θw(V, f) = sin-1  [n { e-n(V, f)]}, 

A laser beam passing through the described thin NLC deflector (see Figure 6.2) is refracted at 

the freespace output of the deflector by an angle θe that depends upon the average index <n> of 

the NLC material, and the electrically set deflector angle θw, and the index of the output media 

(in this case, air), leading to the expression: 

<n> sinθw = sinθe . 

For a parallel rub NLC cell, <n> is given as:15 

<n2>= (ne
2 2 + 2n )/3. o

Hence θe can be written as: 
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(13) 

(12) 

(14) 

(15) 

θe = sin-1(<n> sinθw). 

It is because of the adjustable deflection angle θe in the air that the laser beam going back into 

the fiber collimator is displaced from its perfectly aligned self-imaging state, leading to the 

controlled attenuation of light passing through the VOA. In addition, the output power coupled 

back into the fiber depends upon the separation distance between the NLC deflector and the fiber 

collimator. The deflected beam causes angular tilt and offset mis-alignments for the GRIN lens 

which result in a fiber-optic coupling loss.12,16 For example, in the case of Figure 6.1(b) and (c) 

VOA designs, the attenuation offset misalignment xo via beam deflection is given as:  

 = d tanθxo e 

Therefore, x  becomes: o

 = d tan{sin-1(<n> sinθxo w)}, 

and using the expression for θw from (8) gives: 

( ) ⎥⎦
⎤

⎢⎣
⎡ ><= − }]{[ ]f V,n-[n

D
tnsintan

 

e
1

0 dx . 

oAs the NLC deflector angles are designed to be small (e.g., <0.21 ), the small angle 

approximation of sinθ ≅ tanθ ≅ θ can be applied giving: 

weo θndf) n(V,-n t/D n d  x ][ ><=
⎭⎬
⎫

⎩⎨
⎧><≅ . 

In conclusion, the proposed VOA attenuation is controlled by producing a given beam 

offset misalignment xo induced by an NLC deflector produced beam tilt misalignment angle θw. 

More specifically, it can be seen from equation (15) that the VOA attenuation depends upon the 

beam waist position d from the GRIN lens, the average NLC refractive index <n>, the NLC cell 
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thickness t, device aperture D, device programmable birefringence ne-n(V, f), and the drive 

signal voltage V and frequency f.  

  

6.3 Experiment 

The Figure 6.1(c) design is used as the proof-of-concept experimental setup at λ=1550nm 

for the proposed VOA. This design uses a 9 μm core single mode fiber (SMF) coupled 

collimator, an NLC deflector, a quarter wave plate (QWP) for 1550nm, a mirror and a circulator. 

The circulator and the single fiber collimator emulate the presence of a dual fiber collimator, as 

in Figure 6.1(b). First, the GRIN lens is characterized using the self-imaging technique.12 The 

GRIN lens has a 5 mm physical diameter with a 2.5 mm exit beam 1/e2 diameter. Insertion loss 

for the GRIN lens using freespace-to-fiber coupling via the self-imaging mechanism is measured 

to be 0.4 dB. The beam waist location distance d of the chosen GRIN lens is 25 cm and the 1/e2 

beam diameter is 2.49 mm. The QWP positioned within 1 mm of the mirror is oriented at 45o 

with respect to the NLC director. The distance between the NLC deflector and the QWP is 13 

mm. The insertion loss measured in this arrangement is 2.5 dB which includes a 0.7 dB loss per 

pass through the non-AR coated NLC deflector, a 0.4 dB free-space to GRIN lens coupling loss 

and 0.7 dB circulator loss. The NLC deflector used in the experiment has a clear aperture 

diameter D of 5 mm and a NLC layer with a uniform thickness t of 50 μm. The NLC used is 

Merck BL006 that has a manufacturer specified birefringence (Δn = ne-no=1.816-1.53) of 0.286 

at 25oC room temperature and λ=589.3 nm (see Appendix C). The NLC birefringence Δn 

depends upon the operating wavelength. Typically for NLCs with large birefringence (e.g. 
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Δn~0.2) in the visible band such as the Merck BL006, the birefringence decreases by ~15-20% 

going from visible to near infrared band.17 The birefringence was also measured at 1550 nm and 

25oC to be 0.229, which is within the 15-20% approximation range. Hence, for a given device 

drive signal, the VOA attenuation will decrease for longer wavelengths as compared to that for 

the shorter wavelengths. For example, VOA operation in the 35 nm bandwidth C 

telecommunications band centered at 1545 nm is relatively constant due to small expected 

birefringence variation (typically <1%) within this infrared wavelength region15. Using equation 

(10), the average refractive index <n> is then calculated to be 1.63. Using the mentioned NLC 

deflector specifications and equation (8), the deflector angle θw maximum obtained using this 

device at 1550 nm is 2.29 mradian (0.131o). As listed in Table 6.1, the maximum angle θe at 

which the laser beam emerges from the NLC deflector is calculated using equation (11) to be 

3.73 mradian (0.21o). Table 1 also gives the expected VOA beam angular and lateral 

misalignments for a variety of design specifications including the present experimental design. It 

can be concluded from Table 6.1 that using a given NLC device with a smaller aperture and 

hence larger beam deflection angle will result in a compact VOA design.  

Figure 6.3(a) shows the measured VOA optical attenuation for the Figure 6.1(c) VOA as 

a function of the drive signal frequency f using a V=5 Volt square wave signal. Figure 6.3(b) 

shows the measured optical attenuation as a function of the applied square-wave voltage for an 

f=2.7 kHz signal drive. The VOA attenuation dynamic range in both these cases is ~30 dB, 

generated by the combined tilt and offset beam spoiling effects. The PDL is measured to be <0.8 

dB whereas the VOA resolution based on the resolution of present drive electronics is measured 

to be ±0.1 dB. Due to the large 5 mm aperture and large 50 μm thickness of the NLC layer, the 

response time of the current VOA is of the order of 1 second. The insertion loss and the response  
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Fig. 6.3. Measured optical attenuation as a function of (a) drive frequency and (b) voltage. p: 

horizontally polarized light component parallel to cell nematic director. s: vertically polarized 

light component normal to the device NLC director. 
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time can further be reduced by varying the parameters of the NLC deflector such as the thickness 

of the cell and its clear aperture. Note that because of the large "d" GRIN lens used in the 

experiment for ease of implementation, the NLC deflector and related retro-reflecting 

polarization independence creating optics are not in close proximity, thereby not negating PDL 

to the desired <0.2 dB. For a custom design, where the NLC deflector, QWP, and mirror are all 

stacked together with a short "d" dual collimator GRIN lens, both lower PDL and insertion loss 

can be achieved. 

A key VOA parameter is its longest reset time. t =t +t  where ts 1 2 1 is the NLC response time 

to set the NLC deflector to a given required beam steering voltage V. t2 is the NLC deflector 

response time when V=0 and the device is reset to its zero beam steering angle state. For a 

homogeneous NLC cell the response time is given by:18

1
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

th

o
r

V
V

τ
τ , 

(16) 

(17) 

 
 

 
(18) 

where τ  is the LC director's relaxation time and is given as:18  o

11
2

2
1

K
t

o π
γ

τ = , 

18and V  is the NLC threshold voltage and is given by:th

εε
π

Δ
=

o
th

K
V 11 , 

where K11 is the splay elastic constant, εο is the free-space dielectric permittivity, Δε is the 

dielectric anisotropy, and γ1 is the visco-elastic coefficient. As can be noted from the equations 

(16-18), Vth is more or less constant for a certain NLC and τ  depends on the cell thickness t. For o
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a given cell size and NLC material, τo will be fixed and hence the response time τr depends only 

on the ratio V/V . The response time decreases as the ratio V/Vth th is increased. For the present 

VOA, its longest reset time t  can be approximated by using t

(19) 

s 1=τr and t2=το. Hence the VOA 

maximum reset time is  

ts = τ + τ  . r o

Since τo is generally fixed, it can be concluded from equation (19) that the VOA reset time is not 

the same for the different attenuation levels. For example, to reset the VOA for maximum 

attenuation, the reset time is the shortest as V>>V . th

Notice from equation (17) that the NLC deflector device response time τo has a square 

law relation with the NLC cell thickness t; hence a reduction in the cell thickness will result in a 

shorter overall reset time for the VOA. For example, reducing the thickness by half will result in 

a 4 times faster VOA response. Recall that the NLC deflector used is a non-pixelated NLC cell 

making the device refractive in nature as opposed to a diffractive device that would otherwise 

give unwanted diffraction orders and hence excess loss.  

The NLC used has a large nematic temperature range from -15o o 19C to 113 C.  In a typical 

NLC material, birefringence decreases as a function of temperature. In an NLC based VOA 

where BDPs are used to separate and recollect the orthogonal polarized light components, 

temperature change causes birefringence change leading to polarization extinction ratio changes. 

This causes the light throughput fluctuations in the VOA that can cause irrecoverable light loss. 

Due to the beam steering nature of the proposed NLC-based VOA, a temperature change causes 

a birefringence change in the NLC deflector leading to a change in deflection angle and hence 

attenuation level. More importantly, the desired VOA attenuator level can be recovered by 

electrically controlling the NLC deflector to recover the original deflection angle. Unlike the 
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BDP-based LC VOAs, the NLC deflector based VOA does not suffer from irrecoverable VOA 

excess loss. Specifically, the proposed VOA when used with a feedback loop can operate 

properly even in an environment with temperature swings and no temperature stabilization 

hardware. 

 

6.4 Extended Applications 

The VOA architectures shown in Figure 6.1 can be extended to other useful devices. 

Specifically,  a 1x2 switch is formed by replacing the output port single fiber collimator in 

Figure 6.1(a) by a dual fiber collimator and inserting a half wave plate in-between the two NLC 

deflectors that have their directors parallel to each other (see Figure 6.4(a)). The half wave plate 

is present so that both the polarization components are steered into the same direction. For such a 

1x2 switch, the insertion loss is estimated to be <0.67 dB using AR coated devices. This 0.67 dB 

mainly comes from the absorption in the NLC material and can be reduced by having a thinner 

NLC layer and smaller device aperture. Also notice that the two NLC deflectors can be driven 

individually so as to cancel the effects of thickness variation in different cells or to get an even 

finer control over the device operation. Figure 6.4(b) shows an alternate structure for the 1x2 

switch using a triple fiber collimator in a reflective design. Such a programmable compact 1x2 

switch can be useful in photonic applications where on-demand programmable signal taps are 

needed for in line spectral analysis and power monitoring.  
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Fig. 6.4. Proposed NLC deflector based 1x2 switch designs using (a) a single fiber collimator, 

two parallel aligned NLC deflectors, a half wave plate and a dual fiber collimator, and (b) a triple 

fiber collimator and a single NLC deflector in a reflective mode. 
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Table 6.1. VOA Design Parameters v/s Obtained Beam Spoiling Parameters. t: NLC deflector 

cell thickness; D: NLC deflector cell aperture; d: GRIN lens beam waist distance from GRIN 

lens exit aperture, θw: NLC deflector maximum deflection angle,  θe: maximum freespace exit 

angle from the NLC deflector, and x : maximum offset error due to angular deflection. o

*Demonstrated experimental design.  

VOA Design Parameters Fiber-optic Coupling Beam Spoiling 

Parameters 

t  xD  d θ θ o w e 

(mm) (cm) (mm) (μm) (mrad) (mrad) 

10 0.42 2 23.81 38.82 0.78 

10 0.4 4 25 40.76 1.63 

20 0.42 2 47.64 77.7 1.56 

20 0.4 4 50 81.59 3.27 

50 0.42 2 119.33 195.29 3.96 

50 * 5 * 25 * 2.29 3.73 0.93 

 

6.5 Conclusion 

In summary, a novel fiber-optic VOA is demonstrated using an electrically controlled 

NLC deflector that implements optical power attenuation via beam spoiling-based single-mode 

fiber coupling loss. The proposed VOA can be electrically compensated to deliver a fixed excess 

loss with changing environmental conditions. The VOA features a compact no moving parts 
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design with high attenuation dynamic range, low loss, low PDL potential, and broadband 

capability. Experiments at 1550 nm demonstrate fiber-optic component specifications useful for 

many applications, such as for test instrumentation and fiber-optic communications. The basic 

VOA design can also be extended to realize a small 1x2 switch. 
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CHAPTER 7: WAVELENGTH TUNABLE VARIABLE FIBER-OPTIC 
ATTENUATOR USING LIQUID CRYSTAL-MIRROR HYBRID 

CONTROLS  

In this chapter, a Fiber optic module is proposed using a hybrid liquid crystal-mirror 

mechanics beam control mechanism that provides the dual functions of optical attenuation 

controls and wavelength selection with a high degree of sensitivity, all within one compact in-

line module. Experimental module uses a liquid crystal deflector and a mechanically tuned bulk 

mirror as the hybrid optics. The module demonstrates a 1520-1570 nm coarse tuning range, a 

1.44 nm fine tuning range, a >30 dB attenuation range,  a 3.7 dB optical insertion loss, < 0.1 dB 

polarization dependent loss, and a Full Width Half-Maximum (FWHM) wavelength resolution of 

≤0.3 nm. Module applications include tunable gain controlled optical transmitters and receivers. 
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7.1 Introduction 

The fiber-optic variable optical attenuator (VOA) is a basic processing element in many 

optical systems. It is desirable that such a VOA is controlled with minimal electrical power and 

operates over broad optical bands. With their compact no moving parts, low loss, and low power 

consumption attributes, liquid crystals (LCs) have been considered attractive for realizing these 

VOAs within pure digital1-2 and analog manifestations.3-5 Nevertheless, these LC VOA designs 

use bulky beam displacement prisms (BDPs) for splitting and combining the two orthogonal 

polarization components in order to realize a polarization independent fiber-optic VOA. 

Recently, a compact LC VOA structure was proposed that does away with the use of BDPs 

making one compact VOA unit.6 Specifically, the ref.6 VOA can operate over a broad optical 

band making it an essentially wavelength insensitive module. There are some applications where 

it is desirable to have a wavelength tunable VOA. Such applications include an optical receiver 

that requires the ability to tune to a chosen wavelength in a broad optical band and 

simultaneously has the feature of controlling optical light flow or attenuation in the photo-

detection optoelectronics. In other words, an electronically tunable wavelength sensitive VOA is 

required. Another possible application is a gain controlled tunable optical transmitter.  

This chapter shows how the ref.6 VOA can be simply modified to realize the desired 

wavelength agile VOA. Earlier proposed was a hybrid LC plus mirror optics approach to free-

space beam controls within fiber-optic structures where the excellent fine pointing ability of LC 

optics is exploited for super-fine free-space beamforming and the much better (compared to LCs) 

larger angular range of mirror optics is engaged to implement the high angular dynamic range 
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beam pointing.7 Shown in this chapter is how the hybrid LC-mirror beam controls approach is 

combined with wavelength sensitive optics within the ref.6 VOA design to realize the desired 

wavelength agile VOA. Independently, micro-electromechanical systems (MEMS) mirror optics 

alone has been engaged to realize single wavelength selection modules for applications such as 

wavelength scanned optical spectrum analysis8 and agile wavelength selection for an optical 

receiver.9 The focus of the proposed work is realization of an all-in-one compact module using 

hybrid LC-mirror controls that enables both wavelength selection operations and VOA 

operations, all with high dynamic range and accuracy. The rest of the chapter describes the 

proposed module design and related experiments. 

 

7.2 Wavelength Tunable VOA Architecture 

Figure 7.1 shows the proposed hybrid design wavelength agile fiber-optic VOA. The 

basic design uses a fiber-optic circulator (C), a transmissive volume Bragg grating (VBG), one 

LC deflector, a quarter wave plate (QWP), and a mirror M. The design is similar to the ref.6 

VOA design, except for the insertion of the grating optic and the active use of both the LC and 

mirror optics. The circulator is used to direct input and output light to and from the module. The 

input light is coupled to the freespace optics using a self-imaging type single mode fiber (SMF) 

gradient index (GRIN) rod lens. A QWP is placed between the LC deflector and M to minimize 

polarization dependent loss (PDL) in the overall module. In addition, the QWP produces the 

desired linear polarization flipping operations so that the polarization dependent LC deflectors 

operate as polarization independent devices. The distance d between M and the GRIN lens is  
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Fig. 7.1. Proposed Wavelength Tunable Variable Fiber-Optic Attenuator Using Liquid Crystal-

Mirror Hybrid Controls. C: Optical Circulator; VBG:  Volume Bragg Grating; M: Mirror. 

