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Beat-to-beat variations in heart period provide
information on cardiovascular control and are
closely linked to variations in arterial pressure and
respiration. Joint symbolic analysis of heart period,
systolic arterial pressure and respiration allows
for a simple description of their shared short-term
dynamics that are governed by cardiac baroreflex
control and cardiorespiratory coupling. In this review,
we discuss methodology and research applications.
Studies suggest that analysis of joint symbolic
dynamics provides a powerful tool for identifying
physiological and pathophysiological changes in
cardiovascular and cardiorespiratory control.

1. Introduction

The cardiovascular and respiratory systems are crucial
for maintaining blood perfusion and oxygenation of
human body tissues. Their parameters are intricately
controlled to correspond to the changes in the metabolic
demand. This is achieved by a complex network of
receptors, afferent pathways, integration of sensory
input and efferent hormonal and neural pathways [1].
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Observation of cardiovascular and respiratory variables and their interplay allows inferring
information on underlying control mechanisms [2].

A significant amount of research has been dedicated to the processing of cardiovascular and
respiratory signals to derive clinically meaningful markers of dysfunction in their control systems.
In particular, beat-to-beat time series of heart period (i.e. RR interval in the electrocardiogram;
ECG), systolic arterial pressure (SAP) and respiratory rate or phase, respectively, have been
studied extensively. In most of those studies, linear shift-invariant systems approaches have
been adopted to measure the relationship between signals, and time- and frequency-domain
representations were chosen to characterize signals and underlying control systems [3]. While
these models have yielded important findings across a large number of studies [4,5], the
inherent nonlinearity of biological systems imposes significant limitations and often proved them
inadequate for characterizing complex dynamics [6,7]. Consequently, alternative approaches have
been proposed that capture nonlinear features [8].

Symbolic dynamics is a powerful nonlinear approach that involves coarse-graining of
observed time series into sequences of symbols (‘words’) by partitioning the system’s phase space
into few symbols and capturing the system’s trajectory. Although detailed information is lost in
the process, significant patterns emerge that can be used to quantify system dynamics. Symbolic
dynamics has been extensively explored to characterize dynamics in RR interval time series in
health and disease, and its relevance in the field of heart rate variability (HRV) research has
been firmly established [9,10]. In humans, the percentage of specific symbolic patterns follows
the gradual sympathetic activation and vagal withdrawal induced by graded head-up tilt test
[11] and the circadian rhythm of autonomic function [12]. Different symbolization strategies for
HRV analysis have been discussed elsewhere [13].

Extending the framework of univariate symbolic dynamics, analysis of joint symbolic
dynamics (JSD) has been proposed for the study of interactions between cardiovascular
variables over a decade ago [14]. Based on the original works of symbolic dynamics for HRV
analysis, multivariate data are individually coarse-grained into symbol sequences and their
joint occurrences are quantified [14-16]. By incorporating a-priori knowledge about underlying
physiological processes in the coarse-graining procedure, a simple yet effective description of
clinically relevant phenomena is achieved.

(a) Joint dynamics of blood pressure and heart rate

Under normal resting conditions, heart period and SAP time series display closely related
dynamics, and their behaviour is jointly studied to infer information on cardiovascular control
[17]. RR and SAP influence each other in a closed-loop fashion. Heart rate (HR) drives blood
pressure via haemodynamic effects, while SAP provides feedback to HR via the cardiac baroreflex
that maintains short-term control of blood pressure by modulating the sinoatrial node activity via
the vagal and sympathetic pathways [17]. Drops in SAP are counterbalanced by shortening of
RR, while increase in SAP results in a prolongation of RR. The responsiveness of HR to blood
pressure changes is measured by various indices of the so-called baroreflex sensitivity (BRS)
that relate the magnitude of change in RR to the magnitude of change in SAP. Traditionally,
pharmacological intervention has been carried out to provoke cardiac baroreflex responses, while
alternative approaches aim to measure baroreflex function based on spontaneous fluctuations
in SAP, i.e. ‘spontaneous BRS’. Advantages and disadvantages of both approaches have been
discussed elsewhere [18].

