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Abstract i

Abstract
In the field of time series analysis, increasing interest focuses on insights gained how 
the coupling pathways of regulatory mechanisms work in healthy and ill states. 
Recent advances in non-linear dynamics, information theory and network theory lead 
to a new sophisticated body of knowledge about coupling pathways within 
(patho)physiological (sub)systems. Coupling analyses aim to provide a better 
understanding of how the different integrated physiological (sub)systems, with their 
complex structures and regulatory mechanisms, describe the global behaviour and 
distinct physiological functions at the organism level. The understanding of driver-
response relationships between regulatory (sub)systems is of growing interest. In 
particular, the detection and quantification of the coupling strength and direction are 
important aspects for a more detailed understanding of physiological regulatory 
processes. This thesis aimed to characterize short-term instantaneous central-
autonomic-network coupling pathways (top-to-bottom and bottom to top) by 
analysing the coupling of heart rate, systolic blood pressure, respiration and central 
activity (EEG) in schizophrenic patients and healthy participants. Therefore, new 
multivariate causal and non-causal linear and non-linear coupling approaches 
(HRJSD, mHRJSD, NSTPDC) that are able to determine the coupling strength and 
direction were developed. Whereby, the HRJSD and mHRJSD approaches allow the 
quantification and classification of deterministic regulatory coupling patterns within 
and between the cardiovascular- the cardiorespiratory system and the central-
autonomic-network were developed. These coupling approaches have their own 
unique features, even as compared to well-established coupling approaches. They 
expand the spectrum of novel coupling approaches for biosignal analysis and thus 
contribute in their own way to detailed information obtained, and thereby contribute 
to improved diagnostics/therapy. The main findings of this thesis revealed
significantly weaker non-linear central-cardiovascular and central-cardiorespiratory 
coupling pathways, and significantly stronger linear central information flow in the 
direction of the cardiac- and vascular system, and a significantly stronger linear 
respiratory information transfer towards the central nervous system in schizophrenia 
in comparison to healthy participants. This thesis provides an enhanced 
understanding of the interrelationship of central and autonomic regulatory 
mechanisms in schizophrenia. The detailed findings on how variously-pronounced, 
central-autonomic-network pathways are associated with paranoid schizophrenia 
may enable a better understanding on how central activation and autonomic 
responses and/or activation are connected in physiology networks under 
pathophysiological conditions.
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Kurzfassung
Im Bereich der Zeitreihenanalyse richtet sich das Interesse zunehmend darauf, wie 
Einblicke in die Interaktions- und Regulationsprozesse von pathophysiologischen-
und physiologischen Zuständen erlangt werden können. Neuste Fortschritte in der 
nichtlinearen Dynamik, der Informationstheorie und der Netzwerktheorie liefern
dabei fundiertes Wissen über Kopplungswege innerhalb (patho)physiologischer 
(Sub)Systeme. Kopplungsanalysen zielen darauf ab, ein besseres Verständnis dafür 
zu erlangen, wie die verschiedenen integrierten regulatorischen (Sub)Systeme mit 
ihren komplexen Strukturen und Regulationsmechanismen das globale Verhalten 
und die unterschiedlichen physiologischen Funktionen auf der Ebene des 
Organismus beschreiben. Dabei spielt das Verständnis von Sender-Empfänger
Beziehungen zwischen regulatorischen (Sub)Systemen eine bedeutende Rolle. 
Insbesondere die Erfassung und Quantifizierung der Kopplungsstärke und -richtung 
sind wesentliche Aspekte für ein detaillierteres Verständnis physiologischer 
Regulationsprozesse. Ziel dieser Arbeit war die Charakterisierung kurzfristiger 
unmittelbarer zentral-autonomer Kopplungspfade (top-to-bottom und bottom to top) 
durch die Kopplungsanalysen der Herzfrequenz, des systolischen Blutdrucks, der 
Atmung und zentraler Aktivität (EEG) bei schizophrenen Patienten und Gesunden.
Dafür wurden in dieser Arbeit neue multivariate kausale und nicht-kausale, lineare 
und nicht-lineare Kopplungsanalyseverfahren (HRJSD, mHRJSD, NSTPDC) 
entwickelt, die in der Lage sind, die Kopplungsstärke und -richtung, sowie 
deterministische regulatorische Kopplungsmuster innerhalb des zentralen-
autonomen Netzwerks zu quantifizieren und zu klassifizieren. Diese 
Kopplungsanalyseverfahren haben ihre eigenen Besonderheiten, die sie einzigartig 
machen, auch im Vergleich zu etablierten Kopplungsverfahren. Sie erweitern das 
Spektrum neuartiger Kopplungsansätze für die Biosignalanalyse und tragen auf ihre 
Weise zur Gewinnung detaillierter Informationen und damit zu einer verbesserten 
Diagnostik/Therapie bei. Die Hauptergebnisse dieser Arbeit zeigen signifikant 
schwächere nichtlineare zentral-kardiovaskuläre und zentral-kardiorespiratorische 
Kopplungswege und einen signifikant stärkeren linearen zentralen Informationsfluss 
in Richtung des Herzkreislaufsystems auf, sowie einen signifikant stärkeren linearen 
respiratorischen Informationsfluss in Richtung des zentralen Nervensystems in der 
Schizophrenie im Vergleich zu Gesunden. Die detaillierten Erkenntnisse darüber, wie 
die verschiedenen zentral-autonomen Netzwerke mit paranoider Schizophrenie 
assoziiert sind, können zu einem besseren Verständnis darüber führen, wie zentrale
Aktivierung und autonome Reaktionen und/oder Aktivierung in physiologischen 
Netzwerken unter pathophysiologischen Bedingungen zusammenhängen. 
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Abbreviations
ANS Autonomic nervous system 
AR Autoregressive
BBI Beat-to-beat intervals
BPV Blood pressure variability 
BRS Baroreflex sensitivity
BWD Bivariate word distribution
CAD Cardiac autonomic dysfunction 
CAN Central-autonomic-network
CF Coupling factor 
CNS Central nervous system
CVD Cardiovascular disease
dACC Dorsal anterior cingulate cortex
DSM Dual sequence method 
DTF Directed transfer function
EEG Electroencephalogram
FB Feed-back
FD Frequency domain
FF Feed-forward
GC Granger causality 
HR Heart rate
HRJSD High resolution joint symbolic dynamics 
HRV Heart rate variability 
JSD Joint symbolic dynamics 
LP Level of predictability 
MAR Multivariate autoregressive 
MDA Multivariate dynamical adjustment 
mHRJSD Multivariate high resolution joint symbolic dynamics 
MUI Mutual information 
NAARX Nonlinear additive autoregressive
NAR Nonlinear autoregressive 
NARX Nonlinear autoregressive exogenous 
NF Normalized factor 
NIBP Non-invasive blood pressure
NLD Non-linear dynamics
pACC Perigenual anterior cingulate cortex 
PCC Posterior cingulate cortex 
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PDC Partial directed coherence
PEEG Mean power of EEG activity
PI Predictability improvement 
PSD Power spectral density
pTE Partial transfer entropy 
RBF Radial basis function
RESP Respiratory frequency
RESPV Respiratory variability 
RSA Respiratory sinus arrhythmia 
SCT Symbolic coupling traces
SP Systolic blood pressure
STE Symbolic transfer entropy
SYS Systolic blood pressure 
TD Time domain
TE Transfer entropy 
VMPFC Ventromedial prefrontal cortex
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1. Introduction 1

Chapter 1

1. Introduction 
The following content was previously published in:

Schulz, S., Haueisen, J., Bär, K. J. & Voss, A. (2019) Altered Causal Coupling Pathways within the Central-
Autonomic-Network in Patients Suffering from Schizophrenia. Entropy, 21(8), 733.

Schulz, S., Bolz, M., Bär, K. J. & Voss, A. (2016) Central- and autonomic nervous system coupling in 
schizophrenia. Philos Trans A Math Phys Eng Sci, 374(2067), 20150178.

1.1 Motivation

Schizophrenia is considered to be one of the most severe mental disorders in the 
world. Its health consequences are associated with higher cardiac mortality rates, an 
approximately 15 to 20-year shorter life expectancy, and up to triple the risk of 
attaining cardiovascular disease (CVD) compared to the general population, 
independent of age groups (Hennekens et al, 2005; Laursen et al, 2014; McGrath et al, 
2008). Schizophrenia is characterized by a point prevalence of 4.5 per 1000 and a 
median lifetime risk of approximately 1%. Pharmacologic therapeutic strategies have 
revolutionized treatment options for schizophrenia over the past 50 years and have 
led to improvements in psychiatric treatment approaches. However, the disorder 
continues to be associated with a statistical reduction in life expectancy. A particular 
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cause for concern is that the mortality gap between the general population and 
schizophrenia patients seems to have increased during recent decades (Saha et al, 
2007). Suicide and accidents account only partially for the excess mortality, while a 
substantial proportion is due to physical illness (Brown, 1997). The largest single 
cause of death in schizophrenia patients leading to an increased mortality rate is due 
to CVD, with CVD mortality ranging from 40 to 50% (Ringen et al, 2014). Causal 
factors for patients with this condition are still being discussed, and have not yet been 
fully clarified. However, possible complicating factors are related to lifestyle, the lack 
of physical activity, smoking, obesity, poor diet, substance abuse, diabetes, 
hypertension, the cardiac side effects of antipsychotics and the imbalanced autonomic 
nervous system (ANS) during acute psychosis (Hennekens et al, 2005; Ringen et al, 
2014; Straus et al, 2004). Two important differences from other patient populations 
suffering from primary cardiac conditions (e.g. myocardial infarction, 
cardiomyopathy) and which present signs of cardiac autonomic dysfunction (CAD) 
need to be considered. The first difference is the fact that severe CAD is not initially 
caused by major structural or functional alterations of the heart in schizophrenia 
patients. Moreover, it seems to be associated with an altered brain–heart interaction 
influenced by a lack of cortical inhibitory control over sympatho-excitatory 
subcortical regions (Bär et al, 2007a; Schulz et al, 2019; Williams et al, 2004). The 
second difference to patient populations suffering from primary to cardiac conditions 
is caused by the relative “longevity” of patients with schizophrenia when compared 
to more frequent shorter survival rates of cardiac patients. 

My own preliminary work and other studies clearly demonstrated that the regulation 
of the ANS is altered and impaired in schizophrenia, shown by analysing heart rate 
variability (HRV) (Bär et al, 2007b; Bär et al, 2005; Chang et al, 2009; Schulz et al, 2013c; 
Valkonen-Korhonen et al, 2003), respiratory variability (RESPV) (Bär et al, 2012; 
Peupelmann et al, 2009; Schulz et al, 2012a; Schulz et al, 2012b; Schulz et al, 2013b; 
2014b), and cardiovascular- and cardiorespiratory couplings (Aguirre et al, 2018; 
Schulz et al, 2012a; Schulz et al, 2015a; Schulz et al, 2016; Schulz et al, 2017a; Schulz et 
al, 2019; Schulz et al, 2013b). The coupling between the variability of heart rate and 
respiration have been an illustrated inherent disease feature and hallmark of these 
studies. In addition, other studies have shown that structural and functional defects 
within the brain network are central features of schizophrenia (Castro et al, 2015; 
Kohler et al, 2019; Suttkus et al, 2021; Wagner et al, 2015). The cardiovascular and 
cardiorespiratory system and their subsystems (ANS) are linked to the central 
nervous system (CNS) (sophisticated interplay between ANS and CNS). Therefore, it 
can be assumed that this causes an interplay based on a feedback-feedforward 
system, supporting flexible and adaptive responses to environmental demands. 

Different studies have indicated that people with reduced HRV, as seen in the case of 
schizophrenia, exhibit behavioural- and adaptive emotional responses on executive 
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cognitive tasks (Hansen et al, 2003; Ruiz-Padial et al, 2003). Thayer and Lane (2000)
proposed the neurovisceral integration model, which suggests that neural networks 
implicated in emotional and cognitive self-regulation are also involved in the control 
of cardiac autonomic activity. Frontal, cingulate and subcortical brain regions have 
been hypothesized to play a critical role in such self-regulatory functions through top-
down control from the frontal cortex over subcortical regions involved in reward and 
emotion, such as the amygdala (Heatherton & Wagner, 2011). A recent meta-analysis 
(Thayer et al, 2012) revealed that resting HRV is tied to the functioning of frontal-
subcortical circuits. Higher resting HRV is associated with the effective functioning 
of frontal-top-down control over subcortical brain regions that support flexible and 
adaptive responses to environmental demands (Thayer & Lane, 2000). It is 
noteworthy that a disruption of frontal-subcortical circuits has been associated with 
a wide range of psychopathologies including schizophrenia (Callicott et al, 2003). 
Cognitive impairment is thus known to be a universal and core symptom of 
schizophrenia. This impairment critically influences treatment response, a patient's 
insight into their illness, their employment status, ability to communicate, social 
relationships and living status (Harvey et al, 1998). Cardiovascular adjustments due 
to a shift in central autonomic control and modulation of the heart are most prominent 
features of exercising (Brum et al, 2000; Negrao et al, 1993). 

The complex interplay of the CNS and ANS with their large number of subsystems 
(parasympathetic and sympathetic activity) is also known as the central-autonomic-
network (CAN) (Bartsch et al, 2015; Bashan et al, 2012; Ivanov et al, 2016). It has been 
shown, that the output of CAN is directly linked to ANS (heart rate) as well as that 
sensory information from peripheral end organs provide feedback to the CAN (i.e. 
baroreceptor reflex). The information transfer between the CNS and ANS is 
characterized as a feedback-feedforward system that responds to substantial 
demands of the body. The cerebral cortex in autonomic control of the cardiovascular 
system is gaining increased attention in medicine. Different cardiovascular control 
centres in the brainstem deal with different reflex mechanisms of cardiovascular 
adjustment (i.e. the cardiopulmonary reflex, the chemoreflex and the baroreflex) 
(Dampney, 1994). Here, neurons in the caudal and rostral ventrolateral medulla 
affecting efferent sympathetic reflexes, and contribute to the maintenance of heart 
rate and blood pressure via the intermediolateral cell column of the spinal cord. The 
two medullary areas, the nucleus ambiguous and the dorsal motor nucleus of the 
vagus nerve are preganglionic parasympathetic neurons mediating the efferent 
parasympathetic reflex mechanism (McAllen, 1976; Taylor et al, 2001). 

The parasympathetic nervous system is responsible for “rest and digest” function, 
while sitting, resting and relaxing. It constricts the pupils, slows the heart rate and 
contractility, contracts the bronchial musculature and stimulates bronchial secretions, 
and enhances gut motility for digestion. The preganglionic neurons synapse onto 
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postganglionic neurons in the parasympathetic ganglion that are located next to, or 
in, the effector end organs. The sympathetic nervous system predominates during 
“fight-or-flight” reactions and during exercise and thus prepares the body for 
stressful physical activity. Sympathetic nervous activity increases the flow of blood 
that is well-oxygenated and rich in nutrients to the tissues that need it, in particular, 
the working skeletal muscles. The preganglionic sympathetic neurons arise from the 
thoracic and lumbar regions of the spinal cord (segments T1 through L2) and are 
located about halfway between the CNS and the effector tissue (McCorry, 2007). The 
preganglionic neurons of both the sympathetic and parasympathetic divisions release 
the neurotransmitter acetylcholine. The postganglionic neurons of the 
parasympathetic system also release acetylcholine, whereas, the postganglionic 
sympathetic neurons release norepinephrine (Rea, 2016). The cardiac or respiration-
related activity (parasympathetic) is connected to preganglionic neurons. It has been
shown, that brain regions like the insula, thalamus, hypothalamus, amygdala, and 
the medial prefrontal cortex are involved in the autonomic regulation at rest and 
during cognitive or emotional stress conditions proven by functional brain imaging 
(Shoemaker et al, 2015; Ziegler et al, 2009). Beissner et al. (Beissner et al, 2013) showed 
that largely divergent brain networks were associated with sympathetic and 
parasympathetic activity. The ventromedial prefrontal cortex (VMPFC), the 
perigenual anterior cingulate cortex (pACC), the dorsal anterior cingulate cortex 
(dACC), the posterior cingulate cortex (PCC), the insular cortices and amygdala seem 
to be the main cortical and subcortical areas involved in ANS regulation processes, 
that are created by a network of interactions related to task and autonomic division.

Schizophrenia and other psychopathological conditions i.e. anxiety, depression and 
post-traumatic stress disorder are linked with prefrontal hypoactivity and a lack of 
inhibitory neural processes denoted by poor affective information processing and 
regulation (Thayer & Friedman, 2004). For healthy adults, Beissner et al. (Beissner et 
al, 2013) suggested that asymmetric frontal EEG responses to emotional arousal in the 
form of positive and negative emotions may elicit different patterns of cardiovascular 
reactivity. Different studies using both pharmacological and neuroimaging 
approaches have provided the evidence that activity of the prefrontal cortex is 
associated with vagally-mediated HRV (Thayer, 2007). In sum, for schizophrenia it 
has been assumed that a vagal withdrawal and an over activation of the sympathetic 
branches of the ANS are present.

Investigating the coupling between these ANS subsystem with their variability and 
brain activity may lead to a better understanding of pathophysiological regulatory 
processes within the central-autonomic-network in those patients. For the 
quantitative analysis of the brain-heart (CNS-ANS) network coupling pathways and 
its integrated interacting subsystems as the cardiovascular and cardiorespiratory 
system several linear/non-linear univariate and multivariate approaches are 
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available. These approaches focus on characterizing the multivariate information 
transfer. These concepts (Bartsch et al, 2015; Faes et al, 2015; Ivanov et al, 2016; Schulz 
et al, 2013a) are applicable in the following domains: entropy, Granger causality; non-
linear prediction; phase synchronization, symbolization, recurrence quantification 
analysis (RQA) and functional connectivity analysis techniques (Aguirre et al, 2018; 
Lombardi et al, 2019; Marwan et al, 2013). It has been demonstrated, that the 
information transfer between the cardiovascular and cardiorespiratory system acts 
strongly non-linear (Novak et al, 1993), and therefore linear approaches alone are not 
fully able to quantify physiological as well as pathophysiological regulatory 
processes. There is no generally superior approach capable of taking into account all 
aspects of coupling analysis (linearity, non-linearity, causality, multivariate analysis, 
directionality, coupling strength) and its quantitative evaluation. Some of these 
approaches include one or more of these aspects, but usually not to a sufficient extent, 
so that the time series with their mutual interactions and couplings can only be 
interpreted and analysed incompletely and only in parts. Furthermore, many of these 
approaches are not standardized, not user friendly (degrees of freedom, 
preconditions, model selection and model order estimation, scale dependency, …),
and are based on purely mathematical concepts, making it difficult to select the 
“right” approach to apply them to quantify physiological as well as 
pathophysiological regulatory processes.

Therefore, a logical conclusion was to develop new coupling approaches for the 
following reasons: simple basic mathematical principles (e.g. symbolization) are 
easier to use, limitations of already established coupling approaches can be removed, 
approaches with new features that allow a more comprehensive understanding of the 
couplings to be analysed would be improved.
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1.2 Objectives

This section outlines the main objectives of this thesis.

 The development of new multivariate coupling approaches to describe causal 
and non-causal relationships (coupling strength and direction) as well as to 
quantify and classify deterministic regulatory coupling patterns within and 
between the cardiovascular system, the cardiorespiratory system and the 
central-autonomic-network.

 The characterization of short-term instantaneous central-autonomic-network 
coupling pathways (top-to-bottom and bottom-to-top) by analysing the 
interaction between heart rate, systolic blood pressure, respiration and central 
activity in schizophrenia and healthy subjects.

 To contribute to the understanding of (patho)physiological regulatory 
processes of the central autonomic network in schizophrenia that could 
potentially lead to an improvement of treatment strategies in these patients, 
and finally, possibly contributing to cardiac risk stratification strategies able 
to identify schizophrenic patients at higher risk for cardiovascular disease at 
an early stage.
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1.3 Structure of the thesis

This section outlines the structure of this thesis.

Chapter 2: 

In chapter 2, the state of the art regarding coupling analyses is presented. Approaches 
such as Granger causality, non-linear prediction, entropy, symbolization, and phase 
synchronization most commonly applied to detect direct and indirect couplings 
between time series are described. In particular their usefulness for detecting linear 
and non-linear interdependencies, their theoretical background as well as their basic 
requirements/conditions for their application are shown.

Chapter 3: 

Chapter 3 presents the new coupling analysis approaches for biomedical time series 
developed in this thesis.

In the first part of chapter 3, I introduce the high-resolution joint symbolic dynamics 
approach (HRJSD) based on a redundancy reduction strategy to group single word 
types into 8 pattern families, allowing a detailed quantification of bivariate short-term 
cardiovascular- and cardiorespiratory couplings which were due to changes of the 
different branches of autonomic regulation. In addition, a directionality index DHRJSD

is introduced and shown to be able to detect the dominating coupling direction in 
linear coupled systems.

In the second part of chapter 3, I introduced the multivariate high-resolution joint 
symbolic dynamics approach (mHRJSD) able to determine the driver-responder 
relationship in multivariate coupled systems, and overcoming limitations of the 
HRJSD. The mHRJSD approach contains multivariate directionality indices allowing 
to determine the primary driver, the secondary driver and the dominant responder 
in a multivariate system.

In the third part of chapter 3, I proposed the normalized short time partial directed 
coherence (NSTPDC) approach as an improvement of the standard partial directed 
coherence to overcome its restrictions, and to allow for a better classification of the 
coupling strength and direction in multivariate linear and non-linear coupled 
systems. The NSTPDC approach applies a normalization procedure enabling to 
analyse non-stationary and scale-invariant time series, a Normalized Factor (NF) 
enabling the characterization of the coupling direction, and distinguish between 
direct and indirect causal information transfer.
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Chapter 4: 

In chapter 4, the previously developed coupling analysis approaches are applied in 
application studies to analyse and quantify the central-autonomic-network in 
schizophrenia.

The study aims to characterise short-term instantaneous central-autonomic-network 
couplings by analysing the interaction of heart rate, systolic blood pressure, 
respiration and central activity in schizophrenic patients compared to healthy 
subjects. I applied the newly developed causal and non-causal linear and non-linear 
multivariate coupling approaches (HRJSD, mHRJSD, NSTPDC) that are able to 
quantify the coupling strength and direction within the central-autonomic-network.

Chapter 5: 

Chapter 5 summarizes the results of this thesis in relation to the newly developed 
coupling analysis approaches and the analysis and quantification of the central-
autonomic-network in schizophrenia. 

The strengths and limitations of the newly proposed coupling approaches, and the 
detailed findings of the application studies in respect to central-autonomic-network 
pathways (the cardiovascular network, the cardiorespiratory network, the central-
cardiovascular-network, and the central- cardiorespiratory-network) which are 
associated with schizophrenia are summarized.
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Chapter 2

2. Coupling analyses of linear and 

non-linear systems
The following content was previously published in:

Schulz, S., Voss, A. Editors. Cardiovascular and cardiorespiratory coupling analysis—State of the art and future 
perspectives. Cardiovascular Oscillations (ESGCO), 2014 8th Conference of the European Study Group on; 25-28 
May 2014 Trento: IEEE.

Schulz, S., Adochiei, F. C., Edu, I. R., Schroeder, R., Costin, H., Bar, K. J. & Voss, A. (2013a) Cardiovascular and 
cardiorespiratory coupling analyses: a review. Philos Trans A Math Phys Eng Sci, 371(1997), 20120191.

2.1 Introduction

The analysis of causal and non-causal relationships within and between dynamic 
systems has become more and more of interest in different fields of science e.g. 
economics, neuroscience, physics or physiology. Especially in the medical field, the 
understanding of driver-response relationships between regulatory systems and 
within subsystems is of growing interest. In particular, the detection and 
quantification of the strength and direction of couplings are two major aspects of 
investigations for a more detailed understanding of physiological regulatory 
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mechanisms (Porta & Faes, 2013). The cardiovascular and cardiorespiratory systems 
are characterised by a complex interplay of several linear and non-linear subsystems 
(Voss et al, 2009). 

Interactions of these physiological subsystems within the cardiovascular system can 
be described as closed-loops with feedforward and feedback mechanisms. On the one 
hand, blood pressure changes detected by baroreceptors lead to changes in heart rate 
regulation through the arterial baroreflex control loop, and on the other hand, heart 
rate variations affect blood pressure via the Windkessel function (Cohen & Taylor, 
2002). Interactions within the cardiorespiratory system are mainly reflected in the 
respiratory sinus arrhythmia (RSA), the rhythmic fluctuation of cardiac cycle 
intervals (RR-interval) in relation to respiration. RSA is commonly described as an 
alteration between inspiratory heart rate acceleration and expiratory heart rate 
deceleration under normal physiological conditions (Eckberg, 2003). Under these 
circumstances, two major mechanisms are discussed: the central influence of 
respiration on vagal cardiac motoneurons and the impact of respiration on 
intrathoracic pressure and stroke (Eckberg, 2003; 2009; Gilbey et al, 1984; Triedman & 
Saul, 1994). 

In the field of cerebral activity, the concept of causality can be applied to better 
understand functional connectivity and neurophysiological brain processes. For 
example, a causal approach to the visual cortex would be able to separate the bottom-
up processing of information in the visual system, which is related to perception and 
takes place from the areas of the sensory receptors to hierarchically higher areas, from 
the top-down processing, which is related to perception and flows in the opposite 
direction, so that lower areas are supplied with information about stored knowledge 
or expectations (Porta & Faes, 2013).

For the analyses of the cardiovascular, cardiorespiratory, and central regulatory 
networks as well as the quantification of their interactions, a variety of different 
methods have been proposed. Commonly applied linear approaches include cross 
correlation analysis in the time domain and cross-spectral power density or coherence 
analysis in the frequency domain, both are used to investigate the interrelationships 
between two time series. However, linear approaches might be insufficient to 
quantify non-linear structures and the complexity of physiological (sub)systems. 
Therefore, approaches from non-linear time series analysis seem to be more suited to 
capture complex interactions between time series. These approaches are partly based 
on the notion of Granger causality (GC), implying that if one time series has a causal 
influence on a second time series the knowledge of the past of the first time series is 
useful to predict future values of the second time series (Granger, 1969). In biomedical 
applications, evaluation of causality is commonly performed by looking for 
directional dependencies within a set of multiple time series measured in the 
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physiological system under investigation (Faes & Nollo, 2010). Here, causality is 
defined in terms of predictability and uses the directionality of time to determine a 
causal ordering of dependent time series incorporating both direct and indirect causal 
influences from one process to another. This definition can be applied to bivariate 
(two time series) and multivariate (more than two time series) analysis. In the case of 
multivariate analysis, it is possible to differentiate between direct coupling (from one 
time series to another) and indirect coupling (effects mediated by one or more other 
time series). 

Figure 1. Examples of directional dependencies for direct and indirect couplings. Interdependence 
structure for (a) a bivariate and (b) a multivariate case. (a) Direct coupling exists for x1↔x2; (b) direct 
coupling exists for x1→x2 and x2↔x3 and indirect coupling between x1→x3 mediated by x2 (direction of 
coupling: →,← unidirectional, ↔ bidirectional).

Direct coupling between two time series x1 and x2, exists if x1→x2 or x2→x1 (Figure 1, 
a), whereas indirect coupling occurs when two time series x1 and x2 cause a third 
common time series x3 mediated by one of the two time series, and also when both 
time series were caused by a third common time series mediated by one of the two 
time series x1 or x2 (direct coupling: x1→x2; x2↔x3; indirect coupling: x1→x3 mediated 
by x2) (Figure 1, b). The coupling definitions generalise the causality definitions by 
accounting for both forward and backward interactions (Faes et al, 2012a). 

In the following sections approaches as Granger causality, non-linear prediction, 
entropy, symbolization, and phase synchronization most commonly applied to detect 
direct and indirect couplings between time series are described. In particular their 
usefulness for detecting causal and non-causal linear and non-linear
interdependencies, their theoretical background as well as their basic 
requirements/conditions for their application are shown.



2. Coupling analyses of linear and non-linear systems 12

2.2 Methods and applications

2.2.1 Granger causality

Wiener (Wiener, 1956) defined causality between two time series in a statistical 
framework by saying that: ‘for two simultaneously measured time series, one series 
can be called causal to the other if we can better predict the second time series by 
incorporating knowledge of the first’ (Kaminski et al, 2001) [p. 145]. Later, Granger 
adapted this concept to the context of stochastic processes in economics to analyse 
linear time series based on an autoregressive (AR) model. Today, this concept is 
known as GC. GC for two processes X1(t) and X2(t) is defined as: X1(t) has causal 
influence on X2(t); (X1(t)→X2(t)) if the knowledge of the past of both X1(t) and X2(t) 
reduces the variance of the prediction error of X2(t) in comparison with the 
knowledge of the past of X2(t) alone (the past and the present cause the future but not 
vice versa) (Gourevitch et al, 2006; Granger, 1969). GC can be assessed by linear and 
non-linear approaches.

2.2.1.1 Linear Granger causality

Linear GC is based on parametric multivariate autoregressive (MAR) models and 
favouring the time- and frequency domain.

In the time domain the linear GC, F-test and the Wald-test and approaches based on 
predictability improvement and partial process decompositions became of 
importance. 

Here, the prediction performance of two stochastic processes X1 and X2 can be 
assessed by comparing the uni- and bivariate AR models. For the univariate case two 
stationary processes X1 and X2 with their time series realisations x1(t) and x2(t) with 
t=1,…,T (T=duration of periods) can be considered which can be expressed as an AR 
representation (eq. 1, 2):

푥�(푡) = ∑ 푎�(푘)�
��� 푥�(푡 − 푘) + 휀�(푡) (1)

푥�(푡) = ∑ 푎�(푘)�
��� 푥�(푡 − 푘) + 휀�(푡) (2)

where a1(k) and a2(k) are the model parameters, p the AR model order and ε1(t) and 
ε2(t) are the residual noise and where the prediction error for a signal depends only 
on its own past values. 

In the bivariate case the AR model in Granger's sense can be represented as (eq. 3, 4): 

푥�(푡) = ∑ 푎�,�(푘)�
��� 푥�(푡 − 푘) + ∑ 푎�,�(푘)�

��� 푥�(푡 − 푘) + 휀�,�(푡) (3)

푥�(푡) = ∑ 푎�,�(푘)�
��� 푥�(푡 − 푘) + ∑ 푎�,�(푘)�

��� 푥�(푡 − 푘) + 휀�,�(푡) (4)
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where the prediction error for a signal depends on the past values of the two signals. 
For the univariate and the bivariate AR models the prediction performance can be 
estimated by the variances of the prediction errors.

Geweke (Geweke, 1982) was the first to propose a linear bivariate time series 
approach assessing linear Granger causality (LGC) based on the prediction error 
variance of the time series associated with an statistical test for causality (Gourevitch 
et al, 2006). If process X2 has no causal influence on process X1 then LGC��→�� becomes 
close to zero which means that the knowledge of past values of X2 does not improve 
the prediction of X1 but if LGC��→�� > 0, then a causal influence can be assumed. High 
values of LGC��→�� and LGC��→�� indicate a bidirectional coupling or a feedback 
relationship between the two time series (Pereda et al, 2005). 

Bassani et al. (Bassani et al, 2012) estimated the direct causal coupling by applying 
two GC approaches (the F-test and the Wald-test) along the baroreflex in two 
anaesthesiologic procedures. The advantages of conducting two GC tests are that:

 They need not assume that the cardiovascular control mechanisms occur 
along specific temporal scales as is the case with testing GC in the frequency 
domain; 

 The percentage of false GC detections can be rigorously controlled by 
assigning the type I error probability accepted by the tests;

 The distribution of the statistics which assesses GC under the null hypothesis 
assuming no causal relationship between the two series follows a classical 
statistical distribution (in the case of the F-test: the F distribution, and for the 
Wald test: χ2 distribution), thus allowing the analytical calculation of the 
critical value above which the null hypothesis is rejected (Bassani et al, 2012).

These approaches are based on predictability improvement and were later extended 
to account for the effect of latent confounders such as respiration by Porta et al. (Porta 
et al, 2012a). To do this, an exogenous signal was added to the bivariate 
autoregressive closed-loop model to evaluate the bias induced on causality when the 
exogenous signal source was disregarded. In addition, Porta et al. (Porta et al, 2012b)
proposed a multivariate dynamical adjustment (MDA) modelling approach (open 
loop: OLMDA, closed loop: CLMDA) to assess the strength of the baroreflex as well 
as of direct and indirect cardiopulmonary couplings in contrast to the two previously 
mentioned approaches (Bassani et al, 2012; Porta et al, 2012a), causal coupling was 
assessed using factorisation signals into partial process decompositions, thus 
allowing the assessment of both direct and indirect couplings. The coupling strength 
in the MDA class is estimated as the variance as indicated by the contribution of the 
partial process to the total variance. 
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GC approaches in the frequency domain were targeting the oscillatory nature of 
physiological variables and the peculiarity of specific control mechanisms of working 
in accordance to well defined time scales (Porta & Faes, 2013). 

Here, an m-dimensional MAR process with order p is given (eq. 5):
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where εi is independent Gaussian white noise with the covariance matrix ∑, and 
A1,…,Ap are the coefficient matrices (m×m). This time domain representation can be 
transformed into the frequency domain calculating the joint spectral density matrix 
S(f) that is given by: 푆(푓) = 퐻(푓) ∑ 퐻�(푓) with (. )� as the Hermitian transpose and 
퐻(푓) = 퐴�-1(푓) = [퐼 − 퐴(푓)]�� represents the transfer function matrix, I is the identity 
matrix, f denotes the frequency and 퐴(푓) = ∑ 퐴(푘)푒�������

��� is the Fourier transform 
of the coefficients with 퐴�(푓) = 푎̄�(푓)푎̄�(푓). . . 푎̄�(푓) where 퐴���(푓) is the i, jth element 
of 퐴�(푓).

In the frequency domain the partial directed coherence (PDC) (Baccala & Sameshima, 
2001a; b) and the directed transfer function (DTF) (Kaminski & Blinowska, 1991) and 
their enhanced versions (gPDC, ePDC, iPDC, tvPDC, NSTPDC, dDTF, SDFT) are the 
most applied approaches. These approaches are based on a fitted AR model and 
presuppose the stationarity of signals in the time interval under investigation (Hesse 
et al, 2003). 

PDC is a parametric approach based on m-dimensional MAR processes with order p.
It can detect direct and indirect causal information transfer since it measures 
exclusively direct effects between signals in multivariate dynamic systems. Based on 
the Fourier transformation of the coefficient matrix the PDC function quantifies the 
strength of the causal coupling from Xj to Xi as a function of frequency f. The PDC is 
normalised between 0 and 1, in that way the direct influence from process Xj to 
process Xi is inferred by PDC≠0 (PDC=0 when Xj does not cause Xi at frequency f, 
PDC=1 when all causal influences originating from Xj at frequency f are directed 
toward Xi (Baccala & Sameshima, 2001b; Faes & Nollo, 2010; Pereda et al, 2005). For 
PDC, a significance level was introduced to ensure reliable detection of the direct 
information flow (Schelter et al, 2006). 