 

such that the Gaussian beam emerging from the GRIN lens forms its minimum beam waist at the 

mirror location leading to a low loss self-imaging design.10 The VBG is placed at the Bragg 

angle orientation θBragg for the band central wavelength so that the input broadband source 

spectrum in the first order spreads by an angle of 2Δθ= θ − θmax min along x-axis (see Fig. 7.1), all 

with the minimal insertion loss, where θmax=sin-1 [(λmax/L)-sinθBragg] and  θ =sin-1[(λmin min/L)-

sinθ ], and L is the grating period. For the designed VOA operating spectrum, λ  and λBragg max min 

correspond to the maximum and minimum wavelength values, respectively. An anti-parallel rub 

nematic LC (NLC) deflector is placed adjacent to M. Mirror M is a one dimensional tilt mirror 

used for selection of wavelength. If mirror based two dimensional x-y steering is deployed for 

both coarse wavelength selection and attenuation, two independent mirrors should be used to 

avoid crosstalk. The output of the module is always the chosen narrow band of the input light 

that is Bragg coupled back via the VBG into the GRIN lens. The extent of this narrow band Δλ is 

defined by the VBG  resolution and is expressed as 
Wm

Lλ
λ =Δ , where m is the grating order 
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number, λ is the hybrid LC-mirror optics selected Bragg wavelength, and W is the 1/e2 beam 

diameter incident on the grating.11 Due to the divergent nature of the beam produced by the VBG, 

only the Bragg matched component of the light is coupled back into the GRIN lens and hence 

enters the SMF. The rest of the off-axis unselected input light after double pass through the VBG 

does not enter the SMF. For selecting the desired wavelength to be coupled back into the GRIN 

lens, first the mirror M is tilted about the y-axis in order to select the correct Bragg angle for the 

chosen wavelength within the source spectrum. M can provide a wide tilt angle range needed to 

cover a broad spectral/angular band of the input light signal, although with limited mirror fine 

positioning repeatability. This fine tilt tuning need can be handled by using another NLC 

deflector in the module that is driven by a given voltage signal that accurately fine tweaks the 

beam deflection angle about y-axis to match the desired Bragg angle for the chosen wavelength. 

Once the wavelength is chosen, the next step is the VOA implementation for this given 

wavelength. This is achieved via the NLC deflector based beam deflection about x-axis. 

Fundamentally here, attenuation is realized via returning beam misalignment along the y-

direction (not the grating vector direction) into the GRIN lens.10 Thus, the hybrid LC-mirror 

controls give both high dynamic range and high resolution for controls of the proposed module. 

 

7.3 Experiment 

  For the proof-of-concept experiment, the Fig. 7.1 design is implemented in the laboratory. 

The SMF GRIN lens used has a 5 mm physical diameter with a 2.5 mm exit beam 1/e2 diameter. 

The beam waist location distance d of the chosen GRIN lens is 25 cm and the 1/e2 beam diameter 
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at beam waist location is 2.49 mm. The QWP positioned within 2 mm of the mirror is oriented at 

45o with respect to the NLC director. The distance between the NLC deflector and the QWP is 

9.5 mm. The total fiber-to-fiber module insertion loss measured is 3.7 dB which includes a 0.7 

dB loss per pass through the non-AR coated NLC deflector, a 0.1 dB insertion loss for the 

freespace-to-fiber coupling via the self-imaging mechanism, a 1.4 dB circulator loss, and 0.4 dB 

loss per pass through the VBG. Insertion loss variation for the module was measured to be ±0.2 

dB in the entire 1520-1570 nm band.  

Amplified spontaneous emission (ASE) from an erbium doped fiber amplifier was used 

as the broadband input source for the wavelength agile VOA. The VBG placed 4 cm away from 

the GRIN lens is a 980 lines/mm Dickson grating that spreads the 50 nm source spectrum by 

4.55o which corresponds to a linear spread of 1.67 cm at the mirror M. The grating Bragg center 

wavelength λBragg chosen is 1550 nm and θ  is 46.76o
Bragg . Figure 7.2 (dashed line) shows Optical 

Spectrum Analyzer (OSA) traces of the input source spectrum from 1520 nm to 1570 nm 

wavelength range. The VBG resolution Δλ is calculated to be 0.27 nm which is verified by the 

measured FWHM bandwidth of the module output light spectra as seen in Fig. 7.2. The NLC 

deflector used has a diameter of 5 mm and a NLC layer with a uniform thickness of 50 μm.6 The 

NLC deflector is oriented to perform fine VOA operations by deflecting the beam about x-axis 

with M set initially for the 1550 nm test wavelength that enables retro-reflection via the entire 

optics. To demonstrate the broadband operation of the module as a wavelength selective VOA, 

the mirror M is tilted about the y-axis to set the reflection at 1560 nm as shown in Fig. 7.2, with 

attenuation controlled via NLC deflector drive controls. The selected spectrum shows two 

attenuation settings of 0 dB and 20 dB. Note that the present wavelength tuning performance 

depends upon the characteristics of the mechanical mirror stage used, in this case a standard  
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Fig. 7.2. Proposed Wavelength Tunable Variable Fiber-Optic Attenuator operating as VOA for 

mirror M selected wavelength of 1560 nm and attenuation plots for 0 and 20 dB settings using 

NLC deflector driven at two different operating voltages. (Inset) Module operating as a VOA for 

the mirror M direction selected 1550 nm wavelength. 

commercial Newport stage. In general, note that any small variation of this or any other stage 

over a long period of time can be compensated for using the NLC deflector based wavelength 

tuning, an additional feature of the proposed module. Module PDL is measured to be < 0.1 dB 

over the entire 1520-1570 nm wavelength band. The fine attenuation control resolution of the 

NLC deflector is measured to be 0.05 dB for a chosen 1550 nm wavelength with an attenuation 

dynamic range of 30.6 dB by changing the drive voltage to the NLC deflector as also shown in 

the Fig. 7.2 inset.  

 To demonstrate fine precision no moving parts wavelength selection in the module, the 

Fig. 7.1 NLC deflector is engaged. To perform this experiment, the NLC deflector in the 

previous setup is rotated by 90o in order to produce the needed fine beam deflection about y-axis. 
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Since the NLC deflector has a metallic contact on each edge, the electric field gradient formed is 

either in +x direction or in -x direction.6 This leads to the capability of tuning the wavelength 

twice that of a deflector with a single electrical contact. When the drive signal is applied in order 

to cause a voltage gradient in the +x direction the optical beam gets deflected in the +x direction 

and as a result a slightly different wavelength is coupled back to the GRIN lens. The total 

wavelength fine tunability that was experimentally achieved by using the two aforementioned 

electrical contacts in order to get deflection in both +x and -x direction was measured to be 1.44 

nm with a drive signal of 2.2 Vpp as shown in Fig. 7.3. Assuming that the VBG resolution is not a 

limiting factor, the optical spectrum analyzer measured NLC deflector wavelength tuning 

resolution is 10±2 pm. The solid curve in Fig. 7.3 corresponds to no applied signal while the two 

dashed curves correspond to 2.2 Vpp applied signal at 1 KHz square waveform to the two 

opposing linear metallic contacts, resulting in a FWHM spectral width of 0.29 nm, 0.27 nm and 

0.29 nm (viewing Fig.7.3 from left to right).  
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Fig. 7.3. Proposed Wavelength Tunable Variable Fiber-Optic Attenuator operating with precise 

fine wavelength selection using NLC deflector driven at three different operating states giving a 

1.44 nm liquid crystal tuned fine wavelength range. 

118 



 

7.4 Conclusion 

The power of combined LC-mirror optics approach is shown for enabling a wavelength 

selective VOA module. The LC optics are used for fine beam steering while the mirror optic is 

engaged for larger angle beam steering within the fiber-optic module, thus playing into the 

strengths of the two steering technologies. A proof-of-concept module is designed and indeed 

demonstrates the wide dynamic range as well as high resolution capabilities for both wavelength 

selection and light attenuation controls. Improvements in the attenuation coarse dynamic range 

of the module is possible using a non-circulator based two fiber module design. Reset speed of 

the module is linked to the speed of mirror-control and NLCs that have typical response times of 

the order of a few milliseconds. Response time of the NLC cell used is ~1 second due to its 

relatively large thickness compared to ordinary NLC devices. Multiple thin NLC cells each 

giving an incremental value of the total deflection angle and a typical low 0.04 dB loss, can be 

cascaded in order to achieve the desired attenuation and wavelength control resolution and 

dynamic range with a relatively faster response time. Research is underway to synthesize NLC 

materials for larger birefringence and smaller viscosity in order to obtain faster response times.12 

Faster response times can also be achieved for NLCs using either the dual frequency effect or the 

transient-nematic effect. 

119 



 

References 

1. N. A. Riza, "Fault-tolerant fiber-optical beam control modules," US Patent No. 

6,222,954, April 24, 2001. 

2. N. A. Riza and Y. Huang, "Digital fault-tolerant variable fiber optic attenuator using 

liquid crystals," Advances in Optical Information Processing IX, Proc. SPIE Vol. 4046, 

Pages 101-106, Dennis R. Pape; Ed., July 2000. 

3. E. Hanson, "Polarization-independent liquid-crystal optical attenuator for fiber-optics 

applications," Applied Optics, Vol. 21, Issue 7, Pages 1342-1344, April 1982. 

4. K. Hirabayashi, M. Wada and C. Amano, "Compact Optical-Fiber Variable Attenuator 

Arrays with Polymer-Network Liquid Crystals," Applied Optics-LP, Vol. 40, Issue 21 

Pages 3509-3517, July 2001. 

5. J. Pan, H. Wu, W. Wang, X. Qiu and J. Jiang, "Temperature independent, accurate LC 

VOA through electric feedback control," Proceedings of National Fiber Optics Engineers 

Conference (NFOEC), Pages 943-949, Orlando, Florida, USA, September 2003.  

6. N. A. Riza and S. Khan, "Liquid-Crystal-Deflector Based Variable Fiber-Optic 

Attenuator,"  Applied Optics, Vol. 43, Issue 17, Page 3449-3455, June 2004. 

7. N. A. Riza, "Multi-technology multi-beam-former platform for robust fiber-optical beam 

control modules," US Patent No. 6,525,863, February 25, 2003. 

8. K. Nakamura, T. Saitoh and Y. Takahashi, "High-speed optical performance monitor for 

WDM network using MEMS scanning mirror," IEEE/LEOS International Conference on 

Optical MEMS, Pages 97-98, Waikoloa, Hawaii, August 2003. 

120 



 

9. J. Berger, F. Ilkov, D. King, A. Tselikov, D. Anthon, "Widely tunable, narrow optical 

bandpass Gaussian filter using a silicon microactuator," Optical Fiber Communication 

Conference, 252-253, Atlanta, GA, 23-28 March 2003. 

10. M. van Buren and N. A. Riza, "Foundations for Low-Loss Fiber Gradient-Index Lens 

Pair Coupling with the Self-Imaging Mechanism," Applied Optics-LP, Vol. 42, Issue 3, 

Pages 550-565, January 2003. 

11. Z. Yaqoob and N. Riza, "Low-loss wavelength-multiplexed optical scanners using 

volume Bragg gratings for transmit-receive lasercom systems," Optical Engineering, Vol. 

43, Issue 5, Pages 1128-1135, May 2004. 

12. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High 

Birefringence Isothiocyanato Tolane Liquid Crystals," Japanese Journal of Applied 

Physics Part I, 42, 3463-3466, 2003. 

 
 

121 

http://www.opticsinfobase.org/abstract.cfm?id=71023
http://www.opticsinfobase.org/abstract.cfm?id=71023


 

CHAPTER 8: NO-MOVING-PARTS AXIAL SCANNING CONFOCAL 
MICROSCOPY 

 

For the first time, to the best of our knowledge, a no-moving-parts axial scanning 

confocal microscope (ASCM) system is designed and demonstrated using a combination of a 

large diameter liquid crystal (LC) lens and a classical microscope objective lens. By electrically 

controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously 

over a 48 μm range with a measured 3-dB axial resolution of 3.1 μm using a 0.65 numerical 

aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium 

Phosphide (InP) twin square optical waveguide sample with a 10.2 μm waveguide pitch and 2.3 

μm height and width. Using fine analog electrical control of the LC lens, a super-fine sub-

wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in 

various precision three dimensional (3-D) imaging and profiling applications. 
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8.1 Introduction 

Over the years, the confocal microscope has been effectively used to optically image 

three dimensional (3-D) structures of microscopic objects.1-4 The basic confocal microscope 

instrument consists of a sampling arm and a detection arm. A beam splitter (BS) directs the light 

to the sampling arm and the detection arm. A high NA micro-objective lens is employed in the 

sampling arm to illuminate the sample under observation. In the reflective geometry of the 

confocal microscope, light focused onto the sample is reflected and directed to the detection arm 

by the BS. In the detection arm, a spherical lens focuses this reflected light at a tiny pinhole. The 

diameter of the pinhole is chosen such that only the main lobe of the Airy pattern passes through 

it to the photo-detector. Hence, only light reflected from the focal spot of the micro-objective 

lens reaches the detector. The pinhole rejects the out-of-focus light as well as the reflections from 

points on the focal plane adjacent to the focused spot. Since one point of the object is imaged at a 

time, the 3-D image is formed by transverse dimension raster scanning using scanning mirrors 

and sequential mechanical motion of the sample in the depth dimension using a motorized 

translation stage. The NA of the micro-objective defines the transverse resolution as well as the 

depth resolution, also called the optical section thickness. The rejection of out-of-focus light is 

the most important feature of a confocal microscope as it reduces the blur from adjacent optical 

sections due to its confocal nature resulting in significant contrast improvement as compared to 

conventional optical microscopes. The number of optical sections that can be imaged depends 

upon the instrument optical quality and opacity and turbidity of the sample. As one opts for finer 

optical sectioning, a more precise and consequently costlier motion controller is required to 
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move the sample in the depth direction. Depending on the size of the motion controller and the 

sample, axial data acquisition can become a slow process due to inertia and associated 

momentum. This leads to limitations in particular when the sample contains fast temporal effects 

such as flow patterns, neuronal and cellular activity. Ideally, a no-moving-parts fast and agile 

axial scanning confocal microscope system would be very helpful in producing true real-time 3-

D scans with precision and repeatability. Previously, non-mechanical means for axial scanning 

have been suggested such as using a broadband source and a highly chromatic objective lens.5-8 

In addition, the use of a multi-element adaptive deformable mirror in a confocal microscope has 

been used to create multiple focal spots via a genetic algorithm.9 Earlier, a no-moving-parts 3-D 

freespace laser beam scanning technique10-11 was demonstrated using LCs.12 In particular, the use 

of agile focus tunable optics using LCs and optical Micro-Electro-Mechanical Systems (MEMS) 

technology was proposed to realize various axial scanning confocal microscopy architectures.13-

14 This chapter for the first time shows the design and proof-of-concept experimental 

demonstration of one of these LC-based no-moving-parts ASCMs. 