Traditional quantification of the SAP-RR relationship is based on cross-power spectral analysis
that allows one to estimate gain and phase relationships between SAP and RR. A commonly
used method to estimate BRS involves computing the square-root of the power ratio of SAP and
RR evaluated in the high- and low-frequency ranges where the squared coherence function is
larger than 0.5 (alpha index). In the time domain, short sequences of decreasing SAP paralleled
by decreasing RR and vice versa are used to estimate the slope as a measure of BRS (‘sequence
method”) [19]. More recent approaches for baroreflex assessment are based on Granger causality
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and allow disentangling feedforward from feedback directions, using multivariate autoregressive
models [3] or conditional entropy-based estimation of information transfer between RR and
SAP time series [20]. Additionally, these methods are able to measure a degree of signals’
synchronization in both directions separately.

From a clinical point of view, BRS assessment is of importance, since reduced BRS has been
associated with reduced cardiovascular fitness and increased cardiac morbidity and mortality
[21]. In trials involving patients after acute myocardial infarction, reduced BRS was shown to be
predictive of sudden cardiac death [22].

(b) Joint dynamics of respiration and heart rate

The association between cardiac and respiratory rhythms has long been recognized [23-25]
and comprises three different phenomena. Firstly, respiratory sinus arrhythmia (RSA) [26] is
characterized by cyclic oscillation of HR, with acceleration during the inspiratory phase and
deceleration during expiration [27]. RSA is vagally mediated, with inputs to cardiac vagal
neurons both from the central pattern generator [28] and from peripheral receptors [29]. Secondly,
cardiorespiratory phase coordination or synchronization, respectively, is another phenomenon
that was initially described as short intermittent periods [23,30,31] during which the phases
of cardiac and respiratory cycle coincide with different integer ratios known as phase locking
ratios [24,25,32]. Rodent studies suggest that phase synchronization/coordination is mediated
by excitatory effects from arterial baroreceptors to the central respiratory pattern generator [33].
Finally, cardioventilatory coupling (CVC) is another phenomenon that specifically refers to the
influence of timing of breathing on cardiac activity [34-36]. CVC is illustrated by temporary
alignment between the R waves of the ECG and inspiratory onsets, using the R-peak to inspiratory
onset interval plot. During anaesthesia, heart beats and inspiratory onsets are aligned such that
they are maximally affected by vagal modulation of RSA, implying common physiological roles
and a significant relationship between CVC and RSA [37]. The physiological significance of
various aspects of cardiorespiratory interaction is yet to be elucidated. From a clinical point of
view, the quantification of cardiorespiratory interaction seems to have merit for risk stratification
of cardiac mortality [38—41], and diagnosing the obstructive sleep apnoea syndrome [42-44].

2. Methods

Conceptually, symbolic dynamics refers to partitioning a system’s phase space into a discrete
set of symbols. The trajectory of a system is consequently expressed as a sequence of symbols
(‘words’), where the length of the sequence is directly related to the dimension of the
phase space. Using Taken’s embedding theorem [45], the phase space of a system can be
reconstructed by delayed embedding of an observed variable of the system. Delayed phase-
space embedding requires knowledge of the system’s dimensionality as well as correlation
within the time series and, unless a-priori knowledge about the system exists, estimating these
properties from observed data. Although tools for estimating dimensionality and correlation
exist, phase-space reconstruction using biomedical signals has proved challenging [46]. Symbolic
analysis of cardiovascular and cardiorespiratory dynamics therefore usually adopts a rather
pragmatic approach, where symbolization and dimension (i.e. word length) are defined based on
a-priori knowledge about the system, features of interest and the amount of available data. Joint
analysis of symbolic dynamics requires additional consideration of potential phase lag between
time series.