Faes et al. (Faes & Nollo, 2010) proposed the utilisation of an extended MAR model 
to investigate either instantaneous and lagged effects (ePDC) or lagged effects (iPDC) 
only. They showed that the presence of instantaneous correlations may produce 
misleading profiles of PDC, while ePDC and iPDC provided a correct interpretation 
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of extended and lagged causality, suggesting that ePDC and iPDC are more 
interpretable than PDC when applied to known cardiovascular and neuronal data. 
Milde et al. (Milde et al, 2011) introduced a time-variant version of PDC (tvPDC) for 
short-term multivariate data analysis which is based on a time-variant multivariate 
autoregressive model in combination with a Kalman filter for model parameter 
estimation. The Fourier transform of the AR parameters is used to define tvPDC. 
Milde et al. demonstrated that tvPDC avoids misinterpretations in HRV analyses and 
quantifies the partial correlative interaction properties between respiratory 
movements and RSA.

DTF enables the determination of directed causal interactions between two signals in 
relation to all other signals of the analysed system by applying on a MAR model using 
the transfer matrix to describe the causal information transfer (Kaminski & 
Blinowska, 1991; Korzeniewska et al, 2003). Moreover, DTF measures together both 
direct and indirect effects from one series to another and for this reason a 
differentiation between direct and indirect causal interactions or both is not possible, 
thereby leading to a greater number of interactions than are actually present 
(Winterhalder et al, 2006).

The DTF is normalised such that describes the ratio between the inflow from signal 2 
to signal 1, to all the inflows of the activity to the destination signal 1. DFT takes values 
between 0 and 1 (DTF=1: most of the signal 1 consists of the signal 2; DTF=0: almost 
no flow from signal 2 to signal 1 at frequency f) (Kaminski & Blinowska, 1991; 
Korzeniewska et al, 2003). 

The main differences and similarities between PDC and DTF are (Baccala & 
Sameshima, 2001a; b; Gourevitch et al, 2006; Pereda et al, 2005; Winterhalder et al, 
2006):

 DTF uses the transfer matrix, PDC uses coefficient matrix;

 DTF cannot distinguish between direct or indirect causal information transfer, 
or both, whereas PDC can distinguish between both direct and indirect causal 
information transfer;

 PDC is more robust and efficient than DTF;

 PDC is normalised to the outflow of information (the structure that receives 
the signal) whereas DTF is normalised to the total inflow of the information 
(structure that sends the signal);

 DTF and PDC both depend on the reliability of the fitted MAR model (i.e., 
optimal model order, epoch length);

 A significance level has to be used for both to avoid spurious interactions;
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 PDC and DTF can be sensitive in detecting interactions in non-linear
multivariate systems under particular circumstances;

 DTF and time-varying PDC detect various types of time-varying influences 
(sensitive for time-resolved investigations of non-stationary data);

 In bivariate cases, both PDC and DTF are reduced to the causal coherence 
introduced by Porta et al. (Porta et al, 2002)

2.2.1.2 Non-linear Granger causality

Clive Granger mentioned that in practice it is usually not possible to use completely 
optimum predictors, unless all sets of series are assumed to be normally distributed, 
since such optimum predictors may be non-linear in complicated ways. It would 
seem obvious to simply use linear predictors and to accept the above definitions 
under this assumption of linearity (Granger, 1969). The most limiting factor for the 
assessment of non-linear GC is the choice of the model because it must be 
appropriately matched to the dynamics of the investigated biosignals. However, 
there are some promising approaches that can quantify causality in non-linear
signals, such as methods based on non-linear global model identification and 
methods based on local linear models.

Methods based on non-linear global model identification were proposed by Faes et 
al. (Faes et al, 2008a) who introduced an approach for the detection of coupling as 
well as the causality between two time series, based on non-linear autoregressive 
(NAR) and non-linear autoregressive exogenous (NARX) models. This approach is 
more accurate and sensitive in detecting imposed GC conditions and was more 
accurate than the least squares methods based on the Akaike Information model 
order criterion. The main advantages are that it can be applied to short data records, 
only few parameters have to be defined and a more realistic physiological 
interpretation of the investigated system is possible. To assess GC by means of NARX 
models they examined the mean squared prediction error which ranges between 0 
and 1, where 0 represents a fully predictable time series and 1 a fully unpredictable 
time series. Causality from y to x can be investigated by reversing the input-output 
roles of the two series and by calculating the absolute and normalised relative 
predictability improvement (PI) obtained by the NARX model compared to the NAR 
model prediction, what resulted from the inclusion of y samples in the prediction of 
x. 

Another approach is introduced by Riedl et al. based on non-linear additive 
autoregressive (NAARX) models with external inputs fitted to bivariate time series 
for a model-based causal coupling analysis (Riedl et al, 2010). They showed, if the 
additional external input led to a significant reduction in the variance of the 
predicting error, then the external input could be said to have a causal influence on 
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the response variable. Here, the models are fitted separately to the time series and the 
different AR predictors as well as external ones are compared with each other with 
regard to the best prediction. Thus, the improvement of the prediction was measured 
by a cross-validation criterion, which is weighted by the cost of adding a new 
predictor or increasing the roughness of the estimated curve. This approach also 
allows the quantification of the strength and the morphology of the selected 
couplings. Therefore, the variance of the separate single step prediction of each 
external input is calculated and normalised by dividing by the variance of the 
response variable. The resulting values indicate the strength of coupling between 
various external inputs and the response (increased values=increased coupling).

Methods based on local linear models were proposed by Chen et al. (Chen et al, 2004), 
who introduced a conditional extended GC model using a spatial reconstruction of 
the joint dynamics of non-linear multivariate time series. This is associated with 
various delays and is able to determine whether the causal relation between two non-
linear signals (x, y) is coupled directly or mediated by another process (Gourevitch et 
al, 2006). Here, the extended Granger causality index (EGCI) ∆y→x was introduced as 
a function of δ (neighbourhood size). If EGCI is less than 1, it implies that y (or x) has 
causal influence on x (or y). For linear systems, ∆y→x will stay roughly the same as δ
becomes smaller, whereas for non-linear systems ∆y→x in the small δ limit, reveals the 
true non-linear causal relation which may or may not be captured at the full attractor 
level (Chen et al, 2004). In the multivariate case, a conditional extended GC index was 
additionally proposed to distinguish between direct and indirect causal relations. 

Ancona et al. (Ancona et al, 2004) and Marinazzo et al. (Marinazzo et al, 2006) used a 
radial basis function (RBF) approach to assess non-linear GC in the context of 
predictability improvement between non-linear bivariate time series. This means that 
in the frame of a linear regression model, if the prediction error of the first time series 
is reduced by including values from the second time series, then the second time 
series is said to have a causal influence on the first time series. Ancona et al. (Ancona 
& Stramaglia, 2006) demonstrated that not all non-linear prediction approaches are 
suitable to evaluate GC between two time series, since they should be invariant if 
statistically independent variables are added to the set of input variables (unable to 
quantify how much knowledge of the other time series counts to improve prediction 
error). They stated that any prediction scheme providing a non-linear extension of 
GC should satisfy the following property: if Y is statistically independent of X and x, 
then εx=εxy; if X is statistically independent of Y and y, then εy=εyx (x, y, X, Y=stochastic 
variables; εx=the prediction error when x is predicted solely on the basis of knowledge 
of its past values; similarly, for εy). Later, they introduced an approach to quantify 
non-linear GC based on kernel Hilbert spaces providing a statistically robust tool to 
assess driver-response relationships (Marinazzo et al, 2011; Marinazzo et al, 2008). 
This approach performs linear GC in the feature space of suitable kernel functions, 
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assuming an arbitrary degree of non-linearity and also fulfils the good properties of 
linear models in the non-linear case. The problem of overfitting the models was 
handled by exploiting the geometry of reproducing kernel Hilbert spaces. The kernel 
algorithms work by embedding data in a Hilbert space and searching for linear 
relations in that space (Hilbert spaces were spaces of kernel functions) (Marinazzo et 
al, 2011). The proposed approach has the following features: 

 The non-linearity of the regression model can be controlled by choosing the 
kernel function; 

 The problem of false causalities, which arises as the complexity of the model 
increases, is addressed by a selection strategy of the eigenvectors of a reduced 
Gram matrix;

 Reduction of unknown model parameters by considering a relatively small 
number of (possibly non-linear) mixtures of parameters, thus bounds model 
complexity and ensures that the accuracy of different models is a rough 
approximation to their evidence (Marinazzo et al, 2011).

2.2.2 Non-linear prediction

Non-linear prediction approaches are based on cross-prediction and are similar to 
those based on predictability improvement in their underlying methodological 
framework, but differ from predictability improvement in that they do not measure 
GC, but rather a causality concept which exploits asymmetry of cross-predictability 
when performed over the two possible directions of interaction between two series. 
Farmer and Sidorowich (Farmer & Sidorowich, 1987) were the first to introduce a 
concept of prediction, called the k-nearest neighbour prediction, which was later 
integrated into different approaches.

Based on local linear prediction (the nearest neighbour local linear approximation 
(Farmer & Sidorowich, 1987) an extension of a non-linear bivariate prediction 
approach for the investigation of causal interdependencies between two time series 
(x, y) with a specific out-of-sample cross validation approach (to avoid overfitting) 
was introduced for short-term time series (Faes & Nollo, 2006). This method was 
based on the principle of the mutual prediction method, which provides a measure 
for the coupling strength and coupling directionality between two time series (Schiff 
et al, 1996). The bivariate prediction model is defined using knowledge of similar 
patterns in the first time series to predict the current values of a second time series. 
By exploiting the input and output series x and y, the relationship between a pattern 
of samples of x and a synchronous sample of y was approximated using a linear 
polynomial whose coefficients were estimated applying an equation system 
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including the nearest neighbour patterns in x and the corresponding samples in y. 
Finally, an index describing the level of predictability (LP) was defined (LP=1 when 
y is completely predictable given patterns of length L in x; LP=0 (also negative) when 
y is completely unpredictable in relation to x indicating the complete uncoupling. The 
advantage of this predictor is that it allows the possibility to obtain dependable 
estimates of predictability without constraining the embedding of the series when 
dealing with short-term time series as well as the predictor is less biased (overfitting) 
(Faes & Nollo, 2006). 

In 2008 (Faes et al, 2008b) three different mutual non-linear prediction approaches (k-
nearest neighbours) were compared: the cross prediction, the mixed prediction and 
the predictability improvement to test their ability to assess the coupling strength and 
directionality of the interactions in bivariate time series. Based on simulations and 
real physiological data (cardiovascular) it was found that cross prediction is valuable 
for quantifying the coupling strength and predictability improvement to determine 
the directionality of interactions in short and noisy bivariate time series. These 
approaches have the following properties: 

 Cross-prediction quantifies interdependence in terms of the predictability of 
one of the two series estimated using state space vectors of the other series;

 Mixed-prediction quantifies interdependence in terms of the predictability of 
a series using state vectors that contain samples of both series;

 Predictability-improvement quantifies interdependence in terms of the 
increase in predictability yielded by mixed prediction compared to self-
prediction (Faes et al, 2008b; Schiff et al, 1996).

2.2.3 Entropy 

Methods based on entropies have in common that they analyse a putative information 
transfer between signals/time series. The concept of entropy addresses the 
uncertainty or predictability of signals. Greater entropy values reflect higher 
uncertainty and lower predictability. The concept of Shannon entropy (H) was 
introduced by Shannon in 1948 (Shannon, 1948) quantifying the information content 
within a time series. H(x) (eq. 6) describes the statistical properties of a time series x
(stationary) and represents a measure of uncertainty of a time series based on 
probabilities:

퐻(푥) = − ∑ 푝(푥�)푙표푔�푝(푥�)�
��� , (6)

where p(xi) is the probability distribution of the ith bin of the time series x and M as 
the total number of all bins. 
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The concept of mutual information (MUI) (eq. 8) is based on the determination of the 
Shannon entropies Hx and Hy as well as the joint entropy Hxy (eq. 7)

퐻�� = − ∑ 푝(푥�, 푦�) 푙표푔� 푝 (푥�, 푦�)�
�,��� , (7)

where p(xi) and p(yi) are probability distributions of x and y and p(xi,yj) is the joint 
probability distribution of both time series:

MUI��[bit] = 퐻� + 퐻� − 퐻�� = � 푝�푥�, 푦��log� � ����,���
�(��)������

�

�,���
(8)

MUI analysis is applied to detect and quantify non-directional linear and non-linear
interdependencies within one time series (univariate) or between different (bi- and 
multivariate) time series. MUI measures the information that x and y share in units 
called “bits” because of the application of log2 (Hoyer et al, 2005). Large values of MUI 
represent strongly dependent time series and low values indicate nearly independent 
ones (MUI=0, if x and y are completely independent). Moreover, MUI is symmetric 
(MUIxy=MUIyx), non-negative (MUIxy≥0) and bounded from above by min{Hx,Hy} 
(Cover & Thomas, 1991; Fraser & Swinney, 1986). 

Porta et al. introduced the cross conditional entropy, (CEx/y) based on the conditional 
entropy (CE) as a modification of the Shannon entropy. CEx/y quantifies the degree of 
coupling between two normalised time series (x, y) and represents a measure of the 
complexity of x with respect to y (Porta et al, 1999) with the pattern length L, the joint 
probability p(yL-1) of the pattern yL-1(t) and the conditional probability p(x(t)/yL-1) of the 
sample x(t), given the pattern yL-1. CEx/y is obtained in a process of sorting and 
counting mixed patterns. It describes the amount of information included in the 
sample x(t) when the pattern of L-1 samples of yL-1(t) is given and measures causality 
(direct coupling) in analogy to the cross-prediction approaches whereby yL-1(t) is 
intended as the pattern formed by the past L-1 samples of y, i.e. yL-1(t)=y(t-1,…,y(t-
L+1)). CEx/y has the following inherent properties:

 It is equal to zero when a sufficient number of samples of y allow complete 
prediction of x;

 It is high and constant if x and y are independent processes;

 It decreases toward a value between these extremes when the knowledge of y
is useful to partially estimate x (Porta et al, 2000).

In addition, the synchronisation index: 휒�,� = 1 − min�푈퐹�����,�� (with the uncoupling 
function UF����) quantifying the maximum amount of information exchanged between 
the two time series (Porta et al, 1999). The larger the synchronisation index, the more 
coupled the two time series are. 
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Schreiber (Schreiber, 2000) proposed an information-theoretical approach named 
Transfer Entropy (TE) to distinguish between driving and responding elements and 
to detect asymmetries in the interaction and to quantify the extent to which the 
dynamics of one process influences the conditioned transition probabilities of 
another. TE measures GC with the prediction improvement approach and extends 
the concept of Shannon entropy by considering the probabilities of transitions rather 
than static probabilities. Generally, if no information flow from process Y to process 
X exists, then the state of Y has no influence on the transition probabilities on X. To 
analyse the dynamics of the shared information between the two processes, the 
deviation from the generalized Markov property is measured with its transition 

probabilities 푝 �푥����푥�
(�)� = 푝 �푥���|푥�

(�), 푦�
(�)�, where l is the conditioning state from 

process Y. The Kullback–Leibler divergence is used to measure the deviation from the 
generalized Markov property leading to TE (eq. 9):

TE�→� = ∑ 푝(푥���, 푥�
(�) , 푦�

(�))log ������|��
(�),��

(�)�

��푥����푥�
(�)�

. (9)

The most important feature of TE is that it is asymmetric under exchange of X and Y
(TEX→Y≠TEY→X). The direction of coupling and information flow between coupled 
processes can be determined more adequately in comparison to MUI and CE (Kaiser 
& Schreiber, 2002; Verdes, 2005). The main advantage of TE is its “model-free” 
approach (Vakorin et al, 2009). A model-free causality statistic can be defined as the 
conditional mutual information between the past of one process and the future of 
another process, given the knowledge about the past of the latter. Moreover, it can be 
shown that, under proper conditions, TE is equivalent to the conditional mutual 
information (Vakorin et al, 2009). In addition, it must be noticed that conditional 
entropies are estimated directly from sampled probability distributions; results will 
vary with the estimation technique applied. Thus, a naive estimation of TE, e.g. by 
partitioning the state space is problematic and might fail to converge to the correct 
result. In practice, more sophisticated techniques such as kernel or k–nearest 
neighbour estimators will be needed (Barnett et al, 2009; Verdes, 2005). Furthermore, 
there are close similarities between TE and GC as entirely formal equivalence. This 
has been demonstrated in the case of Gaussian stochastic processes by Barnett et al. 
(Barnett et al, 2009), thus bridging autoregressive and information-theoretic 
approaches to data-driven causal inference. GC approaches are typically 
implemented within a framework of multivariate autoregressive models but imply 
many assumptions about how to model the data. Thus, the main problem of a 
parametric approach is the model misspecification. On the other hand, TE may 
present severe difficulties of empirical application, despite being theoretically ‘‘model 
agnostic’’. 
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Vakorin et al. (Vakorin et al, 2009) introduced the partial transfer entropy (pTE), a GC 
measure based on a multivariate version of TE which quantifies causality between 
two nodes of an interacting network. They found that pTE is a more sensitive 
technique for identifying robust causal relations than its bivariate equivalent and 
demonstrated the confounding effects of the variation in indirect coupling on the 
detectability of robust causal links. The TE approach was extended by Staniek et al. 
(Staniek & Lehnertz, 2008) by using a technique of symbolisation to estimate TE, 
called symbolic transfer entropy (STE). STE is a robust and computationally fast 
method to quantify the dominating direction of information flow between time series 
from structurally identical and non-identical coupled systems. Faes et al. (Faes et al, 
2011a; 2012b) introduced an enhanced version based on the corrected CE and a 
sequential procedure for non-uniform embedding to assess non-linear GC in 
multivariate time series. This approach quantifies causality from one time series to 
another as the amount of information flowing directly from the first to the second 
time series, while accounting for the effects of all other time series in the multivariate 
representation, and separates direct and indirect causal effects.

Investigators have the choice to choose the most suitable approach for their data 
analysis. Numerical issues aside, analytical equivalence underlines the essential point 
that under Gaussian assumptions GC has a natural interpretation as TE and vice-
versa (Barnett et al, 2009).

2.2.4 Symbolization 

Methods based on symbolisation enable a coarse grain quantitative assessment of 
short-term dynamics of time series. The direct analysis of successive signal 
amplitudes is based on discrete states (symbols).

Joint Symbolic Dynamics (JSD) was introduced by Baumert et al. (Baumert et al, 
2002) and is based on the analysis of bivariate dynamic processes by means of 
symbols (Voss et al, 1996). JSD considers short-term beat-to-beat changes, allowing 
the assessment of overall short-term cardiovascular and cardiorespiratory couplings. 
Therefore, a bivariate sample vector X (eq. 10) of two time series (x, y) is transformed 
into a bivariate symbol vector S (eq. 11) where n are beat-to-beat values.

푋 = {[푥�, 푦�]�}���,�,...푥 ∈ 푅
��������������

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� (10)

푆 = {[푠(푥�), 푠(푦�)]�}���,�,...푠 ∈ 0,1 (11)

For symbol transformation, a given alphabet A={0,1} was used, where symbol “1”
represented increasing amplitude values and symbol "0” decreasing and unchanged 
amplitude values (JSD2). Afterwards, short patterns (words w) of symbol sequences 
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with a word length of three symbols were formed. For the quantification of JSD2 from 
each word type, the normalised joint probability p(wi,j) of occurrence was estimated 
using an 8x8 word distribution density matrix W ranging from (000,000)T to (111,111)T. 
In addition, from the matrix W, the probabilities of all single types’ occurrences p(wx,y), 
the sum of each column cy, the sum of each row rx and the Shannon entropy (eq. 12)
as measure of the overall complexity and probability of occurrence of each column 
and each row can be computed

JSDshannon = ∑ �푝�푤�.�� log� 푝 �푤�.����
�,��� . (12)

The High Resolution Joint Symbolic Dynamics (HRJSD) represents an enhanced 
version of the classical JSD which is characterised by three symbols which are formed 
on the basis of a threshold (l≠0) and which clusters the coupling behaviour into 8-
word type families (HRJSD) for the quantification of short-term couplings which arise 
from autonomic regulation. For the transformation of X into S new definitions were 
used (eq. 13, 14):

푆�� = �
0: (푋���

� − 푋��) < −푙�                          
1: − 푙� ≤ (푋���

� − 푋��) ≤ 푙�

2: (푋���
� − 푋��) > 푙�

(13)

푆�
� = �

0: (푋���
� − 푋�

�) < −푙�                          
1: − 푙� ≤ (푋���

� − 푋�
�) ≤ 푙�

2: (푋���
� − 푋�

�) > 푙�
(14)

The thresholds lx and ly for the symbol transformation are:

 lx and ly equal 0 similar to JSD2,

 lx=5ms and ly=1mmHg (as for calculating baroreflex sensitivity with sequence 
techniques) (Bertinieri et al, 1988),

 lx and ly equal to 25% and 100% of the standard deviation of the time series as 
an adapted dynamical threshold to the individual variability.

Thus, HRJSD circumvented the problems encountered by JSD2 to distinguish 
between decreases and steady state as well as between small and large changes of 
autonomic regulation due to l=0 and A={0,1}. It is also impossible to differentiate 
between noise, artefacts (e.g. generated by undersampling or ectopic events) and 
fluctuations which arise from autonomic regulation. Both approaches have the main 
advantages that they are not sensitive to non-stationary time series and are capable 
to capture non-linear bivariate couplings by a simple procedure.

A further JSD extension, the symbolic coupling traces (SCT) was introduced by 
Wessel et al. (Wessel et al, 2011). SCT is based on the analysis of structural patterns 
and enables the detection of the direction (bidirectional) of time-delayed couplings in 
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short-term bivariate time series. Using the JSD2 algorithm two time series x(t) and y(t) 
were transformed into symbol sequences sx(t) and sy(t) also using the alphabet A={0,1}
and afterwards series of word wx(t) and wy(t) of length l=3 were formed. In contrast to 
JSD2, a delay-time probability matrix Π(τ)=(pij(τ)) was estimated describing how 
word Wi would occur in wx at time t and Wj would occur in wy at time (t+τ) with pij as 
the joint probabilities of the words.

For the quantification of SCT only the symmetric and diametric traces of the bivariate 
word distribution (BWD) matrix were used, thereby excluding random effects and 
including only significant coupling information. Here, three indices can be calculated: 
The trace T of the matrix Π(τ) representing the fraction of both time series, which are 
structurally equivalent (symmetrical influences) to each other at lag τ. The trace 푇� (휏)
describes the fraction of each signal, which is structurally diametric at lag τ (Suhrbier 
et al, 2010). Both parameters vary from 0 to 1 and comprise the diagonals of the BWD 
only. Finally, the difference Δ푇 = 푇 − 푇� can be calculated to determine the exact 
detection of lags (delayed couplings) between two time series. The lags τ should be 
limited to 20≤τ≤20 (sampling units) in order to focus on short time-delayed 
dependencies only. The main advantages of SCT are its ability to detect delayed 
coupling (time lags), its applicability to moderately noisy time series (<10dB) and its 
insensitivity to non-stationarity.

2.2.5 Phase synchronization

Rosenblum et al. (Rosenblum et al, 2002; Rosenblum & Pikovsky, 2001) proposed an 
approach based on phase synchronisation, or the directionality index d, for the 
detection and quantification of coupling directions of weakly coupled self-sustained 
bivariate time series, even when the interaction between the two time series is too 
weak to induce synchronisation. The term “phase synchronisation” is used to denote 
the state when a relation only between the phases (Φ1, Φ2) of interacting signals sets 
in, but the amplitudes remain chaotic and nearly uncorrelated (Pikovsky et al, 2001). 
In contrast to the other proposed methods for examining signal amplitudes, this 
approach examines directly the oscillation phases. The idea behind this approach is 
that if a signal 1 is driven by signal 2, then the evolution of Φ1 also depends on Φ2; in 
other words, the prediction of Φ1 from its previous values can be improved by taking 
into account the prehistory of Φ2 only if signal 2 drives signal 1 (Rosenblum et al, 
2002). This means that weak coupling affects the phases of interacting time series 
(oscillators) whereas the amplitudes of those oscillators remain practically unchanged 
and the dynamics of the interacting signals can be reduced to those of two phases, 
Φ�,� = 휔�,� + 휀�,�푓�,�(훷�,�, 훷�,�) + 휉�,�(푡), where random terms ξ1,2 describe the noisy 
perturbations, small parameters ε1,2<<ω1,2 characterise the strength of the coupling, 
functions f1,2 are 2π periodic and ω1,2 are the natural frequencies of the two oscillators. 
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If the coupling is bidirectional, f1 and f2 depend on both f1 and f2. In case of 
unidirectional driving, say from signal 1 to signal 2, f1=f1(Φ1) whereas f2=f2(Φ1, Φ2) is 
the function of two arguments. Thereby, the condition of synchronisation for periodic 
oscillators can be generally written as a phase locking condition applied for any time 
t as (Pereda et al, 2005; Pikovsky et al, 2001; Rosenblum et al, 2001),
휑�,�(푡) = |푛훷�(푡) − 푚훷�(푡)| ≤ constant, where Φ1(t) and Φ2(t) are the phases of the 
signals associated with each system defined on the real line (unwrapped). Phase 
locking includes the constant phase shift and (small) fluctuations of the phase 
difference that means that the phases Φ1 and Φ2 are n:m locked if the inequality 
|nΦ1(t)-mΦ2(t)|≤constant holds (Pikovsky et al, 2001). Rosenblum et al. (Rosenblum 
& Pikovsky, 2001) assumed that the two analysed signals are weakly coupled 
oscillators. The coupled signals are claimed to be in phase synchronisation when the 
difference of the instantaneous phases are bounded with respect to time (Sun et al, 
2012). To detect phase synchronisation between two signals various methods to 
define the instantaneous phases have been proposed such as the Hilbert transform, 
the wavelet transform or specific filters applied to the signals (Sun et al, 2012). The 
main advantages of this approach are:

 Applicable to both noisy and chaotic time series;

 Determination of coupling direction (uni- or bidirectional);

 Quantification of the degree of asymmetry of bidirectional couplings;

 Posterior estimation of the coupling direction (Rosenblum & Pikovsky, 2001).

In the context of analysing instantaneous phases Paluš et al. (Palus & Stefanovska, 
2003) introduced an approach based on the conditional mutual information method 
for the detection of the direction of coupling from phases of weakly coupled 
oscillators. This approach is able to distinguish between uni- or bidirectional 
couplings and to quantify the degree of asymmetry in bidirectional coupling. Here, 
bivariate time series x(t) and y(t) considered as two stationary ergodic stochastic 
processes {X(t)} and {Y(t)} which represent coupled systems were assumed. For the 
estimation of the directionality of coupling between {X(t)} and {Y(t)}, the ‘‘net’’ 
information about the τ-future of the process (Broadley et al) contained in the process 
{Y} applying the conditional mutual information I(y;xτ|x) was used (Palus et al, 2001). 
Thereby, {X(t)} and {Y(t)} can be modelled by weakly coupled oscillators and their 
interactions can be inferred by analysing the dynamics of their instantaneous phases 
Φ1 and Φ2 which can be derived from {x(t)} and {y(t)}. The mutual information I(Φ1,Φ2) 
between the instantaneous phases Φ1 and Φ2 ([0,2π] or [-π,π]) is used for the 
assessment of phase synchronisation between the two systems. Afterwards, phase 
increments ∆ τΦ1,2=Φ1,2(t+τ)-Φ1,2(t) and the conditional mutual information 
I(Φ1(t);∆τΦ2|Φ2(t)) and I(Φ2(t);∆τΦ1|Φ1(t)) or I(Φ1;∆τΦ2|Φ2) and I(Φ2;∆τΦ1|Φ1) are 
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considered for causality relations. Finally, the directionality index D (eq. 15) is 
defined:

퐷(1,2) = �(�→�)��(�→�)
�(�→�)��(�→�), (15)

where the measure i(1→2) of how system 1 drives system 2 is either equal to the 
conditional mutual information I(Φ1;∆τΦ2|Φ2) for a chosen time lag τ for equal to an 
average I(Φ1;∆τΦ2|Φ2) over a selected range of lags τ. The measure i(2→1) is analogy 
defined using I(Φ2;∆τΦ1|Φ1). In the case of system 1 driving system 2 D(1,2)>0 holds 
and D(1,2)<0 for the opposite case (Palus & Stefanovska, 2003).

Schäfer et al. (Schäfer et al, 1998) used the concept of phase synchronisation of chaotic 
oscillators to analyse irregular non-stationary and noisy bivariate time series using 
the cardiorespiratory synchrogram, to detect different synchronous states (n:m) and 
transitions between the two time series and to distinguish between different periods 
of synchronisation using their instantaneous phases. 

Eckmann et al. introduced (Eckmann et al, 1987) the method of recurrence plots (RPs)
to visualise the recurrences of a dynamical system in its phase space. Bivariate cross 
recurrence plots (CRPs) are the extensions of the RPs and can be used to analyse the 
non-linear dependencies between two different systems by comparing their states. 
CRP is essentially assumed as a generalisation of the linear cross-correlation function. 
To quantify CRPs, indices of complexity were introduced mainly based on diagonal 
structures in CRPs. CRP can find non-linear interrelations from bivariate time series, 
whereas linear correlation tests can’t (Marwan & Kurths, 2002).
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2.3 Summary

Linear and non-linear approaches quantifying direct or indirect couplings as well as 
the direction of these couplings (driver-response relationship) provide new insights 
into alterations of cardiovascular, cardiorespiratory, and central regulatory networks 
and lead to an improved knowledge of the interacting regulatory mechanisms under 
different physiological and pathophysiological conditions. One should consider that 
the application of these approaches cannot be restricted to a single favourable one. 
There exists no generally superior approach that can solve all problems. However, 
there are some important points to consider when applying these methods to time 
series analysis:

 The cardiovascular, cardiorespiratory, and central regulatory networks are 
complex physiological systems interacting in direct or indirect ways. For the 
investigation of these systems, bivariate approaches are commonly applied. 
However, it can be assumed that multivariate approaches will be increasingly 
used instead of bivariate ones since they improve the characterisation of 
causal or non-causal interrelationships.

 Cardiovascular, cardiorespiratory and central time series (e.g. from 
electrocardiogram (ECG), systolic- and diastolic blood pressure, blood flow, 
plethysmogram, respiratory frequency, respiration flow, 
electroencephalogram (EEG)) are often noisy and non-stationary or only 
quasi-stationary over short periods. 

 The assessment of coupling and causality can be performed by applying either 
linear or non-linear time series analysis approaches. While non-linear
methods study complex signal interactions, linear methods favour the 
frequency domain representation of biological signals (characterisation of 
connectivity between specific oscillatory components). 

 The measurement data (time series) represent (patho)physiological processes 
only very incompletely and can only represent partial aspects.

 The method-specific characteristics used to differentiate between direct and 
indirect information flows and uni- and bidirectional couplings and to assess 
the coupling strength are not uniformly combined in one approach.

 PDC analyses are most frequently carried out between signals which are 
scaled on identical sizing systems (e.g. EEG on a microvolt scale). In contrast, 
respiration, heart rate and blood pressure amplitudes are scaled in different 
metric sizing systems. For such cases, it has been recommended to use the 
generalised PDC as a scale invariant interaction measure (Milde et al, 2011). 



2. Coupling analyses of linear and non-linear systems 28

In particular, the PDC can take values arbitrarily close to either one or zero if 
the scale of the target variable is changed accordingly (Schelter et al, 2009).

 The application of time-variant multivariate analysis approaches (i.e. tvPDC) 
will contribute to an improved understanding of time-variant relationships of 
the cardiovascular and cardiorespiratory system (Adochiei et al, 2013; Milde 
et al, 2011).

 For the investigation of pathophysiological conditions, it has to be considered
that these approaches are partly not validated since they were often applied 
either on experimental data, in healthy subjects or in patients with a specific 
pathophysiological condition. Representative studies are still missing.

Linear and non-linear coupling approaches might provide new insights into 
alterations of the cardiovascular, the cardiorespiratory and the central system and
possibly will lead to an improved knowledge of the interacting regulatory 
mechanisms under different physiological and pathophysiological conditions.
However, due to the large amount of these approaches it seems necessary to 
standardize these approaches, thus allowing us to select the “optimum” technique for 
each specific application. To make the application of coupling analyses more user 
friendly and more efficient the following issues should be solved or at least 
considered:

 Reduction of the degrees of freedom

 Reduction and standardization of preconditions

 Development of time-variant and multivariate analysis approaches

 Considering specific time delayed couplings (time lags)

 Considering scale independent couplings

 Method validation on larger sample sizes

Further on, such new coupling approaches represent promising tools for detecting 
information flows in a multivariate sense. They also might be able to provide 
additional prognostic information in the medical field and might overcome or at least 
complement other traditional univariate analysis techniques. The interest in coupling 
analyses of (patho)physiological networks has been growing considerably, and 
therefore, this will lead to an increasing amount of additional applications in the near 
future, improving the knowledge about interacting regulatory subsystems.
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Chapter 3

3. Novel coupling analyses methods

for biomedical time series 
The following content was previously published in:

High Resolution Joint Symbolic Dynamics – HRJSD:

Schulz, S., Haueisen, J., Bär, K. J. & Andreas, V. (2015) High-resolution joint symbolic analysis to enhance 
classification of the cardiorespiratory system in patients with schizophrenia and their relatives. Philos Trans A 
Math Phys Eng Sci, 373(2034).

Schulz, S., Tupaika, N., Berger, S., Haueisen, J., Bär, K. J. & Voss, A. (2013) Cardiovascular coupling analysis 
with high-resolution joint symbolic dynamics in patients suffering from acute schizophrenia. Physiol Meas, 34(8), 
883-901.

Multivariate High Resolution Joint Symbolic Dynamics – mHRJSD:

Schulz, S., Haueisen, J., Bär, K. J. & Voss, A. (2018) Multivariate assessment of the central-cardiorespiratory 
network structure in neuropathological disease. Physiol Meas, 39(7), 074004.

Schulz, S., Castro, M. R., Giraldo, B., Haueisen, J. & Voss, A. (2017) Multivariate high resolution joint symbolic 
dynamics (mHRJSD): a new tool to analyze couplings in physiological networks. Biomedical Engineering / 
Biomedizinische Technik.
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Normalized Short Time Partial Directed Coherence – NSTPDC:

Schulz, S., Haueisen, J., Bär, K. J. & Voss, A. (2019) Altered Causal Coupling Pathways within the Central-
Autonomic-Network in Patients Suffering from Schizophrenia. Entropy, 21(8), 733.

Schulz, S., Bär, K. J. & Voss, A. (2015) Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in 
Patients with Schizophrenia. Entropy, 17(2), 483-501.

Adochiei, F., Schulz, S., Edu, I., Costin, H. & Voss, A. (2013) A New Normalised Short Time PDC for Dynamic 
Coupling Analyses. Biomed Tech (Berl), 58 Suppl 1.

3.1 High Resolution Joint Symbolic Dynamics

3.1.1 Introduction

Over the last decades, knowledge of autonomic regulation has increased significantly 
through the investigation of HRV indices. Apart from linear HRV indices (time- and 
frequency domain), only a few published studies have applied non-linear dynamics 
(NLD) for short-term HRV analysis in patients with schizophrenia (Bär et al, 2007b; 
Chang et al, 2009; Kim et al, 2004; Mujica-Parodi et al, 2005). However, non-linear
methods might help to reveal far more information about the dynamics and 
complexity of cardiovascular regulation and the involved subsystems of patients at 
higher cardiac risk, such as those with schizophrenia, as demonstrated in studies of 
heart failure patients (Voss et al, 2009). Interactions of these physiological subsystems 
within the cardiovascular system can be understood as closed-loops with 
feedforward and feedback mechanisms.