 

8.2 Proposed Axial Scanning Confocal Microscope Design 

The proposed no-moving-parts ASCM design is shown in Fig. 8.1. This design is similar 

to that of a classical confocal microscope, except that the sample arm is built with the objective 

lens being a combination of a micro-objective lens and a tunable focus LC lens. Together, the 

two lenses form an electronically controlled agile axial scanning system that can rapidly focus 

the laser spot at different depth locations along the sample thickness. An important point to 
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notice is the difference in the scanning approach between the classical confocal microscope and 

the proposed no-moving-parts ASCM. In the classical approach the sample is scanned in the 

axial direction by translating it mechanically in the axial direction using a motorized precision 

translation stage while the axial location of the focused laser spot is fixed. On the other hand, in 

the proposed no-moving-parts ASCM, the sample is fixed in its axial location while the focused 

laser spot is moved in the axial direction to a desired location along the sample thickness where 

imaging is required. This operation is achieved by simply varying the drive signal to the LC lens.  
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Fig. 8.1. Proposed No-Moving-Parts Axial Scanning Confocal Microscope using a LC lens. S: 

Spherical lens, Pp: Linear polarizer along horizontal or p-axis, BS: Beam Splitter, MO1/ MO2/ 

MO3: Micro-Objective (MO) lenses. 

The deployed LC lens consists of a homogeneously aligned nematic LC material 

sandwiched between two glass substrates. On one of the glass substrates, there is a transparent 

low impedance electrode while the other one has a high impedance electrode.15 An annular 

metallic contact is deposited on top of the high impedance electrode. The low impedance 

electrode works as a ground electrode. As the voltage is applied to the annular metallic contact, a 

circularly symmetric voltage gradient results which causes a circularly symmetric index gradient 
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for the light polarization that is oriented along the initial LC molecular director. This index 

variation results in focusing of the incident laser beam, the LC device focal length being 

F=D2/(8dΔn), where Δn is the birefringence of the LC material, d is the LC layer thickness, and 

D is its clear aperture. Since birefringence can be controlled through the electrical drive signal, 

the focal length can be varied in a desired fashion and hence the laser beam can be scanned in the 

axial direction. In an upright microscope configuration, as the index gradient increases, the focal 

length decreases and hence the focal spot moves upwards and closer to the objective lens itself.  

For a confocal microscope, an important aspect is its 3-dB transverse resolution dTr and 

the 3-dB axial directions resolution d  that are given by:4
Ax

NA
dTr

λ46.0
=  ,                                                 (1a) 

2

4.1
NA

nd Ax
λ

= ,                                                 (1b) 

respectively. NA=n sinθ where θ is the half angle of the focusing beam as shown in Fig. 8.1.4 n 

is the index of the medium that is present between the micro-objective and the sample. As can be 

seen from the equation (1) relations, the transverse and axial resolutions can be improved by 

employing shorter wavelength lasers, choosing a higher NA micro-objective lens, and immersing 

the sample in a high refractive index liquid such as water or oil. 

 

8.3 ASCM Experimental Demonstration 

For the proof-of-concept experiment, the Fig. 8.1 reflective ASCM is designed and 

assembled in the laboratory. A 15 mW He-Ne laser at 633 nm wavelength is used as the 
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illumination source. The laser beam is spatially filtered using a 10 μm pinhole and a Micro-

Objective (MO) labeled MO1 which is a 10X 0.25 NA lens assembly. The beam is then 

collimated using a 5 cm focal length spherical lens S, producing a 1/e2 Gaussian beam waist 

diameter of 5 mm at the S lens plane. A linear polarizer Pp is placed after S so that light is 

horizontally or p-polarized. The LC lens used is a 5 mm diameter device with an LC layer 

thickness of 50 μm. The LC material employed is Merck BL006 with a birefringence Δn of 

0.286 at λ=589 nm and 20oC (see Appendix C). The LC device nematic director is aligned along 

the horizontal or p-direction. The sampling 40X microscope objective MO2 used has a NA of 

0.65 and a 5 mm clear aperture. Using the equation (1) relations for MO2, d  = 0.45 μm and dTr Ax 

= 2.1 μm with n=1 and θ=41o. The distance between the LC lens and MO2 is 4 mm. The 

distance L is 60 cm to accommodate the mechanical translation stages used to mount the optical 

components. The distance from the BS to the MO2 and MO3 is 40 cm where MO3 is the 10X 

detection arm objective with 0.25 NA. The optical detector and power meter used are Newport 

Model 818-SL and 1830-C, respectively. The detection pinhole has a diameter of 10 μm. Notice 

that MO2 and MO3 have different magnifications; hence the spot size at the detection pinhole is 

four times larger than that formed by MO2. All the MOs and pinholes used are low-end off-the-

shelf components from Newport Corp.  

In order to characterize the ASCM, a flat aluminum mirror is used as an axially moving 

sample on a precision ± 30 nm positional accuracy Aerotech Model FiberAlign 130 motion 

controller stage with the mirror being moved with a height increment of 100 nm for determining 

the ASCM axial resolution d . Figure 8.2 shows this data, indicating that dAx Ax=3.1 μm with the 

LC lens in the sample path and without the LC device in the path. Hence the inserted LC lens 
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indeed acts as a thin optic placed in the instrument and therefore does not optically degrade the 

basic resolution of the microscope.  To compare, equation (1) indicates a MO2 theoretical 

resolution dAx=2.1 μm. In our case, we expect this degradation from the theoretical ideal to be 

due to aberrations in our specific low-end objective lenses used in combination with a tunable 

focus weak lens. 
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Fig. 8.2. Plots showing measured 3.1 μm 3-dB axial resolution of the demonstrated ASCM with 

and without the LC lens inserted into the sample path. 

 

To determine the imaging capability of the ASCM, a semiconductor sample with dual InP 

square waveguides is deployed. Each waveguide has a 2.3 μm width and a 2.3 μm height with a 

7.9 μm inter-waveguide gap as measured by a Scanning Electron Microscope (SEM); see line-

scanned SEM image of sample in Fig. 8.3(b). Three different planes in the waveguide chip were 

imaged. Plane SS' is the substrate plane. Plane TT' is the top surface of the rectangular 

waveguides. Plane BB' is below the substrate plane by an amount equal to the height of the 

rectangular waveguides. First, the laser beam is focused at the SS' plane by employing the high 
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Fig. 8.3. (a) Setup for measuring the ASCM imaging capability and (b) SEM image of the test 

sample. 

 

precision Aerotech 3-D motion controller previously used for measuring the ASCM dAx value. 

Line scan images are taken and plotted in Fig. 8.4. Plane SS' is mechanically placed in the focal 

plane of the micro-objective and a mechanically implemented line scan is taken and plotted as 

the top intensity plot in Fig. 8.4(a) marked SS'. Next, the sample is moved up by 2.3 μm 

mechanically such that the laser beam is now focused inside the sample at plane BB'. The 

corresponding mechanically line-scanned intensity plot is shown in Fig. 8.4(b) marked BB'. This 

plot is the scaled version of the first plot of Fig. 8.4(a) of plane SS', as the beam is now 

defocused at the SS' plane. The LC lens is then turned on to electronically move the focal plane 

up to SS' plane. The drive signal is tweaked to get a maximum optical signal on the photo-

detector. Again a line scan is taken as shown in Fig. 8.4(c) marked SS'. As can be seen by 

comparing the intensity plots of Fig. 8.4(a) and Fig. 8.4(c), the LC lens is capable of bringing the 

sample back into focus by simple control of the drive signal. Next, the LC lens is turned off and 

the sample is mechanically moved into plane TT' with the corresponding line scan intensity plot 

shown in Fig. 8.4(d). The sample stage is then moved up by 2.3 μm such that the plane SS' is 
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now in focus. The corresponding intensity plot is shown in Fig. 8.4(e). Finally, the LC lens is 

turned on again to electronically bring the focal plane to the TT' plane, with the corresponding 

intensity plot shown in Fig. 8.4(f). As observed in Fig. 8.4 and expected, the intensity plot of Fig. 

8.4(f) is the same as that of Fig. 8.4(d). Figure 8.5 shows an alternate representation of the Fig. 

8.4 data by using analog intensity plots. In short, the plots of Fig. 8.4 and Fig. 8.5 clearly show 

that the demonstrated ASCM is capable of resolving transverse features of at least 2.3 μm width 

and axial features of 2.3 μm height. As shown in Fig. 8.5, the measured 3-dB width of the InP 

waveguides using the demonstrated LC lens-based ASCM is 2.1 μm and the measured 

waveguide pitch is 10.3 μm. It is important to note that the micro-objective used in the current 

demonstration is not a high NA top quality lens. Hence the proposed ASCM transverse and axial 

resolutions can be greatly improved such as by using a higher NA high quality objective and by 

decreasing the wavelength of illumination. 

S 

 

Fig. 8.4. ASCM line-scanned optical intensity plots obtained for the InP waveguides sample. 
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Fig. 8.5. ASCM line-scanned analog optical intensity plots obtained for the InP waveguides 
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sample corresponding to Fig. 8.4. 

Figure 8.6 shows the meas

e drive signal being a square wave with fixed amplitude of 5.4 Volts. To determine the 

finest focal plane shift possible using the present LC lens, a flat aluminum mirror is placed in the 

sample arm. The drive signal to the LC lens is finely varied and the shift of focal plane in the 

axial direction is measured by mechanically translating the sample in sub-micron sized steps 

using the precision motion controller while tracing the optical power maxima on the photo-

detector. The resulting plot in Fig. 8.7 shows that the LC lens is capable of scanning in sub-
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depth-of-focus steps as shown by the 270 nm resolution achieved in this case. Note that this is an 

important achievement showing that the LC lens with precise electronic drive control is capable 

of achieving a much higher axial resolution/optical section thickness if employed next to a high 

NA micro-objective lens. In such a way, the proposed LC-based ASCM forms a super-precision 

sub-wavelength axial depth profiler. Do note that this result is possible because the LC lens is an 

analog device controlled by an analog electrical drive signal that controls the smooth analog 

molecular rotation of the LC molecules. Notice that including the LC lens, all optics used were 

non- Anti-Reflection (AR) coated resulting in reduction in optical throughput. For 633 nm, the 

single pass optical loss due to the LC lens is 0.9 dB. This is a relatively high loss due to the fact 

that the current LC device was optimized for use in the 1550 nm wavelength range.  
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scanning transfer characteristics as a function of the LC lens drive frequency. 

Assuming a 100% reflective sample, the total loss from source to de

 is 15 dB. This includes a 6.7 dB loss from the BS, a 3.6 dB loss from the LC-lens-MO2 

combination, a 1 dB loss from MO3, and 3.7 dB loss due to the process of laser beam spatial 

filtering and collimation. Loss can be reduced by using AR coated components including the 
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4.0

lower loss (e.g. 0.35 dB) LC lens. Furthermore, by replacing the BS with a polarization BS, a 

more efficient microscope can be realized. In this case, a quarter wave plate will be needed in the 

reflective geometry to direct the returning light from the sample into the detection arm. Since the 

beam emerging from the wave-plate will have both p and s (or vertical) polarization components, 

two LC lenses with orthogonal nematic directors will be needed to cater for both polarization 

components. The present reset speed of the used analog LC lens is 1 second. To enable much 

faster axial scan reset times (e.g., 10 μsec), the earlier demonstrated digital LC lens can be 

deployed.12 Furthermore, a no-moving-parts full 3-D scanning ASCM can be realized using all 

LC devices that form both angular beam deflectors for scanning in the transverse dimension and 

variable lenses for axial scanning.12  
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lens-based ASCM. 

The LC len

g of biological samples. This is done by incorporating a dichroic beam splitter instead of 

the BS in Fig. 8.1 and adding a photo-multiplier tube in the detection arm. Hence, the modified 
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ASCM can provide in vivo imaging of biological samples to help detect cellular activity without 

the motion artifacts associated with motion controller based image acquisition. 

8.4 Conclusion 

The proposed no-moving-parts ASCM is inherently free from the deleterious motion 

artifacts that are typically associated with fine axial motion control mechanics. In short, an 

improvement is expected in the instrument long-term reliability and repeatability. Hence the 

proposed ASCM has the potential to become a useful tool for investigating the 3-D structure of 

microscopic and potentially nano-scopic objects in biomedicine, electronics, and photonics. The 

demonstrated visible band ASCM allowed the imaging of two InP waveguides with 2.3 μm 

width and height dimensions. Using the digital LC lens, a fast 3-D image acquisition confocal 

microscope is possible for real-time monitoring of cellular activity.12 Future work relates to 

fluorescence imaging of biological samples and full 3-D imaging using all LC or hybrid LC-

MEMS scanning approaches. 
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CHAPTER 9: ULTRA-LOW LOSS LASER COMMUNICATIONS 
TECHNIQUE USING SMART BEAMFORMING OPTICS 

 

Theory and design is presented for a technique for ultra-low loss laser communication 

that uses a combination of strong and weak thin lens optics, hence obeying the paraxial 

approximation. As opposed to conventional laser communication systems, the Gaussian laser 

beam is prevented from diverging at the receiving station by using a weak thin lens that places 

the transmitted beam waist mid-way between a symmetrical transmitter-receiver link design. The 

weak lens can be a fixed optic for static link distances or programmable for mobile scenarios. 

The programmable weak optic can be a single pixel or multi-pixel lens made by liquid crystal or 

mirror technologies. The proposed link design is appropriate for low air turbulence links such as 

short-range or indoor links and space based links. 
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9.1 Introduction 

Laser communications has been around since the advent of the laser itself.1 Laser 

communications scenarios include but are not limited to: short-range (indoor/a few meters) 

links,2 terrestrial short-hop building-to-building links (1-5 km), terrestrial (line of sight ~100 

km) links,3,4 submarine-to-aircraft links,5 submarine-to-satellite links,6 airborne links (~50 km 

to 500 km),7 mobile platform-to-airborne links, mobile platform-to-satellite links, ground-to-

Low Earth Orbit (LEO) satellite links which range from several hundred km to a few thousand 

km,8,9 aircraft-to-satellite links,10 ground-to-Geostationary Earth Orbit (GEO) satellite links 

which range from 35,000 km to ~42,000 km, LEO-to-LEO satellite cross-links (~3,000 km), 

LEO-to-GEO satellite cross-links (~40,000 km),11-14 GEO-to-GEO satellite cross-links 

(~80,000 km),13 and ground-to-planetary probe links (> 100,000 km to several millions of 

km).15  

Of importance in these links is the communication medium which can sometimes degrade 

the communication link performance. In short range or indoor links only physical obstruction in 

the line of sight link can disrupt the communication. In contrast, propagation effects on laser 

communications in the atmosphere need to be considered carefully.16 The atmosphere is roughly 

a 20 km thick air blanket surrounding the earth. Due to temperature changes and wind flow, the 

index of refraction of the air randomly varies temporally. This causes the laser beam to both 

wander around the desired propagation direction and be spread as well along the propagation 

path in an indeterministic fashion, thus causing the loss of useful signal power.  

138 



 

The effect of the atmosphere is severe in links which involve a ground based station as 

the transmitter (TX) in a satellite uplink configuration because of the fact that the laser beam 

undergoes the atmospheric turbulence in the beginning of the communication link. This is true 

for example in a ground-to-LEO or a ground-to-GEO uplink where the ground terminal acts as 

the TX. Typical distances are in the range of ~400 km to a few thousand km for a ground-to-

LEO link while those for a ground-to-GEO link are ~40,000 km. For example, in a ground-to-

GEO uplink, the laser beam will encounter the atmospheric turbulence in the first 1 % of the 

communication medium, resulting in large unwanted beam divergence and intensity variations 

(scintillation) at the satellite receiver (RX) terminal. Alternately, when the GEO satellite station 

acts as the TX in a satellite-to-ground link, the laser beam first travels for the 99 % of the link 

length in space and in the last 1 % comes across the atmosphere. Hence at the ground RX, the 

received beam properties are governed predominantly by the TX beam divergence. Moreover 

due to their limitations of prime-power, weight and volume, large size telescopes are not feasible 

in satellites resulting in a laser beam that diverges rapidly compared to a larger size transmit 

beam. As a result the ground terminal has to have a larger telescope in order to receive the TX 

beam from the satellite terminal resulting in an asymmetric laser communication link 

configuration. This configuration is feasible as the ground terminals can afford to incorporate the 

large telescope sizes required in asymmetric links. Ground terminals can also afford to use high 

power lasers and complex wavefront correction adaptive techniques in order to overcome 

undesirable beam spread and scintillation caused by the atmospheric turbulence. In effect, this 

makes the lasercom solution a better choice for satellite-to-ground links.  

