713 research outputs found

    Multivariate assessment of linear and non-linear causal coupling pathways within the central-autonomic-network in patients suffering from schizophrenia

    Get PDF
    Im Bereich der Zeitreihenanalyse richtet sich das Interesse zunehmend darauf, wie Einblicke in die Interaktions- und Regulationsprozesse von pathophysiologischen- und physiologischen ZustĂ€nden erlangt werden können. Neuste Fortschritte in der nichtlinearen Dynamik, der Informationstheorie und der Netzwerktheorie liefern dabei fundiertes Wissen ĂŒber Kopplungswege innerhalb (patho)physiologischer (Sub)Systeme. Kopplungsanalysen zielen darauf ab, ein besseres VerstĂ€ndnis dafĂŒr zu erlangen, wie die verschiedenen integrierten regulatorischen (Sub)Systeme mit ihren komplexen Strukturen und Regulationsmechanismen das globale Verhalten und die unterschiedlichen physiologischen Funktionen auf der Ebene des Organismus beschreiben. Insbesondere die Erfassung und Quantifizierung der KopplungsstĂ€rke und -richtung sind wesentliche Aspekte fĂŒr ein detaillierteres VerstĂ€ndnis physiologischer Regulationsprozesse. Ziel dieser Arbeit war die Charakterisierung kurzfristiger unmittelbarer zentral-autonomer Kopplungspfade (top-to-bottom und bottom to top) durch die Kopplungsanalysen der Herzfrequenz, des systolischen Blutdrucks, der Atmung und zentraler AktivitĂ€t (EEG) bei schizophrenen Patienten und Gesunden. DafĂŒr wurden in dieser Arbeit neue multivariate kausale und nicht-kausale, lineare und nicht-lineare Kopplungsanalyseverfahren (HRJSD, mHRJSD, NSTPDC) entwickelt, die in der Lage sind, die KopplungsstĂ€rke und -richtung, sowie deterministische regulatorische Kopplungsmuster innerhalb des zentralen-autonomen Netzwerks zu quantifizieren und zu klassifizieren. Diese Kopplungsanalyseverfahren haben ihre eigenen Besonderheiten, die sie einzigartig machen, auch im Vergleich zu etablierten Kopplungsverfahren. Sie erweitern das Spektrum neuartiger KopplungsansĂ€tze fĂŒr die Biosignalanalyse und tragen auf ihre Weise zur Gewinnung detaillierter Informationen und damit zu einer verbesserten Diagnostik/Therapie bei. Die Hauptergebnisse dieser Arbeit zeigen signifikant schwĂ€chere nichtlineare zentral-kardiovaskulĂ€re und zentral-kardiorespiratorische Kopplungswege und einen signifikant stĂ€rkeren linearen zentralen Informationsfluss in Richtung des Herzkreislaufsystems auf, sowie einen signifikant stĂ€rkeren linearen respiratorischen Informationsfluss in Richtung des zentralen Nervensystems in der Schizophrenie im Vergleich zu Gesunden. Die detaillierten Erkenntnisse darĂŒber, wie die verschiedenen zentral-autonomen Netzwerke mit paranoider Schizophrenie assoziiert sind, können zu einem besseren VerstĂ€ndnis darĂŒber fĂŒhren, wie zentrale Aktivierung und autonome Reaktionen und/oder Aktivierung in physiologischen Netzwerken unter pathophysiologischen Bedingungen zusammenhĂ€ngen.In the field of time series analysis, increasing interest focuses on insights gained how the coupling pathways of regulatory mechanisms work in healthy and ill states. Recent advances in non-linear dynamics, information theory and network theory lead to a new sophisticated body of knowledge about coupling pathways within (patho)physiological (sub)systems. Coupling analyses aim to provide a better understanding of how the different integrated physiological (sub)systems, with their complex structures and regulatory mechanisms, describe the global behaviour and distinct physiological functions at the organism level. In particular, the detection and quantification of the coupling strength and direction are important aspects for a more detailed understanding of physiological regulatory processes. This thesis aimed to characterize short-term instantaneous central-autonomic-network coupling pathways (top-to-bottom and bottom to top) by analysing the coupling of heart rate, systolic blood pressure, respiration and central activity (EEG) in schizophrenic patients and healthy participants. Therefore, new multivariate causal and non-causal linear and non-linear coupling approaches (HRJSD, mHRJSD, NSTPDC) that are able to determine the coupling strength and direction were developed. Whereby, the HRJSD and mHRJSD approaches allow the quantification and classification of deterministic regulatory coupling patterns within and between the cardiovascular- the cardiorespiratory system and the central-autonomic-network were developed. These coupling approaches have their own unique features, even as compared to well-established coupling approaches. They expand the spectrum of novel coupling approaches for biosignal analysis and thus contribute in their own way to detailed information obtained, and thereby contribute to improved diagnostics/therapy. The main findings of this thesis revealed significantly weaker non-linear central-cardiovascular and central-cardiorespiratory coupling pathways, and significantly stronger linear central information flow in the direction of the cardiac- and vascular system, and a significantly stronger linear respiratory information transfer towards the central nervous system in schizophrenia in comparison to healthy participants. This thesis provides an enhanced understanding of the interrelationship of central and autonomic regulatory mechanisms in schizophrenia. The detailed findings on how variously-pronounced, central-autonomic-network pathways are associated with paranoid schizophrenia may enable a better understanding on how central activation and autonomic responses and/or activation are connected in physiology networks under pathophysiological conditions