In addition to classical univariate indices from HRV in the time- and frequency 
domain, bivariate analysis of autonomic regulation, based on cardiovascular 
couplings of heart rate and systolic blood pressure time series can provide extra 
information (heart rate and blood pressure regulation pattern) about the complex 
cardiovascular system. Traditional bivariate techniques such as cross-correlation, 
cross-spectral power density analysis or baroreflex sensitivity (BRS) describe only 
linear dependencies of heart rate and systolic blood pressure. For coupling analysis, 
these approaches are partly inadequate for physiological data due to the linear as well 
as the non-linear interactions of the underlying control systems and the non-
stationary behaviour and high complexity of these signals (Hoyer et al, 1998).
Therefore, it seems to be desirable to apply suitable coupling analysis approaches that 
can identify and quantify non-linear interactions between heart rate and systolic 
blood pressure (Schulz et al, 2013a). The well-established joint symbolic dynamics 
method (JSD) (Baumert et al, 2002) allows a simplified coarse-grained quantification 
of the dynamics of heart rate and systolic blood pressure using two symbols. JSD has 
been successfully applied in HRV analysis in different approaches to interpret 
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physiological data and characterise the system’s underlying dynamics (Baumert et al, 
2002; Caminal et al, 2005; Voss et al, 2009).

Here, I introduce a new high resolution joint symbolic dynamics (HRJSD) that is 
based on 3 symbols and a symbol-transformation threshold which can be used to 
quantify short-term cardiovascular coupling. I further introduce and define pattern 
families that characterise different interaction aspects of the branches of autonomic 
regulation based on a redundancy reduction strategy. I hypothesise that HRJSD 
indices reveal alterations of complexity and cardiovascular coupling patterns in 
autonomic regulation more precisely and in more detail than the original JSD method. 
This might improve the understanding of physiological processes of cardiovascular 
coupling (e.g. feedforward and feedback mechanisms of changes in heart rate 
regulation through the arterial baroreflex control loop or heart rate variations 
affecting blood pressure via the Windkessel function) and could provide additional 
information about altered heart rate/systolic blood pressure coupling resulting from 
antipsychotic treatment (anti-cholinergic effects of antipsychotic drugs) of patients 
with acute schizophrenia. In particular, it can be hypothesised that the application of 
HRJSD will help to quantify and characterise how different antipsychotics influence 
autonomic modulation in different ways. This will allow prospective studies 
investigating medicated schizophrenic patients to predict how a specific 
antipsychotic will influence autonomic regulation (cardiovascular). In addition, 
HRJSD may help with the selection of an optimal treatment strategy (selection and 
doses of optimal antipsychotics to prevent affecting ANS modulation) and may 
contribute to the success of therapy. 

3.1.2 Basics of Joint Symbolic Dynamics

The method of joint symbolic dynamics (JSD) was developed by Baumert (Baumert 
et al, 2002) to analyse non-linear couplings between systolic blood pressure (SP) and 
heart rate (BBI) time series and is based on the analysis of dynamic processes by 
means of symbols (Kurths et al, 1995). Therefore, both time series (BBI and SP, or 
respiration rate (RESP)) were transformed into symbol sequences. In X (eq. 16) as a 
bivariate sample vector, xBBI and xSP were n beat-to-beat values of BBI and SP, 
respectively.

푋 = �[푋����, 푋���]�� ���,�,… (16)

푋 ∈ 푅 (R is the subset of real positive numbers)

Then X was transformed into a bivariate symbol vector S (eq. 17) defined as

푆 = �[푆����, 푆���]�� ���,�,… (17)
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푆 ∈ 푅 with the following definitions:

푆���� = �0: �푋���
��� − 푋����� ≤ 푙���

1: �푋���
��� − 푋����� > 푙���

푆��� = �0: �푋���
�� − 푋���� ≤ 푙��

1: �푋���
�� − 푋���� > 푙��

In the JSD method, the threshold l was set to zero. Hence, increases between two 
successive BBI and SP, were respectively coded as “1” and consequently decreases 
and equilibriums were coded as “0”. Afterwards, S was subdivided into short words 
(sequences of symbols) wk of length k, where k was set to 3. The word types were 
integrated into an 8×8 vector matrix W ranging from (000,000)T to (111,111)T. To 
compare the word distributions between time series of different lengths, the 
probability of occurrence of all word types was normalised to 1.

JSD allows a simplified quantification of the dynamics of BBI and SP using a limited 
number of symbols and has been successfully applied to HRV analysis (Voss et al, 
1996; Voss et al, 2009). However, using a threshold l=0, some problems occur, 
including:

 The number of word types including decreases and equilibriums increase, 
because increases between two successive values which are not exceeding l 
were codes with “0”. That is why the word types including the symbol “0” are 
the most pronounced ones within W especially the word type combination 
000,000 is the most pronounced one.

 It is impossible to differentiate between decreases and steady states of 
autonomic regulation because both states are coded with the symbol “0”. This 
limitation might further lead to misinterpretations of the findings regarding 
autonomic regulation. For example, the word type combination (000,000) 
might suggest a sympathetic activation in response to a decrease of blood 
pressure.

 It is impossible to distinguish between small and large changes in heart rate 
or blood pressure. 

To differentiate between noise, artefacts (e.g. generated by undersampling or ectopic 
events) and fluctuations that arise from autonomic regulation, I inserted the threshold 
level l≠0. This led to a JSD with three symbols (HRJSD). For the transformation of X
into S, new definitions were used (eq. 18, 19):

푆���� = �
0: �푋���

��� − 푋����� < −푙���                          
1: − 푙��� ≤ �푋���

��� − 푋����� ≤ 푙���

2: �푋���
��� − 푋����� > 푙���

(18)
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푆��� = �
0: (푋���

�� − 푋���) < −푙��                          
1: − 푙�� ≤ (푋���

�� − 푋���) ≤ 푙��

2: (푋���
�� − 푋���) > 푙��

(19)

Here, symbol sequences with increasing values were coded as “2”, decreasing values 
were coded as ”0” and unchanging (no variability) values were coded as “1”. S was 
also subdivided into short words (bins) wk of length k=3. The application of 3 symbols 
allowed me to differentiate between fluctuations of bradycardic and tachycardic 
origin. Furthermore, the influence of blood pressure regulation on heart rate was 
considered to be associated with the actual SP value 푋��� and with the following BBI 
value 푋���

��� (one-beat delay (Fritsch et al, 1986)).

Using three symbols led to 27 different word types for BBI and SP time series (word 
types ranging from: 000, 001, …, 221, 222 (Figure 2, a). The distribution of all single 
word types (wi,j) was normalised by the total number of all word type combinations 
n=729 (27×27). The word types were sorted into a normalised 27×27 vector matrix Wn

ranging from word type (000,000)T to (222,222)T (Figure 2, a). To compare the word 
type distributions between time series of different lengths, the probability of 
occurrence p(wk) of all word types was normalised to 1. 

3.1.3 Pattern families and threshold levels

However, the maximum length of words was restricted by the probability p(wk) (eq. 
20) of occurrence of each word type and accordingly by the number of samples within 
the investigated time series. For a statistically sufficient representation of each single 
word type, the √푁 approximation for the histogram construction of N observations 
was applied to estimate the maximum number of word types. 

For example, for a short-term recording (here: 30 min) with a mean heart rate of 70 
bpm, 3 symbols, word length=3, 729 word types (3� ∗ 3�) and a time series length N
of 2100 beat-to-beat intervals, there are about 2.9 words in each bin.

푝(푤�) = ���
���� ����� = ����

��∗�� = 2.88 (20)

Thus, the accuracy of the word distribution is limited by having only a few words per 
bin. For a statistically sufficient representation, a heuristic basis of a minimum 20 
words per bin would be required. (Voss et al, 1996). As a consequence, at least 3-h 
recordings (mean heart rate of 70 bpm, number of symbols=3, word length=3, word 
types=3� ∗ 3� = 729) would be necessary to achieve a statistically sufficient
representation of words per bin. 
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Figure 2. Basic principle of HRJSD. (a) Transformation of the bivariate sample vector X (BBI=beat-to-
beat intervals (msec); SP=systolic blood pressure (mmHg)) into the bivariate symbol vector S (0: 
decreasing values, 1: equal values 2: increasing values) and word distribution density matrix Wn

(27×27). (b) Word pattern family distribution density matrix Wf (8×8) with eight pattern families wf 
created from 27 single word types wBBI,SP. Rows represent pattern families of BBI intervals changes,
column pattern families of SP changes, rfBBI (row): sum of specific word family, cfSP (column): sum of 
specific word family.
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To overcome this problem, all single word types wBBI,SP were grouped into 8 pattern 
families wf. The probabilities of all single word family’s occurrences p(wf) (eq. 21) 
were normalised to 1.

푝(푤푓) = ���
���� �������� = ����

�� = 32.79 (21)

These 8 pattern families (E0, E1, E2, LU1, LD1, LA1, P, V) represent different patterns 
of interactions between the branches of the autonomic regulation system (strong and 
weak tachycardic or bradycardic, nearly constant or alternating) (Figure 3) and were 
sorted into an 8x8 pattern family density matrix Wf (Figure 2, b) resulting in 64 
coupling patterns. The pattern definition (Figure 3, Figure 4) is as follows:

 E0, E1 and E2: Words consisting of three equal symbols (no variation of 
symbols) of type '0', '1' and '2', respectively.

 LU1 and LD1: Words consisting of two different symbols with low increasing 
behaviour (LU1) and low decreasing behaviour (LD1).

 LA1: Words consisting of two different alternating symbols of type '0' and '2' 
with an increasing-decreasing behaviour.

 P and V: Words consisting of three different symbols with peak-like behaviour 
(P) and with valley-like behaviour (V) (Schulz et al, 2013c).

Figure 3. Definition of 8 pattern families of HRJSD. (HR=heart rate, BBI=beat-to-beat intervals,
RESP=respiratory frequency, PEEG=mean power in the BBI-related EEG intervals).
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As an example, the pattern family “E0” from BBI time series is coupled with the 8 
pattern families from SP as: BBI-E0/SP-E0, BBI-E0/SP-E1, BBI-E0/SP-E2, BBI-E0/SP-
LU1, BBI-E0/SP-LD1, BBI-E0/SP-LA1, BBI-E0/SP-P and BBI-E0/SP-V. Thus, the pattern 
family “E0” (BBI-E0/SP-E0) contains word types that consist only of the “0” symbol. 
On one hand, this means that the BBI decreases over three values and which were 
therefore coded by “0” three times (represents an increase in mean heart rate over 
three values) whereas on the other hand, SP values decrease over three values. 

In addition, from this matrix Wf the sum of each (n=8) column cfSP (cfE0, cfE1, cfE2, 
cfLU1, cfLD1, cfLA1, cfP, cfV) (eq. 22) and the sum of each (n=8) row rfBBI (rfE0, rfE1, 
rfE2, rfLU1, rfLD1, rfLA1, rfP, rfV) (eq. 23) were computed (Figure 2, b) for each pattern 
family, resulting in 16 further HRJSD indices.

푐푓�� = ∑ 푊푓���,����� (22)

푐푓��� = ∑ 푊푓���,���� (23)

Furthermore, I calculated the Shannon entropy (HRJSDShannon) (eq. 24) within Wf as a 
measure of the overall complexity of cardiovascular coupling. 

HRJSDShannon = ∑ �푝�푤푓�.�� log� 푝 �푤푓�.����
�,��� (24)

To investigate the influence of the threshold l level on the density matrices Wn and Wf
I applied different individual dynamic variability and cardiovascular (lBBI, lSP) and 
cardiorespiratory (lRESP) physiological settings for the thresholds lBBI, lSP, and lRESP for 
symbol transformation as:

 lBBI, lSP, and lRESP equal 0 (no threshold=no_TH), similar to JSD,

 lBBI=5ms and lSP=1mmHg (as for the non-invasive estimation of the 
spontaneous baroreflex sensitivity (BRS_TH) with the validated sequence 
technique) (Bertinieri et al, 1988; Laude et al, 2004),

 lBBI, lSP, and lRESP equal to 25% and 100% of the standard deviation (1/4sd_TH, 
sd_TH) of the BBI, SP and RESP time series as an adapted threshold to the 
individual physiological dynamic variability (Figure 4).
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Figure 4. Visualisation example of the three-dimensional plots of the HRJSD pattern family 
distribution density matrix Wf (8×8) for the threshold levels lBBI equal to 5ms and lRESP equal to 25% of 
the standard deviation of the RESP time series for healthy subjects (a), healthy first-degree relatives (b) 
and schizophrenic patients (c). (BBI=beat-to-beat intervals, RESP=respiratory frequency) (Schulz et al, 
2015b)

3.1.4 Directionality index

In order to evaluate physiological states of biological systems, which are highly 
complex, it is important and necessary not only to determine synchronization 
processes within coupled complex systems, but also to determine the predominant 
direction of their coupling. Therefore, various approaches are available for this 
purpose. The coupling direction can be determined, e.g. from the amplitudes of the 
system (properties of the system state) by calculating their mutual predictability 
(Schiff et al, 1996), from mutual nearest neighbours (Arnhold et al, 1999; Quiroga et 
al, 2000) in the reconstructed state space or by applying information theoretical 
approaches (Palus et al, 2001; Palus & Stefanovska, 2003; Schreiber, 2000).

In the field of symbolization there are so far no approaches available that determine 
the coupling direction neither for bivariate nor for multivariate systems. First 
attempts for this were integrated in SCT (Wessel et al, 2011). SCT are able to detect 
delayed couplings (time lags), but not able to assess the coupling direction as well as 
the driver-response relationships. To close this gap here, I introduced a Directionality 
index (DHRJSD) derived from the 8×8 pattern family density matrix Wf from the HRJSD 
approach. This index is able to determine the dominant coupling direction and 
assesses the driver-response relationships in bivariate (n=2) and multivariate (n=3) 
systems (Figure 1, Figure 5).
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For the bivariate case (x,y) the columns cfx (n=8) and the rows rfy (n=8) from the matrix 
Wf (Figure 2) were used to calculate DHRJSD(x,y) (eq. 25):

퐷�����(푥, 푦) = − �∑ ���(�)����(�)
���(�)����(�)

�
��� � 푛� (25)

If DHRJSD(x,y) is positive driving (→) from system 1 (x) to system 2 (y) predominates 
(eq. 26) and becomes negative for the opposite case (eq. 27).

퐷�����(푥, 푦) > 0;    풙  
→ 푦 (26)

퐷�����(푥, 푦) < 0;    풚  
→ 푥 (27)

3.1.4.1 Simulated coupled linear and non-linear systems to validate DHRJSD

Simulated data were used to validate DHRJSD. Therefore, two different multivariate 
models were applied (Baccala & Sameshima, 2001b; Montalto et al, 2014), each with 
100 simulated time series: 

 Linear time series with a normal distribution of the variables, generated by a 
linear Gaussian AR model, and 

 Non-linear time series, generated by a non-linear Gaussian AR model.

For the linear and the non-linear model three different multivariate coupled systems 
were generated with different mutual influences (unidirectional, bidirectional) 
between the time series (Figure 5).

Figure 5. Simulated multivariate systems with their mutual influence between the time series x1, x2, 
and x3. Arrows indicating the causal coupling direction from one system to another (e.g. x1→x2 means
a unidirectional driving from system 1 (x1) to system 2 (x2), and x2⇄x3 means a bidirectional driving
between system 2 (x2) to system 3 (x3)).
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The following equations were used for the three linear Gaussian autoregressive 
models (Baccala & Sameshima, 2001b; Montalto et al, 2014) (eq. 28-30):

Linear system 1, LS1 (Figure 5, a):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = −0.5푥�(푛 − 1) + 푤�(푛)
푥�(푛) = 0.4푥�(푛 − 2) + 푤�(푛) (28)

Linear system 2, LS2 (Figure 5, b):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = 0.5푥�(푛 − 2) + 푤�(푛)
푥�(푛) = −0.4푥�(푛 − 3) − 0.2푥�(푛 − 2) + 푤�(푛) (29)

Linear system 3, LS3 (Figure 5, c):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = 0.5푥�(푛 − 2) + 0.4푥�(푛 − 1) + 푤�(푛)
푥�(푛) = −0.4푥�(푛 − 3) − 0.2푥�(푛 − 2) + 푤�(푛) (30)

where w1(n), w2(n), and w3(n) were drawn from Gaussian noise with zero mean and 
unit variance. For the linear system 3, a closed-loop from x3(n) back to x2(n) via a direct 
connection was integrated, with x3 as the predominant driver.

For the non-linear models (Montalto et al, 2014) (eq. 31-33), x2(n) was modified by a 
quadratic term of 푥�

�. Thus, the three linear model equations changed to:

Non-linear system 1, NLS1 (Figure 5, a):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = −0.5푥�

�(푛 − 1) + 푤�(푛)
푥�(푛) = 0.4푥�(푛 − 2) + 푤�(푛) (31)

Non-linear system 2, NLS2 (Figure 5, b):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = 0.5푥�

�(푛 − 2) + 푤�(푛)
푥�(푛) = −0.4푥�(푛 − 3) − 0.2푥�(푛 − 2) + 푤�(푛) (32)

Non-linear system 3, NLS3 (Figure 5, c):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = 0.5푥�

�(푛 − 2) + 0.5푥�(푛 − 1) + 푤�(푛)
푥�(푛) = −0.4푥�(푛 − 3) − 0.2푥�(푛 − 2) + 푤�(푛) (33)
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where w1(n), w2(n), and w3(n) were drawn from Gaussian noise with zero mean and 
unit variance. For non-linear system 3, a closed-loop from x2(n) back to x3(n) via a 
direct connection was integrated, with x2 as the predominant driver. 

3.1.4.2 Results of simulated systems to validate DHRJSD

The results of the simulated linear and non-linear AR systems were validated with 
two further methods, the normalized short-time partial directed coherence (NSTPDC) 
(Adochiei et al, 2013) and the Multivariate Transfer Entropy (MuTE) (Montalto et al, 
2014). Both methods allow to determine the coupling direction. NSTPDC mainly 
detects linear coupling, whereas MuTE mainly detects non-linear coupling. In short, 
NSTPDC is based on a m-dimensional AR model with the order p and allows 
determining linear Granger causality in the frequency domain, and MuTE is an 
information-theoretical approach detects the information transfer between 
multivariate joint processes and discovers purely non-linear interactions with a range 
of interaction delays. 

All three methods, the HRJSD, NSTPDC and MuTE calculated a directionality index 
D (DHRJSD, DNSTPDC, DMuTE). These three indices have in common, that if the index is 
positive, driving (→) from system 1 (x) to system 2 (y) predominates, and become 
negative for the opposite case that system 2 (y) is driving system 1 (x).

Linear system 1 (Table 1):

1→2 and 1→3: DHRJSD, DNSTPDC, DMuTE are positive; correct classification of the 
predominating coupling directions (1 is driver).

Linear system 2:

1→2, 1→3, 2→3: DHRJSD, DNSTPDC, DMuTE are positive; correct classification of the 
predominating coupling directions (1 and 2 are drivers).

Linear system 3:

1→2, 1→3: DHRJSD, DNSTPDC, DMuTE are positive; correct classification of the 
predominating coupling directions (1 is driver).

2⇄3: DHRJSD, DNSTPDC, DMuTE are negative; correct classification of the 
predominating coupling direction (3 is driver).

For the linear AR model with purely linear couplings among the three variables (1, 2, 
3) all directionality indices (DHRJSD, DNSTPDC, DMuTE) were able to correctly detect the 
predominating coupling directions and the related driver variable.



3. Novel coupling analyses methods for biomedical time series 41

Table 1. Results of simulated linear and non-linear AR systems to validate the directionality index 
DHRJSD. (blue: driver variable)

Simulated 
driver-

response 
relationship

Coupling AR model Directionality index

DHRJSD DNSTPDC DMuTE

1→2 linear linear 0.013 2.0 1.0
1→3 linear linear 0.052 2.0 1.0
1→2 linear linear 0.012 2.0 1.0
1→3 linear linear 0.028 2.0 1.0
2→3 linear linear 0.012 1.8 0.7
1→2 linear linear 0.011 2.0 1.0
1→3 linear linear 0.012 2.0 1.0
2⇄3 linear linear -0.011 -0.5 -0.6
1→2 non-linear non-linear -0.037 1.0 1.0
1→3 linear non-linear 0.106 2.0 1.0
1→2 non-linear non-linear -0.036 1.4 1.0
1→3 non-linear non-linear -0.019 2.0 1.0
2→3 non-linear non-linear -0.010 2.0 1.0
1→2 non-linear non-linear -0.030 1.5 1.0
1→3 non-linear non-linear -0.015 2.0 1.0
2⇄3 non-linear non-linear -0.002 1.5 0.8

Non-linear system 1 (Table 1):

1→2: DNSTPDC and DMuTE are positive; correct classification of the 
predominating coupling direction (1 is driver).

DHRJSD is negative; incorrect classification of the predominating 
coupling direction. DHRJSD detects variable 2 as the driver.

1→3: DHRJSD, DNSTPDC, DMuTE are positive; correct classification of the 
predominating coupling direction (1 is driver).

Non-linear system 2:

1→2, 1→3, 2→3: DNSTPDC and DMuTE are positive; correct classification of the 
predominating coupling directions (1 and 2 are drivers).

DHRJSD is negative; incorrect classification of the predominating 
coupling directions. DHRJSD detects variables 2 and 3 as the 
drivers.
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Non-linear system 3:

1→2, 1→3, 2⇄3: DNSTPDC and DMuTE are negative; correct classification of the 
predominating coupling directions (1 and 2 are drivers).

DHRJSD is negative; incorrect classification of the predominating 
coupling directions. DHRJSD detects variables 2 and 3 as the 
drivers.

For the non-linear AR model with purely non-linear couplings among the three 
variables (1, 2, 3) only NSTPDC and MuTE were able to correctly detect the 
predominating coupling directions and the related driver variable. DHRJSD was partly 
able to detect the dominating coupling direction in non-linear systems (non-linear 
system 1). Due to this limitation, in detailed investigations to determine the coupling 
direction, other methods should be used in addition to DHRJSD (e.g. MuTe), which can 
also correctly determine the dominant driver-response relationships in pure non-
linear systems.

3.1.5 Evaluation of pattern families and threshold levels

To evaluate and validate the pattern families and the threshold levels real patient data 
of a clinical study were investigated. Therefore, a high-resolution short-term ECG 
(1000 Hz sampling frequency) and synchronised non-invasive blood pressure (NIBP, 
500 Hz sampling frequency) were recorded over 30 minutes with the Task Force 
Monitor® (CNSystems, Graz, Austria). From the raw data recordings, time series of 
heart rate consisting of successive beat-to-beat intervals (BBI) and systolic blood
pressure values (SP) were extracted automatically using in-house software 
(programming environment Delphi 3). Afterwards, all time series were adaptively 
filtered to exclude artefacts and ventricular premature beats (interpolation) using in-
house software. Thus, a normal-to-normal beat time series (NN) was obtained. 

In this clinical study BBI and SP time series of 42 unmedicated (UNMED: 34.9±13.0 
years, 18 female) and 42 medicated patients (MED: 35.1±12.7 years, 18 female) 
suffering from acute schizophrenia were analysed. This study complied with the 
Declaration of Helsinki. All participants gave written informed consent to a protocol 
approved by the Ethics Committee of the University Hospital, Jena. Patients were 
advised that the refusal of participating in this study would not affect future 
treatment. For the statistical evaluation of the results, the nonparametric Wilcoxon 
signed rank test was applied to determine differences between UNMED and MED. 
Significance values p<0.05 were considered statistically significant (highly significant 
p<0.01). Descriptive statistics were used to describe basic features of data in terms of 
mean value (MW) and standard deviation (SD).
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3.1.6 Surrogate data

The surrogate data approach (Schreiber & Schmitz, 2000; Theiler et al, 1992) was 
applied to test the significance and the non-linear nature of the cardiovascular 
couplings between BBI and SP from HRJSD analysis. Therefore, two types of 
surrogate data were created:

I) Uncoupled isospectral isodistribution pairs (sI) from the original heart rate and 
systolic blood pressure time series to preserve linear properties to test for 
coupling. These surrogate data have the same frequency distribution and 
power spectra as the original pairs of signals, but were completely uncoupled.

II) Isospectral isodistribution pairs (sII) from the original heart rate and systolic 
blood pressure time series preserving cross-correlation to test non-linearity of 
the couplings. These surrogate data preserved the individual BBI and SP spectra 
as well as the magnitude of their cross-spectrum, obtained by adding the same 
random number to the Fourier phases of the two series. Thus, the linear 
coupling was maintained, whereas non-linear interactions were destroyed 
(Nollo et al, 2002).

Fifteen independent surrogate time series of type I and II were derived from the 
original time series from each of the unmedicated and medicated schizophrenic 
patients (UNMED_sI, UNMED_sII, MED_sI, MED_sII). As a consequence, each 
HRJSD index was calculated from the surrogate time series sets. In addition, it was
determined the extent to which different threshold levels l for HRJSD analysis 
influence cardiovascular couplings of surrogate data. The nonparametric Wilcoxon 
signed rank test (paired data) was applied to determine differences between 
UNMED_sI vs. MED_sI and UNMED_sII vs. MED_sII. Differences were considered 
statistically significant at p<0.05.

3.1.7 Results of High Resolution Joint Symbolic Dynamics

3.1.7.1 The influence of different threshold levels on word type probabilities

The application of different settings for the thresholds lBBI and lSP (no_TH, BRS_TH,
1/4sd_TH, sd_TH) led to a number of significant HRJSD indices (Table 2). When only 
considering HRJSD indices with a significance of less than p<0.05, I found that all four 
threshold settings showed significant differences between UNMED and MED. After 
a correction of the significance level shifted to p<0.01, the threshold level, which is 
based on baroreflex sensitivity (BRS_TH) estimation and the threshold level 25% of 
the standard deviation (1/4sd_TH, sd_TH) of the BBI- and SP time series were the most 
effective ones quantifying the anti-cholinergic effects of drugs and the related specific 
cardiovascular coupling patterns in MED. As expected, different definitions of 
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thresholds led to different word type probabilities for MED (the same behaviour was 
obtained for UNMED) within the density matrix Wn (Figure 6). 

Table 2. The influence of different threshold settings on the occurrence of significant word types for 
quantifying the anti-cholinergic effects of the antipsychotic drugs in medicated schizophrenic patients 
(MED) in comparison to unmedicated schizophrenic patients (UNMED). (TH=threshold, no=0,
BRS=baroreflex sensitivity, 1/4sd=25% standard deviation, sd=100% standard deviation,
p=significance level)

HRJSD thresholds
number of HRJSD indices

p<0.05 p<0.01

no_TH 5 -

BRS_TH 49 9

1/4sd_TH 28 6

sd_TH 22 5

In (Figure 6, a) (no threshold), various word types from BBI and SP show both lower 
and higher probability of occurrence. However, the most dominant word type was 
the combination of both (000,000). Furthermore, some clusters (increased number of 
similar word types with higher probabilities of occurrence) were found within the 
word distribution density matrix Wn. A cluster can be understood as those word types 
within Wn which describe nearly the same type of coupling (e.g. increasing, 
decreasing, alternating or unchanging (invariable) cardiovascular regulation 
behaviour), reveal a higher probability of occurrence within Wn and were 
concentrated side by side (forming a cluster). In this case, the clusters were mainly 
characterised by combinations of the symbols ‘0’ and ‘2’ for both BBI and SP, 
representing increasing, decreasing or alternating behaviour of these time series. The 
symbol ‘1’ (unchanged) revealed a lower probability of occurrence. Regarding the 
threshold based on baroreflex sensitivity (Figure 6, b) the word type (111) from SP 
was the most represented, independent of all other BBI word types whereas all other 
word type combinations were mainly uniformly distributed within Wn.

The application of the individually adapted threshold level l=1/4sd (Figure 6, c) 
showed that the word type combination (111,111) became the most frequent one 
within Wn and was mainly the SP word type (111). This word type revealed a higher 
probability of occurrence and was independent of all other BBI word types. All other 
combinations of SP and BBI word types were mainly uniformly distributed within 
Wn. This higher probability of occurrence (~70%) of word type combination (111,111) 
was intensified by applying the threshold level l=sd (Figure 6, d). Here, the word type 
(111) with respect to both SP and BBI was the most frequent whereas other word types 
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revealed a lower probability of occurrence or were even entirely absent. Furthermore, 
the word type (111) of SP was nearly independent of all other BBI word types.

Figure 6. Three-dimensional plots of the word distribution density matrix Wn (27×27) for the threshold 
levels no_TH, BRS_TH, 1/4sd_TH and sd_TH (a, b, c, d) from medicated schizophrenic patients. Due 
to the application of the threshold level sd_TH (d) the word type combination (111,111) was the most 
frequent, with the highest probability of occurrence (~70%) whereas all other word types revealed a 
lower probability of occurrence. Note that in plot d the bar chart of the word type (111,111) was cut to 
archive a uniform scaling of plot a-d. If the axis of plots a, b and c were scaled to the maximum possible 
value (111,111) shown in plot d, the representation of the predominant word types in plot a, b and c 
would not be noticeable. (SP=systolic blood pressure, BBI=beat-to-beat intervals)

3.1.7.2 The influences of different threshold levels on pattern family probabilities

The application of different thresholds for lBBI and lSP (no_TH, BRS_TH, 1/4sd_TH,
sd_TH) resulted in different distributions in the 8x8 pattern family density matrix Wf
(Table 3) and 12 significant (p<0.05) HRJSD pattern family indices. 9 HRJSD pattern 
family indices were found to be significantly different when applying BRS_TH. This 
threshold was most suitable for revealing specific cardiovascular coupling patterns 
resulting from treatment with antipsychotics (anti-cholinergic effects of drugs) in 
MED (p<0.05) in comparison to UNMED (Figure 7). 
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The combination of SP-E2/BBI-E1 was particularly highly significant different 
(p<0.01) in this approach. This combination is characterised by increased systolic 
blood pressure values (SP-E2) and nearly invariable BBI (heart rate) (BBI-E1) 
variations. The combination SP-E2/BBI-E1 was considerably reduced in UNMED and 
increased in MED (Table 3). Increased single pattern family probabilities BBI-E1 of 
MED (6.15±11.94), indicating a high increase of invariable heart rate patterns, were 
found in MED in comparison to UNMED (2.52±4.79). Out of all the significant 
cardiovascular HRJSD combinations, 50% (n=4) showed increased mean values and 
50% (n=4) revealed reduced mean values in MED in comparison to UNMED. Here, 
the single pattern family probabilities BBI-E1 were involved in all 4 combinations 
which showed increased mean values (SP-E2/BBI-E1, SP-LU1/BBI-E1, SP-P/BBI-E1,
SP-V/BBI-E1) in MED in comparison to UNMED.

Table 3. Left: The influence of different threshold settings on the occurrence of HRJSD pattern family 
indices used to quantify the anti-cholinergic effects of the antipsychotic drugs in medicated 
schizophrenic patients (MED) in comparison to unmedicated schizophrenic patients (UNMED).
Right: Group mean value (MV) and standard deviation (SD) in arbitrary units [%] for HRJSD indices 
for UNMED and MED applying the baroreflex sensitivity threshold (BRS_TH). (SP=systolic blood 
pressure, BBI=beat-to-beat time series (heart rate), E0, E1, E2, LA1, LU1, LD1, P, V=pattern families,
TH=threshold, no=0, BRS=baroreflex sensitivity, 1/4sd=25% standard deviation, sd=100% standard 
deviation, *p<0.05, **p<0.01, n.s.=not significant, #=significant cardiovascular coupling index with 
respect to surrogate type I analysis, §=non-linear cardiovascular coupling index with respect to 
surrogate type II analysis)

Index no_TH BRS_TH 1/4sd_TH sd_TH
BRS_TH

UNMED MED
MV ± SD MV ± SD

SP-E0/BBI-E2 n.s. *, #, § n.s. n.s. 0.04 ± 0.07 0.01 ± 0.03
SP-E2/BBI-E1 n.s. **, # n.s. n.s. 0.03 ± 0.10 0.14 ± 0.34
SP-E2/BBI-V n.s. n.s. *, #, § n.s. 0.08 ± 0.09 0.12 ± 0.13
SP-LU1/BBI-E1 n.s. *, #, § n.s. n.s. 0.77 ± 1.63 1.83 ± 3.60
SP-LU1/BBI-LA1 n.s. *, #, § n.s. n.s. 3.08 ± 2.69 2.40 ± 2.38
SP-LD1/BBI-E0 n.s. * n.s. n.s. 3.15 ± 2.71 2.37 ± 2.21
SP-P/BBI-E1 n.s. * n.s. n.s. 0.22 ± 0.43 0.48 ± 1.07
SP-P/BBI-LA1 n.s. *, #, § n.s. n.s. 1.58 ± 1.63 1.23 ± 1.63
SP-V/BBI-E1 n.s. * n.s. n.s. 0.24 ± 0.44 0.56 ± 1.13
SP-E2 * n.s. n.s. n.s. 3.82 ± 2.61 3.90 ± 2.50
BBI-E0 n.s. * n.s. n.s. 6.71 ± 5.42 5.26 ± 4.30
BBI-E1 n.s. n.s. n.s. n.s. 2.52 ± 4.79 6.15 ± 11.94
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Figure 7. Three-dimensional plots of the HRJSD pattern family distribution density matrix Wf (8×8) 
for the baroreflex sensitivity related threshold level (BRS_TH) for a unmedicated schizophrenic patient 
(a) and the medicated state (b). (SP=systolic blood pressure, BBI=beat-to-beat intervals)

3.1.7.3 Surrogate data analysis - Probabilities of occurrence of HRJSD indices in surrogate 
time series and the influence of different threshold levels on pattern families’ probabilities 

The application of different thresholds for lBBI and lSP (no_TH, BRS_TH, 1/4sd_TH,
sd_TH) on surrogate data time series (UNMED_sI, UNMED_sII, MED_sI MED_sII) 
revealed a similar behaviour of different and nearly identical significant HRJSD 
indices within Wf as it was found for the original time series (Table 4). When the 
thresholds no_TH and 1/4sd_TH were applied, type I and II surrogates did not show 
significant differences between the time series of unmedicated and medicated 
schizophrenic patients, whereas the sd_TH led to significant word type combinations 
(type I: n=3, type II: n=1) in contrast to the original time series, where no significant 
differences were found. The physiological threshold level based on baroreflex 
sensitivity (BRS_TH) revealed most of the significant differences between the 
surrogates for type I (9%) and II (10%) as found for the original time series (11%). 
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Table 4. Surrogate data  The effect of different threshold settings on the occurrence of significant 
HRJSD indices (pattern families) used to identify significant differences between the unmedicated and 
medicated state of acute schizophrenic patients due to the antipsychotic drugs treatment derived from 
surrogate time series (type I and II). (TH=threshold, no=0, BRS=baroreflex sensitivity, 1/4sd=25% 
standard deviation, sd=100% standard deviation, p<0.05)

      Number of significant HRJSD word family indices

sd_TH 1/4sd_TH BRS_TH no_TH

Original 0 1 9 1

Type I surrogates 3 0 7 0

Type II surrogates 1 0 8 0

      Percentage [%] of significant HRJSD word family indices 

sd_TH 1/4sd_TH BRS_TH no_TH

Original 0 1 11 1

Type I surrogates 4 0 9 0

Type II surrogates 1 0 10 0

In summary, the surrogates (type I and II) revealed similar probabilities of occurrence 
of significant HRJSD indices as in the original time series which means that the 
patterns found are not based on chance but are physiological in nature. Especially 
noteworthy was that the baroreflex-related threshold (BRS_TH) illustrated its 
potential and significance in the uncovering of short-term cardiovascular coupling 
pattern.