Since the satellite itself in most of the configurations such as imagery and reconnaissance 

is the data transmitting terminal, a high speed downlink is required as compared to a moderate 
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speed uplink that is needed for satellite control and feedback purposes. Intersatellite cross-links 

involve space as the communication link medium, and hence atmospheric effects do not come 

into play making lasercom a preferred choice in these links. For example, the SILEX 

demonstration in Nov. 2001 used a link between LEO satellite SPOT4 (832 km orbit, 25 cm TX 

telescope, 25 cm RX telescope, 60 mW GaAlAs laser diode @ 847 nm and 50 Mbits/s NRZ 

modulation) and GEO satellite ARTEMIS (31000 km orbit, 12.5 cm TX telescope, 25 cm RX 

telescope, 37 mW GaAlAs laser diode @ 819 nm and 2 Mbits/s PPM).12 Image data was 

transferred from SPOT4 to ARTEMIS at a 50 Mbits/s rate for the first time using solely an 

optical link. The optical communication terminal onboard ARTEMIS was also tested before the 

actual inter-satellite link establishment using an earth based ground station as a mock-up LEO 

satellite.9 The ground station had a 1 m Zeiss RX telescope and a 847±5 nm Titanium-Sapphire 

laser with a peak power of 6 W that was pumped by an Argon ion laser. The ground station used 

four mutually incoherent TX beams with 4 cm diameters to counter far-field divergence caused 

by the atmospheric turbulence and scintillation. Due to the fast velocity relative to earth (~7 

km/s),14 high speed tracking and pointing is required for the LEO-to-ground links making it 

difficult to establish and maintain the link as compared to LEO-to-GEO and GEO-to-ground 

links. The relatively "fixed" position of the GEO-satellites as viewed from earth makes lasercom 

a viable option due to the relatively slow pointing and tracking speed requirements.  

In a communication system it is highly desirable to collect the largest amount of signal 

power by the receiver in order to get the maximum detection signal-to-noise ratio (SNR). In the 

laser communications arena, this means collecting the maximum amount of laser light at the RX 

with the given RX telescope. A higher SNR also enables a high information throughput in a 

shorter period of time as well as low TX drive power and lower bit error rate (BER). Acquisition, 
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pointing and tracking in the laser communications system are very important aspects to consider 

in order to establish a reliable communication link. Wavelength is directly related to the amount 

of angular spread that a laser beam undergoes in a free-space communication link. For example, 

a 775 nm laser wavelength as compared to the telecom eye safe 1550 nm wavelength source 

results in a beam that diverges half as much as the 1550 nm beam and requires as a result a RX 

telescope of only half the diameter of that of the 1550 nm telescope. In general, a laser beam has 

a Gaussian profile meaning that the beam diverges as it emerges out of the laser cavity.17 

Typically a diverging beam would result in the RX collecting only a small portion of this beam 

resulting in loss of useful optical signal power. In a laser communication system where it is not 

possible to extract more power out of the laser cavity, collecting as much photon flux as possible 

at the RX becomes critical.  

Another more recent application for a low loss freespace optical link is quantum 

communications where information is coded by the quantum nature of light.18,19 Keeping link 

loss down is even more important for quantum optical communications as optical amplifiers 

cannot be used in the link design to boost power.20 Thus for quantum coding based links, lost 

photons must be greatly minimized to achieve significant link propagation distance. In short, the 

proposed low loss link concept is critical for achieving a significant bit rate-link distance product 

when using super-secure quantum coding for laser communications. 

In this chapter, we propose a novel technique to implement low loss laser 

communication. Specifically, the use of programmable beamforming optics is introduced to 

control the divergence angle of the laser beam in the medium and prevent it from diverging un-

wantedly in the communication link. This proposal is focused on a methodology for collecting 

the largest amount of the optical signal using programmable beamforming optics. In particular, 
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the beamforming optics in the TX and RX are optimized to implement a self-imaging 

configuration previously demonstrated for ultra-short distance fiber-freespace-fiber coupling.22 

First, the Gaussian beam propagation metrics are formulated and then example link designs are 

presented to show how the proposed technique can be implemented in real world scenarios. 

Programmable beamforming optics can also be used to establish the link as the laser beam 

divergence can be increased in order for the RX to be able to first "see" the TX beam, and then 

the TX beam can be gradually narrowed in order to increase the SNR and start the information 

transfer. These and other design issues are next described in this chapter. 
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9.2 Self-Imaging Technique for Low Loss Laser Communications 

9.2.1 Gaussian Beam Propagation Theory 

2
1

e
A thin lens of focal length f transforms a  input beam waist w1 at a distance of x from 

the lens to a 
2

1
e

 output beam waist w2 at a distance x' (see Fig. 9.1) within the Paraxial 

approximation regime that requires the plano-convex thin lens F# to be ≥1.67 (see Appendix A). 

Using Gaussian beam propagation and ABCD matrices, the distance x' at which the new beam 

waist w  17
2 is located is given by:
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Fig. 9.1: Gaussian beam propagation through a thin lens. S: Spherical thin lens. 
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λ
π 2

1
1

nwz =where  is called the confocal beam parameter and n is the index of the medium in 

which the wave is traveling. As can be seen, the location of the output beam waist depends upon 

the input beam waist, the distance x, the focal length f of the thin lens used and the wavelength λ. 

Notice from equation (1) that in the case when the input beam waist w1 is located at a distance of 

f from the thin lens (i.e., x=f), then the output beam waist w2 will also be a distance of f away 

from the thin lens. Moreover, in the case when the input beam waist w1 is located at the thin lens 

itself (i.e.: x=0), the expression in equation (1) reduces to: 
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and the beam waists w  and w  are related by: 1 2
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If equation (3) is plotted as a function of the thin lens focal length f, it can be seen that there is an 

upper limit on x', i.e., how far the output beam waist w2 can be located from S for a given λ and 

w . Fig. 9.2 shows the equation (3) case when w1 1=0.25 mm and λ=1.55 μm and the 

corresponding output beam waist w2 as a function of the thin lens focal length f given by 

equation (4). In order to get the maximum x', equation (3) is differentiated with respect to f and 

the differential is then equated to zero, i.e.: 
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Fig. 9.2. Output beam waist location x' from the thin lens and the output beam waist w2 as 

functions of the thin lens focal length f for an input beam waist w1 of 0.25 mm, λ=1.55 μm and 

x=0.  

 

By equating equation (6) to zero, it can be seen that is obtained when f=zmax'x 1, the confocal 

beam parameter. Using equation (3) gives:  
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Using f=z1 in equation (4) gives the output beam waist w2 at to be: max'x

2
w

w 1
2 = .                                                          (8) 
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Since z  is dependent upon both the beam waist w1 1 and wavelength λ, a different input beam 

waist w1 and a wavelength λ will result in a different  and related wmax'x 2. In short,  implies 

that given a certain input beam waist w

max'x

1 incident at the thin lens with x=0 and wavelength λ, an 

output beam waist w2 is formed at a distance of  only with a thin lens focal length f that is 

equal to 

max'x

λ
π 2

1
1

nwz = . 

10,21In a typical laser communication link, the configuration used is as shown in Fig. 9.3.  

At the TX the laser beam diverges as it emerges out of the TX enclosure. The RX consists of a 

capturing thin lens which collects only a fraction of the actual TX laser beam power and focuses 

it onto a detector placed in the focal plane of this thin lens. The divergence of a Gaussian beam 

leads to enlargement of the beam diameter at the RX. The beam waist follows the relation:17
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where z is the longitudinal propagation dimension. This divergence results in loss of useful 

optical power and hence degradation of the SNR at the RX. In earlier work, it was demonstrated 

that if the separation distance Zo between two identical fiber GRIN rod lenses is exactly equal to 

twice the GRIN lens beam waist location distance d1, then zero loss is obtainable.22 The ref. 22 

theory is extended in this chapter to lasercom links such as freespace optical wireless and laser 

satellite links. The divergence causes a drastic loss of power due to improper separation distance 

between the TX and the RX. For example, when λ=1550 nm, beam waist w1 at the TX is 1 mm, 

the separation distance z between TX and RX is 1 km, and the receiving thin lens has a diameter 

D of 10 cm, only about 2 % of the transmitted power is collected by the capturing lens (see 

Appendix B). This calculation also assumes ideal conditions, i.e., the received beam is centered 
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on the capturing lens and there is no absorption/scattering/turbulence in the communication 

medium. Furthermore, there can also be other factors that will result in further loss of optical 

power, namely, angular tilt and offset misalignments between the TX and RX terminals as well 

as Fresnel reflections.22 Fresnel losses can be reduced by having all the optical components in the 

system coated with anti-reflection films.  
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Fig. 9.3. Configuration of a typical lasercom link. 

9.2.2 Self-Imaging Technique for Freespace Link Design 

In order to get the maximum power at the RX, this work proposes the use of a 

programmable self-imaging configuration between the freespace link TX and RX.22 To begin an 

introduction to this approach for Gaussian beam based freespace links, Fig. 9.4 shows that if the 

thin lenses S  and S1 2 are chosen to have the same focal length and the distance P is equal to f, 

then Q is equal to f. On the other hand if the distance R is equal to f, then the distance Y at which 

the output beam waist is located at the RX is also f away from the thin lens S2. Due to symmetry, 

the output beam waist w  at the RX becomes equal to w3 1. This is a symmetric configuration in 

which the two thin lenses S1 and S  have the same focal length resulting in distances, P, Q, R and  2
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Fig. 9.4. Gaussian beam through a pair of thin lenses in a self-imaging configuration.  

 

Y each being equal to f. As shown in Fig. 9.5 using equation (3), for large distances such as in 

satellite communication, the distance between the TX and the RX is very large rendering this 4-f 

link design impractical for low loss laser communications. This is due to the fact that such long 

focal lengths will require the lenses S  and S1 2 to be placed at distances which are not feasible in 

practice even if the assumed large input beam waists w  of several meters were attainable.  1

Figure 9.6 shows using equation (3), that for a fixed input beam waist w1, a change in 

wavelength means a different output beam waist location. For example, choosing the lower blue 

wavelength compared to a near IR wavelength greatly increases the possible communication link 

length L. Moreover, in some links such as inter-satellite links where atmospheric turbulence is 

not present in the communication medium, a choice of wavelengths is available to the designer in 

order to optimize the link performance. But the limitation here is that such large focal lengths 

(i.e., weak optical lens powers) can not be fabricated with current day technology and a TX 

telescope can not afford to incorporate such a long focal length in the classical 4-f configuration. 

To overcome the TX size limitation, the use of another thin lens, designated by PL in Fig. 9.7, is  
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Fig. 9.5. Beam waist location x' from the thin lens S1 as a function of the S1 lens focal length f 

for an input beam waist w1 of 2 m, 3 m, 4 m and 5 m at λ=1.55 μm and x=0. 

 

proposed in this chapter that can be placed after the thin lens S1 in the TX such that PL is located 

in the output beam waist position of S1. The fact that the output beam waist location x' of the thin 

lens PL is dependent only on its focal length and the beam waist w2 at its input, the self-imaging 

condition is realized that can be used to meet any desired link length 2x'=L. Using this 

configuration serves two purposes; first it allows the minimum possible diameter of the telescope 

exit aperture enabling compact TX size and secondly it allows the output beam waist to be 

independent of the input beam waist location x. Figure 9.7 shows the proposed beamforming 
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optic T for the TX implementing a low loss link using the self-imaging mechanism. The optic T 

consists of a strong thin lens S1 of a short focal length f and a weak thin lens PL of a long focal 

length x'. The PL can be either a fixed or an ultra-thin electronically programmable thin lens. The 

distance between S  and PL is f, where f is the focal length of S . S1 1 1 is placed f away from the 

laser source.  
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Fig. 9.6. Beam waist location x' from the thin lens as a function of the lens focal length f for 

different wavelengths and an input beam waist of 4 m with x being 0. 

 

Given a symmetric communication link with a separation distance L between the TX and 

RX, the thin PL lens needs to form a beam waist w  in the middle of the link, i.e., at L/2 in order 3
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to transmit all the energy to the receiving terminal. For short distances, such as upto a few 

meters, such PL lenses can be fabricated with ordinary glass. Using a fixed focal length thin lens 

will fix the allowed communication link length L and thus will not  provide the same total power 

at the RX terminal for any variations in the link distance L such as in mobile platform links. The 

solution to this problem is to make the thin PL lens programmable such as an ultra-thin 

electronically programmable Liquid Crystal (LC) spherical lens or a deformable membrane 

mirror with a focal length that is suitable for the application under consideration, e.g., L > 20,000 

km for inter-satellite links. This combination of S1 and PL resides inside the TX enclosure. The 

smart PL lens can cater for the changes in the link distance variation which is a highly sought 

after feature in some applications such as mobile and inter-satellite links where link distances 

slowly yet continuously change due to platform movement.  

For a LC lens, the focal length is given as:24 

E

2

PL nd8
Df
Δ

= ,                                                   (10) 

where D is the diameter of the lens, d is the LC cell thickness and ΔnE is the electrically 

controlled birefringence of the lens LC material. Since birefringence can be electrically varied in 

an LC device, the focal length of the LC lens increases by decreasing ΔnE. In the absence of the 

applied E-field, the ΔnE is 0 and the focal length is infinity. Hence, in this case, the PL acts as a 

planar slab of transparent optical material. A higher applied E-field corresponds to a higher ΔnE. 

Hence, an increase in the communication link length, for example by an amount of ΔL, is easier 

to cater for as the applied E-field can be reduced in order to form the beam waist at the new 

location 
2

LL Δ+ . In the case that the link length L decreases by an amount of ΔL, the lens PL  

151 



 

 
S1

PL
T

ff 

From Laser 

2w1

2w3

w2

x'=L/2

 

 

 

 

 

Fig. 9.7. Proposed beamforming optic T for the TX implementing a low loss link using the self-

imaging mechanism. The optic T consists of a strong thin lens S1 of a short focal length f and a 

weak thin lens PL of a long focal length x'. The PL can also be an ultra-thin electronically 

programmable thin lens. The distance between S1 and PL is f, where f is the focal length of S1. 

S1 is placed f away from the laser source. 

 

2
LL Δ−needs to be able to reform the outgoing beam waist at the new location . The fine control 

of Δn is crucial because in some applications the communication link distance L can vary 

temporally such as due to platform movement on a satellite or the presence of relative velocity 

between two communicating platforms. Hence it is useful to have a flexible control of the focal 

length of the lens PL in order to cater for possible temporal fluctuations/variations in link 

distance. The lower limit on the variation of the link length L-ΔL will define the shortest focal 

length of the PL to be used in a certain communication link. If link distances are large compared 

to the change in link distance, then fixed focal length PL weak thin lenses can be used.   

 Figure 9.8 shows the proposed symmetric link structure to enable low loss link design 

using the thin lens combination S 1, PL represented by T  in the TX and correspondingly thin 1 P
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lens combination S , PL represented by R 2 2 P in the RX. The key innovation of this link design 

versus the 4-f link is that the distance P can be made much smaller than the distance Q (see Fig. 