    Bits from Biology for Computational Intelligence

    Get PDF
    Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems

    Baroreflex Coupling Assessed by Cross-Compression Entropy

    Get PDF
    Estimating interactions between physiological systems is an important challenge in modern biomedical research. Here, we explore a new concept for quantifying information common in two time series by cross-compressibility. Cross-compression entropy (CCE) exploits the ZIP data compression algorithm extended to bivariate data analysis. First, time series are transformed into symbol vectors. Symbols of the target time series are coded by the symbols of the source series. Uncoupled and linearly coupled surrogates were derived from cardiovascular recordings of 36 healthy controls obtained during rest to demonstrate suitability of this method for assessing physiological coupling. CCE at rest was compared to that of isometric handgrip exercise. Finally, spontaneous baroreflex interaction assessed by CCEBRS was compared between 21 patients suffering from acute schizophrenia and 21 matched controls. The CCEBRS of original time series was significantly higher than in uncoupled surrogates in 89% of the subjects and higher than in linearly coupled surrogates in 47% of the subjects. Handgrip exercise led to sympathetic activation and vagal inhibition accompanied by reduced baroreflex sensitivity. CCEBRS decreased from 0.553 ± 0.030 at rest to 0.514 ± 0.035 during exercise (p < 0.001). In acute schizophrenia, heart rate, and blood pressure were elevated. Heart rate variability indicated a change of sympathovagal balance. The CCEBRS of patients with schizophrenia was reduced compared to healthy controls (0.546 ± 0.042 vs. 0.507 ± 0.046, p < 0.01) and revealed a decrease of blood pressure influence on heart rate in patients with schizophrenia. Our results indicate that CCE is suitable for the investigation of linear and non-linear coupling in cardiovascular time series. CCE can quantify causal interactions in short, noisy and non-stationary physiological time series

    Joint symbolic dynamics for the assessment of cardiovascular and cardiorespiratory interactions

    Get PDF
    Beat-to-beat variations in heart period provide information on cardiovascular control and are closely linked to variations in arterial pressure and respiration. Joint symbolic analysis of heart period, systolic arterial pressure and respiration allows for a simple description of their shared short-term dynamics that are governed by cardiac baroreflex control and cardiorespiratory coupling. In this review, we discuss methodology and research applications. Studies suggest that analysis of joint symbolic dynamics provides a powerful tool for identifying physiological and pathophysiological changes in cardiovascular and cardiorespiratory control.Mathias Baumert, Michal Javorka and Muammar Kabi