3.1.7.4 The significance and non-linearity nature of coupling of derived HRJSD indices

With the type I surrogates (uncoupled) it was investigated the extent to which the 
significant HRJSD indices between UNMED and MED refer to different threshold 
levels. As a result, I focused only on the thresholds BRS_TH and 1/4sd_TH and found 
that the bivariate coupling pattern SP-E2/BBI-V for 1/4sd_TH (1 of 1) and the patterns 
SP-E0/BBI-E2. SP-E2/BBI-E1, SP-LU1/BBI-E1, SP-LU1/BBI-LA1 and SP-P/BBI-LA1 for 
BRS_TH (5 of 8) are real significant short-term coupling patterns due to the anti-
cholinergic effects of the antipsychotic in medicated schizophrenic patients.

In the second step, the presence of non-linear features underlying the couplings 
between BBI and SP was investigated by the means of type II surrogate data analysis. 
Hence, I tested the non-linear nature of the significant cardiovascular coupling 
indices and found that SP-E2/BBI-V for the threshold 1/4sd_TH and 4 of the 5 HRJSD 
indices (SP-E0/BBI-E2. SP-LU1/BBI-E1, SP-LU1/BBI-LA1, SP-P/BBI-LA1) for the 
threshold BRS_TH were significant non-linear cardiovascular coupling indices. 
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As a result, the application of the thresholds 1/4sd_TH and BRS_TH seem to be the 
most suitable thresholds to use applying HRJSD to characterise short-term non-linear
cardiovascular coupling patterns in UNMED and MED since the baroreflex 
sensitivity method (e.g. sequence method) only describes linear dependencies of HR 
and SP.

3.1.8 Summary of High Resolution Joint Symbolic Dynamics

Here, I introduced the HRJSD approach based on a redundancy reduction strategy to 
group single word types into 8 pattern families, allowing a detailed quantification of 
bivariate short-term cardiovascular- and cardiorespiratory coupling patterns which 
were due to changes of the different branches of autonomic regulation. This 
redundancy reduction strategy and the bivariate pattern family density matrix allows 
for a more robust statistical analysis of autonomic modulation. These are very 
promising and novel features of coupling analyses, emphasising the novelty of the 
HRJSD approach. My bivariate redundancy reduction strategy was based on the idea 
of the classification of frequent deterministic patterns lasting three beats (symbols), 
as proposed by Porta et al. (Porta et al, 2001). However, their approach was applied 
to univariate time series only (heart rate time series). The proposed HRJSD approach 
was enlarged to create a bridge between univariate and bivariate symbolic analyses.

In a first study (Schulz et al, 2013c), I applied the HRJSD approach to unmedicated 
and medicated patients with acute schizophrenia to quantify and characterise how 
different antipsychotics influence autonomic regulation (cardiovascular coupling). 
Applying the HRJSD approach, I was able to demonstrate that the baroreflex 
threshold (BRS_TH) based on the sequence technique in combination with three 
symbols reveals specific cardiovascular coupling patterns resulting from the anti-
cholinergic effects of the antipsychotic drugs in medicated patients with acute 
schizophrenia. In addition, the HRJSD approach seems to be superior to non-invasive 
BRS analysis and the JSD approach in uncovering detailed changes of short-term 
cardiovascular regulation patterns.

I showed that the application of the HRJSD approach seems to be more suitable than 
univariate HRV indices and the JSD approach for providing detailed insights into the 
complex physiological regulation of heart rate and blood pressure couplings in 
patients with schizophrenia. The JSD approach codes a decreased and equilibrium 
change between two BBIs by means of the same symbol and might therefore miss 
important aspects of autonomic regulation. In addition, it can be assumed that small 
changes which do not arise from autonomic regulation, such as noise (e.g. generated 
by undersampling) or artefacts (e.g. ectopic events) can be excluded by the HRJSD
approach, applying a physiologically based threshold for symbol transformation. The 
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grouping of different single word types into 8 pattern families, each of which 
characterising different interactions of the branches of the autonomic regulation of 
heart rate and blood pressure coupling patterns led to a further enhancement of the 
HRJSD approach.

I conclude that the HRJSD approach offers more detailed information about non-
linear cardiovascular couplings than the standard JSD approach and standard 
variability analysis. Thus, may lead to an improved understanding of short-term 
cardiovascular regulatory mechanisms and processes (heart rate/ blood pressure 
regulation pattern) of autonomic regulation in patients with schizophrenia under 
treatment with antipsychotics. This might therefore contribute to an optimal selection 
of therapy strategies and thus to more successful therapy. 

In a second study (Schulz et al, 2015b; Schulz et al, 2020), I applied the HRJSD 
approach to investigate cardiorespiratory regulation and to quantify short-term non-
linear cardiorespiratory couplings in patients suffering from schizophrenia and their 
healthy first-degree relatives in comparison to healthy subjects. I demonstrated an 
altered heart rate pattern, respiratory pattern and cardiorespiratory coupling in 
patients with schizophrenia and only marginal changes for their healthy first-degree 
relatives in comparison to healthy subjects applying the HRJSD approach. These 
findings might be based on a decreased vagal activity within the brainstem, an altered 
or suppressed interaction of the brainstem and higher regulatory centres or of panic 
and anxiety related changes in the brainstem due to acute psychosis in these patients. 
Patients with schizophrenia revealed cardiorespiratory coupling patterns which were 
characterized as less predominant but more widely distributed than those in healthy 
subjects, indicating a decreased cardiorespiratory coupling in schizophrenia. I was
able to demonstrate that the threshold with 25% of the standard deviation of the 
cardiorespiratory time series as an adapted dynamical threshold to the individual 
variability reveals specific cardiorespiratory coupling patterns in patients suffering 
from schizophrenia and their healthy first-degree relatives in comparison to healthy 
subjects.

The HRJSD approach enables the classification and characterization of short-term 
cardiovascular- and cardiorespiratory regulatory bivariate coupling patterns which 
are dominating the interaction generated by the ANS. As a new feature in contrast to 
the classical JSD approach or other coupling approaches (Schulz et al, 2013a) the 
HRJSD approach emphasizes a clear characterization of how the couplings are 
composed by the different regulatory aspects of the ANS. 

The proposed directionality index DHRJSD derived from the HRJSD approach is able to 
correctly detect the dominating coupling direction in linear coupled systems, but is 
only partly able to detect the dominating coupling direction in non-linear coupled
systems.
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3.2 Multivariate High Resolution Joint Symbolic Dynamics

3.2.1 Basics of High Resolution Joint Symbolic Dynamics

In recent years methods for analysing complex physiological regulatory networks 
have been developed. These methods allow analysing couplings in dynamic systems. 
Recent advances in non-linear dynamics and information theory facilitate a 
multivariate study of information transfer between time series. For the analyses of the 
cardiovascular-, cardiorespiratory- and central regulatory networks as well as the 
quantification of their interactions, varieties of methods have been proposed. For the 
characterization of linear and non-linear couplings in the brain-heart network several 
concepts are available (Bartsch et al, 2015; Faes et al, 2015; Ivanov et al, 2016; Schulz 
et al, 2013a) based on Granger causality; non-linear prediction; entropies; 
symbolization and phase synchronisation. The multivariate coupling analysis, e.g. of 
heart rate, systolic blood pressure and respiration might provide further information 
about the complex autonomic-network in physiological and pathophysiological 
conditions than uni- and bivariate approaches can do. 

The idea behind the HRJSD approach was to analyse bivariate non-linear 
cardiovascular and cardiorespiratory couplings in acute schizophrenia (Schulz et al, 
2015b; Schulz et al, 2013c) based on the analysis of dynamic processes by means of 
symbols (Voss et al, 1996). Thereby, the HRJSD approach classifies frequent 
deterministic patterns lasting three beats, and based on a symbolisation procedure 
permitting a coarse-grain quantitative assessment of bivariate short-term dynamics 
of time series. To overcome the limitation of analysing bivariate couplings only, I
adopted HRJSD in a further step for the quantification of multivariate couplings – the 
multivariate High Resolution Joint Symbolic Dynamics (mHRJSD) (Schulz et al, 
2018; Schulz et al, 2017b). 

Therefore, the set of three investigated time series (e.g. BBI, SP, and RESP) were
transformed into symbol sequences based on their signal amplitudes using a given 
alphabet A={0, 1, 2} The trivariate sample vector X (eq. 34) of these time series xBBI, xSP

and xRESP were then transformed into a trivariate symbol vector S, where n were the 
nth beat-to-beat values of BBI, SP and RESP, respectively (Figure 8).

푋 = �[푋����, 푋���, 푋�����]�� ���,�,… (34)

푋 ∈ 푅 (R is the subset of real positive numbers)

Then X was transformed into a trivariate symbol vector S (eq. 35) defined as

푆 = �[푆����, 푆���, 푆�����]�� ���,�,… (35)

푆 ∈ 푅
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The trivariate symbol vector S was defined using the following definitions (eq. 36-38)

푆���� = �
0: �푋���

��� − 푋����� < −푙���                          
1: − 푙��� ≤ �푋���

��� − 푋����� ≤ 푙���

2: �푋���
��� − 푋����� > 푙���

(36)

푆��� = �
0: (푋���

�� − 푋���) < −푙��                          
1: − 푙�� ≤ (푋���

�� − 푋���) ≤ 푙��

2: (푋���
�� − 푋���) > 푙��

(37)

푆����� = �
0: (푋���

���� − 푋�����) < −푙����                          
1: − 푙���� ≤ (푋���

���� − 푋�����) ≤ 푙����

2: (푋���
���� − 푋�����) > 푙����

(38)

and the threshold levels lBBI, lSP and lRESP (with: lBBI=5ms and lSP=1mmHg (non-invasive 
estimation of the spontaneous baroreflex sensitivity), and lRESP=25% of the standard 
deviation of the RESP time series as an adapted threshold to the individual 
physiological dynamic variability). 

Symbol sequences with increasing values were coded as “2”, decreasing values were
coded as ”0” and unchanging (no variability) values were coded as ”1”. The symbol 
vector S was subdivided into short words (bins) wk of length k=3. Thus, using three 
symbols led to 27 different word types for BBI (wBBI), SP (wSP) and RESP (wRESP). The 
derived different word types (word types ranging from: 000, 001,…, 221, 222) were
sorted into a normalized 27×27×27 vector matrix Wn (with x-, y- and z-plane) (eq. 39) 
ranging from word type (000,000,000)T to (222,222,222)T. 

푊� = �
푥���, 푦���, 푧��� ⋯ 푥���, 푦���,푧���

⋮ ⋱ ⋮
푥���, 푦���, 푧��� ⋯ 푥���, 푦���, 푧���

� (39)

Afterwards, all single word types wBBI,SP,RESP were grouped into 8 pattern families’ wf

whereby the probabilities of all single word family’s occurrences p(wf) were
normalized to 1. These 8 pattern families (E0, E1, E2, LU1, LD1, LA1, P, V) were sorted 
into an 8×8×8 pattern family density matrix Wf resulting in 512 coupling patterns
(Figure 8) (e.g. BBI-E0/SP-E0/RESP-E0 = HR↑, SP↓, RESP↓). 

Furthermore, from the matrix Wf, the sum of each (n=8) x-, y-, and z-plane (pfBBI, pfSP, 
pfRESP) as pfE0, pfE1, pfE2, pfLU1, pfLD1, pfLA1, pfP, and pfV were calculated describing 
how one family pattern in one time series is coupled with all other 8 pattern families
of the other two time series (Figure 9). In addition, to quantify the complexity of the 
coupling network, the Shannon entropy (mHRJSDShannon) (eq. 40) and/or the Renyi 
entropy (mHRJSDrenyi2, α=2) can be computed from Wf

mHRJSDShannon = - ∑ �푝�푤푓�.�� log� 푝 �푤푓�.����
�,��� . (40)
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For a statistical representation, the probabilities of occurrences of the coupling pattern 
has to be p(wf)>0.05 and has to fulfil the Bonferroni-Holm adjustment (p<0.000098, for 
n=512 coupling patterns) (Figure 9). 
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Figure 8. Basic principle of mHRJSD. Transformation of the trivariate sample vector X into the 
trivariate symbol vector S (0: decreasing values; 1: equal values; 2: increasing values); Word 
transformation and word pattern family distribution density matrix Wf (8×8×8) with 8 pattern families 
E0, E1, E2, LU1, LD1, LA1, P, and V with word pattern probabilities p(wf)>0.05 (red cubes). 
(BBI=beat-to-beat intervals, SP=systolic blood pressure, RESP=respiratory frequency)
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Figure 9. Visualisation example of mHRJSD for a healthy subject. Word pattern family distribution 
density matrix Wf (8×8×8) with 8 pattern families E0, E1, E2, LU1, LD1, LA1, P, and V with (a) all 
word pattern probabilities p(wf)=[yellow: <0.001; green: <0.0025; turquoise: <0.005; blue: <0.01; violet: 
<0.015, red: >0.05], and (b) only for p(wf)>0.05. (BBI=beat-to-beat intervals, SP=systolic blood pressure,
RESP=respiratory frequency)

3.2.2 Simulations

The mHRJSD approach was validated by artificial time series with different patterns 
of autonomic regulation. Therefore, specific time series with different pattern families 
wf (ranging from simple ones to highly complex ones, e.g. E0/E0/E0 or E1-P-LU1/E1-
V-LA1/E0-LD1-LU1) were simulated including all possible types of word of the 
pattern families wf (E0, E1, E2, LU1, LD1, LA1, P, V). The obtained mHRJSD results 
were verified, whether the family patterns were correctly detected and classified. A 
selection of 5 simulation examples carried out is shown below.
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Simulation 1  E0/E0/E0 (Figure 10):

This is a simple simulation. All time series consist only of the pattern E0 (no variation 
within the time series, consisting of three symbols of type “0”) leading to different
probabilities of the single word family’s occurrences p(wf) from the x-, y- and z-plane 
(pfXE0, pfyE0, pfzE0) and the coupling pattern (x-E0/y-E0/z-E0).

 pfXE0 = 1, pfyE0 = 1, pfzE0 = 1
 x-E0/y-E0/z-E0 = 1

Figure 10. mHRJSD simulation example 1 – Visualisation of the time series x, y, z and the word pattern 
family distribution density matrix Wf (8×8×8) with 8 pattern family E0 with the word pattern 
probabilities p(wf)>0.05.
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Simulation 2  E2/E1/E0 (Figure 11):

This is also a simple simulation. The time series consist of the pattern E2, E1 and E0 
(no variation within each time series, consisting each of three symbols of type “2”, 
“1”, and “0”).

 pfXE2 = 1, pfyE1 = 1, pfzE0 = 1
 x-E2/y-E1/z-E0 =1

Figure 11. mHRJSD simulation example 2 – Visualisation of the time series x, y, z and the word pattern 
family distribution density matrix Wf (8×8×8) with 8 pattern families E0, E1, and E2 with the word 
pattern probabilities p(wf)>0.05. 
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Simulation 3  LU1-LA1/LD1-LA1/LA1-LD1 (Figure 12):

This simulation includes the pattern families LU1, LD1, and LA1 (one variation 
within the word consisting of two different symbols with low increasing, decreasing 
and alternating behaviour) different distributed in each of the time series.

 pfXLU1=0.66667 + pfXLA1=0.33333 = 1
 pfyLD1=0.66667 + pfyLA1=0.33333 = 1
 pfzLA1=0.33333 + pfzLD1=0.66667 = 1
 x-LU1/y-LD1/z-LD1=0.33333 + x-LU1/y-LA1/z-LD1=0.33333

+ x-LA1/y-LD1/z-LA1=0.33333 = 1

Figure 12. mHRJSD simulation example 3 – Visualisation of the time series x, y, z and the word pattern 
family distribution density matrix Wf (8×8×8) with 8 pattern families LU1, LD1, and LA1 with the 
word pattern probabilities p(wf)>0.05.
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Simulation 4  V-P/P-V/V-P (Figure 13):

This simulation contains the pattern families P and V (three variations within the 
word consisting of three different symbols with peak-like and valley-like behaviours) 
different distributed in each of the time series.

 pfXV=0.66667 + pfXP=0.33333 = 1
 pfyP=0.66667 + pfyV=0.33333 = 1
 pfzV=0.33333 + pfzP=0.66667 = 1
 x-V/y-P/z-P=0.33333 + x-V/y-V/z-P=0.33333 + x-P/y-P/z-V=0.33333 = 1

Figure 13. mHRJSD simulation example 4 – Visualisation of the time series x, y, z and the word pattern 
family distribution density matrix Wf (8×8×8) with 8 pattern families P and V with the word pattern 
probabilities p(wf)>0.05. 
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Simulation 5  E2-LA1/P-V-LU1/E0-LD1 (Figure 14):

The last simulation represents a highly complex combination of several pattern 
families consisting of the pattern families E2, LA1 and LU1 for time series x, P, V, LU1 
and LA1 time series y, and E0, LD1, LA1, and V time series z.

 pfXE2=0.47727 + pfXLA1=0.51136 + pfXLU1=0.01136 = 1
 pfyLU1=0.51136 + pfyLA1=0.02273 + pfyP=0.30682 + pfyV=0.15909 = 1
 pfzE0=0.46591 + pfzLD1=0.51136 + pfzLA1=0.01136 + pfzV=0.01136 = 1
 x-E2/y-P/z-E0=0.30682 + x-E2/y-V/z-E0=0.15909 + x-E2/y-LA1/z-LD1=0.01136

+ x-LU1/y-LA1/z-LA1=0.01136 + x-LA1/y-LU1/z-V=0.01136
+ x-LA1/y-LU1/z-LD1=0.5 = 1

Figure 14. mHRJSD simulation example 5 – Visualisation of the time series x, y, z and the word pattern 
family distribution density matrix Wf (8×8×8) with 8 pattern families E0, E2, LU1, LD1, LA1, P, and 
V with the word pattern probabilities p(wf)<0.015 (violet cubes) and p(wf)>0.05 (red cubes). 
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The results of the simulations (here only 5 presented) clearly showed that the 
mHRJSD approach correctly detected all possible probabilities of the single word 
family’s occurrences p(wf) from the x-, y- and z-plane (pfXE0, pfyE0, pfzE0) and the 
coupling pattern within artificial time series.

The mHRJSD approach extends univariate and bivariate symbolic approaches by 
including a third time series enabling multivariate time series coupling analysis based 
on a coarse graining of the dynamics of the time series under investigation.

3.2.3 Directionality index

3.2.3.1 Introduction

In section 3.1.4, I introduced the directionality index (DHRJSD) for bivariate systems 
derived from the 8×8 pattern family density matrix Wf from the HRJSD approach. The 
introduced directionality index DHRJSD is able to correctly detect the dominating 
coupling direction in linear bivariate coupled systems, and only partly able to detect 
the dominating coupling direction in non-linear bivariate coupled systems. However, 
there is no methodical approach, based on symbolization that allows to detect the 
coupling direction in multivariate coupled systems. Rather there is no coupling 
approach available, which is able to determine the primary driver, the secondary 
driver and dominant responder in multivariate weakly coupled systems. Therefore, 
for the mHRJSD approach I further extended this directionality index to determine 
the dominant coupling direction and assesses the driver-response relationships in 
multivariate (n=3) systems (Figure 1). 

For the multivariate case (x,y,z) the single word family’s occurrences p(wf) from the 
x-, y- and z-plane (pfx, pfy, pfz) from the 8×8×8 pattern family density matrix Wf were 
used to calculate DmHRJSD(x,y|z) (eq. 41-43). Thereby, for each coupling pathway one 
directionality index was calculated (e.g., 2 interacting time series: x and y with z as 
the covariate |). 

Thus, for the coupling between the time series x and y with covariate z, the 
directionality index (eq. 41) is defined as:

퐷������(푥, 푦|푧) = − �∑ ���|�(�)����|�(�)
���|�(�)����|�(�)

�
��� � 푛� (41)

For the coupling between the time series x and z with covariate y, the directionality 
index (eq. 42) is defined as:

퐷������(푥, 푧|푦) = − �∑ ���|�(�)����|�(�)
���|�(�)����|�(�)

�
��� � 푛� (42)
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For the coupling between the time series y and z with covariate x, the directionality 
index (eq. 43) is defined as:

퐷������(푦, 푧|푥) = − �∑ ���|�(�)����|�(�)
���|�(�)����|�(�)

�
��� � 푛� (43)

If DmHRJSD(x,y|z) is positive driving (→) from system 1 (x) to system 2 (y) predominates 
(eq. 44) and becomes negative for the opposite case (eq. 45).

퐷������(푥, 푦|푧) > 0; 풙|푧 → 푦|푧 (44)

퐷������(푥, 푦|푧) < 0; 풚|푧 → 푥|푧 (45)

If DmHRJSD(x,z|y) is positive driving (→) from system 1 (x) to system 2 (z) predominates 
(eq. 46) and becomes negative for the opposite case (eq. 47).

퐷������(푥, 푧|푦) > 0; 풙|푦 → 푧|푦 (46)

퐷������(푥, 푧|푦) < 0; 풛|푦 → 푥|푦 (47)

If DmHRJSD(y,z|x) is positive driving (→) from system 1 (y) to system 2 (z) predominates 
(eq. 48) and becomes negative for the opposite case (eq. 49).

퐷������(푦, 푧|푥) > 0; 풚|푥 → 푧|푥 (48)

퐷������(푦, 푧|푥) < 0; 풛|푥 → 푦|푥 (49)

Thus, three indices were derived, which are subsequently used to determine the 
strongest driver and the most dominant responder in the overall system. Therefore, 
all three indices were compared to whether they were greater or less than 0 (Table 5).

Table 5. Determination of the primary driver (**DmHRJSD), secondary driver (*DmHRJSD) and the 
dominant responder (‾DmHRJSD) in a multivariate system derived from the directionality indices 
DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x).

DmHRJSD(x,y|z) DmHRJSD(x,z|y) DmHRJSD(y,z|x) **DmHRJSD *DmHRJSD ‾DmHRJSD

+ = x + = x + = y x y z
- = y - = z - = z z y x
+ = x + = x - = z x z y
- = y - = z + = y y z x
+ = x - = z - = z z x y
- = y + = x + = y y x z
+ = x - = z + = y x-y-z x-y-z x-y-z
- = y + = x - = z x-y-z x-y-z x-y-z



3. Novel coupling analyses methods for biomedical time series 63

In the following, the sum of the three comparisons was determined. If a time series is 
present twice as a driver, it dominates the overall system as the primary driver 
**DmHRJSD, and if a time series is present only once, it is the secondary driver *DmHRJSD

of the overall system, and the non-occurring time series is the dominant responder 
‾DmHRJSD.

For the cases, that DmHRJSD(x,y|z) > 0, DmHRJSD(x,z|y) < 0, and DmHRJSD(y,z|x) > 0 (+ - +) or 
that DmHRJSD(x,y|z) < 0, DmHRJSD(x,z|y) > 0, and DmHRJSD(y,z|x) < 0 (- + -) the indices 
**DmHRJSD, *DmHRJSD and ‾DmHRJSD are determined by their absolute values, in 
descending order of importance of their values. In these both cases, closed-loops are 
present without any feedback-loops.

3.2.3.2 Simulated multivariate coupled linear systems to validate DmHRJSD

Similar to the validation of DHRJSD for the bivariate case (3.1.4), simulated data were 
used to validate DmHRJSD. Therefore, a multivariate linear Gaussian AR model was 
applied to generate a set of multivariate linear time series (n=100) with a normal 
distribution of the variables (Baccala & Sameshima, 2001b; Montalto et al, 2014). For 
the linear model two different multivariate coupled systems were generated (eq. 50, 
51) with different mutual influences (unidirectional, bidirectional) between the time 
series (Figure 5, b, c). Non-linear AR models were not applied since DHRJSD seems to 
be only partly able to detect the correct driver-responder relationship between non-
linear coupled time series.

I. Coupled multivariate linear AR model (Figure 5, b):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = 0.5푥�(푛 − 2) + 푤�(푛)
푥�(푛) = −0.4푥�(푛 − 3) − 0.2푥�(푛 − 2) + 푤�(푛) (50)

II. Coupled multivariate linear AR model (Figure 5, c):

푥�(푛) = 0.95√2푥�(푛 − 1) − 0.9025푥�(푛 − 2) + 푤�(푛)
푥�(푛) = 0.5푥�(푛 − 2) + 0.4푥�(푛 − 1) + 푤�(푛)
푥�(푛) = −0.4푥�(푛 − 3) − 0.2푥�(푛 − 2) + 푤�(푛) (51)

where w1(n), w2(n), and w3(n) were drawn from Gaussian noise with zero mean and 
unit variance. For the II. coupled multivariate linear AR model a closed-loop from 
x3(n) back to x2(n) via a direct connection was integrated, with x3 as a driver.

3.2.3.3 Results of simulated multivariate coupled linear systems to validate DmHRJSD

The results of the two multivariate coupled linear AR systems showed that the 
determination of the multivariate directionality index DmHRJSD works properly as well 
as the determination of the primary driver **DmHRJSD, the secondary driver *DmHRJSD

and dominant responder ‾DmHRJSD in the multivariate systems (Table 6).
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I. Coupled multivariate linear AR model (Figure 5, b):

x1→x2: DmHRJSD(x1,x2|x3) is positive; correct classification of the 
dominating coupling direction (x1 is driver).

x1→x3: DmHRJSD(x1,x3|x2) is positive; correct classification of the 
dominating coupling direction (x1 is driver).

x2→x3: DmHRJSD(x2,x3|x1) is positive; correct classification of the 
dominating coupling direction (x2 is driver).

From this results that:

DmHRJSD(x1,x2|x3) = x1 and DmHRJSD(x1,x3|x2) = x1  **DmHRJSD = x1

DmHRJSD(x2,x3|x1) = x2  *DmHRJSD = x2

 ‾DmHRJSD = x3

For the coupled multivariate linear AR model (I.) the correct driver-responder 
relationships were classified with x1 as the primary driver, x2 as the secondary driver, 
and x3 as the responder of the system, as it was simulated. 

II. Coupled multivariate linear AR model (Figure 5, c):

x1→x2: DmHRJSD(x1,x2|x3) is positive; correct classification of the 
dominating coupling direction (x1 is driver).

x1→x3: DmHRJSD(x1,x3|x2) is positive; correct classification of the 
dominating coupling direction (x1 is driver).

x2⇄x3: DmHRJSD(x2,x3|x1) is negative; correct classification of the 
dominating coupling direction (x3 is driver).

From this results that:

DmHRJSD(x1,x2|x3) = x1 and DmHRJSD(x1,x3|x2) = x1  **DmHRJSD = x1

DmHRJSD(x2,x3|x1) = x3  *DmHRJSD = x3

 ‾DmHRJSD = x2

For the coupled multivariate linear AR model (II.) the correct driver-responder 
relationships were classified with x1 as the primary driver, x3 as the secondary driver, 
and x2 as the responder of the system, as it was simulated. 
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Table 6. Determination of the primary driver (**DmHRJSD), secondary driver (*DmHRJSD) and the 
dominant responder (‾DmHRJSD) derived from the directionality indices DmHRJSD(x,y|z), DmHRJSD(x,z|y), 
and DmHRJSD(y,z|x) for two simulated multivariate coupled systems.

DmHRJSD(x1,x2|x3) DmHRJSD(x1,x3|x2) DmHRJSD(x2,x3|x1) **DmHRJSD *DmHRJSD ‾DmHRJSD

I x1 x1 x2 x1 x2 x3

II x1 x1 x3 x1 x3 x2

3.2.4 Summary of multivariate High Resolution Joint Symbolic Dynamics

I developed the multivariate high-resolution joint symbolic dynamics approach 
(mHRJSD) to overcome the limitation of the HRJSD approach that is only able to 
analyse bivariate couplings and to determine the driver-responder relationship. 
Therefore, the HRJSD approach was enhanced in a further step allowing the 
quantification of multivariate couplings and the determination of the driver-
responder relationships.

The mHRJSD approach extending the bivariate HRJSD approach by including a third 
time series enables multivariate time series coupling analyses based on a coarse 
graining of the dynamics of the time series under investigation. 

To prevent that spurious couplings were detected a statistical significance level was 
applied whereby the probabilities of occurrences of the coupling pattern have been 
set to p(wf)>0.05 and have to fulfil the Bonferroni-Holm adjustment (p<0.000098, n=512 
coupling patterns).

The multivariate redundancy reduction strategy with the multivariate pattern family 
density matrix allows for a robust statistical analysis and provides more detailed 
information about short-term physiological regulatory processes of complex 
multivariate physiological networks.

The mHRJSD approach contains multivariate Directionality indices DmHRJSD

(DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x)) allowing to determine the primary 
driver **DmHRJSD, the secondary driver *DmHRJSD and dominant responder ‾DmHRJSD in 
multivariate systems. Therefore, it has to be assumed that the time series to be 
analysed are at least weakly coupled with each other.

Limiting factors are that the proposed directionality index DmHRJSD derived from the 
mHRJSD approach is only able to correctly detect the driver-responder relationships 
in linear coupled systems, and is not able to detect the driver-responder relationships
in non-linear coupled systems. The mHRJSD approach is able to evaluate direct causal 
information transfer in multivariate systems.
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Despite this limitation of DmHRJSD, the feature to assess the driver-response 
relationships in multivariate systems is not implemented in none of the existing 
symbolization approaches and thus clearly complements the already existing 
coupling approaches.

The clinical validation of the mHRJSD approach is presented in chapter 4.
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3.3 Normalized Short Time Partial Directed Coherence

3.3.1 Basics of partial directed coherence

For two processes X(t) and Y(t) Granger causality can be defined as: X(t) has causal 
influence on Y(t); (X(t)→Y(t)) if the knowledge of the past of both X(t) and Y(t) 
reduces the variance of the prediction error of Y(t) in comparison with the knowledge 
of the past of Y(t) alone (the past and the present cause the future but not vice versa). 
Granger causality approaches in the frequency domain as, the partial directed 
coherence (PDC) and the enhanced version the normalized short time partial directed 
coherence (NSTPDC) targeting to the oscillatory nature of physiological variables and 
the peculiarity of specific control mechanisms of working in accordance to well 
defined time scales (Porta & Faes, 2013). These approaches are based on a fitted AR 
model and presuppose the stationarity of signals in the time interval under 
investigation (Hesse et al, 2003).

The main methodological principles of the PDC approach have already been 
described in chapter 2.2.1. 

PDC is a parametric approach based on m-dimensional MAR processes with order p.
It can detect direct and indirect causal information transfer since it measures 
exclusively direct effects between signals in multivariate dynamic systems. Based on 
the Fourier transformation of the coefficient matrix A(f) the PDC function quantifies 
the strength of the causal coupling from Xj to Xi as a function of frequency f. PDC 
between two processes Xj and Xi is given by (eq. 52): 

휋�←�(푓) = ����(�)

��̄�
�(�)�̄�(�)

(52)

Following normalisation properties have to hold for PDC estimation: 

0 ≤ �휋��(푓)�� ≤ 1 and ∑ �휋��(푓)��
���

� = 1 (for all 1≤j≤m) indicate that the squared 
magnitude of the PDC function πij(f). The PDC is normalised between 0 and 1, in that 
way the direct influence from process Xj to process Xi is inferred by PDC≠0 (PDC=0 
when Xj does not cause Xi at frequency f, PDC=1 when all causal influences 
originating from Xj at frequency f are directed toward Xi (Baccala & Sameshima, 
2001b; Faes & Nollo, 2010; Pereda et al, 2005). Due to, that the original introduced 
PDC method cannot be applied to non-stationary signals a time-variant version is 
needed providing information about the partial correlative short-time interaction 
properties. To overcome this problem, Milde et al. introduced the time-variant partial 
directed coherence approach (tvPDC, 휋��(푓, 푛)) (eq. 53) (Milde et al, 2011).

Here, I introduced an extended version of the tvPDC approach the Normalized Short
Time Partial Directed Coherence (NSTPDC) (Adochiei et al, 2013; Schulz et al, 2015a)
NSTPDC provides information about partial correlative short-time interaction 
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properties of non-stationary signals, with f as the frequency and n the number of 
windows 

휋��(푓, 푛) = ����(�,�)

��̄�
�(�,�)�̄�(�,�)

(53)

The basis of the NSTPDC represents an m-dimensional AR model with the order p
and allows determining linear Granger causality in the frequency domain for 
bivariate as well as multivariate coupled systems. For the selection of the optimal 
model order popt of the AR model and its coefficients I applied the stepwise least 
squares algorithm (Neumaier & Schneider, 2001) and the Schwarz’s Bayesian 
Criterion (SBC) (Schneider & Neumaier, 2001). 

The basic features of the NSTPDC approach I co-developed are to determine the 
coupling direction and coupling strength. For the determination of the causal 
coupling direction I introduced a Normalized Factor (eq. 57, 58), and for the 
determination of the coupling strength I applied a trapezoidal numerical integration 
function to approximate the areas generated in space by the underlying coupling 
factor (eq. 54). Moreover, I introduced a normalization procedure (eq. 59) to address 
the problems of stationarity and scale-invariance of the investigated time series.

3.3.2 Coupling direction – Normalized factor

To estimate the coupling direction between two time series, x and y with the covariate 
z I introduced a coupling factor (CF). The NSTPDC approach works in principle like 
that CF (eq. 54) was derived by dividing the mean value 휋��(푓, 푛) (eq. 55) by the mean 
value of 휋��(푓, 푛) (eq. 56).

CF =
�
� ∑ ���(�,�)
�
� ∑ ���(�,�) (54)

푎 = �
� ∑ 휋��(푓, 푛) (55)

푏 = �
� ∑ 휋��(푓, 푛) (56)

Afterwards, I introduced the Normalized Factor (NF) (eq. 57, 58) that normalized the 
results of CF to characterises the coupling direction. 
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max�푎, 푏�

NF =

⎩⎪
⎨
⎪⎧

2, 푖푓 �푚푎푥 = 푎 & �
� > 5�

1, 푖푓 (푚푎푥 = 푎 & 2 < �
� ≤ 5)

0, 푖푓 (푚푎푥 = 푎 & 0 ≤ �
� ≤ 2)

(57)

NF =

⎩
⎪
⎨
⎪
⎧−2, 푖푓 �푚푎푥 = 푏 & �

� > 5�

−1, 푖푓 (푚푎푥 = 푏 & 2 < �
� ≤ 5)

0, 푖푓(푚푎푥 = 푏 & 0 ≤ �
� ≤ 2)

(58)

Thereby, NF={−2, −1, 0, 1, 2} allows for the determination of the causal coupling 
direction between the set of time series (x and y, with covariate z) as a function of 
frequency f (Figure 15). 