(@) Symbol transformation

Owing to the limited amount of beat-to-beat cardiovascular and cardiorespiratory data that can
be recorded for most experimental conditions, symbolization of time series has been restricted to
binary and tertiary schemes.
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(i) Binary symbolization

Binary symbolization has been adopted to encode beat-to-beat changes in bivariate time series
Z=A{[xn,yn]"}u=01,., X,y €R, into a bivariate symbol sequence S = {[a,,bn]"}=01,..,4,b€0,1,
using the transformation rules [14]:

0: — >0 0: — >0
oy — (xn — Xpg1) > and by — Wn — Yns1) = 2.1)

1:(xn — x441) <0 1:(yn — Yus1) <O.

Thus, the embedding delay is one. Binary symbolization provides a very compact representation
of variability in the time series that captures ordering of beat-to-beat increases and decreases,
respectively, but is sensitive to noise and biased towards symbol ‘0", which includes zero beat-
to-beat changes. Assuming that data have been recorded with high amplitude resolution, the
bias might be considered negligible. Alternatively, a non-zero threshold may be included in the
symbol transformation, but this effectively excludes some data from the symbolization into S.

(ii) Tertiary symbolization

Tertiary symbolization is given by the following rules:

0:(xy —xpt+1) > Iy 0:(n —ynsr1) >y
an=31:(xy —xp41) <=L and bu=11:(yn — Yus1) <1y (2.2)
2 : otherwise 2 : otherwise.

These add an additional element to the set of S. This allows distinguishing high beat-to-beat
variability beyond defined threshold values I, and I, from small changes that might be within the
noise floor.

Tertiary symbolization increases the resolution of the symbolic representation of dynamics, but
this comes at the expense of word length or constraints with respect to word types if significantly
more data are not available.

(b) Word formation

From the bivariate symbol sequence S, short sequences A and B of length k “‘words’ are formed by
using a sliding window approach, where A =[a,,, 2,41, ..., 8y4k—1] and B =[by, by11, ..., bygi—1]-
Leaving aside theoretical concerns regarding the dimension of the system/phase space, the length
of words is based purely on statistical considerations, i.e. the amount of available data. Word
lengths k = 3 have been predominantly used in the literature [14].

Considering the binary symbolization scheme, words of length three result in 64 different
word types (2% -23 =64), which provide a statistically sufficient representation of dynamics
within 30 min recordings of beat-to-beat data on cardiovascular or cardiorespiratory variables.
Thus, this approach is able to map the dynamics within four consecutive heartbeats (i.e. three
RR intervals). From the perspective of phase-space reconstruction, this corresponds to a three-
dimensional embedding, which should be considered a pragmatic solution rather than a true
reconstruction of the system’s trajectory, but covers the physiologically important time scale of
respiratory dynamics. In resting conditions, one respiratory cycle roughly covers four cardiac
cycles. The relative frequency of each of the 8 x 8 combinations of binary symbolic sequences
A and B obtained from the bivariate time series Z can be written as a word distribution
matrix W [14]:

Apoo,Booo -+ Aooo, B111
W= : : . (2.3)

A111,Booo -+ A1, Bin
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Considering the tertiary symbolization scheme and k=3, 33 x 33 =729 combinations of
sequences results in a 27 x 27 word distribution matrix W [47]:

Agoo, Booo -+ Aogoo, Baz2
W= : : . (2.4)

A2, Booo -+ A, Box

Since 30 min recordings do not yield a statistically robust representation of word types, constraints
need to be made as to how W is assessed.

(i) Accounting for phase shifts between bivariate processes

Although any phase shift between bivariate processes would naturally be reflected in the relative
frequency of word types, including a-priori knowledge into the temporal alignment between the
two processes may yield more meaningful results, in particular because the length of words
is rather limited and no true phase-space embedding is realized. An approach for the explicit
analysis of time delays between processes in JSD is outlined in §2e.

() Joint symbolic analysis for quantifying heart rate and systolic blood
pressure dynamics

Most studies have employed binary symbolization for the joint analysis of RR and SAP dynamics.
Symbolic representations of beat-to-beat changes in RR interval and SAP are aligned such that a
change in SAP affects the subsequent RR interval (figure 1). This provides an effective embedding
of baroreflex-related RR dynamics.