    Efficient transfer entropy analysis of non-stationary neural time series

    Full text link
    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these observations, available estimators assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that deals with the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method. We test the performance and robustness of our implementation on data from simulated stochastic processes and demonstrate the method's applicability to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscientific data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and artificial systems.Comment: 27 pages, 7 figures, submitted to PLOS ON

    Alterations in Maternal–Fetal Heart Rate Coupling Strength and Directions in Abnormal Fetuses

    Get PDF
    Because fetal gas exchange takes place via the maternal placenta, there has been growing interests in investigating the patterns and directions of maternal-fetal cardiac coupling to better understand the mechanisms of placental gas transfer. We recently reported the evidence of short-term maternal–fetal cardiac couplings in normal fetuses by using Normalized Short Time Partial Directed Coherence (NSTPDC) technique. Our results have shown weakening of coupling from fetal heart rate to maternal heart rate as the fetal development progresses while the influence from maternal to fetal heart rate coupling behaves oppositely as it shows increasing coupling strength that reaches its maximum at mid gestation. The aim of this study is to test if maternal-fetal coupling patterns change in various types of abnormal cases of pregnancies. We applied NSTPDC on simultaneously recorded fetal and maternal beat-by-beat heart rates collected from fetal and maternal ECG signals of 66 normal and 19 abnormal pregnancies. NSTPDC fetal-to-maternal coupling analyses revealed significant differences between the normal and abnormal cases (normal: normalized factor (NF) = −0.21 ± 0.85, fetus-to-mother coupling area (A_fBBI→ mBBI) = 0.44 ± 0.13, mother-to-fetus coupling area (A_mBBI→ fBBI) = 0.46 ± 0.12; abnormal: NF = −1.66 ± 0.77, A_fBBI→ mBBI = 0.08 ± 0.12, A_mBBI→ fBBI = 0.66 ± 0.24; p < 0.01). In conclusion, maternal-fetal cardiac coupling strength and direction and their associations with regulatory mechanisms (patterns) of developing autonomic nervous system function could be novel clinical markers of healthy prenatal development and its deviation. However, further research is required on larger samples of abnormal cases

    Time-varying information measures: an adaptive estimation of information storage with application to brain-heart interactions

    Get PDF
    Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system. To address this limitation, we propose a time-varying approach based on the recursive least squares algorithm (RLS) for estimating IS at each time instant, in non-stationary conditions. We tested this approach in simulated time-varying dynamics and in the analysis of electroencephalographic (EEG) signals recorded from healthy volunteers and timed with the heartbeat to investigate brain-heart interactions. In simulations, we show that the proposed approach allows to track both abrupt and slow changes in the information stored in a physiological system. These changes are reflected in its evolution and variability over time. The analysis of brain-heart interactions reveals marked differences across the cardiac cycle phases of the variability of the time-varying IS. On the other hand, the average IS values exhibit a weak modulation over parieto-occiptal areas of the scalp. Our study highlights the importance of developing more advanced methods for measuring IS that account for non-stationarity in physiological systems. The proposed time-varying approach based on RLS represents a useful tool for identifying spatio-temporal dynamics within the neurocardiac system and can contribute to the understanding of brain-heart interactions

    Toward stronger theory in critical public health: Insights from debates surrounding posthumanism

    Get PDF
    The “posthumanist turn” in critical theory comprises efforts to recognize and analyze the interdependence of human existence with non-human entities, including other animals, spaces, and technologies. Scholarship aligned to and debating posthumanism pertains to public health, but has yet to be clearly articulated for a public health audience. This commentary and an appended glossary illustrate the relevance of these ideas for enhancing critical theory in public health. Keywords: Social Sciences, Humanities, Technology, Animals, Public HealthCanadian Institutes of Health Researc
    • 

    corecore