Coupling direction:

 NF={−2 | 2} (where −2 denotes y as the driver): 

Strong unidirectional coupling

 NF={−1.5, < −2} or NF={1.5, < 2}: 

Weak unidirectional coupling 

 NF={−1 | 1} (−1 denotes y as the driver): 

Strong bidirectional coupling

 NF={−0.5, < −1} or NF={0.5, < 1}: 

Weak bidirectional coupling, and 

 NF=0: 

Equal influence in both directions and/or no coupling in respect to the coupling 
strengths (If both area indices reveal equal values larger than zero an equal 
influence in both directions is present if both area indices reveal equal values 
but are zero no coupling is present).

 NF={> 1, < 1.5} or NF={> −1, < −1.5}:

Not clearly determinable.

NF allows the differentiation between uni- and bidirectional couplings and if these 
couplings are of weak or strong origin.
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Figure 15. Normalized Factor (NF) direction derived from the normalized short-time partial directed 
coherence approach for the determination of the causal coupling. 

3.3.3 Coupling strength – Areas

For determining the coupling strength between two time series x and y with covariate 
z I calculated the areas (A�→�(�), A�→�(�), [a.u.]). Therefore, I applied a trapezoidal 
numerical integration function to approximate the areas generated in space by CF in 
each window within the frequency band (f=0-2 Hz) which were afterwards averaged. 
A�→�(�) and A�→�(�) ranges between 0 and 1 [0,1]. 

Coupling strength:

 A�→�(�) = 1: 
Indicates that all causal influence originating from time series x are directed 
toward (→) time series y

 A�→�(�) = 1: 
Indicates that all causal influence originating from time series y are directed 
toward (→) time series x

 A�→�(�) = 0 and A�→�(�) = 0:
Indicates that no causal influence between time series x and y exists

In order to take advantage of the aspect of stationarity and scale-invariance for 
NSTPDC analyses, I applied a normalization procedure (zero mean and unit 
variance) of the time series (Schulz et al, 2015a). Therefore, each sample i of the time 
series 푥 = {푥�, 푖 = 1, … 푁}, 푦 = {푦�, 푖 = 1, … 푁} and 푧 = {푧, 푖 = 1, … 푁} with N as the 
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Weak unidirectional

Weak unidirectional

Weak bidirectional

Weak bidirectional
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coupling N

F
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maximal number of samples i (temporal index) were first normalized by subtracting 
the mean of 푥̅ and, then divided by the standard deviation (std) of x or y and z
respectively. Thus, I obtained the normalized time series xnorm, ynorm and znorm (eq. 59) 
with zero mean and unit variance:

푥����(푖) = �(�)��̅
���(�) , 푦����(푖) = �(�)���

���(�) and 푧����(푖) = �(�)��
���(�). (59)

For the determination of the NSTPDC indices I applied a window (Hamming) of 
lengths l, where each window n was shifted by 25% of l per each iteration step.

3.3.4 Simulations

3.3.4.1 Simple coupled oscillators

In a first very simple simulation, I applied the Wolfram Demonstrations Project, 
“Coupled Oscillators” (Domke, 2011) to simulate two simple cases of coupled time 
series of 1000 samples length (Figure 16). 

For the first simulation, I considered two simulated signals (Figure 16, a) from an 
idealized system with two oscillators coupled together by a third one (first time 
series=driver; second time series=responder). The NF value was 2 (Figure 16, b) in all 
windows over time, clearly indicating strong unidirectional coupling with x as the 
driver and y as the responder, as already simulated.

For the second simulation (Figure 16, c), I applied the same time series, but the 
coupling direction was changed after 800 samples. Thereby, the second time series 
became the driving time series and the first time series became the responder. The NF 
value was 2 (Figure 16, d) up to n=14 windows and changed to –2 (n=16 ≙ 800 
samples) indicating a strong unidirectional coupling with x as the driver and y as the 
responder for 800 samples, and changed afterwards to strong unidirectional coupling 
with y as the driver and x for 200 samples as the responder, as already simulated.
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Figure 16. Simulation of coupled oscillators. (a) showed the simulated input signals where the first 
time series is the driver and the second time series is the responder; (b) Normalized factor for the 
coupling direction resulting from (a); (c) showed the simulated input signals where the first time series 
is the driver that changed to the responder after 800 samples and the second time series is the responder 
that changed to the driver after 800 samples; (d) Normalized factor for the coupling direction resulting 
from (c).

3.3.4.2 Multivariate coupled linear and non-linear systems 

For the coupled linear and the non-linear system three different multivariate coupled 
AR models were applied (see 3.1.4.1) with different mutual influences (unidirectional, 
bidirectional) between the time series (Figure 5). From these simulated systems the 
NF was derived and determined (Table 7).

In Table 7 the results of the 3 coupled linear systems (LS1, LS2, LS3) and the 3 coupled 
non-linear systems (NLS1, NLS2, NLS3) are shown. Here, the simulated driver-
response relationship, the type of coupling (linear or non-linear), the applied AR 
model (linear or non-linear) and the detected NF and driver-response relationship, 
and the characteristics of the coupling direction (weak, strong, unidirectional, 
bidirectional).
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Table 7. Results of coupled multivariate linear and non-linear AR models to validate the Normalized 
Factor (NF). (blue: driver variable, red: incorrect classification)

System Simulated
driver-

response 
relationship

Coupling AR model NF Detected
driver-

response 
relationship

Characteristic of the 
coupling direction

LS1
1→2

linear linear
2.0 1=driver Strong unidirectional 

1→3 2.0 1=driver Strong unidirectional 

LS2
1→2

linear linear
2.0 1=driver Strong unidirectional 

1→3 2.0 1=driver Strong unidirectional 
2→3 1.8 2=driver Weak unidirectional 

LS3

1→2

linear linear

2.0 1=driver Strong unidirectional 

1→3 2.0 1=driver Strong unidirectional 

2⇄3 -0.5 3=driver Weak bidirectional 

NLS1
1→2 non-linear

non-linear
1.0 1=driver Strong bidirectional 

1→3 linear 2.0 1=driver Strong unidirectional 

NLS2
1→2

non-linear non-linear
1.4 1=driver not determinable

1→3 2.0 1=driver Strong unidirectional 
2→3 2.0 2=driver Strong unidirectional 

NLS3
1→2

non-linear non-linear
1.5 1=driver Weak unidirectional 

1→3 2.0 1=driver Strong unidirectional 
2⇄3 1.5 2=driver Weak unidirectional 

Coupled multivariate linear AR model:

Linear system 1, LS1 (Figure 5, a):

x1→x2: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

x1→x3: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

Linear system 2, LS2 (Figure 5, b):

x1→x2: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

x1→x3: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

x2→x3: NF=1.8; correct classification of a weak unidirectional 
coupling direction with x2 as the driver.
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Linear system 3, LS3 (Figure 5, c):

x1→x2: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

x1→x3: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

x2⇄x3: NF=0.5; correct classification of a weak bidirectional 
coupling direction with x3 as the driver (Figure 17).

Figure 17. Averaged NSTPDC plots for the simulated linear system 3. Arrows indicating the causal 
coupling direction from one time series to another, e.g., x2←x1, indicating the causal link from x1 to x2. 
Coupling strength ranges from blue (no coupling) to red (maximum coupling).

Figure 17 shows the results of the averaged NSTPDC plots for the linear system 3. 
Each plot contain the causal coupling direction (←) from one time series to another, 
and the related coupling strength (ranging from 0 to 1).
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Coupled multivariate non-linear AR model:

Non-linear system 1, NLS1 (Figure 5, a):

! x1→x2: NF=1;correct classification of the driver-response relationship 
with x1 as the driver but incorrect classification of the coupling 
direction characteristic as strong bidirectional (simulated: 
strong unidirectional)

x1→x3: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

Non-linear system 2, NLS2 (Figure 5, b):

! x1→x2: NF=1.4; correct classification of the driver-response 
relationship with x1 as the driver but not clearly determinable 
classification of the coupling direction characteristic 
(simulated: unidirectional).

x1→x3: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

x2→x3: NF=2;correct classification of a strong unidirectional coupling 
direction with x2 as the driver.

Non-linear system 3, NLS3 (Figure 5, c):

x1→x2: NF=1.5; correct classification of the driver-response 
relationship with x1 as the driver with a weak unidirectional 
coupling direction characteristic.

x1→x3: NF=2;correct classification of a strong unidirectional coupling 
direction with x1 as the driver.

! x2⇄x3: NF=1.5; correct classification of the driver-response 
relationship with x2 as the driver but incorrect classification of 
the coupling direction characteristic as weak unidirectional 
(simulated: bidirectional)
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3.3.5 Summary of Normalized Short Time Partial Directed Coherence

I proposed the NSTPDC approach as an improvement of the standard PDC approach 
to overcome its restrictions, and to allow a better classification of the coupling 
strength and direction in multivariate linear and non-linear systems.

The NSTPDC approach is based on an m-dimensional AR model with the order p and 
allows determining linear Granger causality in the frequency domain for bivariate as 
well as multivariate coupled systems. The optimal model order popt of the AR model 
and its coefficients were determined by the stepwise least squares’ algorithm and the 
Schwarz’s Bayesian Criterion.

The NSTPDC approach is able to investigate couplings of short non-stationary and 
scale-invariant time series (which are the most biosignals) using a normalization 
procedure (zero mean and unit variance).

The introduced Normalized Factor (NF) allows a clear and differentiable 
characterization of the coupling direction (strong uni- or bidirectional coupling; weak 
uni- or bidirectional coupling; equal coupling influence in both directions and/or no 
coupling; not clearly determinable coupling direction). 

The coupling strength was determined by a trapezoidal numerical integration 
function approximating area generated in space in each window within a frequency 
band. The coupling strength ranges between 0 and 1 [0,1]. 

The NSTPDC approach can distinguish between both direct and indirect causal 
information transfer.

The NSTPDC approach is very sensitive in detecting the correct driver-responder 
relationships in multivariate linear coupled systems, but is only partly able to detect 
the correct driver-responder relationships in non-linear coupled systems. This means 
that for purely nonlinear systems, a bias could arise if only the NSTPDC approach is 
applied, and thus misclassification could occur. Due to this limitation, in detailed 
investigations to determine the driver-responder relationships, other methods should 
be used in addition to the NSTPDC approach (e.g. MuTe), which are able to determine 
the driver-response relationships in non-linear systems.
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3.4 Summary and discussion of the novel coupling analyses methods 

3.4.1 High Resolution Joint Symbolic Dynamics

The new introduced HRJSD approach which is based on a redundancy reduction 
strategy to group single word types into 8 pattern families allows a new detailed 
quantification of bivariate short-term autonomic coupling patterns. This redundancy 
reduction strategy and the bivariate pattern family density matrix as novel features 
allows for a more robust statistical analysis of autonomic regulatory processes than 
already existing symbolization approaches (JSD, SCT). Thereby, my bivariate 
redundancy reduction strategy based on the idea of the classification of frequent 
deterministic patterns overcomes classical univariate symbolization strategies and
creates a bridge between univariate and bivariate symbolic analyses so far. As new 
outstanding features in contrast to the standard JSD and SCT. The HRJSD approach 
emphasizes a clear characterization of how the couplings are composed by regulatory 
aspects of the ANS; is able to quantify the coupling direction (directionality index:
DHRJSD) in linear and partly in non-linear coupled systems which was not possible with 
existing symbolization approaches neither for bivariate nor for multivariate systems; 
and assesses the driver-response relationships in bivariate (n=2) and multivariate 
(n=3) systems. However, due to this limitation to determine the coupling direction
only partly in non-linear coupled systems, other methods should be used in addition 
to DHRJSD (e.g. MuTe), which can also correctly determine the dominant driver-
response relationships in pure non-linear systems.

Due to, that the JSD and the SCT approach apply only 2 symbols and a threshold l=0
for the symbol coding decreased and equilibrium changes between two successive 
intervals (e.g. BBI) were coded with the same symbol and therefore miss important 
aspects of regulatory aspects of the system under investigation. The HRJSD approach 
overcomes this limitation by using 3 symbols and different threshold levels l≠0 based 
on individual dynamic variability and physiological settings. Thereby, it is possible 
to differentiate between noise, artefacts or ectopic events) and fluctuations that arise 
from (patho)physiological regulatory processes. Here, I was able clearly to 
demonstrate that the threshold level based on the non-invasive estimation of the 
spontaneous baroreflex sensitivity is superior to standard non-invasive baroreflex 
sensitivity analysis and the JSD approach in uncovering detailed changes of short-
term cardiovascular regulation (family patterns), and that the threshold with 25% of 
the standard deviation of individual cardiorespiratory time series (dynamical 
threshold level) reveals specific cardiorespiratory coupling patterns, which cannot be 
detected with other symbolization approaches.
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3.4.2 Multivariate High Resolution Joint Symbolic Dynamics

As a further enhancement to already existing symbolization approaches (JSD, SCT, 
HRJSD) I introduced the multivariate high-resolution joint symbolic dynamics 
approach (mHRJSD) that overcome the limitation of the previously introduced 
HRJSD approach. The HRJSD approach and other symbolization approaches are only 
able to analyse bivariate couplings, whereas the HRJSD approach is also able to 
determine the driver-responder relationship; facing this, the mHRJSD approach is 
able to quantify multivariate couplings and to determine the dominant driver-
responder relationship in multivariate coupled systems. These are outstanding new 
features for coupling analyses based on symbolizations. To enable the multivariate 
analyses based on a coarse graining of the dynamics of the time series under 
investigation the mHRJSD approach includes a third time series enables multivariate 
time series coupling analyses. In addition, a statistical significance level (Bonferroni-
Holm adjusted) for the probabilities of occurrences of the coupling pattern has been 
introduced to exclude and prevent unwanted couplings. As outstanding and unique 
features of the mHRJSD approach are the implemented multivariate directionality 
indices DmHRJSD (DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x)). These indices 
enabling the determination of a primary- and secondary driver, the dominant 
responder and direct causal information transfer within a multivariate coupled 
systems.

The introduced multivariate redundancy reduction strategy in combination with the 
multivariate directionality indices provide more detailed information about short-
term physiological regulatory processes of complex linear multivariate networks than 
the exiting symbolization approaches and partly other bivariate coupling approaches
can do.

3.4.3 Normalized Short Time Partial Directed Coherence

The introduced NSTPDC approach represents a clear improvement of the standard 
PDC and the time-variant PDC (tvPDC) by overcoming their restrictions and 
limitations. The NSTPDC approach allows a better classification of the coupling 
strength and coupling direction of short-term multivariate, non-stationary, scale-
invariant, linear and non-linear (only partly possible) coupled time series through the 
introduced Normalized Factor and the normalization procedure (zero mean and unit 
variance). Since the NSTPDC approach is only partly able to detect the correct driver-
responder relationships in non-linear coupled systems a bias could arise if only the 
NSTPDC approach is applied, and thus misclassification could occur. Due to this 
limitation, in detailed investigations other methods should be used in addition to the 
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NSTPDC approach (e.g. MuTe), which are able to determine the driver-response 
relationships in non-linear systems.

As outstanding new features of the NSTPDC approach for coupling analyses in 
contrast to other coupling approaches (LGC, F-test, Wald-test, MDA, PDC versions, 
DFT) that are asses linear Granger causality in the time- and frequency domain; it
provides a clear normalized and defined measure for the coupling strength ranging
between 0 and 1, and a clear and differentiable characterization of the coupling 
direction (strong or weak, unidirectional or bidirectional, not clearly determinable). 
Moreover, the NSTPDC approach can distinguish between both direct and indirect 
causal information transfer that is only restricted to other linear Granger causality
based approaches.
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Chapter 4

4. Analyses of the central-

autonomic-network in 

schizophrenia
The following content was previously published in:

Schulz, S., Haueisen, J., Bär, K. J. & Voss, A. (2019) Altered Causal Coupling Pathways within the Central-
Autonomic-Network in Patients Suffering from Schizophrenia. Entropy, 21(8), 733.

Schulz, S., Haueisen, J., Bär, K. J. & Voss, A. (2018) Multivariate assessment of the central-cardiorespiratory 
network structure in neuropathological disease. Physiol Meas, 39(7), 074004.

Schulz, S., Bolz, M., Bär, K. J., and Voss, A. (2018) Quantification of the Central Cardiovascular Network 
Applying the Normalized Short-time Partial Directed Coherence Approach in Healthy Subjects. Methods Inf Med 
57, 129-134.

Schulz, S., Bolz, M., Bär, K. J. & Voss, A. (2016) Central- and autonomic nervous system coupling in 
schizophrenia. Philos Trans A Math Phys Eng Sci, 374(2067), 20150178.



4. Analyses of the central-autonomic-network in schizophrenia 81

4.1 Materials and Methods

4.1.1 Overview

The interdisciplinary field of Network Physiology is getting more and more into the 
focus of interest in medicine (Bartsch et al, 2015). It aims to characterise healthy and 
diseased states by analysing structural, dynamical and regulatory alterations in the 
interaction of physiological systems and sub-systems, and bridging the genetic and 
sub-cellular level with intercellular interactions and communications among 
integrated organ systems and sub-systems (Ivanov et al, 2016).

In this study I aimed to characterise short-term instantaneous central-autonomic-
network coupling pathways (top-to-bottom and bottom-to-top) by analysing the 
interaction of heart rate, systolic blood pressure, respiration and central activity in 
schizophrenic patients. Therefore, I applied the new developed as already established 
causal and non-causal, linear and non-linear multivariate coupling approaches 
(HRJSD, mHRJSD, NSTPDC, MuTE) that are able to determine coupling strengths 
and directions within the CNS-ANS network. I believe that these findings are of 
importance for a full comprehension of (patho)physiological regulation processes and 
might allow improvement in treatment strategies in schizophrenic patients, and 
finally, possibly contribute to cardiac risk stratification strategies able to identify 
those patients at higher risk for cardiovascular disease.

4.1.2 Subjects

For this investigation, 17 patients with paranoid schizophrenia (SZO; 2 females, 
37.5±10.4 years) and 17 healthy subjects as controls (CON; 4 females, 37.7±13.1 years)
were enrolled. The diagnosis of schizophrenia was reached through an assessment of 
patient-specific signs and symptoms, as described in the Diagnostic and Statistical 
Manual of Mental Disorders, 4th edition (DSM-IV) (Bell, 1994). The positive and 
negative syndrome scale was applied to quantify psychotic symptoms. Depot 
antipsychotic medication (77% being atypical neuroleptics [Seroquel, Risperdal, 
Olanzapin, Leponex, Seroquel, Zypadhera, Clozapin, Xeplion, Solian], and 23% being 
a mixture of antidepressant and atypical neuroleptics [Remergil, Zyprexa, 
Haloperidol, Seroquel, Flunxol, Leponex]) were used to treat SZO. Thorough
interviews and clinical investigations were performed for CON to exclude any 
potential psychiatric (DSM-IV) or other diseases, as well as to double-check for any 
interfering medication. The structured clinical interview and a personality inventory 
(Freiburger Persönlichkeitsinventar a factor-analytically and item-metrically based 
method) were also applied to CON to detect personality traits and any disorders 
which might influence autonomic function (LeBlanc et al, 2004). The written informed 
consent to a protocol approved by the local ethics committee of the Jena University 
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Hospital was provided by all subjects. This study complies with the Declaration of 
Helsinki.

4.1.3 Data recordings and pre-processing

For all schizophrenic patients and healthy subjects, a 3-channel ECG (500 Hz), a 
synchronized non-invasive continuous blood pressure (200 Hz, 
photoplethysmography (volume-clamp), Portapres Model-2, TNO Biomedical 
Instrumentation, Netherlands), a calibrated respiratory inductive plethysmography 
signal (LifeShirt®, Vivometrics, Inc., Ventura, CA, USA), and a 64-channel EEG were 
recorded synchronously for 15 minutes. An extended 10-20-system using an electrode 
cap of 64 active Ag/AgCl electrodes was used to acquire the EEG (Brain Products, 
Germany, AFZ: ground, FCZ: reference, 500 Hz). The impedance levels (<25 KΩ) were 
checked for each electrode before starting recordings. Investigations were performed 
between 14.00 and 18.00 in a quiet room that was kept comfortably warm (22–24◦C) 
and began after subjects had rested in a supine position for 10 min. Subjects were 
asked to close their eyes, relax and breathe normally to avoid hyperventilation.

The following time series with respect to autonomous regulation were automatically 
extracted from the raw data records (using in-house software; programming 
environment DELPHI v. 3 and MatlabR2011b):

 Time series of HR (lead I) consisting of successive beat-to-beat intervals (BBI, 
(msec)), 

 Time series consisting of the maximum successive systolic blood pressure 
amplitude values over time in relation to the previous R-peak (the given RR-
interval) (SYS, (mmHg)), and

 Time series of respiratory frequency (RESP, (sec)) as time intervals between 
consecutive breathing cycles.

With respect to each extracted BBI(i) from the ECG raw data the related time intervals 
EEG(i) (msec) from EEG raw data were extracted. Within each EEG(i), with i (i=1:R1) 
as the successive number of R-peaks (R), the mean power PEEG(i) (µV2) of EEG(i) was 
derived representing time series of EEG activity (Schulz et al, 2016) (Figure 18) (eq. 
60). 

P���(푖) = �
� � |EEG(푗)|��(���)×��

���(�)×�� (60)

with T representing the number of samples within BBI(i) or EEG(i), respectively; t(i) 
represents the current point in time of BBI(i) and fs represents the sampling frequency.
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For the central-cardiovascular-network from the EEG raw data recordings, new time 
series consisting of the EEG spectral band components as delta (0.5–3.5 Hz), theta 
(3.5–7.5 Hz), alpha (7.5–12.5 Hz), alpha1 (7.5–9.5 Hz), alpha2 (9.5–12.5 Hz), beta (12.5–
25 Hz), beta1 (12.5–17.5 Hz), beta2 (17.5–25 Hz) and gamma (25–60 Hz) activity were 
derived (Butterworth filter, order=3) for each electrode. For example, for the EEG 
channel Fp1 (EEGFp1) the 9 time series as EEGFp1δ, EEGFp1θ, EEGFp1α, EEGFp1α1, EEGFp1α2, 
EEGFp1β, EEGFp1β1, EEGFp1β2 and EEGFp1γ were obtained. All EEG recordings (pre-
processing) were band-pass filtered (0.05-60 Hz, Butterworth filter, order=3) to 
eliminate slow drifts coming from slow body movements or sweating, and to exclude 
noise resulting from higher frequency contents. For the quantitative EEG analysis.
EEG time series were visually inspected and automatically classified as artefact-free 
applying the Brain Products Software Analyzer 2.0 to get artefact-free time series 
(Delorme & Makeig, 2004; Maiorana et al, 2016; Tong & Thakor, 2009).

Figure 18. Visualization example of analysed raw data records and their extracted time series. Raw 
data are, from top to bottom: ECG, non-invasive continuous systolic blood pressure (SYS), 
synchronized calibrated respiratory inductive plethysmography signal (RESP), and 
electroencephalogram (EEG). RR(i) represents the beat-to-beat intervals, SYS(i) represents the 
maximum systolic blood pressure amplitude values over time in relation to the previous R-peak,
RESP(i) represents the respiratory frequency as time intervals between consecutive breathing cycles, 
and EEG(i) specified the time intervals of the EEG raw data (electrode: Fp2) in relation to BBI(i). Within 
each EEG(i) the mean power PEEG(i) was calculated.
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All extracted time series were adaptive filtered (adaptive variance estimation 
algorithm (Wessel et al, 2000) to exclude and interpolate ventricular premature events 
and/or artefacts to obtain normal-to-normal beat time series (NN). For coupling 
analyses all time series (BBI, SYS, RESP, and PEEG) were synchronized and resampled 
with a linear interpolation algorithm (2 Hz).

For central-cardiovascular network analyses, three areas with the corresponding EEG 
channels were analysed, as: 

 The frontal area (Fp1, Fp2, AF3, AF4, AF7, AF8, Fz, F1-F8, FC1-FC6, FT7-FT10),

 The left frontal area (Fp1, AF3, AF7, F1, F3, F5, F7), and

 The right frontal area (Fp2, AF4, AF8, F2, F4, F6, F8). (Figure 19)

Figure 19. The applied extended 10-20 EEG system (actiCAP, Brain Products) for central-autonomic-
network analyses. (grey marked channels belong to the left hemisphere and white marked channels 
belong to the right hemisphere, AFZ=ground (black), FCZ=reference (dark grey))

For central-cardiorespiratory network analyses, five areas with the corresponding 
EEG channels were analysed, as: 

 A0: All EEG channels (n=64),

 A1: The frontal area (Fp1, Fp2, AF3, AF4, AF7, AF8, Fz, F1-F8),

 A2: The central area (FC1-FC6, FCZ, C1-C6, CZ, CP1-CP6, CPZ),

 A3: The temporal area (FT7-FT10, T7, T8, TP7-TP10), and 

 A4: The parietal-occipital area (P1-P8, PZ, PO3, PO4, PO7-PO10, POZ, O1, O2, 
OZ). (Figure 19)
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Performing central-autonomic coupling analyses, the autonomic time series (e.g. BBI 
and RESP) were combined with all EEG channels, and averaged from each subject. 
For example, when coupling heart rate (BBI) with the mean power of EEG (PEEG) (e.g. 
temporal area), 10 different coupling combinations per subjects of BBI-PEEG(FT7), BBI-
PEEG(FT8), BBI-PEEG(FT9), BBI-PEEG(FT10), …, BBI-PEEG(TP10) were obtained. These 10 
combinations were analysed applying the coupling approaches HRJSD, mHRJSD, 
NSTPDC and MuTE. Furthermore, for each combination, the methods related indices 
were derived and averaged for each subject.

4.1.4 Standard indices

Electroencephalogram in the frequency domain

From the EEG raw data the power spectral density (PSD) function (window length=5 
sec, overlap=50%) applying an autoregressive model (Welch's method) (Tong & 
Thakor, 2009) was used to estimate the mean power (P; 0.5–60 Hz) to quantify the 
electroencephalogram.

Additionally, for the central-cardiovascular-network: delta (Pδ: 0.5–3.5 Hz), theta (Pθ: 
3.5–7.5 Hz), alpha (Pα: 7.5–12.5 Hz), alpha1 (Pα1: 7.5–9.5 Hz), alpha2 (Pα2: 9.5–12.5 Hz), 
beta (Pβ: 12.5–25 Hz), beta1 (Pβ1: 12.5–17.5 Hz), beta2 (Pβ2: 17.5–25 Hz) and gamma (Pγ: 
25–60 Hz) band power.

Heart rate-, blood pressure-, and respiratory variability in the frequency and time domains

Heart rate variability (HRV), blood pressure- (BPV) and respiratory variability 
(RESPV) were quantified by calculating standard parameters from time (TD) and 
frequency domains (FD) (Schulz et al, 2012a; Task Force, 1996; Voss et al, 2009) as:

 meanNN: The mean value of the NN intervals of BBI (msec), of systolic (SYS) 
blood pressure (mmHg) values, and RESP (sec) as respiratory cycle length;

 sdNN: The standard deviation of the NN intervals of BBI (msec), of systolic 
(SYS) blood pressure (mmHg) values, and RESP (sec);

 BF: The breathing frequency characterizing the number of breaths per minute 
(1/min);

 tin and tex: Inspiration time and expiration time intervals for each breath cycle
(sec);

 LF/HF: The ratio between the low- and high-frequency power spectrums (LF: 
0.04–0.15 Hz, HF: 0.15–0.4 Hz) (a.u.) of BBI. In FD the power spectra of the time 
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series were estimated using the fast Fourier transform. The Blackman Harris 
window function was applied to avoid leakage effects.

Baroreflex sensitivity

The Dual Sequence Method (DSM) (Malberg et al, 1999) was applied to estimate the 
spontaneous baroreflex sensitivity based on the sequence technique. Here, a 
minimum change of 1 mmHg increase or decrease in SYS and 5 msec in BBI was 
defined as the inclusion criterion for a spontaneous baroreflex related cardiovascular 
oscillation. The slopes of the regression lines between SYS and BBI sequences were 
taken as an index for local BRS (msec/mmHg). Two kinds of BBI responses were 
derived:

 bslope: The slope of the regression line between all bradycardic baroreflex 
fluctuations (msec/mmHg), and

 tslope: The slope of the regression line between all tachycardic baroreflex 
fluctuations (msec/mmHg).

Respiratory Sinus Arrhythmia

Respiratory Sinus Arrhythmia (RSA) represents the coupling between the cardiac and 
respiratory system characterized by heart rate fluctuations that are in phase with 
inspiration and expiration (Grossman et al, 2004). RSA is based on the shortening BBI 
(cardiac acceleration) during inspiration and the lengthening of BBI (cardiac 
deceleration) during expiration. RSA is frequently employed as an index of cardiac 
vagal tone or even believed to be a direct measure of vagal tone (Grossman & Taylor,
2007). RSA was quantified in the time domain using the peak-to-valley approach 
(Grossman et al, 1990) (RSAP2V, (msec)). 

4.1.5 Central–autonomic coupling analyses

For the quantification of linear and non-linear central-autonomic couplings different 
approaches can be used (Schulz et al, 2013a). I analysed the information transfer 
between BBI, SYS, RESP and PEEG time series with the normalized short-time partial 
directed coherence (NSTPDC) (Adochiei et al, 2013), the multivariate Transfer 
Entropy (MuTE) (Montalto et al, 2014), the high resolution joint symbolic dynamics 
(HRJSD) (Schulz et al, 2013c), and the multivariate version of HRJSD (mHRJSD) 
(Schulz et al, 2018; Schulz et al, 2017b).
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4.1.6 Surrogate data 

When applying non-linear analysis approaches, it must be considered that the linear 
properties of the signals, like e.g. autocorrelation or spectral features, are likely to 
affect the measure. To demonstrate the statistical validity of the obtained network 
pathways between CON and SZO, surrogate tests were performed to determine a 
threshold for statistical significance for the obtained results (Schreiber & Schmitz, 
2000; Theiler et al, 1992). The idea behind this technique is to apply the non-linear 
method in question to independent time series that are the same or as close as possible 
to the statistical properties of the original time signals, while randomizing the 
expressions of the non-linear property to be measured. This procedure makes it 
possible to define a threshold below which any result is considered to be false. In 
practice, when deriving couplings even from very weakly coupled (or completely 
decoupled) systems, the methods always capture some nonzero values of the 
apparent coupling strength. Surrogate testing can then be used to establish the “zero-
level” of apparent coupling corresponding to uncoupled signals (Stankovski et al, 
2017). Therefore, for each subject (CON, SZO) and each original time series (BBI, SYS, 
RESP and PEEG) 15 independent surrogates were derived by random permutation of 
the temporal structure of the original samples to remove any temporal relationship 
for the newly derived surrogate time series (CONsu, SZOsu). This technique 
preserves the linear structures of the signals, but changes the non-linear properties.

A statistical significance thresholds tsu was defined, beneath which any coupling 
result derived from the original time series is considered spurious. This threshold was 
calculated independently for each subject and then set as the mean+2*SD of the 
resultant distributions. As a result, I tested the couplings from the original time series 
by comparison with the significance threshold tsu. Hence, if couplings were higher 
(original time series) than tsu, and no significant differences between CONsu and 
SZOsu existed, then the null hypothesis was rejected, and significant couplings 
within the original time series were present. The non-parametric paired Mann-
Whitney U-test was used to determine the significance of differences between the
CONsu and SZOsu distributions. The test rejected the null hypothesis at significance 
level p<0.00041 (Bonferroni-Holm adjustment).

4.1.7 Statistics

Significant differences between CON and SZO were estimated applying the 
nonparametric exact two-tailed Mann-Whitney U-Test (SPPS 21.0). The significances
were considered at *p<0.05, **p<0.01, ***p<0.00041 (Bonferroni-Holm adjustment), and 
# not confirmed by surrogate analysis. Results in tables are presented as mean±SD. 
An overview of all performed analyses steps are presented in (Figure 20).
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Figure 20. Flowchart of performed analyses steps. (BBI represents the beat-to-beat intervals, SYS 
represents the maximum systolic blood pressure amplitude values over time in relation to the previous 
R-peak, RESP represents the respiratory frequency as time intervals between consecutive breathing 
cycles, PEEG specified the mean power in the time intervals of the EEG raw data in relation to each BBI, 
NN: normal-to-normal beat interval, TD: time domain, FD: frequency domain, NLD: non-linear 
dynamics, HRV: heart rate variability, BPV: blood pressure variability, RESPV: respiratory variability, 
HRJSD: high resolution joint symbolic dynamics, mHRJSD: multivariate high resolution joint 
symbolic dynamics, NSTPDC: normalized short-time partial directed coherence, and MuTE: 
multivariate Transfer Entropy)
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4.2 The electroencephalogram in the frequency domain

4.2.1 Results for the central-cardiovascular areas

Considering EEG-related standard frequency domain spectral component indices, it 
was found that when comparing SZO with CON in terms of the frontal area, the left 
frontal area and the right frontal area, highly significant (p<0.00041) differences 
between both groups were apparent (Table 8). Thereby, a significant decrease in the 
mean power of all spectral bands (delta Pδ to gamma Pγ) and in the whole power P
was obviously present for SZO in comparison with CON. In both groups, a lower 
power has been shown in the left frontal area when compared with the right frontal 
area.