In addition to assessing the relative frequency of all 64 word types contained in W, three indices
may be obtained to characterize JSD:

— JSDsym = Z?:k:l Wik, representing symmetric word types,
— JSDdiam = Z?:k:l Wi 9, representing diametric word types and
— JSDshannon = — Z?,k:l Wik log, Wi, the Shannon entropy of W.

JSDsym represents the relative frequency of baroreflex-like word types, while JSDdiam represents
the relative frequency of patterns that are opposed to baroreflex behaviour. JSDshannon quantifies
the overall distribution of word occurrences and therefore provides a general index of complexity
of joint RR and SAP dynamics.

Using a tertiary symbolization approach, a set of indices has been proposed to assess JSD
of HR and blood pressure that include zero-variation-in-symbol word types, one-variation-
in-symbol word types and alternating symbol sequences [48]. Systematic investigations of
appropriate thresholds for tertiary symbolization of RR and SAP dynamics are still lacking.
Until then, standard thresholds used for the sequence method of BRS analysis might be
applied, where RR changes greater than 5ms and SAP changes greater than 1mmHg are
considered [19].

(d) Joint symbolic analysis for quantifying heart rate and respiration dynamics

Initial studies of respiratory and RR dynamics using joint symbolic analysis adopted binary
symbol encoding [49]. Since cardiac cycle and respiratory cycle operate at different frequencies,
RR and respiratory interval time series were interpolated at 1, 2 or 4 Hz to obtain equidistant time
series. Relative frequencies of word types were used to characterize JSD.
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Figure 1. Schematic representation of the joint symbolic analysis of RR interval (RR) and systolic arterial pressure (SAP)
dynamics, using a binary symbolization procedure. Beat-to-beat changesin RR and SAP obtained from ECG and continuous blood
pressure recordings are transformed to sequences of ‘1" and ‘0; encoding increases and decreases (or no change), respectively.
Words comprising three symbols are subsequently formed and their relative frequency assessed. (Online version in colour.)

Kabir et al. proposed a tertiary symbolization scheme and quantified the relative frequency
of word types, capturing RSA patterns and thereby adding physiological a-priori knowledge to
the analysis [47]. To address the issue of different frequencies between cardiac and respiratory
oscillators, Hilbert transformation was introduced to obtain the instantaneous respiratory phase
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(RP) sampled at the R peak in ECG, yielding beat-to-beat symbol sequences of changes in RR
interval and respiratory phase. For a discrete signal x,, with N samples, the Hilbert transform is
defined as

N-1
R 1 N
H(x[n]) =3[n] = — Y X[kl @"/N), ke {0,N -1}, (2.5)
N
k=0
where for even N,
—iX[kl, k= {1% - 1}
X(k) =
© , N
iX[kl, k= {5 +1,N— 1},

where j=+/—1 and X[k] = N—1 x[n]e 7k@t/N) ke {0,N — 1}, is the discrete Fourier transform.

n=0
Here, the DC and Nyquist components are excluded (for k=0 and k= N/2). If N is odd,
S, k{15
X = N+1
XK, k= {T+,N— 1} .

Here, the constant component is excluded.

To account for a potential delay between respiratory phase (¢r(m); m=1,2,3,..., M, where M
is the number of samples) and change in RR interval (rr(i); i=1,2,3,...,1, where I is the number
of RR intervals), the RR time series is shifted with respect to RP in the positive and negative
directions such that the correlation between the two sequences is maximized, as determined by
the angular-linear correlation coefficient, rRP [50]:

2 2
5 + se — 2VRCYRST
RP — J rC T Rs RCTRS CS/ 2.6)

2
1—rCS

which quantifies association between a linear and an angular variable, where rrc = c(rr(i + 1),
cos ¢y(m;)), rrs = c(rr(i + 1), sin¢,(m;)), rcs = c(cos ¢r(m;), sinp,(m;)) and t represents the RR
intervals” delay in beats, ¢,(m;) represents the respiratory phases at ith R peaks and c(u,v)
the Pearson correlation coefficient between two variables 1 and v. The delays are limited to
T=-6,-5,...,0,...,+5,+6 beats, where the negative delays refer to shifting the RR time series
by negative t with respect to the respiratory phase.