9.4) leading to small size TX and RX optics.  
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9.2.3 Symmetric Link Design Methodology 

For a certain symmetrical lasercom system, knowing the distance L±ΔL between the TX 

and the RX, where ±ΔL is the possible link length variation, and λ being the wavelength of 

operation, the remaining link design parameters can be determined by following the flow chart 

shown in Fig. 9.9. First, the goal is to find the largest input beam waist w  required for L2 max, 

where L  =L+ΔL. This beam waist w  is half the transmit optical aperture. Given Lmax 2 max, and the 

fact that that the beam waist w3 has to be located at the half-way distance between TX and RX, 

the required input beam waist w2 is determined using equation (7) as: 

λ
π 2

2
2

wz ==
1PLf

max
'x2 = L  =   ,                                            (11) max
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giving the beam waist w :  2

π
λ max

2
L

w = .                                                   (12) 

Now what remain to be determined are the beam waist w1 of the laser source and the focal length 

of the fixed spherical thin lens S
1Sf 1. Ideally, this focal length is desired to be as small as 

possible in order to reduce the TX optics length. Since S

1Sf

1 is placed at a distance of  from the 

PL

1Sf

, by using equation (2), where x=f , the relationship between the beam waist w1 S1 1 and the 

focal length of thin lens S  required can be determined as: 1

2

S
1 w

f
w 1

π
λ

= ,                                                       (13) 

where the index n of the propagation medium was chosen to be 1 in the above relation. Inserting 

the expression for w  from equation (12) into equation (13): 2

max
S1 L

fw
1 π

λ
= .                                                 (14) 

Notice that equation (14) implies that the laser spot size w1 will define the focal length of the 

fixed thin lens S

1Sf

 required to form the output beam waist w1 2. By either choosing a laser source 

with a certain beam waist of w  or by choosing a reasonable focal length  for S
1Sf1 1 (such that F/# 

≥1.67 for thin lens S1, see appendix A), the unknown parameter can be determined from equation 

(14). Since a symmetric link case is considered, therefore the beam waist at the RX side, i.e., w5 

on the detector will be the same as w1, and w is equal to w4 2. For a minimum link separation 

distance L =L-ΔL, the new focal length of PLmin 1, i.e.:  needs to be determined. Having 

chosen a laser with a certain beam waist w

minPLf
1

1, and the fixed thin lens S  with focal length , the  
1Sf1
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Fig. 9.9. Flow chart for determining the various parameters of a low loss lasercom system given 

the Link length L, the possible variation in link length ΔL, and operating wavelength λ. 
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beam waist at the output w2 is now fixed. Equations (7) or (11) can no longer be used to 

determine , instead equation (3) will be used. Hence, the focal length of PLminPLf
1 1 can be 

calculated using equation (3) as: 

2
2

2

2
2

min

min1

min1'
zf

zf
x

PL

PL

+
= .                                               (15) 

λ
π 2

2
2

nwz = . Since the above equation is a quadratic one. i.e., we can rewrite it as: where 

                                (16) 0'' min
2

2
2

2min
2

min1min1
=+− xzzfxf PLPL

Replacing z2 by L  (from equation (11)), 2x'  by L  and solving equation (16) for : minPLf
1max min min

min

minmaxmaxmax
minPL

L

LLLL
f

222

1

−±
= .                                (17) 

Note that equation (17) has two solutions that are both valid as can be seen in Fig. 9.2 that plots 

the values of the thin lens focal length that gives a desired L =2x'max max value. As f changes away 

from z  (where z1 1 corresponds to the maximum in the x' curve) the beam waist location x' 

becomes closer to the lens itself. Also one can notice in Fig. 9.2 that as the focal length f is 

increased, the output beam waist w2 increases in size and tends towards the input beam waist size 

w  as f approaches infinity while on the other side where f<z , the output beam waist w1 1 2 

decreases as we decrease the focal length f below the f=z1 point for maximum x'. This is an 

important point to note as the diameters of the optics required will be defined by the chosen focal 

lengths. Although it might be desirable to increase the output beam waist w2 in some 

applications, here we choose the case where  is less than zminPLf
1 1 (as pointed in Fig. 9.2 by a 

dark line on the left side of the x' curve maximum) hence resulting in a smaller output beam 

waist w  compared to w . Nevertheless, one can always use the other solution of equation (17) 2 1
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which means longer focal length and larger output beam waist w2, yet the same beam waist 

location x' as in the first solution. Hence, by looking at Fig. 9.2, one can choose the solution of 

equation (17) in the region where x' lies to the left side of the maxima causing the output beam 

waist w2 to decrease. Therefore, for a decrease in the link length to L-ΔL, the required focal 

length  to form the new beam waist half-way between the TX and RX will also decrease. 

The focal length is then given as: 

minPLf
1

minPLf
1

min

minmaxmaxmax

L

LLLL 222 −−
= .                                (18) minPLf

1

Equation (18) gives the shortest focal length required for the PL1. Table 1 gives example design 

parameters for several proposed symmetrical low loss laser communication links.  

The  and  correspond to two values along the curve as seen in Fig. 9.2 

highlighted with a star each. The PL lens needs to be able to vary the focal length between these 

two values (the dark curve between these two stars) so that the Gaussian beam waist is located in 

the middle of the communication link to be able to capture atleast 86% of the power in the 

incident beam (see Appendix B). The two values for  and can also be chosen on the 

left side of the maximum of x' curve in Fig. 9.2 if desired, with the chosen PL lens capable of 

varying the focal length between these two values to cater to the link length variation between 

L

minPLf maxPLf

minPLf maxPLf

 and L . min max

Note that in the symmetric link case discussed, PL  and PL  are identical and so are S1 2 1 

and S . A key parameter to note is the PL lens minimum aperture of 2w2 2 that ranges from a small 

3 mm to a rather large 9.42 m (see Table I). Notice that the last two cases for Ground-to-GEO 

satellite links do not meet the F#≥1.67 criterion set in Appendix A. The fixed thin lens S1 has an 
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F#<1.67. Hence for these two cases the design will need to be modified so that the F#≥1.67 

criterion is met. We recalculate the parameters by changing the input beam waist w1 to new 

values which are shown in the same row such that the new F# is larger than 1.67.  

So far, typical single pixel liquid crystal lenses have up to about 1 cm apertures.24-26 

Figure 9.10 shows an approach to realize a larger size thin PL lens by combining many single 

pixel piston-type elements. Do note that as the PL aperture sizes increase, the required PL 

minimum focal length also increases; thus requiring many low power pixels to complete the 

larger aperture PL lens. It is clear that as link distances increase, the control complexity of the 

multi-pixel PL lens will also increase in addition to adding diffraction effects due to a multi-pixel 

lens structure. An alternate technology to use for making a large PL lens is adaptive membrane 

mirrors driven by piezo-actuators such as used for adaptive optics in large telescopes such as the 

Keck telescope.27 For example, the Subaru optical telescope has an 8.2 m diameter primary 

mirror and uses 261 robotic fingers which fit into holes that are drilled in this 20 cm thick 

primary mirror in order to correct mirror shape for optimal wavefront quality as well as a 36-

actuator based bi-morph deformable mirror along with a wavefront sensor to form an adaptive 

optics system resulting in diffraction limited images in the infra-red wavelength band. 28 
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Fig. 9.10. An approach to realize a large programmable optic. (a) Piston-type single pixels in an 

N x N array forming a large programmable optic. Gray-scale corresponds to phase: Black=Large 

phase, White=Small phase. (b) The corresponding staggered phase profile for a weak thin lens. 

Phase represented in Figure is not to scale. 

 

9.2.4 Asymmetric Lasercom Link Design   

In some applications the communication link configuration can be asymmetric implying 

that the TX and RX optics are not a one to one match. For example in ground-to-satellite links 

due to weight and volume limitations the satellite can carry only a limited size telescope while 

the ground station can afford to have  a larger heavy and bulky optic. In a satellite-to-ground 
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DTX=2w2
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Fig. 9.11. Proposed low loss asymmetric lasercom link design using strong (STX, SRX) and 

weak (PLTX, PLRX) thin lens combinations for Gaussian beam propagation through freespace. 

Note:  ≠  and  ≠  due to the asymmetric design.  TXSf RXSf TXPLf RXPLf

 

link, if the allowed telescope aperture is D and the link distance L and its variation ±ΔL and the 

design wavelength λ are given, the remaining low loss link design parameters can be determined 

as follows. Assuming the satellite to be in the TX mode, first the satellite terminal parameters 

can be determined. Referring to Fig. 9.11, since the system is asymmetrical, therefore let us say 

the beam waist in the communication medium is a distance of x'TX away from the TX. This 

implies that the PLRX at the RX has to form a beam waist at a distance of x'RX (=L-x'TX) away 

from the RX. To incorporate for the link length variation of ±ΔL, these quantities can be 

modified as:  

Lmax= L+ΔL = +                                         (19) max'TXx max'RXx

Using the expression derived earlier in equation (7), one can also say: 

max'TXx =
2

maxTXPLf
=

2
2z

=
λ

π
2

2
2w

 and =max'RXx
2

maxRXPLf
  =

2
4z

= 
λ

π
2

2
4w

                    (20) 

Since, w2 (or w4) is known i.e., w2= DTX /2 (or w4= DRX /2) where DTX (DRX) is the diameter of 

the TX (RX)  and  can be determined. Since L
maxTXPLf max'TXx max and  are now both max'TXx

TX RX 

L 

STX SRX

fSTX

D 

2w5

TP RP

x’RX x’TX 

fSTX fSRX fSRX

Detector 

DRX=2w4
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known, they give  from equation (19). Having  known,  as well as wmax'RXx max'RXx
maxRXPLf 4 can 

be found using equation (20). 

Given the w  (w2 4) and using equation (2), where x=f, the value of the focal length for the 

thin lens S (STX RX) at the satellite TX (ground RX) that will transform a beam of waist w2 (w4) 

into a waist of w  (w ) can be determined as: 1 5

λ
π 54ww

f
RXS =

λ
π 21wwf

TXS =   , ,                                            (21) 

where the index n of the propagation medium was chosen to be 1 in the above relation. 

Assuming a value for ( ) in equation (21), w
TXSf

RXSf  (w1 5) can be determined or vice versa. Since 

key parameters such as w2, w4,  and  are known, one can proceed to calculate the focal 

lengths  and  that are needed to form the beam waist w

TXSf
RXSf

minTXPLf
minRXPLf 3 at a distance of  

away from the TX in the case when the link distance decreases to L

min'TXx

. Recall, that: min

min'TXxLmin= L-ΔL = + .                                       (22) min'RXx 

Since, 

min

minTX

max

maxTX

L
'x

L
'x

= ,                                                   (23)                                                  

minTX'x  can be determined from this relation as all the other quantities are known. Using equation 

(3) gives: 

2
2

2
PL

2
2PL

minTX
zf

zf
'x

minTX

minTX

+
= .                                              (24) 

Equation (24) is a quadratic relation in which the only unknown quantity is . Solving for 

, results in: 

minTXPLf

minTXPLf
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minTX

minTX
22

22
2

2
PL 'x2

'x4zzz
f

minTX

−±
=  .                                     (25) 

Replacing z2 in the above equation with 2  from equation (20) gives: max'TXx

minTX

minTX
2

maxTX
2

maxTXmaxTX
2

PL 'x2
'x4'x4'x2'x4

f
minTX

−±
=  .                               (26) 

Once again, for a decrease in link distance L, using the earlier mentioned argument regarding the 

possibility of a smaller beam waist w2 by choosing a solution on the left hand side of the x' curve 

in Fig. 9.2, the focal length of the PL lens is chosen to decrease in order to form the beam 

waist at the new position which is closer to the TX as compared to that in the case of L

TXPLf

max. 

Therefore, 

minTX

minTX
2

maxTX
2

maxTXmaxTX
2

PL 'x
'x'x'x'x

2f
minTX

−−
=  .                               (27) 

In a similar fashion the  can be determined as: 
minRXPLf

minRX

minRX
2

maxRX
2

maxRXmaxRX
2

PL 'x
'x'x'x'x

2f
minRX

−−
=                                 (28) 

The flow chart in Fig. 9.12 summarizes the described procedure for determining the key link 

parameters for designing an asymmetric lasercom link using the proposed low loss self-imaging 

technique. 

As an example, let us consider the SPOT4 LEO satellite used in the SILEX experiment 

where L=832 km orbit, ΔL=±100 km, DTX=25 cm TX telescope, and λ=847 nm is trying to 

establish a direct link to a ground station. Here the SPOT4 satellite needs to form a beam waist at 

a distance of 28.97 km (from equation (20)) away from its exit aperture for the case of Lmax, the 

 required is 57.95 km (from equation (20)),  is 1.806 x 106
maxTXPLf

maxRXPLf  m (from equation (19)  
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Given L, ΔL and 

Choose a laser source having a certain beam waist w1 

Calculate 
min)RX(TXPLf  using 

 min)RX(TX
2

max)RX(TX
2

max)RX(TXmax)RX(TX
2

PL '

'x'x'x'x
2f

)RX(TX

−−
=  

Calculate using  max'RXx  ,
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Calculate using max'TXx and 
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2w
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Fig. 9.12. Flow chart for determining the various parameters of an asymmetric low loss lasercom 

link given the Link length L, the possible variation in link length ΔL, the TX or RX aperture and 

operating wavelength λ. 
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and (20)) and a RX aperture (2w4) on the ground station required is 1.4 m (from equation (20)). 

Assuming a 2 μm laser spot size for 2w  and a detector size of 16 μm (for 2w1 5) for high bit rate 

operation, the corresponding and  are calculated using equation (21) to be =46.36 

cm and =20.7 m. Now, in the case when the link distance decreases to L

TXSf
RXSf

TXSf

RXSf min, using equation 

(23), = 22.76 km and  =709.24 km and using equations (27) and (28), the 

=28.12 km and  =876.16 km. It is also important to calculate the F# for each of 

the thin lenses that result from this calculation. Since each of the PL lenses has a very long focal 

length, e.g.: = 28.12 km, their F#s are very large, e.g.: 

minTX'x minRX'x

minTXPLf
minRXPLf

22
# min

w

f
F TX

TX

PL
PL =

minTXPLf  = 224960 so one 

should be more careful about the fixed lenses S  and STX RX. The F# for these fixed thin lenses can 

be calculated using 
TX

TX

TX
S

S
S w

f
F

2
# =  where is calculated using equation (9). Hence we 

calculate F#s for the fixed lenses S

TXSw

 and STX RX to be 1.85 and 14.83, respectively. 

If this low loss self-imaging approach were used in the SILEX experiment to download 

data directly from the SPOT4 LEO satellite terminal to the ground terminal, the unnecessary 

time latency of 204 msec will not have accrued in the downloading of data that was present in 

the 61,168 km LEO-to-GEO-to-ground link used. The large telescope aperture (2w4) of 1.4 m on 

the ground terminal can reasonably be achieved and the laser source beam spot size of 2 μm 

assumed here can easily be obtained using commercially available micro-objective lenses. 

Another very suitable application is the communication link between the International 

Space Station (ISS) and its ground control. The Mission Control Center, Houston, Texas, sends 

commands to the ISS via an ~18 m diameter high gain microwave ground terminal at NASA’s 
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White Sands test Facility near Las Cruses in southern New Mexico using S-band (2-3 GHz) and 

UHF frequencies (800 MHz) along with Ku-band (10-17 GHz).29 The S-band is used for voice 

communication and file transmission. The UHF band is used during spacewalks and other 

relatively short-distance communication while the high-bandwidth Ku-band is used for video 

transmission as well as for the two-way transfer of files. The Ku-band also carries data from 

experiments and other payloads to Mission Control, the Payload Operations Integration Center, 

and scientists on the ground. As an example scenario, consider the communication between the 

ISS and its ground control to be via a lasercom link which uses the self-imaging technique as 

proposed in this chapter. Assume the ISS has an exit telescope with a diameter DTX of 0.25 m, 

the link distances are Lmin=278 km, L =460 km,30
max  and λ=1.55 μm. Using the very same 

procedure that we followed for the SILEX link earlier, we determine that the ISS satellite needs 

to form a beam waist at a distance of 15.84 km (from equation (20)) away from its exit aperture 

for the case of Lmax, the  required is 31.67 km (from equation (20)),  is 888.3 km 

(from equation (19) and (20)) and a RX aperture (2w

maxTXPLf
maxRXPLf

4) on the ground station required is 1.32 m 

(from equation (20)). Assuming a single mode fiber with a spot size 2w1 of 9 μm and a detector 

size of 16 μm (for 2w5) for high bit rate operation, the corresponding and  are calculated 

using equation (21) to be =1.14 m and =10.73 m. Now, in the case when the link 

distance decreases to L

TXSf
RXSf

TXSf
RXSf

min, using equation (23), = 9.57 km and  =268.43 km and 

using equations (27) and (28), the =10.65 km and  =298.8 km. The Rx aperture 

D

minTX'x minRX'x

minTXPLf
minRXPLf

RX on the ground station needs to be 1.32 m in order to collect the TX laser beam. The F# for 

each of the thin lenses S  and STX RX are calculated to be 4.56 and 8.11, respectively. This 

approach can allow the transfer of data from the ISS to ground with more than four times the 
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speed of the current communication technique as about 40 Gbps of data transfer rate is possible 

using off-the-shelf commercially available components. It can also be seen that the use of 

lasercom permits the incorporation of small telescopes for communication purposes which are 

significantly cost-effective both in the design and in the maintenance phases of the link. 