Table 8. Results of electroencephalogram (EEG) in the frequency domain which discriminates between 
paranoid schizophrenia patients (SZO) and healthy subjects (CON). (*p<0.05, **p<0.01, ***p<0.00041,
n.s.=not significant)

Index all frontal left frontal right frontal
CON SZO CON SZO CON SZO

mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

EE
G

Pδ 496 ± 761*** 417 ± 1341 498 ± 805*** 460 ± 1683 494 ± 711*** 367 ± 793

Pθ 64 ± 65*** 40 ± 57 63 ± 67*** 39 ± 62 65 ± 63*** 40 ± 50

Pα 56 ± 54*** 17 ± 14 54 ± 54*** 17 ± 14 58 ± 54*** 18 ± 14

Pα1 34 ± 41*** 10 ± 8.8 33 ± 40*** 9.3 ± 8.8 35 ± 41*** 10 ± 8.8

Pα2 20 ± 15*** 5.8 ± 5.2 19 ± 16*** 5.6 ± 5.6 21 ± 15*** 6.0 ± 4.7

Pβ 47 ± 42*** 14 ± 10 46 ± 47*** 12 ± 9.4 49 ± 34*** 15 ± 10

Pβ1 7.0 ± 4.9*** 2.2 ± 1.5 6.8 ± 5.2*** 2.0 ± 1.5 7.3 ± 4.5*** 2.4 ± 1.6

Pβ2 12 ± 10*** 3.4 ± 2.4 11 ± 10*** 3.2 ± 2.3 12 ± 9.3*** 3.7 ± 2.4

Pγ 21 ± 32*** 5.2 ± 5.7 20 ± 38*** 4.5 ± 4.8 21 ± 23*** 6.1 ± 6.5

P 712 ± 886*** 506 ± 1402 710 ± 933*** 546 ± 1753 714 ± 831*** 460 ± 843

4.2.2 Results for the central-cardiorespiratory areas

Considering EEG-related frequency domain spectral analyses I found for the 
comparison of SZO with CON for all areas (A0, A1, A2, A3, A4) highly significantly 
(p<0.00041) differences between both groups. Thereby, significant decreases in the 
mean power P of all areas were obviously present for SZO in comparison to CON 
(PA0: SZO=357.8±732.8***; CON=820.6±860.8). For A2 SZO revealed the lowest power 
P, and for A3 and A4 CON showed the highest power P. In general, SZO showed 
comparable values for P for A1 to A4 (Figure 21). 
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Figure 21. Bars indicate average mean value of the power P derived from the EEG channels estimated 
by the power spectral density function (window length: 5 sec, overlap: 50%) for patients suffering from 
paranoid schizophrenia (SZO) and healthy subjects (CON) for A1 (the frontal area), A2 (the central 
area), A3 (the temporal area), and A4 (the parietal-occipital area). (*p<0.05; **p<0.01; ***p<0.00041;
n.s.=not significant)

4.2.3 Summary and discussion

4.2.3.1 The central-cardiovascular areas

The results of central activity (via EEG frequency analyses) showed a highly 
significantly reduced EEG activation (power) in all frequency bands for the frontal 
area, being much more pronounced in the right frontal hemisphere in SZO when 
compared to CON. MacCrimmon et al. (Maccrimmon et al, 2012) investigated the 
effects of the atypical antipsychotic (clozapine) among 64 SZO patients. They found 
that clozapine augments power globally in the δ and θ bands, but this effect was more 
pronounced over frontal areas. The authors could demonstrate a significant 
clozapine-induced α topographic shift frontally and to the right. They suggested 
further investigations of subcortical structures in the attempt to better understand the 
diverse aetiologies and optimal treatments of schizophrenia. Small et al. (Small et al, 
1987) investigated chronic treatment-resistant patients in relation to placebo, 
haloperidol, chlorpromazine and clozapine treatment. They found increased frontal 
δ activity particularly with clozapine and chlorpromazine treatment. Nagase et al. 
(Nagase et al, 1996) investigated 12 medicated SZO patients, finding that α2 power 
and slow-wave power were reduced when compared to the neuroleptic-naive state. 
They concluded that the reduction in α power may occur from the early stage of the 
disease and progress even further, even though the patients are medicated and 
clinically improved. Kemali et al. (Kemali et al, 1992) found that after acute treatment, 
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patients showed a significant decrease of δ and an increase of θ2, β1, and β2. After 28 
days of haloperidol treatment, similar changes were observed for δ, together with an 
increase of α1, and a decrease of fast β. Light et al. (Light et al, 2006) found that 
schizophrenia patients have frequency-specific deficits in the generation and 
maintenance of coherent γ-range oscillations, reflecting a fundamental degradation 
of the basic integrated neural network activity. 

In general, γ responses in schizophrenic patients are not necessarily weakened. 
Depending on the status of the schizophrenic behaviour (negative or positive 
symptoms) and depending on the difficulty of the applied paradigm, an increase of 
γ activity may also be observed. Thus, the oscillatory dynamics in schizophrenia also 
depict the unstable behaviour of electrophysiology in this disease (Basar & Guntekin, 
2008). Patients who were treated with clozapine and olanzapine revealed most 
prominent changes in the anterior cingulate and medial frontal cortex and a decrease 
in fast frequency activities in the occipital cortex. These results suggest a 
compensatory mechanism in the neurobiological substrate for schizophrenia 
(Tislerova et al, 2008). Unfortunately, at the moment, comparative studies between 
medicated and unmedicated patients are not available in the literature. This makes it 
difficult to assess the effectiveness of medication and the effect of central activity in 
schizophrenia patients. It has been shown in many studies on medicated and non-
medicated patients that the γ response is lower in SZO patients when compared to 
healthy subjects (Basar & Guntekin, 2008; Horacek et al, 2006). 

Nevertheless, it is strongly justified, based on available literature, to conclude that the 
δ excess (and to a lesser extent the θ excess) is a strong and bona fide biological marker 
for schizophrenia, as well as the fact that changes in EEG patterns are not medication-
induced (Boutros et al, 2008).

4.2.3.2 The central-cardiorespiratory areas

The results of central activity demonstrated highly significantly reduced power in all 
clusters (A0-A4) in general, being much more reduced in A2 (central area) and highest 
in the frontal area (A1) in SZO when compared to CON. On the other side, CON 
revealed the highest power in A3 and A4 (temporal areas) whereas SZO showed a 
similar behaviour in all clusters. CON revealed highest EEG spectral power in the A4 
area, which is typically related to deep resting or sleeping conditions. 

This fact clearly supports these findings and other already published papers that SZO 
are characterized by an increased sympathetic tone instead of increased vagal tone. 
Moreover, one should consider that SZO patients were during data recording in acute 
psychotic state. In general, the central activity in SZO seems to be inhibited 
independent from local areas of the cortex, and that primary somatosensory cortex 
and primary visual cortex (A3, A4) are affected in this disease.
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In general, the central activity in SZO seems to be inhibited independent from local 
areas of the cortex, and that primary somatosensory cortex and primary visual cortex 
(A3, A4) are affected in this disease. These findings are in accordance with the state 
of the art in literature. For instance, Brenner at al. (Brenner et al, 2009) stated that 
disruption of both auditory and visual steady state responses in schizophrenia are 
consistent with neuropathological and magnetic resonance imaging evidence of 
anatomic abnormalities affecting the auditory and visual cortices. Boning et al found 
somatosensory stimulation was associated with decreased activity in brain regions 
participating in an attentional network in SZO (Boning et al, 1989). Individuals with 
schizophrenia commonly exhibit a variety of symptoms related to the somatosensory 
system. Impairments related to somatosensory perception are also common, 
including fine motor touch, temperature, pain (nociception), movement, tension, and 
vibration (Huang et al, 2010). Impairments in early visual processing have been well 
documented in schizophrenia using methods, including steady-state and transient 
event-related potentials (ERP) approaches, along with fMRI, and lead to impairments 
in processes such as motion detection, object recognition, and reading (Javitt, 2009).



4. Analyses of the central-autonomic-network in schizophrenia 93

4.3 The cardiovascular and cardiorespiratory network

4.3.1 The cardiovascular network

4.3.1.1 Heart rate- and blood pressure variability

Significant differences between CON and SZO were demonstrated in the time domain 
of HRV analysis (meanNNBBI, sdNNBBI). SZO showed an increased heart rate (reduced 
meanNNBBI ↓) accompanied with reduced variability (sdNNBBI ↓) compared to CON
(Table 9). The frequency domain index LF/HF was not significantly different between 
SZO and CON. Blood pressure variability analyses revealed significant difference 
between both groups in meanNNSYS (reduced in SZO compared to CON) (Table 9). 

4.3.1.2 Baroreflex sensitivity

BRS measures bslope and tslope revealed significant differences between SZO and 
CON, namely significant decreases in the BRS measures bslope and tslope were
shown for SZO compared to CON (Table 9).

Table 9. Results of standard indices from heart rate variability (HRV), blood pressure variability 
(BPV), respiratory variability (RESPV), spontaneous baroreflex sensitivity (BRS), respiratory sinus 
arrhythmia (RSA) which discriminates between paranoid schizophrenia patients (SZO) and healthy 
subjects (CON). (*p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant)

Index CON SZO
mean ± std mean ± std

H
R

V

meanNNBBI 904.2 ± 153.0 709.4 ± 104.7***
sdNNBBI 52.0 ± 23.0 32.3 ± 23.4*
LF/HF 5.6 ± 6.5 7.3 ± 11.4

BP
V meanNNSYS 134.9 ± 19.8 121.4 ± 15.4*

sdNNSYS 9.2 ± 3.0 10.0 ± 6.8

BR
S bslope 10.2 ± 5.8 4.6 ± 3.5**

tslope 11.0 ± 5.5 4.8 ± 3.2**

R
ES

PV

meanNNRESP 4.0 ± 1.1 3.7 ± 0.8
sdNNRESP 0.7 ± 0.6 0.7 ± 0.4
BF 16.2 ± 3.0 17.7 ± 3.5
tin 2.3 ± 0.6 2.1 ± 0.6
tex 1.7 ± 0.5 1.6 ± 0.3

R
SA RSAP2V 62.2 ± 42.4 31.1 ± 24.4*
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4.3.2 The cardiorespiratory network

4.3.2.1 Respiratory variability

Respiratory variability analyses revealed no significant differences between SZO and 
CON. However, a trend of reduced mean breathing cycle length (meanNNRESP=3.7±0.8 
sec), increased BF (17.7±3.5 1/min), and reduced inspiration (tin) and expiration (tex) 
times in SZO compared to CON were found (Table 9).

4.3.2.2 Respiratory sinus arrhythmia

RSA analyses revealed significantly decreased RSA (RSAP2V) for SZO when compared 
to CON (Table 9).

4.3.3 Summary and discussion

4.3.3.1 Heart rate- and blood pressure variability

My findings in relation to HRV are in accordance with other studies that have 
revealed an altered autonomic tone in treated schizophrenic patients. These results 
suggest a parasympathetic withdrawal and an ongoing sympathetic predominant 
activation in cardiac autonomic regulation, highlighted by decreased 
parasympathetic indices from HRV such as rmssd. Psychiatrists attributed increased 
heart rate (meanNN ↓) in patients with schizophrenia to antipsychotic treatment. This 
assumption is only to some extent correct since treatment with clozapine, for instance, 
is associated with reduced vagal function and increased heart rates (Bär, 2015) and it 
has been shown that clozapine, quetiapine, amisulpride revealed the strongest 
anticholinergic side effects of cholinergic or adrenergic receptors on ANS modulation 
than olanzapine (Schulz et al, 2014a). In addition, Agelink et al. (Agelink et al, 2001)
investigated the effects of atypical antipsychotics on autonomic neurocardiac 
function and showed that amisulpride did not significantly alter HRV because it lacks 
activity at cholinergic or adrenergic receptors. Excepting amisulpride, the other 
atypical antipsychotics increased mean HR, an effect largest with clozapine, followed 
in order by sertindole and olanzapine. Thereby, a significant reduction in 
parasympathetic dependent HRV indices could only be shown with clozapine. Bär et 
al (Bär et al, 2008) found a reduction of the complexity of heart rate regulation after 
olanzapine treatment measured by compression entropy. Thus, the authors 
suggested a decreased cardiac vagal function which may increase the risk for cardiac 
mortality. In a study of healthy volunteers’ differential effects of single doses of the 
antipsychotic drugs (olanzapine, thioridazine, risperidone) on HRV were found, and 
these were independent of their sedative effects. Olanzapine increased, and 
thioridazine decreased HRV, while risperidone had no effect on HRV (meanNN 
sdNN, rmssd) (Silke et al, 2002). Due to, that the investigated SZO patients were 



4. Analyses of the central-autonomic-network in schizophrenia 95

treated with atypical neuroleptics a side effect of these drugs cannot be completely 
excluded on HRV results. However, several studies have reported increased heart 
rates in the first episode and unmedicated patients too pointing to the significant role 
of the impaired cardiac modulation in those patients. Interestingly, these drugs seem 
to be having no effect on blood pressure values and -variability. Although I found 
some indication for increased sympathetic modulation, results seemed to be restricted 
to heart rate changes and not to the blood pressure (Bär et al, 2006). Thus, a cardiac 
dysfunction in SZO does not reflect a simple stress induced arousal but rather chronic 
and distinct changes of heart rate regulation (Schulz et al, 2015a). Some studies 
reported an association of the autonomic imbalance with the degree of positive 
symptoms (i.e. delusions). However, there is no simple relation between cardiac 
dysfunction and clinical symptoms.

4.3.3.2 Baroreflex sensitivity

Considering baroreflex sensitivity, as a marker for the assessment of autonomic 
control of the cardiovascular system maintaining blood pressure at a constant level, 
significantly reduced tachycardic (tslope) and bradycardic (bslope) slopes were
found in accordance with other studies investigating unmedicated patients (Bär et al, 
2005; Schulz et al, 2013c). These results pointing to a severely impaired fine-tuning of 
blood pressure and heart rate regulation independent of medication among those 
patients. Thus, the decrease of efferent vagal activity and the inhibition of baroreflex 
vagal bradycardia in SZO might be caused by stress due to psychotic experiences or 
the psychosis itself, a process that allows the organism under physiological conditions 
to adjust to demanding environmental stress (Bär, 2015).

4.3.3.3 Respiratory variability

In contrast to other studies (Bär et al, 2012; Peupelmann et al, 2009; Schulz et al, 2012a), 
variability analyses of respiration did not reveal any significant differences between 
both groups (only trends). However, all these studies were performed with non-
medicated SZO patients revealing significantly increased breathing rates and reduced 
inspiration and expiration times in SZO. The results could be explained by that D2 
receptor antagonism in the brain is a general pharmacodynamics property of all 
antipsychotics. Thus, a dysregulation of dopaminergic circuits with excess 
dopaminergic activity in the mesolimbic pathway (leading to positive symptoms of 
psychosis) and reduced dopaminergic signalling in the mesocortical pathway 
(leading to negative symptoms) seems to be evident in SZO (Lally & MacCabe, 2015). 
Due to, that antipsychotics are anti-dopaminergic they probably have dopamine's 
stimulating effect on respiration possibly leading to the reduced respiratory 
variability. Other studies supporting dopaminergic hypofunction in the cerebral 
cortex and hyperfunction in subcortical brain regions in SZO, as well as those typical 
antipsychotics (here: dopamine) inhibit mitochondrial respiration (Ben-Shachar, 
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2002; Pérez-Neri et al, 2006). The final respiratory output involves a complex 
interaction between the brainstem and higher centres, including the limbic system 
and cortical structures. Respiration is primarily regulated for metabolic and 
homeostatic purposes in the brainstem and also changes in response to changes in 
emotions, such as sadness, happiness, anxiety or fear (Homma & Masaoka, 2008). 
Williams et al. (Williams et al., 2004) found a functional disconnection in autonomic 
and central systems for processing threat-related signals in patients with paranoid 
schizophrenia. They hypothesized that paranoid cognition may reflect an internally 
generated cycle of misattribution regarding incoming fear signals due to a breakdown 
in the regulation of these systems. In addition, it could be shown that personality 
anxiety is associated with changed respiratory patterns and respiratory frequency 
(Masaoka & Homma, 1997; 1999). These studies showed that an increase in the 
respiratory frequency is not related to metabolic factors and is consistent with a 
mechanism involving the limbic system modulating respiratory drive (Masaoka & 
Homma, 2001). The found alterations in respiration (trend) likely can be explained 
that a dysregulation of arousal, as suggested in paranoid schizophrenia in amygdalae 
prefrontal circuits, might contribute to the correlation of psychopathology and 
breathing alterations (Bär et al, 2012). Schizophrenic patients who were taking 
clozapine and olanzapine in comparison to patients who were antipsychotic naive 
might have a compensatory mechanism in the neurobiological substrate, whereby, 
alterations in the anterior cingulate, the medial frontal cortex and a decline of fast 
frequency activities in the occipital cortex were related to clozapine and olanzapine 
(in this study most patients were treated with these atypical antipsychotic) (Tislerova 
et al, 2008). 

4.3.3.4 Respiratory sinus arrhythmia

The results showed a restricted RSA, which represents the influence of the respiratory 
system in the regulation of the HR as a measure of cardiac vagal activity. This is in 
accordance with other studies (Bär et al, 2012; Schulz et al, 2015a) that found impaired 
cardiorespiratory coupling and reduced RSA in non-medicated SZO. Peupelmann et 
al. (Peupelmann et al, 2009) did also found decreased cardiorespiratory coupling in 
SZO as an index for diminished vagal modulation at the brain stem level. 
Furthermore, they found that regularity of breathing correlated with disease severity 
and assumed a lack of inhibitory control over brainstem centres in schizophrenia. 
Based on the findings it can be assumed that decreased vagal activity within the 
brainstem or its suppression from higher regulatory centres might account for the
findings. In a previous study, I was able to show that fractal characteristics 
(morphological structure) of the RSA signal were increased in SZO indicating that the 
underlying rhythm of the RSA signal more randomly fluctuates. This 
indiscriminately wavering of the RSA time series supports the assumption that HR 
fluctuations are less in phase with inspiration and expiration in SZO providing the 
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explanation for the lower RSAP2V in SZO in comparison to CON (Schulz et al, 2015a). 
Moreover, it can be hypothesised that the cardiac dysfunction in SZO does not reflect 
a simple stress-induced arousal, but rather chronic and distinct changes of heart rate 
and respiratory regulation (Schulz et al, 2015a). 
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4.4 The central-cardiovascular-network

For central-cardiovascular coupling analyses I applied the causal and non-causal 
linear and non-linear coupling approaches (HRJSD, NSTPDC, MuTE) to quantify this 
network.

4.4.1 Cardiovascular coupling (BBISYS)

NSTPDC results demonstrated a significant different coupling direction (NF) in SZO 
(NF~−0.5) compared to CON, pointing to a decreased bidirectional coupling in the 
direction from SYS→BBI (SYS is the driver). The coupling strength from SYS→BBI 
(A���→���(����)), known as baroreflex loop, was significantly reduced in SZO (↓) in 
comparison to CON (Figure 22, a) (Table 10).

MuTE revealed a highly significant different coupling strength between SZO and 
CON. Considering the baroreflex loop when SYS influenced BBI (MuTESYS→BBI(PEEG)), 
in contrast to the linear results, the coupling strength was significantly increased in 
SZO compared to CON, and might point to a stronger non-linear causal information 
transfer of SYS on BBI. When BBI influenced SYS (MuTEBBI→SYS(PEEG)), the coupling 
strength was highly significantly different between SZO (↓) and CON (Table 11).

Table 10. Linear central-cardiovascular (BBI, SYS, and PEEG) coupling analyses results (NSTPDC) to 
discriminate between patients suffering from paranoid schizophrenia (SZO) and healthy subjects 
(CON). (BBI=beat-to-beat intervals, SYS=systolic blood pressure amplitude values over time,
PEEG=mean power in the BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not 
significant, #=not confirmed by surrogate analysis)

Index CON                 SZO
               mean ± std           mean ± std

BB
I↔

SY
S NF -0.66 ± 0.52 -0.48 ± 0.81***

ABBI→SYS(PEEG) 0.25 ± 0.06 0.27 ± 0.14

ASYS→BBI(PEEG) 0.43 ± 0.14 0.39 ± 0.16***

BB
I↔

PE
EG NF -0.64 ± 0.86 -0.81 ± 1.03**

ABBI→PEEG(SYS) 0.10 ± 0.05 0.09 ± 0.06*

APEEG→BBI(SYS) 0.23 ± 0.16 0.26 ± 0.17*

SY
S↔

PE
EG NF 0.00 ± 1.07 -0.70 ± 0.94***

ASYS→PEEG(BBI) 0.13 ± 0.07 0.10 ± 0.06***

APEEG→SYS(BBI) 0.14 ± 0.10 0.20 ± 0.13***

The results of HRJSD have already been published elsewhere (Schulz et al, 2014a). 
Here, I demonstrated significantly altered distributed cardiovascular coupling 
pattern indicating a decreased cardiovascular coupling in patients with acute 
schizophrenia, especially for medicated patients. 
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4.4.2 Central-cardiac coupling (BBIPEEG)

Linear couplings analyses (NSTPDC) revealed significant different NF values
between both groups. For SZO (NF~−0.8) the coupling direction was characterized as 
a bidirectional one from PEEG→BBI (PEEG is the driver) (Figure 22, b) (Table 10).

Figure 22. Averaged NSTPDC plots for central-cardiovascular coupling analyses for (a) 
cardiovascular couplings, (b) central-cardiac couplings, and (c) central-vascular couplings for 
schizophrenic patients. Arrows indicating the causal coupling direction from one time series to another, 
e.g., SYS←PEEG, indicating the causal link from PEEG to SYS. Coupling strength ranges from blue (no 
coupling) to red (maximum coupling), where BBI represents beat-to-beat intervals, SYS represent 
successive maximum systolic blood pressure amplitude values over time, and PEEG represents the mean 
power in BBI-related EEG intervals.

Please note that the values for central-cardiac couplings in Table 10 are different from 
the values in Table 15, because in Table 15 other EEG channels were included for the 
frontal area (analyses of the central-cardiorespiratory areas). The same is true for 
Figure 22 and central-cardiac couplings compared to Figure 25 (analyses of the 
central-cardiorespiratory areas).

The non-linear causal information transfer (MuTE) from cardiac system to the central 
system (BBI→PEEG) as well as from central system to cardiac system (PEEG→BBI) were 
highly significantly reduced in SZO in comparison to CON, and were nearly equally 
strong pronounced in SZO (Table 11).
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Table 11. Non-linear central-cardiovascular (BBI, SYS, and PEEG) coupling analyses results (MuTE) 
to discriminate between patients suffering from paranoid schizophrenia (SZO) and healthy subjects 
(CON). (BBI=beat-to-beat intervals, SYS=systolic blood pressure amplitude values over time,
PEEG=mean power in the BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not 
significant, #=not confirmed by surrogate analysis)

Index
CON SZO

mean ± std mean ± std

BB
I↔

SY
S

MuTEBBI→SYS(PEEG) 0.098 ± 0.035 0.064 ± 0.042***

MuTESYS→BBI(PEEG) 0.053 ± 0.034 0.093 ± 0.037***

BB
I↔

PE
EG MuTEBBI→PEEG(SYS) 0.012 ± 0.011 0.007 ± 0.009***

MuTEPEEG→BBI(SYS) 0.012 ± 0.009 0.007 ± 0.008***

SY
S↔

PE
EG MuTESYS→PEEG(BBI) 0.012 ± 0.011 0.006 ± 0.008***

MuTEPEEG→SYS(BBI) 0.008 ± 0.008 0.006 ± 0.008***,#

HRJSD analyses revealed highly significant (p<0.00041) differences between SZO and 
CON in all 8 central-cardiac coupling pattern families (PEEG/BBI, 8×8=64) for the entire 
frontal area, the left frontal area and the right frontal area (Figure 23) (Table 12). The 
patterns were characterised by decreased absolute values in SZO if the central pattern 
family PEEG-E0, PEEG-E1, PEEG-E2, PEEG-LU1, PEEG-LD1, PEEG-LA1, PEEG-P and PEEG-V was 
coupled with BBI-E0, BBI-E1, BBI-E2, BBI-LU1 and BBI-LD1. SZO values significantly 
increased if the central pattern family was coupled with BBI-LA1, BBI-P and BBI-V. 
Thereby the central family patterns PEEG-E0 and PEEG-E2 significantly decreased, and 
PEEG-LA1 significantly increased in SZO, as compared to CON. The cardiac family 
patterns BBI-E0 and BBI-E2 highly significantly decreased, and BBI-LA1, BBI-P and 
BBI-V highly significantly increased in SZO, as compared to CON (Table 13). The 
index HRJSDShannon did not reveal any significant differences between SZO and CON, 
regardless of the investigated frontal area. 
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Figure 23. Three-dimensional plots of the HRJSD pattern family distribution density matrix Wf (8×8) 
of central-cardiac couplings for the entire frontal area for (a) healthy subjects and (b) schizophrenic 
patients. (BBI=beat-to-beat intervals, PEEG=mean power in BBI-related EEG intervals)

Table 12. Number (N) of significant (p<0.01) central-cardiovascular HRJSD indices p(N) used to 
discriminate between patients suffering from paranoid schizophrenia (SZO) and healthy subjects 
(CON) pertaining to the frontal area, the left frontal area and the right frontal area. BBI/PEEG indicates 
the coupling between beat-to-beat intervals (BBI) and the mean power in BBI-related EEG-intervals 
(PEEG). SYS/PEEG indicates the coupling between the maximum systolic blood pressure amplitude values 
over time (SYS) and the mean power in the BBI-related EEG-intervals (PEEG). (e.g., PEEG-E0/BBI 
describes the coupling of the pattern family E0 from PEEG with all other 8 BBI coupling pattern families)

Index
all frontal left frontal right frontal

p(N) p(N) p(N)

BB
I/

PE
EG

PEEG-E0/BBI 6 5 4
PEEG-E1/BBI 5 5 5
PEEG-E2/BBI 5 5 4
PEEG-LU1/BBI 5 3 3
PEEG-LD1/BBI 5 4 4
PEEG-LA1/BBI 8 8 6
PEEG-P/BBI 5 4 3
PEEG-V/BBI 4 4 2

SY
S/

PE
EG

PEEG-E0/SYS 5 4 4
PEEG-E1/SYS 8 8 8
PEEG-E2/SYS 6 4 5
PEEG-LU1/SYS 8 6 5
PEEG-LD1/SYS 8 6 5
PEEG-LA1/SYS 8 6 5
PEEG-P/SYS 8 8 8
PEEG-V/SYS 8 8 4
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In addition, all EEG spectral band components were quantified with NSTPDC. 
NSTPDC results revealed for all spectral bands significantly (p<0.00041) decreased 
coupling strengths from the EEG spectral power bands towards BBI (A��������→���) 
for the whole frontal area, the left frontal area and the right frontal area in SZO when 
compared to CON. Thereby in P���� the strongest influence of central γ activity 
towards BBI was found for both SZO and CON. With regard to the coupling direction 
of BBI towards PEEGband I found in the coupling strengths for the whole frontal area 
only in P����, P�����, P���� and P���� significant increases in A���→�������� for SZO 
in comparison to CON. Regarding the left frontal area, only in P����� and P����
significant increases in A���→�������� in the couplings strengths were found for SZO, 
when compared to CON. Regarding the right frontal area in P�����, P�����, P���� and 
P���� significant increases in A���→�������� in coupling strengths could be shown for 
SZO (Figure 24). Considering the NF values for all couplings between BBI and PEEGband 

SZO revealed generally increased NF values in comparison to CON. For all subjects' 
entire frontal area, left frontal area and right frontal area, the coupling directions were 
bidirectional, with BBI acting as the driver (Table 14). Only for P���� and P���� was 
equal influence present in both directions. 

Table 13. Significant HRJSD results showing of the probability of the occurrence of univariate HRJSD 
pattern families for BBI, SYS and PEEG in % to discriminate between patients suffering from paranoid 
schizophrenia (SZO) and healthy subjects (CON) for the frontal area, the left frontal area and the right 
frontal area. (BBI=beat-to-beat intervals, SYS=systolic blood pressure amplitude values over time,
PEEG=mean power in the BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not 
significant, #=not confirmed by surrogate analysis)

Index
all frontal left frontal right frontal

CON SZO CON SZO CON SZO
mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

PE
EG

PEEG-E0 1.9 ± 1.3*** 1.5 ± 0.9 1.9 ± 1.3*** 1.5 ± 0.9 1.9 ± 1.3** 1.5 ± 0.9

PEEG-E2 2.1 ± 1.3** 2.6 ± 2.0 2.0 ± 1.3** 2.6 ± 2.0 2.1 ± 2.0 2.6 ± 2.1

PEEG-LA1 0.03 ± 0.1*** 0.3 ± 0.5 0.03 ± 0.1*** 0.3 ± 0.6 0.03 ± 0.1*** 0.3 ± 0.8

BB
I

BBI-E0 4.6 ± 2.4*** 2.1 ± 1.8 4.6 ± 2.4*** 2.1 ± 1.8 4.6 ± 2.4*** 2.1 ± 1.8

BBI-E2 6.1 ± 3.5*** 3.0 ± 2.3 6.1 ± 3.5*** 3.0 ± 2.3 6.1 ± 3.5*** 3.0 ± 2.4

BBI-LA1 0.03 ± 0.1*** 1.1 ± 2.1 0.03 ± 0.1*** 1.1 ± 2.1 0.03 ± 0.1*** 1.2 ± 2.2

BBI-P 2.4 ± 1.7*** 4.5 ± 3.5 2.4 ± 1.7*** 4.5 ± 3.4 2.4 ± 1.7*** 4.5 ± 3.5

BBI-V 2.9 ± 2.1*** 5.1 ± 4.2 2.9 ± 2.1** 5.0 ± 4.2 2.9 ± 2.1** 5.1 ± 4.3

SY
S

SYS-E0 1.7 ± 1.5*** 3.6 ± 3.3 1.7 ± 1.5*** 3.6 ± 3.4 1.7 ± 1.5*** 3.6 ± 3.4

SYS-E1 61.0 ± 21.9*** 33.2 ± 31.3 61.0 ± 21.9*** 33.2 ± 31.3 61.0 ± 21.9*** 33.2 ± 31.3

SYS-E2 1.9 ± 1.3*** 3.3 ± 2.7 1.9 ± 1.3*** 3.3 ± 2.7 1.9 ± 1.3*** 3.3 ± 2.8

SYS-LU1 18.2 ± 9.5*** 27.9 ± 11.8 18.2 ± 9.5*** 28.0 ± 11.8 18.1 ± 9.5*** 27.9 ± 11.8

SYS-LD1 15.9 ± 9.5*** 25.3 ± 11.9 15.9 ± 9.5*** 25.3 ± 11.9 15.9 ± 9.5*** 25.3 ± 11.9

SYS-LA1 0.01 ± 0.03*** 0.3 ± 1.1 0.01 ± 0.03*** 0.3 ± 1.1 0.01 ± 0.03*** 0.4 ± 1.1

SYS-P 0.4 ± 0.7*** 3.0 ± 3.1 0.4 ± 0.7*** 3.0 ± 3.1 0.4 ± 0.7*** 3.0 ± 3.1

SYS-V 1.2 ± 1.7*** 4.6 ± 3.5 1.2 ± 1.7*** 4.6 ± 3.5 1.2 ± 1.7*** 4.6 ± 3.5
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Table 14. NSTPDC results for the coupling direction (NF: normalized factor) to discriminate between 
patients suffering from paranoid schizophrenia (SZO) and healthy subjects (CON) for the frontal area, 
the left frontal area and the right frontal area. (↔ indicates bidirectional coupling, → indicates 
unidirectional coupling, − indicates equal influence in both directions or no coupling, ↑ increased NF 
value in SZO compared to CON, ↓ decreased NF value in SZO compared to CON, d denotes the driver 
variable, BBI=beat-to-beat intervals, SYS=systolic blood pressure amplitude values over time,
PEEG=mean power in the BBI-related EEG spectral bands intervals, *p<0.05, **p<0.01, ***p<0.00041,
n.s.=not significant, #=not confirmed by surrogate analysis)

NF
all frontal left frontal right frontal

↔ SZO d ↔ SZO d ↔ SZO d

BB
I/

PE
EG

ba
nd

PEEGδ ‒ ↑** ‒ ‒ ↑** ‒ ‒ ↑** ‒
PEEGθ ↔ ↑** BBI ↔ ↑** BBI ↔ ↑** BBI
PEEGα ↔ ↑** BBI ↔ ↑ BBI ↔ ↑** BBI
PEEGα1 ↔ ↑** BBI ↔ ↑ BBI ↔ ↑** BBI
PEEGα2 ↔ ↑* BBI ↔ ↑ BBI ↔ ↑ BBI
PEEGβ ↔ ↑** BBI ↔ ↑** BBI ↔ ↑** BBI
PEEGβ1 ↔ ↑** BBI ↔ ↑** BBI ↔ ↑** BBI
PEEGβ2 ↔ ↑** BBI ↔ ↑** BBI ↔ ↑* BBI
PEEGγ ‒ ↑** ‒ ‒ ↑* ‒ ‒ ↑* ‒

SY
S/

PE
EG

ba
nd

PEEGδ ↔ ↑ SYS ↔ ↓ SYS ↔ ↑ SYS
PEEGθ ↔ ↑ SYS ↔ ↑ SYS ↔ ↑ SYS
PEEGα → ↓** SYS → ↓** SYS → ↓** SYS
PEEGα1 → ↓** SYS → ↓** SYS → ↓ SYS
PEEGα2 → ↓** SYS → ↓** SYS → ↓** SYS
PEEGβ ↔ ↑ SYS ↔ ↑ SYS ↔ ↑ SYS
PEEGβ1 ↔ ↑* SYS ↔ ↑* SYS ↔ ↑ SYS
PEEGβ2 ↔ ↓** SYS ↔ ↓* SYS ↔ ↓* SYS
PEEGγ ‒ ↑ ‒ ‒ ↑ ‒ ‒ ↑ ‒

4.4.3 Central-vascular coupling (SYSPEEG)

The linear couplings (NSTPDC) between the vascular system (SYS) and the central 
system (PEEG) a highly significantly different NF value was present for both groups. 
The coupling directions were characterized as, that CON (NF~0) pointing to an equal 
information transfer in both directions, and SZO (NF~−0.7) indicating a bidirectional 
one from PEEG→SYS (driver PEEG). These results were supported by A���→����(���) and 
A����→���(���) for CON demonstrating similar values for the area indices for both 
coupling directions. A���→����(���) and A����→���(���) were highly significantly 
different between SZO and CON. The coupling strength was significantly reduced in 
SZO when SYS influenced PEEG (SYS→PEEG) compared to CON. If PEEG influences SYS 
(PEEG→SYS) a significant increase in the coupling strength was present for SZO 
compared to CON (Figure 22, c) (Table 10).
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The non-linear central-vascular couplings (MuTE) from the vascular system to the 
central system (SYS→PEEG) as well as from central system to vascular system 
(PEEG→SYS) were significantly reduced in SZO compared to CON, and were nearly 
equally strong pronounced in both groups (Table 11).

In contrast to the central-cardiac coupling HRJSD results, a higher number of 
significantly different central-vascular coupling pattern families (PEEG/SYS, 8×8=64) 
for the entire frontal area, left frontal area and right frontal area were found (Table
13). In SZO patients, the absolute values of central-vascular coupling pattern families 
significantly decreased if the central pattern family PEEG-E0, PEEG-E1, PEEG-E2, PEEG-
LU1, PEEG-LD1, PEEG-LA1, PEEG-P and PEEG-V were coupled with SYS-E1. They 
significantly increased if the central pattern family PEEG-E0, PEEG-E1, PEEG-E2, PEEG-LU1, 
PEEG-LD1, PEEG-LA1, PEEG-P and PEEG-V were coupled with SYS-E0, SYS-E2, SYS-LU1, 
SYS-LD1, SYS-LA1, SYS-P and SYS-V (Table 12). In addition, the absolute values of 
central family patterns PEEG-E0 and PEEG-E2 significantly decreased, and PEEG-LA1
significantly increased in SZO when compared to CON. The values of vascular family 
patterns SYS-E0, SYS-E2, SYS-LU1, SYS-LD1, SYS-LA1, SYS-P and SYS-V highly 
significantly (p<0.00041) increased in SZO when compared to CON (Table 13). 
HRJSDShannon values significantly increased in SZO patients as compared to CON for 
the entire frontal area (CON: 2.7±0.9, SZO: 3.0±1.2, p<0.00041), the left frontal area 
(CON: 2.7±0.9, SZO: 3.0±1.2, p<0.00041) and the right frontal area (CON: 2.6±0.9, SZO: 
3.0±1.2, p<0.01). 