Symbolization of r and rp is carried out using the following rules:

0:(rysr — Myyrt1) > Ly 0: (|7’Pn| - |VPn+1|) <0
an=41:("ntr — 1ppeq1) < —lx and by =1{1:(/rpul — Irpns1]) >0 (2.7)
2 : otherwise 2 : otherwise.

A suitable value threshold value I, for RR symbolization is 6 ms [47].

(e) Joint symbolic dynamics for assessing delay and directionality in interaction between
time series

The assessment of JSDsym and JSDdiam values as a function of time delay t between time series
x and y has been proposed to assess directionality and delay in interaction between processes [51].
Using the binary symbolization scheme (equation (2.1)) and allowing for variable delay t for the
calculation of b,;, the transformation rules become:

oy = 1:( —x441) 20 and by = 1: Wit — Yntr41) =0 28)

0:(xn —xp41) <0 0: (Ynte — Ynsrt1) <O.
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The embedding delay is one and the word distribution matrix W is computed for k = 3 as defined
above (equation (2.3)). Subsequently, the proportion of words in diagonals of W, i.e. JSDsym and
JSDdiam, are computed as a function of . The difference AT in the relative frequency of J[SDsym
and JSDdiam is used to identify directionality and delay in coupling between x and y:

AT(r)=]JSDsym(r) — JSDdiam(z). (2.9)

These so-called symbolic coupling traces were shown to effectively separate feedback and feed-
forward coupling between RR intervals and SAP [51].

3. Joint symbolic analysis of heart rate, blood pressure and respiration
in physiology and pathophysiology

(a) Autonomic function testing

High sensitivity of JSD approaches for quantifying cardiovascular and cardiorespiratory
responsiveness to different stress paradigms has been established [52-54]. JSD of RR and SAP
show an increase in symmetric baroreflex-like patterns in healthy athletes after postural change
from the supine position to active standing (figure 2). Analysis of supine resting RR and
SAP dynamics in normal subjects with the symbolic coupling traces method has demonstrated
bidirectional coupling with mechanical feedforward direction from RR to SAP at zero lag and
baroreflex-related feedback with a delay [56].

Symbolic analysis of cardiorespiratory interaction has helped to document decoupling of RR
dynamics from the respiratory phase during orthostatic provocation through active standing as
well as during 60° head-up tilt test [47]. Figure 2 shows a decrease in symmetric word types
during active standing in healthy athletes, indicative of reduced cardiorespiratory interaction
during standing. Joint symbolic analysis of RR, SAP with respect to the respiratory phase showed
baroreflex-type RR and SAP dynamics alignment with the respiratory phase during rest in the
supine position, but dissociation from respiratory phase during active standing [52,53].

During mental and emotional stress, elicited using the Mannheim multicomponent stress test,
an increase in the Shannon entropy of JSD of respiration and RR interval was reported [54]. In
rats, mild emotional stress induced by air-jet stress led to a reduction in J[SDsym of HR and SAP
[57]. Symbolic indices of joint RR and SAP dynamics were shown to correlate with pupillary light
reflex [58].

In conscious rats, aj-adrenergic receptor blockade, p-adrenergic receptor blockade and
muscarinic receptor blockade all reduced JSDsym, whereas B-adrenergic receptor blockade
increased JSDdiam and muscarinic blockade reduced JSDshannon, demonstrating that joint
symbolic analysis of RR and SAP dynamics is sensitive to changes in vagal and sympathetic
cardiac activity and sympathetically driven vascular changes [59].

Joint symbolic analysis of RR and SAP during intermittent hypoxia showed reduced
interaction in a piglet model of neonatal normocapnic hypoxia while symbolic analysis of RR and
respiratory interval time series displayed reduced coupling during reoxygenation, suggesting
differentiated responsiveness of cardiorespiratory and cardiovascular control mechanisms to
hypoxia [60].