 

9.3 Discussion and Considerations 

The design and analysis carried out here assumes the laser beam profile to be Gaussian 

and the beam waists w to be the 
2

1
e

 radius. Since only 86% of power is contained in the beam 

diameter of 2wn, the system still loses 0.65 dB of the input source power provided the detector 

diameter is equal to 2w5. In order to prevent this loss, the diameters of the optics’ used including 

the detector can be increased, if possible, up to a maximum of 4w so that all (i.e., >99.96%) of 

the incident laser power can be transported to the receiver (see Appendix B), assuming ideal 

conditions.  

An important issue is whether the self-imaging approach is practical for large focal 

lengths as will be required for long range links such as satellite links.  Since, the lower limit on 

the variation of the link length L-ΔL will define the shortest focal length fPL of the PL lens 

required in a certain communication link, the three parameters in equation (10), i.e., D, d and ΔnE 

can be varied in the design process in order to control the focal length. For long focal lengths, as 

can be noticed in equation (10), the diameter of the lens D can be increased, as the focal length 

fPL increases quadratically with increasing D. Alternatively, the thickness d of the LC layer used 

in the PL can be decreased as it is inversely related to the focal length fPL or such an LC material 
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can be selected which has a weak birefringence ΔnE so that the focal length fPL can be 

appropriately controlled between  and . Choosing a short thickness d is a more 

attractive option as it will have a favorable effect on the response time of the PL as it has 

quadratic relation with the response time τ.  

minPLf
maxPLf

LCs are known for having weak birefringences and are typically several microns in 

thickness, hence they result in realizing weak power thin lenses. The LC based PL lenses can in 

effect be called the closest possible realization of an ideal thin lens as these typically have 

several micrometers thicknesses. Another important issue is the characterization of such a long 

focal length lens. For this purpose, interferometric techniques can be employed to obtain the 

transfer characteristics of the PL lens focal length fPL as a function of the drive voltage V. The 

PL lens can reasonably be considered a thin lens as the typical thickness d required will be 

negligibly small compared to a conventional lens thickness. In addition, LC molecular motion 

can be accurately controlled by high resolution (e.g., >10 bits) voltage drive signals, leading to 

the precision of optical phase control required to synthesize a LC lens. 

The generalized diagram of Fig. 9.8 consists of a TX on one end of the communication 

link and a RX on the other end. This diagram can be extended to include both a TX and a RX on 

each end using a beam splitter (BS) in the beam path converting it into a full-duplex lasercom 

transceiver as shown in Fig. 9.13. This design will result in a 3-dB optical loss to both the TX 

and the RX beams. Since liquid crystal devices have polarization dependent operation, hence 

their use means incorporation of techniques to cater for both the orthogonal components of the 

incident light polarization. This can be done by the use of two LC thin lenses with orthogonally 

oriented LC director configurations. If in case polarization independent operation is not required, 

the two communicating terminals can each choose a different orthogonal linear polarization  
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Fig. 9.13. Proposed full-duplex transceiver structure for the low loss lasercom link using beam 

splitting optics. BS: Beam Splitter, PD: Photo-detector. 

 

component for transmission and the BS can be replaced by a polarizing beam splitter (PBS) to 

properly direct incoming and outgoing light to the appropriate optics. As a result the 6-dB loss 

will not accrue as in the case of using BSs for polarization independent operation. Nevertheless, 

the two orthogonal LC thin lenses will remain. Employing dichroic mirrors instead of the BSs 

and using laser sources with the same linear polarization but different wavelengths for each 

transmitter will result in a system with a single LC thin lens per transceiver.  

The links considered in Table 1 show design for common lasercom applications. All the 

example designs here were carried out for two different wavelengths to point out the difference 

in size of the telescope apertures as well as the focal lengths required for the thin lenses S1 (S2) 

and PL  (PL ). The telescope aperture should be atleast twice the beam waist at PL  (or PL1 2 1 2), i.e., 

2w2. In the indoor-short range example, the link distance range is chosen to be 1 to 9 meters. The 

focal length of PL  (PL1 2) required in order to self-image the TX beam waist at the RX is 50.2 

cm. PL  (PL1 2) can be designed to have an even shorter focal length in order to first have a highly 

diverging beam, so that the RX can first acquire the TX beam due to possibly large field of  
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Table 9.1. Key parameters for several types of symmetrical laser communication links. SMF: 
Single Mode Fiber.  

 Required 
PL 

Aperture 
or Beam 
Diameter 

2w

 Minimum 
Focal 

Length of 
PL

Focal 
Length 

of S

Application 
Environment 

Laser 
Beam 

Diameter 

S  lens 1
Link 

Distance 
L±ΔL 

Operating 
Wavelength 

λ (μm) 

F#= 
/2

1Sf1 

2w1
(assumed) 2 at 

PL 

(S2), 

1Sf ( ) 2Sf

1 (PL ) 1Sw2

minPL1
f  

( ) 
minPL2

f

Indoor-very short range 
(Home, Office) 

9 μm 
(Using 
SMF) 

4.2 mm 1.92 cm 50.2 cm 4.56 1.55 5±4 m 

Indoor-very short range 
(Home, Office) 

5 μm 
(Using 
SMF) 

3.02 mm 1.49 cm 50.2 cm 4.91 0.8 5±4 m 

Indoor-Long range 
(Stadiums, Subway, 

Auditorium) 

9 μm 
(Using 
SMF) 

19.86 
mm 9.06 cm 2.5 m 4.56 5-200 m 1.55 

Indoor-Long range 
(Stadiums, Subway, 

Auditorium) 

5 μm 
(Using 
SMF) 

14.2 mm 7 cm 2.5 m 4.91 5-200 m 0.8 

Terrestrial-Short range 
(Freespace 

Campus/Corporate/Inter-
office) 

9 μm 
(Using 
SMF) 

22.19 
cm 

1000±200 
m 458.4 m 4.56 4.86 cm 1.55 

Terrestrial-Short range 
(Freespace 

Campus/Corporate/Inter-
office) 

5 μm 
(Using 
SMF) 

17.16 
cm 

1000±200 
m 458.4 m 4.91 3.48 cm 0.8 

Terrestrial-Long range 
(Remote/isolated rural 
areas, Observatories) 

9 μm 
(Using 
SMF) 

100±5 
km 45.52 cm 2.08 m 66.62 km 4.56 1.55 

Terrestrial-Long range 
(Remote/isolated rural 
areas, Observatories) 

5 μm 
(Using 
SMF) 

100±5 
km 32.7 cm 1.61 m 66.62 km 4.91 0.8 

3 μm  9.42 m 14.32 m 21490 km 1.52 Ground-GEO satellite 
40000± 
5000 km 1.55 

9.42 m 16.71 m 21490 km 1.77 3.5 μm 

1.5 μm  6.76 m 9.97 m 21490 km 1.47 Ground-GEO satellite 
40000± 
5000 km 0.8 

6.76 m 13.29 m 21490 km 1.96 2 μm 
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uncertainty. Once the RX terminal 'sees' this TX beam and responds back to the TX, the beam 

divergence can then be gradually reduced until the proper self-imaging condition has been met so 

that a higher power optical SNR is achieved at the RX terminal. The scenario envisioned here is 

that of a transceiver in the ceiling of a room functioning as a wireless internet access point for a 

user terminal such as a laptop computer or a personal digital assistant (PDA). An active two 

dimensional scanning system can also be incorporated in each transceiver in order to cater for 

lateral mis-pointing of the TX and RX terminals. Such a transceiver can act as an optical access 

switch/hub for wireless local area networks (LAN).  

The total length of the TX/RX optics depends upon the focal length of the S1 and is 

roughly 2 . In the indoor short-range case, this length is roughly 4 cm at 1.55 μm wavelength. 

For user terminals such as some laptop computers/notebooks and PDAs, this is a relatively long 

device length and a much more compact device is needed. One approach to decreasing the device 

length is to use a shorter wavelength such as done in Table 1 using λ=0.8 μm for the same case 

resulting in a ~3 cm length device, while another approach employs mirrors for path folding. The 

~4 mm diameter aperture required for the TX/RX is readily achievable with the current day LC 

technology although the thickness required for PL

1Sf

 (PL1 2) is relatively large for a typical LC 

device cell for this focal length and aperture combination. An alternative to using a thick cell gap 

is the use of cascaded LC devices. Since these devices are very thin, they can be considered thin 

lenses and their optical powers can be added to obtain the desired total focal length for PL1 

(PL ).   2

The link design analysis conducted in this chapter assumes that there are no atmosphere 

related turbulence and Gaussian beam spoiling effects in the link. This assumption is reasonable 

for the indoor short range and long range links as well as long-haul satellite-to-satellite links and 
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satellite-to-ground downlinks. On the other hand, Gaussian beam spoiling will occur for 

terrestrial atmospheric freespace links and ground-to-satellite uplinks, and the proposed link 

design must cater these effects such as via adaptive optics to prevent further beam divergence 

and loss of transverse coherence due to passage through the non-homogeneous atmospheric 

medium. Note that the link systems designs assumed transmissive (or refractive) thin lenses. The 

link configuration can as well be reflective using a mirror M1 instead of the thin lens S1 leading 

to reduced inherent chromatic dispersion associated with lenses due to the glass materials used 

for making them. In effect, mirror-based link designs can result in an increased communication 

link information carrying capacity.  

In the wave optics domain, this technique might as well be called an "Inverse" adaptive 

optics approach as in classical adaptive optics efforts are focused on controlling the wavefront at 

the 'receiving' station whereas in the approach presented here the 'transmitting' wavefront is 

controlled in such a manner so as to prevent the unnecessary beam divergence and produce the 

self-imaging effect between the transmitter and receiver.  

 

9.4 Conclusion 

Foundations have been laid for ultra-low loss laser communications using a self imaging 

technique implemented with strong and weak thin lens combination beamforming optics. The 

weak thin lens, designated by PL, can be either a fixed or a programmable thin lens depending 

upon the specific requirements of the scenario under consideration. Link design relations have 

been derived for such a laser communications link that relies on Gaussian beam propagation for 
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both symmetric and asymmetric situations. Since the laser beam is prevented from diverging un-

wantedly as it propagates in the communication medium, the possibility of eavesdropping is 

minimized. This fact by itself makes this technique suitable for use in quantum cryptographic 

communication systems where single photons are used to minimize eavesdropping. The 

technique is applicable from ultra-short to long range link scenarios including multipurpose 

intelligent space platforms involving optical switching and communications.31
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CHAPTER 10: BROADBAND RECONFIGURABLE OPTICAL ADD-DROP 
FILTER FOR DENSE WAVELENGTH-DIVISION-MULTIPLEXING 

SYSTEMS 

An optical add-drop filter (OADF) for dense wavelength-division-multiplexing (DWDM) 

systems is proposed using a one dimensional (1-D) Liquid Crystal (LC) deflector array. By 

binary control of the drive signal to the individual LC deflectors in the array, any optical channel 

can be selectively dropped and added. For the proof-of-concept OADF demonstration the Texas 

Instruments (TI) micro-electro-mechanical systems (MEMS) digital micromirror device 

(DMD)™ is employed instead of the LC deflector array. This OADF features a polarization 

insensitive fault tolerant broadband operation, low loss, and the ability to selectively add/drop 

with high wavelength resolution multiple channels in C telecommunications band. The proof-of-

concept OADF designed for the C band demonstrates low insertion loss, 0.15 dB polarization 

dependent loss (PDL), 3-dB wavelength resolution of 0.4 nm and an average crosstalk of better 

than 30 dB. With the use of a reference mirror, the OADF becomes a multi-wavelength 2 x 2 

routing switch. Key systems issues such as insertion loss, polarization dependent loss, 

wavelength resolution and response time are analyzed in detail for comparison with the LC 

deflector approach. 
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10.1 Introduction 

The reconfigurable optical add-drop filter (OADF) is a key component for today’s optical 

communication networks. It provides the ability to selectively drop a channel from within a band 

of communication channels as well as provide the introduction of a new information carrying 

channel at the same wavelength without interrupting the operation of the adjoining channels. A 

number of approaches have been used for this purpose including on-chip planar technology that 

is restricted to the use of one-dimensional interconnections such as fibers or two-dimensional (2-

D) interconnections such as an on-chip array of integrated-optic (IO) waveguides and switches. 

For example, some of these techniques include all-fiber mechanically tuned fiber Bragg grating 

devices,1 and IO grating switch with IO directional coupler devices,2 an array waveguide grating 

(AWG) Multiplexer with IO thermo-optic switches,3 an AWG multiplexer with manually 

simulated 2 X 2 switches,4 a phased array demultiplexer used in conjunction with 2x2 Mach-

Zehnder interferometer electro-optic switches,5 an IO electro-optically controlled synthesized 

grating-structure-based filter,6 a reflective tunable resonant grating filter placed on a tiltable 

MEMS platform,7 liquid-crystals,8-10 and using dual bulk acousto-optic tunable filters.11–12 

MEMS micromirror based add/drop filtering has been proposed and demonstrated in linear one 

dimensional array in which each micromirror switches one wavelength.13-14 Earlier, we proposed 

the use of a TI 2-D DMD™ to form a high channel-capacity DWDM add–drop filter using a 2-D 

micromirror array.15-17 This filter features a polarization insensitive and fault-tolerant design that 

takes advantage of the very high space–bandwidth product (SBWP) of the DMD™ using a 

macro-pixel consisting of multiple micromirrors in order to switch one wavelength. 
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Demonstration of this filter used an un-optimized visible mode TI DMD™ that led to limitations 

in crosstalk, loss, resolution, and optical bandwidth. In this work, we propose the use of a one 

dimensional (1-D) Liquid Crystal (LC) deflector array for OADF application. By binary control 

of the drive signal to the individual LC deflectors in the array, any optical channel can be 

selectively dropped and added. For the proof-of-concept OADF demonstration, a DMD™-based 

OADF is implemented for DWDM operations using a DMD™ that is specifically designed for 

the near infra-red (NIR) band. Similarities and differences are analyzed in this chapter for the 

two approaches. The new DMD™ device utilizes a telecom band optimized chip with broadband 

anti-reflection (AR) coating on the cover glass window, while the 13.8 μm micromirror size and 

14.8 μm pitch have been designed to concentrate maximum power (~88%) in one of the blazed 

grating orders for minimum insertion loss in the telecom C band. The resulting OADF 

demonstrates C-band wavelength add-drop control with low loss. The rest of the chapter 

describes OADF design, operations, and related C-band add-drop experiments and analysis of 

key system parameters. 