In addition, all EEG spectral band components of the central-vascular network were 
also quantified with NSTPDC. I found for the direction of EEG spectral power bands 
towards SYS (A��������→���) an opposite behaviour, as shown by PEEGband→BBI (where 
significant coupling strengths were found here for all bands and all frontal areas) 
(Table 14) (Figure 24). Regarding the entire frontal area (P����, P�����) and the left 
frontal area (P����, P�����, P�����) significant increases in A��������→��� for SZO in 
comparison to CON were found. Again in P���� the strongest influence of central γ 
activity towards SYS could be found for both SZO and CON. In the opposite direction, 
namely from SYS towards PEEGband, I found for the frontal area in all spectral bands 
(PEEGband) highly significant decreased coupling strengths in SZO when compared to 
CON. For the left frontal area besides P���� and P���� and for the right frontal area 
besides P����, P���� and P���� for all other bands showed significantly different 
coupling strengths between SZO and CON. With respect to NF, there was generally 
a bidirectional coupling for the EEG spectral power bands (P����, P����, P����, 
P�����, P�����) with SYS acting as the driver. Furthermore, there was a unidirectional 
coupling for P����, P����� and P����� and an equal influence in both directions for 
P���� for the entire frontal area, as well as for the left and right frontal areas. In the α
bands and β2 band, NF was decreased in SZO when compared to CON.
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Figure 24. Visualization of significant differences between patients suffering from paranoid 
schizophrenia (SZO) and healthy subjects (CON) with respect to the coupling strength (NSTPDC) 
between autonomic activity (BBI, SYS) and central spectral activity (PEEGband) for the (a) whole frontal 
area, (b) the left frontal area and (c) the right frontal area. Arrows indicate the coupling direction, where 
black solid lines indicate the direction from central spectral activity towards autonomic target variables. 
Grey dashed lines indicate the direction from the autonomic variables towards central spectral activity. 
Note that all arrows were highly significantly (p<0.00041) different between SZO and CON; otherwise, 
the arrows were indicated by *(p<0.01). (BBI=beat-to-beat intervals, SYS=maximum systolic blood 
pressure amplitude values over time, PEEGband=mean power in BBI-related EEG spectral band intervals)

4.4.4 Summary and discussion

4.4.4.1 Cardiovascular coupling (BBISYS)

Linear cardiovascular coupling results (NSTPDC) showed a decreased bidirectional 
coupling strength in the direction from SYS→BBI in SZO indicating an inhibited 
baroreflex control loop, whereas the non-linear part showed contrary results. I was 
able to show for SZO compared to CON, that the vascular system (SYS) is not affected 
by antipsychotic treatment leading to the assumption, that the inhibited baroreflex-
loop is a result of an impaired cardiac modulation instead of an impairment of the 
blood pressure regulation circuit. In general, the arterial baroreflex is inhibited under 
stressful conditions (Nosaka, 1996; Steptoe & Sawada, 1989; Swenne, 2013) (as it has 
been assumed for SZO). In stressful conditions, when the blood pressure increases, 
the baroreflex reduces sympathetic outflow and increases parasympathetic tone, 
which protects the heart, e.g., against arrhythmias. Both blood pressure buffering and 
cardioprotection are major effects of the arterial baroreflex (Swenne, 2013).
Facilitation of stress favours restoration of energy exhausted during a stressful phase 
in which the subject reacts actively to changing environment. Thereby, brain regions 
which are related to central baroreflex regulation mechanisms and elicit facilitation 
of stress are the medial prefrontal cortex, the preoptic/anterior hypothalamus, the 
ventrolateral part of the periaqueductal grey matter, and the nucleus raphe magnus
(Nosaka, 1996). 
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The coupling results from HRJSD analysis in SZO were mainly characterized by 
greater amount of low increased, low decreased, alternating and fluctuating patterns 
(LU1, LD1, LA1, P, V) of SYS and invariable heart rate responses (E1). These results 
might support previous findings that SZO are characterized by a lack of “finetuning” 
of baroreflex modulation expressed by the impairment of the baroreflex control 
feedback loop and reduced efferent vagal activity. This behaviour was independent 
from medication but was much more formed in medicated patients and seems to be 
due to the anticholinergic effects of antipsychotics.

4.4.4.2 Central-cardiac coupling (BBIPEEG) and central-vascular coupling (SYSPEEG)

Linear and non-linear brain-heart information flows (PEEG→BBI) were characterized 
as top-down from the CNS (brain) towards ANS (heart) in both groups. It leads to the 
assumption that an impaired brain-heart axis is present in schizophrenia, and more 
expressed in the linear domain. A functional disconnection between the CNS, 
impaired interactions of fronto-cingulate and subcortical brain regions, and ANS was 
suggested for SZO, when these patients process threat-related signals (Williams et al, 
2004). Impairments in frontal-subcortical processes are associated with 
psychopathologies such as schizophrenia (Callicott et al, 2003). Internally generated 
processes of misjudgements of threat-related signals like anxiety seem to be 
associated with paranoid cognition due to a breakdown of these processes. This leads 
to an inhibited central-cardiac coupling influenced by a lack of cortical inhibitory 
control over sympathetic-excitatory subcortical regions (Williams et al, 2004). 
Moreover, it was hypothesized that the inhibitory deficit was reflected in impaired 
cognitive and behavioural inhibition connected with an impaired HRV (Henry et al, 
2010; Thayer & Lane, 2009). 

Central-cardiovascular interactions revealed that a stronger linear information flow 
from central activity in the direction of blood pressure regulation (PEEG→SYS) than in 
the direction of BBI in SZO compared to CON. The central-vascular axis was 
bidirectionally directed with a stronger central driving mechanism (PEEG→SYS) in 
SZO, whereas, CON showed equally directed information flows (PEEG↔SYS). In 
particular, in SZO, the central-cardiac information transfer is more non-linearly 
defined and significantly bidirectionally decreased. This leads to the assumption that 
maintaining blood pressure as well as heart rate regulation takes on a greater 
importance for SZO expressed through increased top down regulation pathways, as 
for CON. In sum, for SZO it is evident, that the linear central driving is more 
pronounced in the direction of autonomic activity (BBI, SYS) than in CON, and that 
the non-linear information transfer within the central-vascular- and as central-cardiac 
systems are reduced.

This is in accordance with other findings that the coupling between the central and 
autonomic nervous systems is driven by quite complex regulatory mechanisms 
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where, in general, the CNS commands and the ANS reflexes (de Zambotti et al, 2018). 
Recently, it was well demonstrated that beyond a dysfunction of connectivity among 
different brain areas in schizophrenia, there is also an abnormal asymmetry of 
functional connectivity and a failure of the left-hemisphere dominance compared 
with healthy subjects. Moreover, an overall generally attenuated asymmetry of 
functional connectivity that increases with the duration of the disease and correlates 
with psychotic symptoms in SZO was found (Ribolsi et al, 2014; Sun et al, 2017). This 
abnormal asymmetry of connectivity may be related to a dysfunctional inter-
hemispheric communication (Ribolsi et al, 2014). This asymmetry is characterized by 
failure of the left hemisphere dominance (parasympathetic tone) in SZO and is 
located in several frontal regions and the hippocampus. This asymmetry of functional 
connectivity in schizophrenia, suggests that this aspect may represent a 
neurophysiological feature that is unique to this disorder (Ribolsi et al, 2014). In 
respect to cardiovascular activity extensive research has been conducted on the 
influence of the frontal, temporal, and parietal regions on heart rate and blood 
pressure regulation, where, the two hemispheres seem to possess contrasting roles in 
regulating changes in heart rate and blood pressure. Different studies consistently 
found a relationship between changes in heart rate and blood pressure and measures 
of cerebral activity at these locations (temporal and posterior regions), such as 
electroencephalography (EEG) (Beissner et al, 2013; Foster et al, 2008). Significant 
correlations between resting heart rate and frontal area lateral asymmetry as well as 
frontal–parietal asymmetry was found supporting the relative differential 
associations of the left and right frontal and parietal areas and cardiovascular activity 
(Foster et al, 2008). Due to this asymmetry, the relative right frontal activation will 
generate increased inhibition of the right posterior region as well as decreased left 
frontal area activation, resulting in increased left posterior (parasympathetic) activity. 
Conversely, relative left frontal area activation will cause increased inhibition of the 
left posterior region as well as decreased right frontal area activity, resulting in 
increased right posterior (sympathetic) activity. There is evidence for an inhibitory 
role of the frontal areas; stimulation of the medial prefrontal regions generates 
bradycardia and depressor responses and inhibition of conditioned increases in heart 
rate and blood pressure (Foster et al, 2008). Resting heart rate was associated with 
lateral asymmetry across the frontal and parietal areas, resting systolic and diastolic 
blood pressure were related to lateral asymmetry across the temporal and parietal 
areas (Foster & Harrison, 2006).

What this means for SZO can only be speculated. In general, the CAN represents a 
dynamic system, with neural structures involved in affective and autonomic 
regulation, especially cardiovascular activity (Thayer, 2007; Thayer & Lane, 2000). 
The CAN controls preganglionic sympathetic and parasympathetic, neuroendocrine, 
respiratory, and sphincter motoneurons and is characterized by reciprocal 
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interconnections, parallel organization, state-dependent activity, and neurochemical 
complexity (Benarroch, 1993). Thereby, parasympathetic activation decreases the 
firing rate of pacemaker cells and heart rate, while sympathetic activity results in an 
increase of heart rate and firing rate of the pacemaker cells in the heart sinoatrial node 
(Ardell et al, 2015; Levy, 1997). For SZO, it can be assumed, that through the failure 
of the left-hemisphere activity in the frontal area, the parasympathetic tone is 
inhibited and thus the sympathetic tone is overactive resulting in increased heart rate 
and blood pressure values. As a consequence, within the CAN, the central activity 
(PEEG) will be increased to counteract these phenomena in the periphery (ANS) to 
decrease the heart rate and the blood pressure. 

The stronger pronounced central information flow in the direction of the cardiac 
activity (BBI) as well as of vascular regulation (SYS) leads to the assumption that the 
central-cardiac information flow is probably restricted by the generally impaired 
cardiac regulation in schizophrenia independently of medication (Bär et al, 2007b; 
Schulz et al, 2015a). Lesions in the CNS (frontal and temporal areas), as a part of the 
CAN, can lead to profound changes in heart regulation and even to potentially fatal 
cardiac arrhythmias or sudden cardiac death (cardiovascular dysfunctions) (Foster & 
Harrison, 2004). There exists a relationship between increasing magnitude of cerebral 
activation within the frontal and temporal areas (regions are involved in the 
regulation of cardiovascular functioning and changes in heart rate and blood 
pressure. That’s why my investigation was focused on EEG electrodes in these 
regions. Finally, there is a well-known asymmetry between left and right hemisphere 
with failure of left side dominance that could influence the final coupling results. 
Thereby, increasing levels of cerebral activation within the left hemisphere would be 
associated with increasing parasympathetic tone and increasing levels within the 
right hemisphere with sympathetic tone (Foster & Harrison, 2004). However, it was 
stated that the two cerebral hemispheres act together to promote changes in 
cardiovascular functioning (Wittling et al, 1998). Other studies (Foster et al, 2008; 
Tucker, 1981) showed that the two hemispheres are in a reciprocally balanced 
condition, with each hemisphere opposing and complementing the other one in 
respect to parasympathetic and sympathetic modulation of the cardiovascular 
function.

Peripheral end organs such as the heart (HRV) forward sensory information to the 
CAN and are directly linked, and thus can be used as a good qualitative characteristic 
of the central-peripheral neuronal feedback-loop (Thayer, 2007). Dysfunctions within 
the CNS and their connection to stronger pronounced dysregulation of 
cardiovascular regulation, characterized by cardiac- and vascular dysregulation 
expressed through increased abnormal top down modulation (brain to heart), might 
a reason for the increased risk of sudden cardiac death in SZO (Foster & Harrison, 
2004). 
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HRJSD results demonstrated that central-cardiac coupling in SZO was mainly 
characterized by a larger amount of decreased short-term strong/weak, 
increasing/decreasing central pattern families (PEEG-E0, PEEG-E1, PEEG-E2, PEEG-LU1, 
PEEG-LD1) and an increased alternating and fluctuating of central pattern families 
(PEEG-LA1, PEEG-P and PEEG-V). This means that central activity is much more variable 
and more random, with weaker rhythmic oscillatory components. Moreover, fast 
alterations of increased and subsequently decreased (BBI-P), fast alterations of 
decreased and subsequently increased (BBI-V) and alternating (BBI-LA1) of heart rate 
patterns were increased for SZO compared to CON, indicating a more random 
central-cardiac coupling with weaker rhythmic components of cardiac cycle intervals 
in relation to central activity in SZO. Central-vascular coupling by HRJSD in SZO was 
dominated mainly by highly variable SYS patterns in combination with all other 8 
central pattern families. This was demonstrated by highly significantly decreased 
SYS-E1 and highly significantly increased SYS-E0, SYS-E2, SYS-LU1, SYS-LD1, SYS-
LA1, SYS-P and SYS-V. It seems to be that the blood pressure regulation is more 
complex and mainly influences the central-vascular coupling pattern in SZO. 
Furthermore, it could be shown that central-vascular coupling is strongly affected by 
reduced blood pressure variability (SYS-E1) and short-term strong/weak, 
increasing/decreasing, alternating and fluctuating vascular family patterns (SYS-E0, 
SYS-E2, SYS-LU1, SYS-LD1, SYS-LA1, SYS-P, SYS-V), in combination with central 
activity. These results suggest an impairment of the baroreflex control feedback loop 
related to the anti-cholinergic effects of the antipsychotic treatment. One of HRJSD 
results to be highlighted is the finding that, in schizophrenic patients, the central 
activity had a much stronger variability and higher degree of randomness with less 
rhythmic oscillatory components than the central activity in healthy controls. 

Considering central-cardiac coupling and central-vascular coupling with respect to 
central spectral power bands, the strongest influence of cerebral γ activity towards 
BBI and SYS was found for both SZO (here reduced) and CON, independent of the 
brain hemisphere. This highlights the role of γ activity in SZO and was also 
demonstrated in multiple studies (Basar & Guntekin, 2008; 2013). It has been shown 
that γ and β activity is most augmented in SZO over frontal and temporal brain 
regions, reflecting a genetic liability for schizophrenia (Venables et al, 2009). It was 
suggested that impaired neural oscillation (e.g., a reduction in amplitude and altered 
phase synchronization in all frequency bands with emphasis on the β and γ band 
activity) in schizophrenia patients can be considered a marker for a functional 
dysconnectivity between different brain areas and for dysfunctional cortical networks 
(Uhlhaas & Singer, 2010). Moreover, studies also showed that the parasympathetic 
and sympathetic nervous systems are lateralized to the left and right central 
hemispheres, respectively. The central-cardiac and central-vascular coupling 
directions with respect to central spectral power bands were characterised as 



4. Analyses of the central-autonomic-network in schizophrenia 110

bidirectional with BBI and SYS acting as the driver in each frequency band. This may 
suggest that the autonomous system provides feedback information towards the 
different central oscillatory components (with the exception of γ). All these 
components considered together as the whole central activity provide, in turn, 
feedforward information to the ANS.

Central-cardiovascular interactions revealed that a stronger linear information flow 
from central activity in the direction of blood pressure regulation (SYS) than in the 
direction of BBI in SZO compared to CON. In particular, in SZO, the central-cardiac 
information transfer is more non-linearly defined and significantly bidirectionally 
decreased. This suggests for SZO, that the linear central-vascular regulation closed-
loop (baroreflex loop) purposefully maintains the blood pressure adaptation and is 
more aligned than the non-linear part of this regulation closed-loop. Especially, for 
SZO, within this closed-loop it is obvious that the central regulatory processes (PEEG) 
are more directed towards the cardiac and vascular system (BBI, SYS) than in the 
opposite direction (Figure 26).
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4.5 The central-cardiorespiratory-network

4.5.1 Cardiorespiratory coupling (BBIRESP)

NSTPDC revealed a significant differently coupling direction between SZO and 
CON. SZO (NF~−1.5) showed a bidirectional information transfer (RESP→BBI) (RESP 
is the driver). The coupling strength for the information transfer from the cardiac 
system to the respiratory system (A���→����(����)) was highly significantly decreased 
for SZO compared to CON. For the RSA loop, when the respiratory system (RESP) 
transfers information towards the cardiac system (BBI) the coupling strengths were 
increased for both groups, but not significantly different (Figure 25) (Table 15).

Table 15. Linear central-cardiorespiratory (BBI, RESP, and PEEG) coupling analyses results 
(NSTPDC) to discriminate between patients suffering from paranoid schizophrenia (SZO) and healthy 
subjects (CON) for the frontal area (A1). (BBI=beat-to-beat intervals, RESP=respiratory frequency,
PEEG=mean power in the BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not 
significant, #=not confirmed by surrogate analysis)

Index              CON                 SZO
           mean ± std              mean ± std

BB
I↔

R
ES

P NF -1.56 ± 0.34 -1.48 ± 0.69

ABBI→RESP(PEEG) 0.05 ± 0.02 0.04 ± 0.03***

ARESP→BBI(PEEG) 0.25 ± 0.08 0.27 ± 0.17

BB
I↔

PE
EG NF -0.48 ± 0.76 -0.13 ± 0.91***

ABBI→PEEG(RESP) 0.10 ± 0.05 0.12 ± 0.06***

APEEG→BBI(RESP) 0.16 ± 0.08 0.15 ± 0.07*

R
ES

P↔
PE

EG NF 0.99 ± 0.66 1.26 ± 0.62***

ARESP→PEEG(BBI) 0.19 ± 0.07 0.24 ± 0.11***

APEEG→RESP(BBI ) 0.06 ± 0.03 0.05 ± 0.03***,#

Non-linear cardiorespiratory coupling analyses (MuTE) revealed that the coupling 
strengths from BBI to RESP and from RESP to BBI (RSA loop) were significantly 
decreased in SZO in comparison to CON (Table 16).

4.5.2 Central-cardiac coupling (BBIPEEG)

For central-cardiac coupling analysis (BBIPEEG) all indices showed significant 
differences between both groups. For the coupling direction, SZO (NF~−0.1) showed 
an equal influence in both directions and/or no coupling (PEEG↔BBI). The coupling 
strength (A���→����(����)) for the information transfer from cardiac system to the 
central system (BBI→PEEG) showed highly significant differences between SZO and 
CON. Here, SZO presented a stronger coupling from BBI→PEEG compared to CON. 
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In the case of, when the information transfer is from central system directed towards 
the cardiac system (PEEG→BBI) the coupling strength (A����→���(����)) was
significantly decreased in SZO, and vice versa. (Figure 25) (Table 15).

Please note that the values for central-cardiac couplings in Table 15 are different from 
the values in Table 10, because in Table 10 other EEG channels for the frontal area 
were included (analyses of the central-cardiovascular areas). The same is true for 
Figure 25 and central-cardiac couplings compared to Figure 22 (analyses of the 
central-cardiovascular areas).

The causal non-linear central-cardiac couplings (MuTE) were only significantly 
different between SZO and CON in the case when BBI influenced PEEG

(MuTEBBI→PEEG(RESP)). The non-linear influences from BBI to PEEG as well as from PEEG to 
BBI were nearly comparable in both directions, and slightly more pronounced in 
CON than SZO (Table 16).

Figure 25. Averaged NSTPDC plots for central-cardiorespiratory coupling analyses for (a) 
cardiorespiratory couplings, (b) central-cardiac couplings, and (c) central-respiratory
couplings for schizophrenic patients for the frontal area (A1). Arrows indicating the causal 
coupling direction from one time series to another, e.g., RESP←PEEG, indicating the causal link 
from PEEG to RESP. Coupling strength ranges from blue (no coupling) to red (maximum 
coupling), where BBI represents beat-to-beat intervals, RESP represents respiratory frequency, 
and PEEG represents the mean power in BBI-related EEG intervals.

Considering the investigated clusters (A0-A4), SZO demonstrated the highest 
coupling strengths for A1 and the lowest for A2, in the case of BBI→PEEG. In the 
opposite direction PEEG→BBI, SZO demonstrated the lowest coupling strengths for A1 
and the highest for A3 (Table 17). For SZO the most significant differences between 
the clusters could be found for A1 vs. A2, and A2 vs. A4, whereby for CON it was A1 
vs. A2 for the coupling BBI↔PEEG(RESP) (Table 18, Table 19). 
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Table 16. Non-linear central-cardiovascular (BBI, RESP, and PEEG) coupling analyses results (MuTE) 
to discriminate between patients suffering from paranoid schizophrenia (SZO) and healthy subjects 
(CON) for the frontal area (A1). (BBI=beat-to-beat intervals, RESP=respiratory frequency, PEEG=the 
mean power in the BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant,
#=not confirmed by surrogate analysis)

Index
                    CON                SZO

                    mean ± std               mean ± std

BB
I↔

R
ES

P

MuTEBBI→RESP(PEEG) 0.020 ± 0.013 0.015 ± 0.012***

MuTERESP→BBI(PEEG) 0.033 ± 0.009 0.026 ± 0.012***

BB
I↔

PE
EG MuTEBBI→PEEG(RESP) 0.014 ± 0.011 0.012 ± 0.011*

MuTEPEEG→BBI(RESP) 0.016 ± 0.010 0.014 ± 0.010

R
ES

P↔
PE

EG

MuTERESP→PEEG(BBI) 0.017 ± 0.010 0.014 ± 0.009***

MuTEPEEG→RESP(BBI) 0.015 ± 0.008 0.012 ± 0.009***

4.5.3 Central-respiratory coupling (RESPPEEG)

The coupling direction (central-respiratory) revealed highly significant differences 
between SZO and CON. SZO (NF~1.3) and CON (NF~1.0) presented both a strong 
bidirectional one (RESP→PEEG) (RESP is the driver) and were confirmed by highly 
significantly different coupling strengths (A����→����(���), A����→����(���)) between 
both groups. The coupling strength for the information transfer from the respiratory 
system to the central system (RESP→PEEG) was significantly increased in SZO 
compared to CON. For the information transfer from the central system to the 
respiratory system (PEEG→RESP) the coupling strengths indicated a significant 
reduction in SZO vs. CON (not confirmed by surrogate analysis). The coupling 
strength from the ANS (RESP) towards CNS (PEEG) was more pronounced than vice 
versa, whereby, for CON it was expressed in an opposite way (Figure 25) (Table 15).
For the cluster analyses, SZO demonstrated the highest coupling strengths for A1 and 
A4, and the lowest again for A2, in the case of RESP→PEEG. In the opposite direction 
PEEG→RESP, SZO demonstrated the lowest coupling strengths again for A1 and the 
highest again for A3 (Table 17). For SZO the most significant differences between the 
clusters could be found again for A1 vs. A2, and A2 vs. A4, whereby for CON it was 
again between A1 and A2 for the coupling RESP↔PEEG(BBI) (Table 18, Table 19).

Non-linear casual central-respiratory coupling analyses (MuTE) revealed a similar 
behaviour as shown for central-cardiac coupling analyses. High significant 
differences were found for both cases, when RESP influences PEEG (MuTERESP→PEEG(BBI)) 
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as well as when PEEG influences RESP (MuTEPEEG→RESP(BBI)). The non-linear information 
transfers from respiratory activity towards central activity (RESP→PEEG) and from 
PEEG to RESP (PEEG→RESP) were nearly comparable in both directions and more 
pronounced in CON than SZO (Table 16).
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Table 17. Linear central-cardiorespiratory (BBI, RESP, and PEEG) coupling analyses results (NSTPDC) to discriminate between patients suffering from paranoid schizophrenia 
(SZO) and healthy subjects (CON) for A0 (all EEG channels), A2 (the central area), A3 (the temporal area), and A4 (the parietal-occipital area). (BBI=beat-to-beat intervals,
RESP=respiratory frequency, PEEG=mean power in the BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant, #=not confirmed by surrogate analysis)

Index
A0 A2 A3 A4

            CON          SZO    CON         SZO    CON SZO     CON          SZO
mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

BB
I↔

PE
EG

NF -0.67 ± 0.75 -0.25 ± 0.91*** -0.82 ± 0.70 -0.43 ± 0.89*** -0.64 ± 0.8 -0.28 ± 0.94*** -0.68 ± 0.73 -0.14 ± 0.87***

ABBI→PEEG(RESP) 0.10 ± 0.05 0.12 ± 0.05*** 0.09 ± 0.04 0.10 ± 0.05*** 0.10 ± 0.1 0.12 ± 0.06*** 0.09 ± 0.04 0.12 ± 0.05***

APEEG→BBI(RESP) 0.19 ± 0.10 0.16 ± 0.10*** 0.20 ± 0.10 0.16 ± 0.09*** 0.21 ± 0.1 0.18 ± 0.15** 0.19 ± 0.09 0.15 ± 0.11***

R
E

S
P

↔
PE

EG NF 0.82 ± 0.74 1.18 ± 0.73*** 0.73 ± 0.68 1.15 ± 0.60*** 0.74 ± 1 1.04 ± 1.07*** 0.84 ± 0.67 1.21 ± 0.70***

ARESP→PEEG(BBI) 0.17 ± 0.07 0.23 ± 0.10*** 0.16 ± 0.06 0.21 ± 0.09*** 0.18 ± 0.1 0.23 ± 0.12*** 0.17 ± 0.06 0.24 ± 0.10***

APEEG→RESP(BBI ) 0.07 ± 0.06 0.06 ± 0.05***,# 0.07 ± 0.03 0.05 ± 0.03***,# 0.10 ± 0.1 0.08 ± 0.11*** 0.07 ± 0.03 0.05 ± 0.04***,#
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Table 18. Central-cardiorespiratory coupling results comparing several EEG-clusters (A1-A4) in patients suffering from paranoid schizophrenia (SZO). A1 (the frontal area), A2 
(the central area), A3 (the temporal area), and A4 (the parietal-occipital area). (BBI=beat-to-beat intervals, RESP=respiratory frequency, PEEG=mean power in the BBI-related EEG 
intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant)

BBI↔PEEG(RESP)
A1 A2 A3

NF ABBI→PEEG APEEG→BBI NF ABBI→PEEG APEEG→BBI NF ABBI→PEEG APEEG→BBI

A2
NF ***
ABBI→PEEG ***
APEEG→BBI *

A3
NF n.s. *
ABBI→PEEG n.s. **
APEEG→BBI n.s. n.s.

A4
NF n.s. *** n.s.
ABBI→PEEG n.s. *** n.s.
APEEG→BBI n.s. *** *

RESP↔PEEG(BBI)
A1 A2 A3

NF ARESP→PEEG APEEG→RESP NF ARESP→PEEG APEEG→RESP NF ARESP→PEEG APEEG→RESP

A2
NF **
ARESP→PEEG ***
APEEG→RESP **

A3
NF n.s. n.s.
ARESP→PEEG n.s. *
APEEG→RESP n.s. n.s.

A4
NF n.s. * n.s.
ARESP→PEEG n.s. *** n.s.
APEEG→RESP n.s. n.s. n.s.
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Table 19. Central-cardiorespiratory coupling results comparing several EEG-clusters (A1-A4) in healthy subjects (CON). A1 (the frontal area), A2 (the central area), A3 (the 
temporal area), and A4 (the parietal-occipital area). (BBI=beat-to-beat intervals, RESP=respiratory frequency, PEEG=mean power in the BBI-related EEG intervals, *p<0.05,
**p<0.01, ***p<0.00041, n.s.=not significant)

BBI↔PEEG(RESP)
A1 A2 A3

NF ABBI→PEEG APEEG→BBI NF ABBI→PEEG APEEG→BBI NF ABBI→PEEG APEEG→BBI

A2
NF ***
ABBI→PEEG ***
APEEG→BBI ***

A3
NF n.s. **
ABBI→PEEG n.s. *
APEEG→BBI * *

A4
NF * ** n.s.
ABBI→PEEG * n.s. n.s.
APEEG→BBI ** ** n.s.

RESP↔PEEG(BBI)
A1 A2 A3

NF ARESP→PEEG APEEG→RESP NF ARESP→PEEG APEEG→RESP NF ARESP→PEEG APEEG→RESP

A2
NF ***
ARESP→PEEG ***
APEEG→RESP ***

A3
NF n.s. *
ARESP→PEEG n.s. ***
APEEG→RESP n.s. n.s.

A4
NF n.s. ** n.s.
ARESP→PEEG *** ** n.s.
APEEG→RESP * n.s. n.s.
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Table 20. Probability of the occurrence of mHRJSD coupling pattern, pattern families and entropy values for the central-cardiorespiratory network (BBI, RESP, and PEEG) to 
discriminate between patients suffering from paranoid schizophrenia (SZO) and healthy subjects (CON) for A0 (all EEG channels), A1 (the frontal area), A2 (the central area), 
A3 (the temporal area), and A4 (the parietal-occipital area). (BBI=beat-to-beat intervals, RESP=respiratory frequency, PEEG=mean power in the BBI-related EEG intervals, *p<0.05,
**p<0.01, ***p<0.00041, n.s.=not significant, #=not confirmed by surrogate analysis)

Index
A0 A1 A2

CON SZO CON SZO CON SZO
mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

C
ou

pl
in

g 
pa

tte
rn BBI-LU1/RESP-E1/PEEG-E1 0.16 ± 0.05 0.14 ± 0.05*** 0.15 ± 0.05 0.14 ± 0.05 0.16 ± 0.05 0.14 ± 0.06

BBI-LD1/RESP-E1/PEEG-E1 0.17 ± 0.06 0.15 ± 0.06*** 0.17 ± 0.05 0.15 ± 0.06 0.18 ± 0.06 0.15 ± 0.07

Pa
tte

rn
 fa

m
ili

es

BBI-E2 0.06 ± 0.04 0.03 ± 0.02*** 0.06 ± 0.04 0.03 ± 0.02*** 0.06 ± 0.04 0.03 ± 0.02***

BBI-LU1 0.25 ± 0.06 0.24 ± 0.07 0.25 ± 0.06 0.24 ± 0.07 0.25 ± 0.06 0.24 ± 0.07

BBI-LD1 0.28 ± 0.06 0.26 ± 0.08** 0.28 ± 0.06 0.26 ± 0.08 0.28 ± 0.06 0.26 ± 0.08

BBI-P 0.02 ± 0.02 0.05 ± 0.04***,# 0.02 ± 0.02 0.05 ± 0.04***,# 0.02 ± 0.02 0.05 ± 0.04***,#

RESP-E1 0.90 ± 0.05 0.89 ± 0.10* 0.90 ± 0.05 0.89 ± 0.10 0.90 ± 0.05 0.89 ± 0.10

PEEG-E1 0.70 ± 0.16 0.64 ± 0.17*** 0.68 ± 0.16 0.65 ± 0.16* 0.72 ± 0.16 0.65 ± 0.15***

PEEG-LU1 0.12 ± 0.06 0.14 ± 0.06***,# 0.13 ± 0.06 0.14 ± 0.06 0.11 ± 0.06 0.14 ± 0.06***

PEEG-LD1 0.12 ± 0.06 0.14 ± 0.06*** 0.13 ± 0.06 0.14 ± 0.06 0.11 ± 0.06 0.14 ± 0.06***

En
tr

op
y mHRJSDShannon 4.0 ± 0.7 4.2 ± 0.9*** 4.1 ± 0.7 4.2 ± 0.9 3.9 ± 0.7 4.2 ± 0.8***

mHRJSDrenyi2 3.0 ± 0.7 3.2 ± 0.9*** 3.1 ± 0.7 3.2 ± 0.9 2.9 ± 0.7 3.2 ± 0.8***
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Index
A3 A4

CON SZO CON SZO
mean ± std mean ± std mean ± std mean ± std

C
ou

pl
in

g 
pa

tte
rn BBI-LU1/RESP-E1/PEEG-E1 0.16 ± 0.05 0.14 ± 0.06 0.16 ± 0.06 0.13 ± 0.05***

BBI-LD1/RESP-E1/PEEG-E1 0.17 ± 0.06 0.16 ± 0.07 0.17 ± 0.06 0.14 ± 0.06***

Pa
tte

rn
 fa

m
ili

es

BBI-E2 0.06 ± 0.04 0.03 ± 0.02*** 0.06 ± 0.04 0.03 ± 0.02***

BBI-LU1 0.25 ± 0.06 0.24 ± 0.07 0.25 ± 0.06 0.24 ± 0.07

BBI-LD1 0.28 ± 0.06 0.26 ± 0.08 0.28 ± 0.06 0.26 ± 0.08

BBI-P 0.02 ± 0.02 0.05 ± 0.04***,# 0.02 ± 0.02 0.05 ± 0.04***,#

RESP-E1 0.90 ± 0.05 0.89 ± 0.10 0.90 ± 0.05 0.89 ± 0.10

PEEG-E1 0.70 ± 0.16 0.66 ± 0.18* 0.70 ± 0.16 0.60 ± 0.17***

PEEG-LU1 0.12 ± 0.06 0.13 ± 0.07 0.12 ± 0.07 0.15 ± 0.07***

PEEG-LD1 0.12 ± 0.06 0.13 ± 0.07* 0.12 ± 0.06 0.16 ± 0.07***

En
tr

op
y mHRJSDShannon 4.0 ± 0.7 4.1 ± 0.9 4.0 ± 0.6 4.3 ± 0.9***

mHRJSDrenyi2 3.0 ± 0.7 3.1 ± 0.9 3.0 ± 0.7 3.3 ± 0.9***
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The mHRJSD approach revealed 2 highly significant central-cardiorespiratory 
coupling patterns (BBI-LU1/RESP-E1/PEEG-E1, BBI-LD1/RESP-E1/PEEG-E1) between 
SZO and CON investigating all EEG channels (A0) and the parietal-occipital cluster 
(A4). Three significant heart rate (E2, LD1, P), one significant respiratory (E1), and 
three central (E1, LU1, LD1) pattern families showed also differences between SZO 
and CON (Table 20). Central-cardiorespiratory couplings were quantified by the 
heart rate pattern families LU1 and LD1, the respiratory pattern family E1, and by the 
central patterns family E1, respectively. Thereby, I found that for the central-
cardiorespiratory coupling patterns the heart rate pattern families (BBI-LU1, BBI-
LD1), the respiratory pattern family (RESP-E1) and the central patterns family (PEEG-
E1) were significantly decreased in SZO in comparison to CON. In addition, SZO 
were characterized by further significant pattern families which showed increased 
absolute values as BBI-P, PEEG-LU1, and PEEG-LD1 as well as one significant pattern 
family with decreased absolute value BBI-E2 in comparison to CON for A0, A2, and 
A4, and partly for A1 and A3 (Table 20). The entropy-based indices mHRJSDShannon

and mHRJSDrenyi2 were significantly increased in SZO compared to CON for A0, A2, 
and A4.