(b) Ageing

Joint symbolic analysis of HR and SAP dynamics in adults has shown an age-related decoupling
of HR from blood pressure as indicated by a reduction in JSDsym that is paralleled by a
tendency of JSDdiam to increase [61]. Cardiorespiratory interaction analysis, using JSD, further
demonstrated decoupling of HR dynamics from the respiratory phase in elderly subjects
[62]. Together, these findings suggest less effective and disconnected cardiovascular control in
the elderly.
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Figure 2. Word distribution matrices of cardiorespiratory (left column) and cardiovascular (right column) symbolic dynamics
during rest in the supine position (a) and during standing (b) as well as relative frequency of symmetric and diametric
word types across both conditions (c). Data were obtained from 10 healthy athletes (five males/five females). Details have
been published elsewhere [55]. It is observed that cardiorespiratory interaction, as quantified by the relative frequency of
symmetric word types (JSDsym), decreases upon standing, while the frequency of diametric word types (JSDdiam) increases.
By contrast, the relative frequency of JSDsym in joint analysis of HR and SAP increases, while the frequency of JSDdiam word
types decreases, which indicates increased baroreflex activity upon standing. Student’s t-test results are indicated as follows:
*p < 0.05,"*p < 0.01,**p < 0.001, *p < 0.0001. (Online version in colour.)
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(c) Normal sleep and pathology

Several studies have highlighted the effectiveness of JSD approaches to detect changes in
autonomic activity during sleep and disturbances caused by sleep disordered breathing. Joint
symbolic analysis of RR interval and respiratory interval showed differences in cardiorespiratory
dynamics in preterm infants during active versus quiet sleep [63]. In healthy children,
symbolic analysis of RR interval and respiratory phase has shown sleep stage-specific dynamics
with increased cardiorespiratory interaction during slow wave sleep [64]. Cardiorespiratory
interaction in these children was shown to increase acutely after spontaneous arousal from stage
2 sleep [65]. Symbolic analysis of RR and SAP dynamics suggest sleep stage-specific blood
pressure control in normal adult subjects and significant changes in patients with obstructive
sleep apnoea syndrome [66]. In adult patients with moderate to severe obstructive sleep apnoea
syndrome, coupling between RR and respiratory phase was reduced [67] and was highest during
slow wave sleep [67,68]. Continuous positive airway pressure therapy resulted in normalization
of joint symbolic RR and SAP dynamics during daytime in patients with obstructive sleep
apnoea syndrome [69].

(d) Pregnancy

Pregnancy is associated with substantial changes to the cardiovascular system, which can be
quantified using JSD techniques. During normal pregnancy, HR and SAP word distribution
was more complex than in non-pregnant women, suggesting reduced baroreflex activity [14].
In pregnancy-induced hypertension, baroreflex activity appears to be reduced even further as
indicated by reduced JSDsym and increased JSDdiam word frequencies and JSDshannon [70].
The JSD word distribution matrix also demonstrated differences in pregnancies with chronic
hypertension compared with normal pregnancies [71]. Joint symbolic analysis of RR and SAP
may indeed be useful for distinguishing preeclampsia from other hypertensive conditions, i.e.
pregnancy-induced hypertension and pregnancy with chronic hypertension [72].

(e) Mental/neurological disorders

Mental and neurological disorders may adversely affect cardiovascular and cardiorespiratory
control. Symbolic analysis of RR interval and respiratory phase identified a loss of
cardiorespiratory coupling in patients with Parkinson’s disease [73]. Joint symbolic analysis of
RR and SAP was able to identify impaired cardiovascular control in patients with sensorineural
hearing loss [74].

In unmedicated patients with major depressive disorder, JSDsym of RR and SAP dynamics
was reduced while JSDdiam and JSDshannon were increased, suggestive of impaired short-
term blood pressure control. [75]. Similarly, JSDsym was reduced in medicated patients
with major depressive disorder, where patients receiving treatment with serotonin and
noradrenaline reuptake inhibitors had lower JSDsym values than patients who were on selective
serotonin reuptake inhibitors [76]. This suggests that JSD approaches are able to differentiate
effects of antidepressive medication on cardiovascular control.