 

10.2 OADF Architecture 

Figure 10.1 shows the proposed OADF. This low loss design uses freespace dispersive 

optics for spatially spreading and recombining the optical spectra and a spectral processing 

element that selects the add-drop channels. Additional interconnect optics include two fiber-optic 

circulators (C), two Volume Bragg Gratings (VBG) and two spherical lenses (S). Light is 

coupled to the freespace OADF structure using single mode fiber (SMF) Gradient Index (GRIN) 
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rod lenses. The distance between a GRIN lens collimator and the corresponding VBG is chosen 

to be the half-self imaging distance such that the Gaussian beam emerging from the GRIN lens 

forms a beam waist at the VBG location.18 Each VBG is placed at its Bragg angle θBragg with 

respect to the input light beam so that the input spectrum spreads in the first order by an angle 

2Δθ= θmax− θmin along the x-dimension. Here θ =sin-1 [(λ /L)-sin θ ] and θ =sinmax max Bragg min
-

1[(λ /L)-sin θ ], and λ  and λmin Bragg max min correspond to the maximum and minimum wavelengths, 

respectively. The spatial extent of any wavelength λ is defined by the VBG resolution 

mW
L c

2
λ

δλ = , where m is the grating order number, L is the grating period, λc is the grating center 

wavelength and 2W is the 1/e2 beam diameter incident on the grating. In the OADF, the Main-In 

port light after it has impinged on the VBG1 and spread spatially is collimated using a spherical 

lens S . S1 1 transforms the input source spectrum to spread it spatially onto the DMD™ such that 

the spectrum size is X = 2 F tan (Δθ) in the x-dimension, where F is the focal length of lens S1. 

The input beam with 1/e2 beam waist of w1 at the VBG1 location is transformed at the DMD™ 

location into a waist w
1w

F
π

λ which is given by: w =2 2 . Thus the input optical spectrum to the 

OADF will form a rectangular shaped beam that is X units wide and 2w2 units high at the 

spectrum processing plane, in effect allowing control of N=X/2w2 independent wavelength 

channels within the Δλ=λ −λmax min source spectrum. Thus the OADF wavelength control 

resolution is Δλ/Ν with the VBG resolution δλ being the fundamental limiting resolution. The 

spectral processing element can be any optical device that allows the control of individual optical 

channels. Here we consider only two approaches, namely, a 1-D array of LC deflectors and the 

TI DMD™. Below we describe each approach in detail. 
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Fig. 10.1. Proposed OADF optical structure. 

10.2.1 LC Deflector Array Approach 

The spectral processing can be done by using a 1-D array of LC deflectors where each 

deflector controls an individual optical channel. This LC deflector array can be realized using the 

same underlying principle for a single LC deflector as described earlier in chapters 4-7. As 

shown in Fig. 10.2 this array consists a glass substrate on which a dielectric mirror is laid for the 

wavelength band of interest. On top of this mirror, a Quarter Wave Plate (QWP) is laid down. 

The high impedance electrode is laid on top of the QWP. Two linear metallic contacts are 

deposited for each deflector in the array. A poly-imide layer is coated on this surface and is 

rubbed in a direction which is at 45o to the QWP slow axis. A second glass substrate is coated 

with a uniform layer of Indium Tin Oxide (ITO) for use as the ground terminal. Again, a poly-

imide layer is coated on this surface and is rubbed in a direction parallel to the first substrate. The 

LC is sandwiched in between these substrates.  The front substrate can be AR coated to prevent 

un-wanted Fresnel reflections. By binary control of the drive signal to the individual LC 

deflectors in the array, any optical channel can be selectively dropped and added. Individual LC 

181 



 

 

LC

Glass Substrate

ITO
Linear 

Electrical 
Contacts-
normal to 

page 

High Impedance 
Electrode 

QWP

Dielectric Mirror

λ1

λ2

λn

. 

. 

AR

 

 

 

 

 

 

 

 

 

 

Fig. 10.2. Proposed LC Deflector array design for the OADF. QWP: Quarter Wave Plate, LC: 

Liquid Crystal, ITO: Indium Tin Oxide, λ: wavelength, AR: Anti-Reflection coating. 

 

deflectors can be driven at different operating voltages to cater for birefringence dispersion in the 

LC material such that the deflection angles for all the wavelengths are the same. Since LCs are 

birefringent materials, hence a scheme is needed to cater for each polarization component. This 

is done with the use of a QWP at 45o and a retroreflective design using a dielectric mirror. Thus 

each polarization component encounters the LC in deflection state only once. The sandwiched 

nature of this device should help reduce the PDL in comparison with a cascade of individual LC 

deflector array, QWP, and mirror due to much shorter distances involved.  

182 



 

10.2.2 TI DMD™ Approach 

The DMD™ is a commercially available MEMS device from TI that contains an array of 

square shaped micromirrors in a 2-D grid. Each micromirror is a bi-stable operation mirror 

having the ability to be deflected around a central (floating) position by +θ and −θ with the axis 

of rotation being the mirror diagonal. The DMD™ in the proposed OADF is oriented such that 

when the micromirrors are in the +θ orientation, light from Main-In port is retro-reflected and 

hence is routed back to the Main-Out port through the circulator C1 (see Fig. 10.3 (a)). The 

DMD™ in the +θ orientation becomes a blazed grating with the diffracted beam being in the 

high efficiency Littrow configuration resulting in low insertion loss for Main-In-to-Main-Out 

port. In the second case (see Fig. 10.3 (b)), when the micromirrors are in the −θ orientation, light 

from Main-In port is routed to the Drop port through circulator C2 using a symmetrical setup of 

S , VBG2 2 and a GRIN lens fiber collimator. Note that in this −θ state, the DMD™ is not in the 

optimal high efficiency Littrow configuration. Any light present at the Add port is now routed to 

the Main-Out port. As shown in Fig. 10.3 (c), light from Add port can be routed to Drop port in 

the +θ orientation when a fixed mirror along with a lens S3 is used in the Fig. 10.1 OADF 

proposed structure. Thus, the addition of the mirror to the Fig. 10.1 design forms a multi-

wavelength 2 x 2 switch useful for wavelength routing. Note that the Fig. 10.3 ray traces for 

simplicity show single micromirror operation with the two possible mirror orientations. 
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Fig. 10.3. Proposed OADF operation ray traces for (a) DMD™ set to +θ for Main-In to Main-

Out setting and (b) DMD™ set to -θ for Add to Drop operations. (c) Modified OADF design 

using a fixed mirror that transforms the OADF to a multiwavelength 2 x 2 full reversible switch.  

10.3 DMD™-based OADF Experiment 

For the proof-of-concept experiment, the Fig. 10.1 design is used. Amplified spontaneous 

emission (ASE) from an erbium doped fiber amplifier (EDFA) is used as the broadband input 
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source for the test OADF. As mentioned, the VBG1 is placed at the location where GRIN lens 

collimator forms the minimum beam waist. More importantly, the distance between the VBGs 

and the DMD™ is twice the focal length of the spherical lenses. Thus the minimum Gaussian 

beam waist at the VBG plane is also imaged on the DMD™ plane, satisfying the GRIN lens self-

imaging condition required for super low loss freespace to fiber GRIN lens coupling.18 

Specifically, for the experimental OADF, the insertion loss due to the fiber-to-freespace-to-fiber 

coupling via the self-imaging mechanism is measured to be 0.1 dB. VBG1 is a 940 lines/mm 

Dickson grating that spreads the 40 nm EDFA spectrum (1530 nm − 1570 nm) by 3.15o (2Δθ) in 

the first order (m=1). This corresponds to a linear spread of 11 mm at the DMD™ plane using 

F=20 cm for S1. The grating Bragg wavelength λBragg is 1550 nm and θ  is 46.76o
Bragg . The 

DMD™ used contains an array of square shaped micromirrors in a 1024 x 768 2-D grid. This 

device has specifically been designed as a blazed diffraction grating in Littrow configuration for 

the telecommunications C-band in the +θ state. As shown in Fig. 10.5, the micromirrors have the 

dimensions of 13.8 μm square with the mirror pitch being 14.8 μm. This results in the total 

surface area of the DMD™ being 1.52 cm (=1023 x 14.8 μm + 13.8 μm) x 1.14 cm (=767 x 14.8 

μm + 13.8 μm) which in-turn provides a spectral processing zone that is 1.61 cm in the x-

dimension marked X’ in Fig. 10.5(a). The fill factor of the DMD™ is 86.98%. The total loss due 

to the DMD™ is 1.9 dB which includes diffraction loss, a fill factor loss, Aluminum mirror 

reflectivity loss, and loss due to double pass through the AR coated glass window. Total fiber-to-

fiber loss for the OADF module is measured to be 5 dB, that includes 1.4 dB loss via passage 

through two circulators, 0.2 dB loss for the two GRIN lens collimators, 0.8 dB two pass loss for 

the VBG, 0.7 dB two pass loss for the non- anti reflection (AR) coated lenses (S1/S ), and 1.9 dB 2
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 and SDMD™ loss. If the lenses S1 2 used were AR coated, the insertion loss of the OADF 

module can drop to 4.3 dB. 

Wavelength dependence of the insertion loss was investigated and analysis shows that for 

the +θ state corresponding to the DMD™ being in the low loss Littrow configuration, the 

insertion loss variation is primarily due to the Dickson grating loss as a function of wavelength 

(see Fig. 10.4 (a)).19 Since here the DMD™ is in the low loss Littrow configuration, there is no 

significant angular spreading of the optical beam for this state of the filter. Fig. 10.4 (b) shows a 

closer look at this insertion loss profile within a narrow wavelength band while the Main-In port 

is routed to Main-Out port. Figure 10.4 (c) shows loss for the Add-to-Drop port configuration in 

a given narrow band. It is important to note that the insertion loss in this case significantly 

depends upon the wavelength, as the DMD™ is no longer in the low loss Littrow configuration. 

The DMD™ in the +θ state behaves as a diffraction grating with an incident optical beam 

making a large 18.4o angle with the micromirror surface normal. This results in an angular 

spread of the broadband outgoing beam causing wavelength-based coupling loss.  

Each micromirror in the DMD™ is deflected around a center floating position by ±9.2o 

about the mirror diagonal. For the OADF demonstration, the DMD™ is oriented such that when 

the micromirrors are in the +9.2o orientation, light from Main-In port is retro-reflected into Main-

Out port. In contrast, when the micromirrors are in the −9.2o orientation, light from Main-In port 

is routed to the Drop port and any light present at the Add port is routed to the Main-Out port.  

2 beam waist diameter GRIN lens and a spherical lens SIn the first experiment, a 5 mm 1/e 1 with 

F=20 cm are used that result in a spot size 2w2 of 79 μm for a single wavelength at the DMD™ 

location. The VBG resolution δλ in this case was calculated to be 0.22 nm for λc=1550 nm. With 

the OADF being fed with broadband ASE from an EDFA as mentioned earlier, the wavelength  
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Fig. 10.4. Measured insertion loss for the OADF. (a) Insertion loss for the Main-In-to-Main-Out 

port configuration for the whole C-band and (b) a closer look at the insertion loss in a narrow 

wavelength band, and (c) Insertion loss for the Main-In-to-Drop/Add-to-Main-Out port in a 

narrow wavelength band. 

 

resolution of the OADF was measured by using two independently controlled adjacent optical 

channels using the DMD™. Light from Main-In port is retro-reflected back to Main-Out port 

with the micromirrors being in +θ orientation. Next, successive columns of micromirrors are 

turned ON and OFF to create either a 3-dB or a 20-dB or a 30-dB notch in the EDFA source 

spectrum (see Fig. 10.5 for a single column’s geometry). Two such notches are created in the 

closest possible proximity to determine the wavelength resolution of the OADF. These notches 

are independent of one-another such that the creation of one does not affect the shape or position 

of the adjacent notch. With this 5 mm GRIN lens beam diameter size, Fig. 10.6 shows the 

resulting 3-dB, 20-dB and 30-dB OADF resolution of 1 nm, 1.6 nm and 1.8 nm respectively. 

Each of the dips in the broadband EDFA input source spectrum (3-dB, 20-dB and 30-dB) was 

formed using 5, 22, and 28 micromirror columns which correspond to spot sizes on the DMD™ 

of 61.3 μm (= 2a + b, where a = 20.9 μm and b = 19.5 μm), 0.24 mm (= 11a + 0.5b) and 0.302 

mm (= 14a + 0.5b), respectively (see Fig. 10.6(b)). The two dips in each case are separated by 

35, 47 and 53 columns in the x-direction which corresponds to a x-dimension center-to- center 

linear separation of 0.375 mm (=17a + b), 0.5 mm (=23a + b) and 0.563 mm (=26a + b), 

respectively. Note that the 30-dB point wavelength resolution of 1.8 nm obtained using this 

GRIN lens is not sufficient for achieving WDM channel spacing (1.6 nm/200 GHz) OADF.  
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Fig. 10.5. (a) TI DMD™ geometry showing the active spectrum processing zone and (b) the 

micromirror pixel layout. A dark colored vertical micromirror array represents one column of 

micromirrors as controlled by the DMD™ software. 

 

Hence, by using a larger input beam diameter this problem is solved. Specifically, a 1 cm 

1/e2 beam waist diameter input GRIN lens collimator and a spherical lens S1 with F=20 cm are 

used that result in a spot size 2w2 of 39.5 μm at the DMD™ location. The VBG resolution δλ in 

this case is calculated to be 0.11 nm. Again, the 3-dB resolution of the OADF is measured using 

two independently controlled adjacent channels using the DMD™. Using this GRIN collimator, 

Figure 10.7 shows the resulting 3-dB, 20-dB and 30-dB resolution that is achieved using 2, 8 and 

11 columns of the micromirrors, respectively. Specifically, these  2, 8, and 11 columns  

189 



 

-57

-52

-47

-42

-37

-32

-27

1546 1547 1548 1549 1550 1551
Wavelength (nm)

dB

3-dB

20-dB

1 nm 

1.6 nm 

1.8 nm 

30 dB 

20 dB 

3 dB 

30-dB

 

Fig. 10.6. Measured resolutions of the OADF using a 5 mm diameter GRIN collimator. These 

resolution values for the 3-dB, 20-dB and 30-dB points are measured to be 1 nm, 1.6 nm and 1.8 

nm, respectively. 

 

correspond to spot sizes along the x-direction on the DMD™ of 30.7 μm (= a + 0.5b), 93.4 μm 

(= 4a + 0.5b) and 0.12 mm (= 5a + b) respectively. The corresponding 2, 8, 11 columns give 

resulting resolutions of 0.41 nm, 0.55 nm, and 0.7 nm, respectively. The two dips in each case 

are separated by 12, 18, and 21 columns in the x-direction which corresponds to a center-to-

center linear separation of 0.135 mm (=6a + 0.5b), 0.198 mm (=9a + 0.5b), and 0.23 mm (=10a 

+ b) respectively. 

For the OADF demonstration for DWDM systems, the 1 cm diameter input GRIN lens 

mentioned is used as it has the ability to resolve wavelengths 0.7 nm apart (see Fig. 10.7). First 

the 40 nm broadband EDFA source spectrum is interleaved using an optical interleaver. The 

interleaver divides the 40 nm C-band into 100 channels with odd and even channels routed to 

different output ports of the interleaver. Only one set of channels, either even or odd, with a  
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Fig. 10.7. Measured resolutions of the OADF using a 1 cm diameter GRIN collimator. These 

resolution values for the 3-dB, 20-dB and 30-dB points are measured to be 0.41 nm, 0.55 nm and 

0.7 nm, respectively. 

 

frequency spacing of 100 GHz between adjacent channels, is then routed to the OADF through 

the Main-In port. Out of the 50 channels, one channel is selectively dropped by turning 11 

columns of micromirrors from +9.2o to −9.2o deflection state hence routing the chosen channel to 

the Drop port. Figure 10.8(a) shows the resulting input EDFA source spectrum along with the 

spectrum routed to Main-Out port showing the Drop channel operation. Figure 10.8 (b) shows 

this single dropped channel present at the Drop port. To demonstrate the ADD operation of the 

OADF, a tunable laser diode source is connected to the ADD port that is tuned to lase at the 

same wavelength as the dropped channel. The new channel is shown as a narrow spike in the 

spectrum at the Main-Out port shown in Fig. 10.8(c). 
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Fig. 10.8. 0.8 nm (100 GHz) DWDM spacing C-Band operation of the OADF (a) The EDFA 

source input to the OADF and the retro-reflected spectrum on the Main-Out port. (b) The 

dropped channel on the Drop port, and (c) using a tunable laser diode, a new channel is added 

through the Add port demonstrating the ADD operation. 