4.5.4. Summary and discussion

4.5.4.1 Cardiorespiratory coupling (BBIRESP)

The direction (NF~−1.5) of the linear information flow within the cardiorespiratory 
system was bidirectionally pronounced and with the respiration as the driving part 
in the direction towards cardiac activity (RESP→BBI) in SZO compared to CON 
(NF~−1.6), who revealed a slightly be�er RSA-loop. The linear information flow 
BBI→RESP (significant) within the cardiorespiratory system is suggested as a 
biomarker complementing RSA as a reciprocal component of cardiorespiratory 
interaction (Dick et al, 2014). Dick et al. (Dick et al, 2014) believe that this mutual 
interaction in the function of gas exchange between the respiratory and autonomic 
system is characterized in a way that the ANS transfers information to the respiratory 
system in generating breathing patterns is beat-to-beat, whereas the well-known 
information flow from respiration in the direction to ANS (RSA-loop) is pronounced 
breath-to-breath. In healthy subjects, it has been shown that the degree of sympathetic 
activation was associated with a decrease in cardiorespiratory interactions and the 
RSA-loop during the head-up tilt test (Porta et al, 2012b), confirming the assumption 
that SZO were associated with higher sympathetic activation. The non-linear 
cardiorespiratory information transfer was significantly reduced in both directions 
(BBI→RESP, RESP→BBI) indicating that, in general, non-linear regulatory processes 
are inhibited. In the study of Peupelmann et al. (Peupelmann et al, 2009), they could 
show that the severity of schizophrenia is associated with breathing patterns 
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assuming that an inhibition of vagal control centres at the brainstem are responsible 
for their findings. The causal information flow RESP→BBI independent of arterial 
pressure changes characterizes central respiratory driving mechanisms related to 
alterations in heart rate on the cardiac vagal motor neurons (Faes et al, 2011b). Central 
respiratory driving mechanisms seem to be inhibited and directly connected to 
alterations in the cardiac regulatory system in SZO (Schulz et al, 2015a). It was 
demonstrated that the frontal, central (investigated in this study) and occipital brain 
regions are involved in central-cardiorespiratory information transfers which are 
altered to physiological conditions such as wake and sleep (Bartsch et al, 2015).

4.5.4.2 Central-cardiac coupling (BBIPEEG) and central-respiratory coupling (RESPPEEG)

The closed-loop (feedback-loop) of central-cardiorespiratory regulation seems to be 
focused on adjusting this increased cardiac activity (heart rate) via the sinus node 
rather than on regulating respiration. However, whether central chemoreceptors 
regulate the cardiovagal outflow independently of the respiratory system is an open 
question (Guyenet, 2014). The respiratory network receives peripheral chemosensory 
and mechanosensory inputs and modulatory inputs from the other parts of the brain. 
These inputs are essential for adaptive changes in the respiratory motor output, 
ensuring appropriate ventilation of the lungs in variable environmental and 
physiological conditions (Gourine & Spyer, 2009). Lung ventilation, cardiac output, 
and blood pressure are highly labile physiological states that are continually adjusted 
by the CNS to match the metabolic requirements of specific behaviours (Guyenet, 
2014). It seems to be that in SZO maintaining the oxygen supply takes priority 
expressed by the stronger feedback from RESP towards PEEG. This feedback-loop from 
RESP towards central activity is strongly dominated by respiratory activity. This 
could be originated by reflexes from muscle mechano- and metabotropic receptors 
cooperate to activate breathing to a degree roughly commensurate with the rise in 
whole body metabolism and oxygenation. It seems that these cardiorespiratory 
responses were caused by an initial fast increase in cardiovascular and ventilatory 
flow parameters that are brought about by neurally mediated muscle 
mechanoreceptor feedback reflexes and a feedforward 'central motor command'. The 
combination of these two neural mechanisms will also increase the blood pressure 
operating point. Thus, the fine control of the matching of cardiac output to ventilation 
may occur by means of a feedforward ventilatory control of cardiac origin (Turner, 
1991).
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Figure 26. Summary of significant (p<0.01) linear and non-linear couplings within the central-
autonomic-network in schizophrenia (SZO) in comparison to healthy subjects (CON). (BBI=beat-to-
beat intervals, SYS=end-systolic blood pressure amplitude values over time, RESP=respiratory 
frequency, PEEG=mean power in the BBI-related EEG intervals)

The linear bidirectionally directed central-respiratory information transfer 
(PEEG̶̶↔RESP(BBI)) was dominated towards CNS from respiration. The strongest 
coupling for PEEG→BBI(RESP) was found for cluster A3 and the weakest coupling for 
cluster A1. In the opposite direction BBI→PEEG(RESP) the strongest value was found 
for cluster A1 and the weakest one for cluster A2. For the coupling strength 
PEEG→RESP(BBI) the highest value was found for cluster A3 again and the lowest 
value for cluster A1. In the opposite direction RESP→PEEG(BBI) the highest values 
were found for clusters A1 and A4 and the lowest one for cluster A2. That means that 
the strongest influence (information transfer) from central activity coming from A3 
(temporal area) towards ANS for the cardiorespiratory network. On the other side, it 
was found that the weakest influence (information transfer) from central activity 
coming from A1 (frontal area) towards ANS for the cardiorespiratory network. 
Moreover, the cluster A2 (central area) revealed the weakest information flow from 
the ANS towards CNS. In addition, it seems to be that, the frontal area (A1) is 
associated with heart rate activity and the frontal area (A1) and the parietal-occipital 
area (A4) were associated with respiratory activity. Bartsch et al. (Bartsch et al, 2015)
could also show that central-cardiorespiratory couplings change with physiological 
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states (wake, sleep), and that different brain areas (frontal, central or occipital) play 
different roles in these couplings. Due to, the respiratory pathway being more 
pronounced instead of the cardiac one. This leads to the assumption that the closed-
loop of central-cardiorespiratory information transfer is less pronounced by central 
driving on the respiratory system to adapt heart rate but stronger by the ANS. 
However, it seems that central-cardiorespiratory feedback-loop in the direction from 
ANS towards CNS is strongly dominated by respiration that functions as a feedback 
trigger to central regulatory processes for more information transfer towards the ANS 
for adaptation oxygenation. The brainstem and higher brain centres (limbic system, 
cortical structures) interacting to maintain the final respiratory output, mainly 
regulated for metabolic and homeostatic purposes and altered in reaction to emotions 
(Homma & Masaoka, 2008) such as fear and anxiety present in SZO. Thus, the 
supposition is that paranoid cognition may reflect an internally generated cycle of 
misattribution regarding incoming fear signals due to a breakdown in the regulation 
of these systems resulting in an altered brain–heart interaction, influenced by a lack 
of cortical inhibitory control over sympatho-excitatory subcortical regions (Williams 
et al, 2004). Williams et al. (Williams et al, 2004) stated, “that paranoid schizophrenia 
is characterized by a specific disjunction of arousal and amygdala-prefrontal circuits 
that leads to impaired processing of significant, particularly threat-related, signals. 
The pattern of excessive arousal but reduced amygdala activity in paranoid patients 
points to a dysregulation in the normal cycle of mutual feedback between amygdala 
function and somatic state (autonomic activity). The concomitant lack of “with-
arousal” medial prefrontal engagement suggests that this region cannot undertake its 
usual role in regulating amygdala-autonomic function, leading to a perseveration and 
exacerbation of arousal responses.” The medial prefrontal area responsible for 
maintaining amygdala-autonomic working processes seem to be not able to perform 
its function resulting in a perseveration and exacerbation of arousal responses (threat-
related signals (skin conductive response)). 

Thus, that the human organism is an integrated network of interconnected and 
interacting organ systems, each representing a separate regulatory network. The 
behaviour of one physiological system (network) may affect the dynamics of all other 
systems in the network of physiologic networks. Due to these interactions, failure of 
one system can trigger a cascade of failures throughout the entire network (Ivanov & 
Bartsch, 2014).

MHRJSD results demonstrated that central-cardiorespiratory coupling in SZO was
mainly characterized by a lower amount of weak, increasing/decreasing heart rate 
pattern families (BBI-LU1, BBI-LD1), and a lower amount of invariable respiratory 
patterns and central patterns (RESP-E1, PEEG-E1). Being a unique feature of the 
mHRJSD approach (in contrast to other coupling approaches), I was able clearly to 
identify different altered central-autonomic physiological regulatory patterns 
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generated by the interplay of the CNS and the ANS in patients with schizophrenia. 
One of my results to be highlighted is the finding that, in schizophrenic patients, the 
central activity had a much lower variability (PEEG-E1) and less strong rhythmic 
oscillatory components (PEEG-LU1, PEEG-LD1) than the central activity in healthy 
controls. Considering the complexity of central-cardiorespiratory network, I found 
increased complexity for mHRJSD results. Increased Shannon (mHRJSDShannon) and 
Renyi (mHRJSDrenyi2) entropies describe the complexity and randomness of 
deterministic regulatory coupling patterns (mHRJSD) occurrences in SZO when 
compared to CON. That means that the higher complexity of central-
cardiorespiratory network in SZO is a result of that there are less frequently or
missing patterns in trivariate word types or coupling patterns.

The altered central-cardiorespiratory couplings in SZO are characterized by a weaker 
linear and non-linear central information transfer (PEEG→BBI) in the direction of the 
cardiac system, and a stronger linear respiratory information flow in the direction of 
the central system (RESP→PEEG) compared to CON (Figure 26). In addition, central-
cardiorespiratory coupling patterns in SZO were mainly characterized by a lower 
amount of an unchanging central pattern (PEEG-E1), weak increasing/decreasing heart 
rate patterns (LU1, LD1), and an unchanging respiratory pattern (RESP-E1) as well as 
a higher complexity of the central-cardiorespiratory network. The scientific impact of 
this study provides a further step towards a more comprehensive understanding of 
the interplay of neuronal and autonomic regulatory processes in schizophrenia.
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Chapter 5

5. Conclusions
This thesis aimed to characterize short-term instantaneous central-autonomic-
network coupling pathways (top-to-bottom and bottom to top) by analysing the 
coupling of heart rate, systolic blood pressure, respiration and central activity (EEG) 
in schizophrenic patients and healthy participants. Therefore, new multivariate 
causal and non-causal linear and non-linear coupling approaches (HRJSD, mHRJSD, 
NSTPDC) that are able to determine the coupling strength and direction as well as 
the quantification and classification of deterministic regulatory coupling patterns
within and between the cardiovascular- the cardiorespiratory system and the central-
autonomic-network were developed (chapter 3). These new coupling approaches 
allow a new understanding and insight into (patho)physiological regulation 
processes of the central-autonomic-network in schizophrenia and healthy subjects.
Moreover, the findings of the clinical studies (chapter 4) might further allow an 
improvement in treatment strategies in those patients, and finally, possibly contribute 
to cardiac risk stratification strategies in order to be able to identify those patients at 
higher risk for cardiovascular diseases.
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In chapter 2, I presented a review of the most frequently applied linear and non-linear 
coupling approaches (Granger causality, non-linear prediction, entropy, 
symbolization, and phase synchronization) applied to quantify causal and non-causal 
direct and indirect couplings that allow for new insights regarding alterations of 
cardiovascular, cardiorespiratory, and central regulatory networks and may lead to 
an improved knowledge of the interacting regulatory mechanisms under different 
physiological and pathophysiological conditions. I outlined their basic theoretical 
background and requirements as well as important points when applying these 
approaches to time series analysis, their main features, influencing factors and 
application examples in the medical field. However, one consideration necessary is 
that the application of these coupling approaches cannot be restricted to a single 
favourable since this mainly depends on the problem to be solved. Currently, no 
generally superior approach that can solve all problems exists. Coupling approaches 
represent promising tools for detecting information flows in a multivariate sense. 
They also may be able to provide additional prognostic information in the medical 
field and might overcome or at least complement other traditional univariate analysis 
techniques. The interest in coupling analyses of (patho)physiological networks has 
grown considerably, and therefore, this will potentially lead to an increasing demand 
for additional applications in the near future, thereby improving the knowledge 
about interacting regulatory subsystems.

In chapter 3.1, I introduced the HRJSD approach based on a redundancy reduction 
strategy to group single word types into 8 pattern families, allowing a detailed 
quantification and classification of bivariate short-term cardiovascular-, 
cardiorespiratory- and central-autonomic coupling patterns which were due to 
changes of the different autonomic and central regulatory control mechanisms. This 
redundancy reduction strategy and the bivariate pattern family density matrix allows 
for a more robust statistical analysis of regulatory processes. These are very 
promising and novel features of coupling analyses, emphasizing the novelty of the 
HRJSD approach. My bivariate redundancy reduction strategy was based on the idea 
of the classification of frequent deterministic patterns lasting three beats (symbols), 
as proposed by Porta et al. (Porta et al, 2001). The proposed HRJSD approach was 
enlarged to create a bridge between univariate and bivariate symbolic analyses. As a 
quite new feature in contrast to the classical JSD approach or other coupling 
approaches (Schulz et al, 2013a) the HRJSD approach emphasizes a clear 
characterization of how the couplings are composed by the different regulatory 
aspects of the ANS and CNS. Moreover, the HRJSD approach includes different 
threshold levels and a directionality index DHRJSD. The validation studies showed that 
the directionality index DHRJSD is able to correctly detect the dominating coupling 
direction in linear coupled systems, but is only partly able to detect the dominating 
coupling direction in non-linear coupled systems. Furthermore, the baroreflex-related 
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threshold (BRS_TH) illustrated its potential and significance to characterise short-
term non-linear cardiovascular coupling patterns, whereas the thresholds 1/4sd_TH 
seem to be the most suitable thresholds to characterise short-term non-linear 
cardiorespiratory coupling patterns. 

In chapter 3.2, I introduced the mHRJSD approach to overcome the limitation of the 
HRJSD approach that was only able to analyse bivariate couplings and to determine 
the driver-responder relationship. Therefore, the bivariate HRJSD was an enhanced 
approach by including a third time series allowing the quantification of multivariate 
couplings and the determination of the driver-responder relationships in multivariate 
coupled systems. For the mHRJSD approach a statistical significance level was 
applied to prevent that spurious couplings were detected whereby the probabilities 
of occurrences of the coupling patterns has been set to p(wf)>0.05 and has to fulfil the 
Bonferroni-Holm adjustment (p<0.000098, n=512 coupling patterns). The multivariate 
redundancy reduction strategy with the multivariate pattern family density matrix 
allows for a robust statistical analysis and provides more detailed information about 
short-term physiological regulatory processes of complex multivariate physiological 
networks. The mHRJSD approach contains multivariate Directionality indices DmHRJSD

(DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x)) allowing to determine the primary 
driver **DmHRJSD, the secondary driver *DmHRJSD and dominant responder ‾DmHRJSD in 
multivariate systems (assumption: weakly coupled system). The simulation 
procedure revealed that the proposed directionality index DmHRJSD derived from the 
mHRJSD approach is only able to correctly detect the driver-responder relationships 
in linear coupled systems, but is not able to detect the driver-responder relationships 
in non-linear coupled systems (limitation). Moreover, the mHRJSD approach is able 
to evaluate the direct causal information transfer in multivariate systems.

In chapter 3.3, I proposed the NSTPDC approach as an enhanced version of the 
classical PDC approach to overcome its restrictions, and to allow the classification of 
couplings (coupling strength and direction) of non-stationary and scale-invariant 
short time series of multivariate linear and non-linear coupled systems. The NSTPDC 
approach is based on an m-dimensional AR model and determines linear Granger 
causality in the frequency domain. The NSTPDC approach has the following 
properties: the optimal model order of the AR model and its coefficients were 
determined by the stepwise least squares’ algorithm and the Schwarz’s Bayesian 
Criterion; a normalization procedure (zero mean and unit variance) enables to 
analyse non-stationary and scale-invariant time series; the Normalized Factor (NF) 
allows a clear and differentiable characterization of the coupling directions; the 
coupling strength [0,1] in each window within a predefined frequency band. 
Moreover, the simulations showed that the NSTPDC approach is able to distinguish 
between both direct and indirect causal information transfer, and is very sensitive in
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detecting the correct driver-responder relationships in multivariate linear coupled 
systems (only partly for non-linear coupled systems).

In chapter 4, I conducted a validation study aimed to characterise central-autonomic-
network coupling pathways (top-to-bottom and bottom-to-top) by analysing the 
interaction of heart rate, systolic blood pressure, respiration and central activity in 
schizophrenic patients and healthy subjects. Here, I applied the newly developed 
causal and non-causal, linear and non-linear multivariate coupling approaches 
(HRJSD, mHRJSD, NSTPDC, MuTE) to determine the coupling strengths and 
directions within the CNS-ANS network. This study provides new insights within 
central-autonomic-network pathways in respect to central and cardiovascular-
cardiorespiratory regulation processes in schizophrenia. I was able to demonstrate 
significantly weaker non-linear central-cardiovascular and central-cardiorespiratory 
coupling pathways, and significantly stronger linear central information flow in the 
direction of the cardiac- and vascular system, and a significantly stronger linear 
respiratory information transfer towards the central nervous system in 
schizophrenia. 

For schizophrenia, there is a continuing debate as to what the defined reasons for the 
dysregulation of the ANS, and thereby, the impaired brain-heart couplings are caused 
by. It has been suggested that antipsychotic medications which suppress dopamine 
activity in the mesolimbic pathway of the brain, genetics and neurobiological 
processes are important contributory factors also because different brain areas 
(cortical, subcortical, brainstem) are involved in autonomic regulation. The 
dynamically interacting network of physiological systems and subsystems within the 
human body are connected in a close way, in that a failure of one system or subsystem 
can lead to a chain of faults and thus impairing the dynamical interplay within the 
whole network (Ivanov & Bartsch, 2014). For schizophrenia, it has been shown that 
autonomic dysfunction is closely associated with deficits of prefrontal cortex activity 
in executive function and inhibition (Henry et al, 2010; Thayer & Lane, 2009). It has 
also been suggested (Thayer & Lane, 2009) that the lack of inhibition of amygdala 
mediating cardiovascular and autonomic responses to stress by the prefrontal cortex 
is one reason for ANS dysregulation. The medial prefrontal cortex is involved in the 
regulation of both behavioural and physiological responses, including the regulation 
of anxiety, heart rate changes associated with social threat, and a variety of other 
peripheral responses to stressors associated with the brain stem regulatory function. 
Limitations of the validation studies that should be stated are: 1) the treatment with 
antipsychotic drugs as a standard therapeutic measure, and 2) no comparative fMRI 
analyses were performed to prove which parts of the frontal cortex are involved in 
cerebral activation of the cortical as well as subcortical centres. As an outlook, the 
combination of fMRI and EEG analysis to achieve new perspectives in cognitive 



5. Conclusions 129

functions in respect to the central-autonomic-network in schizophrenia seem to be 
very promising (He & Liu, 2008). 

In summary, this thesis provides an enhanced understanding of the interrelationship 
of central and autonomic regulatory mechanisms in schizophrenia. The detailed 
findings on how the different pronounced central-autonomic-network pathways are 
associated with paranoid schizophrenia may allow for a better understanding on how 
cerebral activation and autonomic responses and/or activation are connected in 
physiology networks under pathophysiological conditions. 

The novel-developed coupling approaches have their own special features that make 
them unique, even as compared to well-established coupling approaches. They 
expand the spectrum of novel coupling approaches for biosignal analysis and thus 
contribute in their own way to obtaining detailed information, and thus contribute to 
improved diagnostics/therapy.
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List of figures
Figure 1. Examples of directional dependencies for direct and indirect couplings.

Interdependence structure for (a) a bivariate and (b) a multivariate case. (a) Direct 
coupling exists for x1↔x2; (b) direct coupling exists for x1→x2 and x2↔x3 and 
indirect coupling between x1→x3 mediated by x2 (direction of coupling: →,←
unidirectional, ↔ bidirectional).

Figure 2. Basic principle of HRJSD. (a) Transformation of the bivariate sample vector X
(BBI=beat-to-beat intervals (msec); SP=systolic blood pressure (mmHg)) into the 
bivariate symbol vector S (0: decreasing values, 1: equal values 2: increasing 
values) and word distribution density matrix Wn (27×27). (b) Word pattern family 
distribution density matrix Wf (8×8) with eight pattern families wf created from 27 
single word types wBBI,SP. Rows represent pattern families of BBI intervals changes; 
column pattern families of SP changes; rfBBI (row): sum of specific word family; 
cfSP (column): sum of specific word family.

Figure 3. Definition of 8 pattern families of HRJSD. (HR=heart rate, BBI=beat-to-beat 
intervals, RESP=respiratory frequency, PEEG=mean power in the BBI-related EEG 
intervals).

Figure 4. Visualisation example of the three-dimensional plots of the HRJSD pattern family 
distribution density matrix Wf (8×8) for the threshold levels lBBI equal to 5ms and 
lRESP equal to 25% of the standard deviation of the RESP time series for healthy 
subjects (a), healthy first-degree relatives (b) and schizophrenic patients (c). 
(BBI=beat-to-beat intervals, RESP=respiratory frequency) (Schulz et al, 2015b)

Figure 5. Simulated multivariate systems with their mutual influence between the time 
series x1, x2, and x3. Arrows indicating the causal coupling direction from one 
system to another (e.g. x1→x2 means a unidirectional driving from system 1 (x1) to 
system 2 (x2), and x2⇄x3 means a bidirectional driving between system 2 (x2) to 
system 3 (x3)).

Figure 6. Three-dimensional plots of the word distribution density matrix Wn (27×27) for the 
threshold levels no_TH, BRS_TH, 1/4sd_TH and sd_TH (a, b, c, d) from medicated 
schizophrenic patients. Due to the application of the threshold level sd_TH (d) the 
word type combination (111,111) was the most frequent, with the highest 
probability of occurrence (~70%) whereas all other word types revealed a lower 
probability of occurrence. Note that in plot d the bar chart of the word type 
(111,111) was cut to archive a uniform scaling of plot a-d. If the axis of plots a, b 
and c were scaled to the maximum possible value (111,111) shown in plot d, the 
representation of the predominant word types in plot a, b and c would not be 
noticeable. (SP=systolic blood pressure, BBI=beat-to-beat intervals)
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Figure 7. Three-dimensional plots of the HRJSD pattern family distribution density matrix 
Wf (8×8) for the baroreflex sensitivity related threshold level (BRS_TH) for a 
unmedicated schizophrenic patient (a) and the medicated state (b). (SP=systolic 
blood pressure, BBI=beat-to-beat intervals)

Figure 8. Basic principle of mHRJSD. Transformation of the trivariate sample vector X into 
the trivariate symbol vector S (0: decreasing values; 1: equal values; 2: increasing 
values); Word transformation and word pattern family distribution density matrix 
Wf (8×8×8) with 8 pattern families E0, E1, E2, LU1, LD1, LA1, P, and V with word 
pattern probabilities p(wf)>0.05 (red cubes). (BBI=beat-to-beat intervals, SP=systolic 
blood pressure, RESP=respiratory frequency)

Figure 9. Visualisation example of mHRJSD for a healthy subject. Word pattern family 
distribution density matrix Wf (8×8×8) with 8 pattern families E0, E1, E2, LU1, LD1, 
LA1, P, and V with (a) all word pattern probabilities p(wf)=[yellow: <0.001; green: 
<0.0025; turquoise: <0.005; blue: <0.01; violet: <0.015, red: >0.05], and (b) only for 
p(wf)>0.05. (BBI=beat-to-beat intervals, SP=systolic blood pressure,
RESP=respiratory frequency)

Figure 10. mHRJSD simulation example 1 – Visualisation of the time series x, y, z and the 
word pattern family distribution density matrix Wf (8×8×8) with 8 pattern family 
E0 with the word pattern probabilities p(wf)>0.05.

Figure 11. mHRJSD simulation example 2 – Visualisation of the time series x, y, z and the 
word pattern family distribution density matrix Wf (8×8×8) with 8 pattern families 
E0, E1, and E2 with the word pattern probabilities p(wf)>0.05.

Figure 12. mHRJSD simulation example 3 – Visualisation of the time series x, y, z and the 
word pattern family distribution density matrix Wf (8×8×8) with 8 pattern families 
LU1, LD1, and LA1 with the word pattern probabilities p(wf)>0.05.

Figure 13. mHRJSD simulation example 4 – Visualisation of the time series x, y, z and the 
word pattern family distribution density matrix Wf (8×8×8) with 8 pattern families 
P and V with the word pattern probabilities p(wf)>0.05.

Figure 14. mHRJSD simulation example 5 – Visualisation of the time series x, y, z and the 
word pattern family distribution density matrix Wf (8×8×8) with 8 pattern families 
E0, E2, LU1, LD1, LA1, P, and V with the word pattern probabilities p(wf)<0.015
(violet cubes) and p(wf)>0.05 (red cubes).

Figure 15. Normalized Factor (NF) direction derived from the normalized short-time partial 
directed coherence approach for the determination of the causal coupling.

Figure 16. Simulation of coupled oscillators. (a) showed the simulated input signals where 
the first time series is the driver and the second time series is the responder; (b) 
Normalized factor for the coupling direction resulting from (a); (c) showed the 
simulated input signals where the first time series is the driver that changed to the 
responder after 800 samples and the second time series is the responder that 
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changed to the driver after 800 samples; (d) Normalized factor for the coupling 
direction resulting from (c).

Figure 17. Averaged NSTPDC plots for the simulated linear system 3. Arrows indicating the 
causal coupling direction from one time series to another, e.g., x2←x1, indicating 
the causal link from x1 to x2. Coupling strength ranges from blue (no coupling) to 
red (maximum coupling).

Figure 18. Visualization example of analysed raw data records and their extracted time series. 
Raw data are, from top to bottom: ECG, non-invasive continuous systolic blood 
pressure (SYS), synchronized calibrated respiratory inductive plethysmography 
signal (RESP), and electroencephalogram (EEG). RR(i) represents the beat-to-beat 
intervals; SYS(i) represents the maximum systolic blood pressure amplitude values 
over time in relation to the previous R-peak; RESP(i) represents the respiratory 
frequency as time intervals between consecutive breathing cycles, and EEG(i) 
specified the time intervals of the EEG raw data (electrode: Fp2) in relation to 
BBI(i). Within each EEG(i) the mean power PEEG(i) was calculated.

Figure 19. The applied extended 10-20 EEG system (actiCAP, Brain Products) for central-
autonomic-network analyses. (grey marked channels belong to the left hemisphere 
and white marked channels belong to the right hemisphere, AFZ=ground (black),
FCZ=reference (dark grey))

Figure 20. Flowchart of performed analyses steps. (BBI represents the beat-to-beat intervals,
SYS represents the maximum systolic blood pressure amplitude values over time 
in relation to the previous R-peak, RESP represents the respiratory frequency as 
time intervals between consecutive breathing cycles, PEEG specified the mean 
power in the time intervals of the EEG raw data in relation to each BBI, NN: 
normal-to-normal beat interval, TD: time domain, FD: frequency domain, NLD: 
non-linear dynamics, HRV: heart rate variability, BPV: blood pressure variability, 
RESPV: respiratory variability, HRJSD: high resolution joint symbolic dynamics, 
mHRJSD: multivariate high resolution joint symbolic dynamics, NSTPDC: 
normalized short-time partial directed coherence, and MuTE: multivariate 
Transfer Entropy)

Figure 21. Bars indicate average mean value of the power P derived from the EEG estimated 
by the power spectral density function (window length: 5 sec, overlap: 50%) for 
patients suffering from paranoid schizophrenia (SZO) and healthy subjects (CON) 
for A1 (the frontal area), A2 (the central area), A3 (the temporal area), and A4 (the 
parietal-occipital area). (*p<0.05; **p<0.01; ***p<0.00041; n.s.=not significant)

Figure 22. Averaged NSTPDC plots for central-cardiovascular coupling analyses for (a) 
cardiovascular couplings, (b) central-cardiac couplings, and (c) central-vascular 
couplings for schizophrenic patients. Arrows indicating the causal coupling 
direction from one time series to another, e.g., SYS←PEEG, indicating the causal link 
from PEEG to SYS. Coupling strength ranges from blue (no coupling) to red 
(maximum coupling), where BBI represents beat-to-beat intervals, SYS represent 
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successive maximum systolic blood pressure amplitude values over time, and PEEG

represents the mean power in BBI-related EEG intervals.

Figure 23. Three-dimensional plots of the HRJSD pattern family distribution density matrix 
Wf (8×8) of central-cardiac couplings for the entire frontal area for (a) healthy 
subjects and (b) schizophrenic patients. (BBI=beat-to-beat intervals, PEEG=mean 
power in BBI-related EEG intervals)

Figure 24. Visualization of significant differences between patients suffering from paranoid 
schizophrenia (SZO) and healthy subjects (CON) with respect to the coupling 
strength (NSTPDC) between autonomic activity (BBI, SYS) and central spectral 
activity (PEEGband) for the (a) whole frontal area, (b) the left frontal area and (c) the 
right frontal area. Arrows indicate the coupling direction, where black solid lines 
indicate the direction from central spectral activity towards autonomic target 
variables. Grey dashed lines indicate the direction from the autonomic variables 
towards central spectral activity. Note that all arrows were highly significantly 
(p<0.00041) different between SZO and CON; otherwise, the arrows were indicated 
by *(p<0.01). (BBI=beat-to-beat intervals, SYS=maximum systolic blood pressure 
amplitude values over time, PEEGband=mean power in BBI-related EEG spectral band 
intervals)

Figure 25. Averaged NSTPDC plots for central-cardiorespiratory coupling analyses for (a) 
cardiorespiratory couplings, (b) central-cardiac couplings, and (c) central-
respiratory couplings for schizophrenic patients for the frontal area (A1). Arrows 
indicating the causal coupling direction from one time series to another, e.g., 
RESP←PEEG, indicating the causal link from PEEG to RESP. Coupling strength ranges 
from blue (no coupling) to red (maximum coupling), where BBI represents beat-
to-beat intervals, RESP represents respiratory frequency, and PEEG represents the 
mean power in BBI-related EEG intervals.

Figure 26. Summary of significant (p<0.01) linear and non-linear couplings within the central-
autonomic-network in schizophrenia (SZO) in comparison to healthy subjects
(CON). (BBI=beat-to-beat intervals, SYS=end-systolic blood pressure amplitude 
values over time, RESP=respiratory frequency, PEEG=mean power in the BBI-related 
EEG intervals)
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Table 2. The influence of different threshold settings on the occurrence of significant word 
types for quantifying the anti-cholinergic effects of the antipsychotic drugs in 
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Table 3. Left: The influence of different threshold settings on the occurrence of HRJSD 
pattern family indices used to quantify the anti-cholinergic effects of the 
antipsychotic drugs in medicated schizophrenic patients (MED) in comparison to 
unmedicated schizophrenic patients (UNMED). Right: Group mean value (MV) 
and standard deviation (SD) in arbitrary units [%] for HRJSD indices for UNMED 
and MED applying the baroreflex sensitivity threshold (BRS_TH). (SP=systolic 
blood pressure, BBI=beat-to-beat time series (heart rate), E0, E1, E2, LA1, LU1, LD1, 
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to the antipsychotic drugs treatment derived from surrogate time series (type I and 
II). (TH=threshold, no=0, BRS=baroreflex sensitivity, 1/4sd=25% standard deviation,
sd=100% standard deviation, p<0.05)

Table 5. Determination of the primary driver (**DmHRJSD), secondary driver (*DmHRJSD) and 
the dominant responder (‾DmHRJSD) in a multivariate system derived from the 
directionality indices DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x).

Table 6. Determination of the primary driver (**DmHRJSD), secondary driver (*DmHRJSD) and
the dominant responder (‾DmHRJSD) derived from the directionality indices 
DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x) for two simulated multivariate 
coupled systems.

Table 7. Results of coupled multivariate linear and non-linear AR models to validate the 
Normalized Factor (NF). (blue: driver variable, red: incorrect classification)
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Table 8. Results of electroencephalogram (EEG) in the frequency domain which 
discriminates between paranoid schizophrenia patients (SZO) and healthy subjects 
(CON). (*p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant)

Table 9. Results of standard indices from heart rate variability (HRV), blood pressure 
variability (BPV), respiratory variability (RESPV), spontaneous baroreflex 
sensitivity (BRS), respiratory sinus arrhythmia (RSA) which discriminates between 
paranoid schizophrenia patients (SZO) and healthy subjects (CON). (*p<0.05,
**p<0.01, ***p<0.00041, n.s.=not significant)

Table 10. Linear central-cardiovascular (BBI, SYS, and PEEG) coupling analyses results 
(NSTPDC) to discriminate between patients suffering from paranoid 
schizophrenia (SZO) and healthy subjects (CON). (BBI=beat-to-beat intervals,
SYS=systolic blood pressure amplitude values over time, PEEG=mean power in the 
BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant,
#=not confirmed by surrogate analysis)

Table 11. Non-linear central-cardiovascular (BBI, SYS, and PEEG) coupling analyses results 
(MuTE) to discriminate between patients suffering from paranoid schizophrenia 
(SZO) and healthy subjects (CON). (BBI=beat-to-beat intervals, SYS=systolic blood 
pressure amplitude values over time, PEEG=mean power in the BBI-related EEG 
intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant, #=not confirmed by 
surrogate analysis)

Table 12. Number (N) of significant (p<0.01) central-cardiovascular HRJSD indices p(N) used 
to discriminate between patients suffering from paranoid schizophrenia (SZO) and 
healthy subjects (CON) pertaining to the frontal area, the left frontal area and the 
right frontal area. BBI/PEEG indicates the coupling between beat-to-beat intervals 
(BBI) and the mean power in BBI-related EEG-intervals (PEEG). SYS/PEEG indicates 
the coupling between the maximum systolic blood pressure amplitude values over 
time (SYS) and the mean power in the BBI-related EEG-intervals (PEEG). (e.g., PEEG-
E0/BBI describes the coupling of the pattern family E0 from PEEG with all other 8 
BBI coupling pattern families)

Table 13. Significant HRJSD results showing of the probability of the occurrence of 
univariate HRJSD pattern families for BBI, SYS and PEEG in % to discriminate 
between patients suffering from paranoid schizophrenia (SZO) and healthy 
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between patients suffering from paranoid schizophrenia (SZO) and healthy 
subjects (CON) for the frontal area, the left frontal area and the right frontal area. 
(↔ indicates bidirectional coupling, → indicates unidirectional coupling, −
indicates equal influence in both directions or no coupling, ↑ increased NF value 
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in SZO compared to CON, ↓ decreased NF value in SZO compared to CON, d 
denotes the driver variable, BBI=beat-to-beat intervals, SYS=systolic blood 
pressure amplitude values over time, PEEG=mean power in the BBI-related EEG 
spectral bands intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant, #=not 
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(MuTE) to discriminate between patients suffering from paranoid schizophrenia 
(SZO) and healthy subjects (CON) for the frontal area (A1). (BBI=beat-to-beat 
intervals, RESP=respiratory frequency, PEEG=the mean power in the BBI-related 
EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant, #=not confirmed 
by surrogate analysis)
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schizophrenia (SZO) and healthy subjects (CON) for A0 (all EEG channels), A2 (the 
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(BBI=beat-to-beat intervals, RESP=respiratory frequency, PEEG=mean power in the 
BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant)

Table 19. Central-cardiorespiratory coupling results comparing several EEG-clusters (A1-
A4) in healthy subjects (CON). A1 (the frontal area), A2 (the central area), A3 (the 
temporal area), and A4 (the parietal-occipital area). (BBI=beat-to-beat intervals,
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*p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant)
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entropy values for the central-cardiorespiratory network (BBI, RESP, and PEEG) to 
discriminate between patients suffering from paranoid schizophrenia (SZO) and 
healthy subjects (CON) for A0 (all EEG channels), A1 (the frontal area), A2 (the 
central area), A3 (the temporal area), and A4 (the parietal-occipital area). 
(BBI=beat-to-beat intervals, RESP=respiratory frequency, PEEG=mean power in the 
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BBI-related EEG intervals, *p<0.05, **p<0.01, ***p<0.00041, n.s.=not significant,
#=not confirmed by surrogate analysis)
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