HR and SAP time series of patients with acute schizophrenia showed reduced JSDsym,
increased JSDdiam and JSDshannon, indicative of impaired baroreflex control [77,78]. Differences
in the RR and SAP word distribution matrix were also observed between schizophrenic
patients, their first degree relatives and normal subjects [79]. Similarly, joint symbolic analysis
of respiratory interval and RR interval time series showed increased complexity in patients with
schizophrenia [77] and first degree relatives [54] compared with normal subjects. Joint symbolic
analysis of RR and SAP based on tertiary transformation suggests impaired blood pressure
control of schizophrenic patients compared with normal subjects, and revealed differences
between treated and unmedicated schizophrenic patients, pointing towards medication effects
on blood pressure control [48]. JSDdiam was increased in alcoholics after acute alcohol
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withdrawal and captures the impact of alcohol withdrawal on autonomic nervous system
activity [80].

(f) Cardiovascular diseases

In patients with idiopathic dilated cardiomyopathy, word type distribution of HR and SAP
dynamics changed from a predominance of baroreflex patterns towards patterns of alternating
RR and SAP (i.e. increase-decrease-increase patterns or decrease-increase-decrease patterns)
compared to normal subjects, demonstrating impairment in haemodynamic cardiac function
[81]. Short-term detrended fluctuation analysis of joint symbolic time series, which provides a
measure of long-range correlations, showed a reduction in correlation RR and SAP dynamics
in patients with dilated cardiomyopathy compared with normal subjects and indicates a loss of
blood pressure control [15]. Changes in the word distribution matrix of RR and SAP dynamics
were also observed in patients with persistent atrial fibrillation, who underwent cardioversion to
establish sinus rhythm [82]. Here, JSD was predictive of atrial fibrillation recurrence.

(g) Other conditions

In young patients with type 1 diabetes mellitus, joint symbolic analysis of RR and SAP dynamics
showed preserved baroreflex function [83]. Joint symbolic analysis of RR and respiratory rate time
series has been employed to predict outcomes in ventilated patients that underwent weaning
trials [49,84-86].

(h) Relationship between joint symbolic dynamics and other indices

Relatively few investigations have been carried out relating indices derived from symbolic
dynamics to more established measures of cardiovascular and cardiorespiratory variability.
The index JSDsym was shown to be moderately correlated with BRS, as estimated with the
sequence method in normal subjects and patients with dilated cardiomyopathy, while JSDdiam
showed inverse correlations [15]. In pregnant women and women with pregnancy-induced
hypertension, JSDsym was correlated with sequence method based baroreflex indices and
JSDshannon displayed inverse correlations [70]. Cardiorespiratory interaction in normal subjects
assessed by joint symbolic RR and respiratory phase dynamics was more sensitive to postural
change than phase averaged RSA [47].

4. Summary

Joint symbolic analysis of cardiovascular and cardiorespiratory dynamics provides a simple
yet effective approach to characterize the interaction and control of HR, blood pressure
and respiration. It can be considered a complementary method to the mathematical tools
derived from the theory of linear shift-invariant systems, which are based on the second-
order statistics (e.g. baroreflex gain and delay). Joint symbolic analysis is not restricted
to linear relationships. High flexibility in transformation rules and word formation allows
encoding and quantifying distinct, physiologically relevant patterns of dynamics that may not
be discernible with conventional time and frequency analyses. Although some studies show
additive value of symbolic analyses in combination with standard techniques of HRV, BRS and
cardiorespiratory coupling analysis, a systematic comparison for establishing clinical research
value has not yet been conducted. Suitable threshold values for tertiary symbolization require
further investigation.

Although JSD has been primarily used for cardiovascular and cardiorespiratory investigations
the methodology is likely to be effective to characterize joint behaviour of other biomedical [87]
and non-biological data.
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