 

Since a typical OADF is a 2 x 2 port optical module, hence crosstalk is an important issue 

to consider. Crosstalk is defined as the ratio of the wanted-to-unwanted light in a certain output 

port of the OADF. In the current freespace optics based OADF implementation, back-reflections 

from optical interfaces such as the fiber-to-GRIN lens interface and the circulator can be the 

limiting factor in defining the minimum possible crosstalk for the architecture. This is true 

because of the fact that these circulators consist of beam displacement prisms and surface 

reflections from these prisms are routed to the unwanted port resulting in crosstalk. Typical 

commercially available 3-port circulators have port-to-port isolation of 32 to 40 dB. Hence a 32-

dB inter-port isolation circulator will limit the Main-In to Main-Out (Add to Drop, if the mirror 

option in Fig. 10.3 is used) crosstalk to 32-dB. In our current OADF, crosstalk was measured 

using a tunable wavelength source that was connected to one of the input (Main-In/Add) ports 

while the power was measured at one of the two output (Main-Out/Drop) ports. Ratio of the 

powers measured when light was routed to one particular output port and when the light was not 

routed to this output port gave the crosstalk measurement. As can be seen from the plot in Figure 

10.8(a), the average crosstalk is measured to be 30 dB in Main-In port to Main-Out port 

configuration while that from Main-In Drop to Drop and Add to Main-Out port is measured to be 

40 dB. In the 30 dB case, the low circulator inter-port isolation is suspected to be the prime cause 

of the higher crosstalk. In the 40 dB case, the lower crosstalk results due to better port isolation 
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as the input and output ports have separate circulators.  Use of separate input output fiber 

collimators or dual fiber collimators for the two input and output OADF ports will allow better 

crosstalk performance in comparison to the circulator based OADF design. These separate input 

fibers would also mean that the DMD™ micromirrors will need to reflect light at a small angle 

along the y-axis which will be defined by the center-to-center spacing between the two fibers 

used to form each dual collimator. Figure 10.9 shows a visible light photograph of the DMD™ 

chip where the active spectrum processing zone is clearly visible.  

 

 

 

 

 
Active Spectrum 
Processing Zone  

 

Fig. 10.9. A visible light photograph of the DMD™ chip showing the active spectrum processing 

zone. 

 

An important design issue for an OADF is its wavelength control selectivity [18]. The 

finest wavelength selection possible can be determined by switching a single micromirror 

column from one state to the other and then shifting the column spatially by one micromirror 

through software control. Using the broadband source and the interleaver removed, the column is 

first turned from +θ orientation to -θ orientation and is then shifted by one micromirror location 
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to determine the shift in wavelength using the EDFA as the source. Using the 10 mm diameter 

GRIN lens collimator, this shift in wavelength due to a switching of adjacent micromirror 

column was measured to be 36 pm as shown in Fig. 10.10. Do note that the measured 36 pm 

wavelength selectivity of the demonstrated OADF is a key design number that should be 

considered in order to meet specific required system application needs. For applications 

requiring finer wavelength selectivity, using the full space bandwidth product of the DMD™ can 

result in better wavelength selectivity. Another key parameter is the clear channel bandwidth 

measured between the 0.5 dB points from the maxima/minima of a selectively added/dropped 

signal using a broadband input signal. Using the 10 mm diameter GRIN lens collimator and the 

EDFA as the broadband input signal, the clear channel bandwidth was measured to be 0.25 nm 

for the present OADF.  

It is noteworthy to mention that the proposed filter does not use a single micromirror for 

switching; rather it uses a macro-pixel consisting of several micromirrors. In the single mirror 

per ITU wavelength approach,21 although the mirror array has a chirped mirror width across the 

array that rigidly matches the spatial dispersion of the grating such that each discrete wavelength 

in the telecom band falls on a different micro-mirror matching its spot size and location, it 

nevertheless is devoid of fault-tolerance in that a single micro-mirror failure will result in the 

loss of one channel. Additionally, any optical spectra chirp, such as due to thermal drifts, will 

result in the ITU channels not perfectly matching the mirror array grid. The macro-pixel 

approach is attractive in this regard as the DMD™ plane is populated with multiple micromirrors 

for each ITU channel. Hence a single micro-mirror failure does not result in catastrophic loss of 

a channel, and optical spectra chirp can be countered by re-programming the macro-pixel 

locations corresponding to specific ITU channels.  
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Fig. 10.10. Measured wavelength resolution of the OADF by flipping a single micromirror 

column from +θ orientation to -θ orientation and then translating it by one micromirror location. 

 

MEMS micromirrors have also been used for wavelength selective 1 X N switches.21 It is 

well known that multiple 1X2 switches can be cascaded to form 1X4, 1X8 and higher port count 

switches. Since the proposed filter operates as a 1X2 wavelength-selective switch, it is possible 

for instance to use three such switches in a two stage interconnection network to form a 1X4 

wavelength-selective switch. An important consideration for such a higher port count switch will 

be the increased insertion loss due to cascading of switches, in addition to cost increases. Thus, 

depending on the specific application system requirements, the port count of the proposed switch 

will be limited. 

The PDL of the OADF is measured to be 0.15 dB. The PDL is measured by varying the 

input polarization to the OADF using a fiber-optic mechanical polarization controller. Response 

time is another critical issue for an OADF structure. Individual micromirror response time for the 
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DMD™ is 15 μsec while total reconfiguration time for the entire DMD™ chip is approximately 

1 msec using a serial computer interface.22 Reset time can be improved if the DMD™ column 

addressing control signals are tied together in order to address all the mirrors in one column at 

the same time with a single control signal. This approach would reduce the number of addressing 

control signals required to address all the individual pixels of the DMD™ chip and would hence 

improve the response time significantly. This DMD™ addressing approach is a viable solution 

for an application like the current OADF where only column by column control of micromirrors 

is needed instead of individual micromirror control as required in an optical spectral equalizer .22

 

10.4 Discussion 

In Table 10.1, the two approaches have been analyzed. Key considerations are dynamic 

range, response time, PDL, insertion loss, and wavelength selectivity. LCs can typically obtain a 

switching dynamic range of about 30 dB or slightly better. This is primarily limited due to 

scattering in the LC material and imperfect rubbing. The DMDTM offers a dynamic range of 

about 35 dB or better. This is due to the digital switching nature of the micro-mirror. There is no 

significant scattering from the mirror surface except for any fabrication imperfection. In terms of 

response time, nematic LCs typically can be driven with msec speeds whereas the DMDTM has a 

much faster micro-second response time/micro-mirror, although the refresh rate for the whole 

DMDTM micro-mirror array is 1 msec. For LC devices, the response time has a square relation 

with the LC layer thickness. Decreasing the LC layer thickness by half will improve the response 

by 4 times. But in order for the LC to provide the same amount of optical phase, the 
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birefringence needs to be higher. Research is underway to synthesize NLC materials for larger 

birefringence and smaller viscosity in order to obtain faster response times.23 Faster response in 

LCs can be obtained using the transient nematic effect24 while the slower fall time can be 

improved by using the dual frequency effect.25 The PDL for the LC device is expected to be 0.1 

dB or less. This is due to the sandwiched nature of the proposed structure and is slightly better 

than that for the DMDTM. Insertion loss for the proposed LC device is expected to be less than 1 

dB which is about half of that for the DMDTM. Wavelength selectivity will depend upon the 

individual pixel size of the deflector in the LC deflector array. The DMDTM with the current 

micro-mirror size of 13.8 μm has a wavelength selectivity of 36 pm. Using an LC deflector with 

a pixel size of, say 10 μm, this selectivity can be achieved. 

An important issue to consider is the 2-D grating effect in the DMDTM. The DMDTM has 

been designed as a blazed diffraction grating in Littrow configuration for the telecommunications 

C-band in the +θ state. Since here the DMD™ is in the low loss Littrow configuration, there is 

no significant angular spreading of the optical beam for this state of the filter. It is important to 

note that in the -θ state the insertion loss significantly depends upon the wavelength, as the 

DMD™ is no longer in the low loss Littrow configuration. The DMD™ in the +θ state behaves 

as a diffraction grating with an incident optical beam making a large 18.4o angle with the 

micromirror surface normal. This results in an angular spread of the broadband outgoing beam 

causing wavelength-based coupling loss. It is important to understand that this is due to the 

grating effect of the macro-pixel approach. Each wavelength incident on the DMD™ falls on 

multiple micro-mirrors resulting in this grating like angular dispersion at the output. This will 

significantly limit the broadband operation. In contrast, in the LC deflector array approach, each 

optical channel falls on its own LC deflector and as a result there is no grating like effect 
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experienced. This will prevent excess loss due to the macro-pixel approach although at the cost 

of fault tolerance. In the case of the one pixel/λ approach, a single pixel failure will result in 

catastrophic loss of an optical channel whereas in the macro-pixel approach a single micro-

mirror failure will only attenuate the signal. 

  

Table 10.1. Comparison of 1-D LC deflector array approach with the TI 2-D DMDTM approach. 

TM  1-D LC Deflectors TI 2-D DMD
Dynamic Range ~30dB >35 dB 
Response Time ~msec 15μsec 
PDL 0.1 dB 0.15 dB 
Insertion Loss <1 dB 1.9 dB 

Geometry 
dependent  Wavelength Selectivity  36 pm 

Macro-pixel Approach 1 pixel/λ 
 

10.5 Conclusion 

In summary, an LC deflector array based OADF has been proposed. The approach is 

realized using TI DMD™ using a C-band optimized TI DMD™ device. The C-band 

demonstrated reconfigurable OADF module operated for DWDM (0.8 nm) channel spacing 

provides multiple channel add-drop routing functions. The reported OADF has a low loss, 30 dB 

of maximum crosstalk, and 0.15 dB PDL. The proposed OADF uses a macro-pixel approach 

where multiple micromirrors are used to control a single optical wavelength, hence providing 

fault-tolerance within the OADF structure. Key system issues have been discussed in detail. 
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APPENDIX A: THE PARAXIAL APPROXIMATION FOR A THIN LENS 
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A lens is said to be a thin lens if it causes negligible translation to a ray of light as it traverses 

through the lens. If the incident ray is at a distance of r away from the center of the thin lens 

(with r being measured orthogonal to the lens axis, see Fig. A.1) and the lens radius of curvature 

and the diameter being R and D, respectively, then the ray of light experiences a phase 

transmittance function through a plano-convex thin lens given by: 32

( ) ( )[ ]rtnjkjknt eerU o 1)( −−= ,                                           (a.1) 

λ
π2

=where to is the thickness at the center of the thin lens, k is the propagation constant and n is 

the index of the lens material.  

The thickness t(r) at a point r away from the lens axis can be obtained using the geometry shown 

in Fig. A.1 as: 
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The equation (a.2) expression for the thickness function can be simplified if we restrict our 

attention to the portion of the lens where r is small such that the incident ray is incident at the 

lens surface at a position close to its axis. As a consequence of this assumption, the following 

approximation can be made: 
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2
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R
r

R
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−≅−                                            (a.3)  

The resulting approximation is sometimes called the Paraxial approximation as it holds true only 

for paraxial rays, i.e., rays that lie close to the thin lens axis. If we plot the left and right side 

expressions in equation (a.3), we see that the right side approximation is close to the left side 
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closed form expression in the region where r/R is less than 0.6 (see Fig. A.2). Hence, for a thin 

plano-convex lens, 

R
rtrt o 2

)(
2

−≅ .                                           (a.4) 

The physical properties of the lens, i.e., n and R, can be combined in a single number f called the 

focal length, which for a plano-convex thin lens is given by: 32

( )
R

n
f

11 −
=                                                       (a.5) 

where R is the radius of curvature of the thin lens and n is the index of refraction of the lens 

material. For glass such as BK7, the index n is 1.5 at λ=1550 nm resulting in f=2R. 

The ratio of the focal length f to the beam diameter D at the thin lens surface is called the lens F# 

given by: 

D
fF =# .                                                 (a.6) 

Since f=2R and D=2r, hence we can rewrite the thin lens F# as: 

r
RF =# .                                                  (a.7) 

For the Paraxial approximation of equation (a.3) to hold, the plot of the exact expression and the 

approximate expression of equation (a.3) in Fig. A.2 should be comparable and the error between 

these two kept below a certain threshold maximum. Figure A.2 shows that if the ratio of r/R is 

equal to 0.6, an error of 2.5% between the values for the two expressions is produced. If this 

r/R=0.6 is taken as the maximum allowed error, it implies that the lens F# should be greater than 

or equal to 1.67 for the lens to be classified as a thin lens. Note that the Gaussian beam 

propagation analysis conducted in this chapter uses thin lenses that must obey the F#≥1.67 
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restriction. Also note that depending on the accuracy of the thin lens approximation selected 

(e.g., 2.5% error), the F# restriction can be different. This means that the F#≥1.67 is an arbitrary 

criterion and it will vary depending upon what error one’s system can accommodate/handle. We 

chose this number as this is the point where we feel that the approximation of equation (a.3) is 

close to the exact form of equation (a.2). This criterion is not far from real deployed systems 

such as the Keck and Subaru telescopes that have F# of 1.75 and 1.8 respectively. 
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Fig. A.1: Geometry for the thin lens Paraxial approximation. 
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Fig. A.2: Plot of the thin lens expression obeying the Paraxial approximation and plot of the 

exact expression for a plano-convex lens. 
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APPENDIX B: POWER CAPTURED BY A THIN LENS WITH A 
GAUSSIAN BEAM INPUT 

209 



 

 

If a Gaussian beam with a beam radius of w(z) is incident on a thin lens, then the power captured 

by this thin lens of diameter D (D=2r) over its surface area (πr2) is calculated by integrating the 

incident Gaussian beam irradiance over the lens area assuming no reflection or absorption losses 

are present. The power captured by the thin lens can be obtained using:33
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 by: where w(z) is the Gaussian beam radius and is related to the beam waist w1
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λ
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1
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nwz =where z  is the confocal beam parameter given by 1  and z is the longitudinal distance 

from the beam waist w1 location to the point where the new beam radius w(z) is being evaluated. 

Since the incident beam is a Gaussian beam, therefore the power captured by the thin lens has an 

error function distribution as shown in Fig. B.1.22 The calculated P of 2% for a w1=1mm, n=1, 

z=1 km, D=10 cm and λ=1550 nm is verified using Matlab.23 Figure B.1 shows the encircled 

power in a Gaussian beam as a function of the normalized radius of the thin lens. The thin lens 

radius r is normalized with respect to the incident beam 
2

1
e

 radius w. It can be seen that 86% of 

the incident power lies inside a circle of radius r=w, where w is the 
2

1
e

 beam radius. Also, one 

can notice that to capture about 99% or more of the power in the incident beam the receiving thin 

lens needs a radius r≥1.5w. Moreover, in case if the receiving lens radius is smaller than the 
2

1
e
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beam radius w, the encircled power in the beam can be calculated by the above relation.33 Here 

we have neglected the relative angular orientation of the incident beam with respect to the thin 

lens surface and have also assumed that the propagation axis of the beam is collinear with the 

surface normal of the lens at it’s center. Hence in practice, the loss will also depend upon the 

relative shift as well as the angular tilt between the aforementioned two parameters. 
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Fig. B.1. Encircled Power in a Gaussian beam as a function of the normalized radius of the thin 

lens. The thin lens radius r is normalized with respect to the incident beam 2
1

e  radius w. 
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PT Cr <20 N 113 is  1 

Dielectrics Δε  +17.3  1 

Optics Δn  +0.2860  1 

use for reflective displays  1 

PT Cr -15 S <-20 N 113 is  2 

η  71 cSt, T=20°C  2 

Dielectrics Δε  +17.3  2 

Dielectrics ε||  22.8  2 

Optics Δn  +0.2860  2 

Optics no  1.5300  2 

V(10.0.20)  1.77  2 

V(90.0.20)  2.42  2 

Elastics k11  17.90 E-12 N, T=20°C  2 

Elastics k33  33.50 E-12 N, T=20°C  2 

Elastics k33/k11  1.87, T=20°C  2 

self-assembled gels, + AG1  3 

non classified properties  4 

non classified properties  5 

non classified properties  6 
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