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Network Physiology is a rapidly growing field of study that aims to understand how
physiological systems interact to maintain health. Within the information theory
framework the information storage (IS) allows to measure the regularity and
predictability of a dynamic process under stationarity assumption. However, this
assumption does not allow to track over time the transient pathways occurring in the
dynamical activity of a physiological system. To address this limitation, we propose a
time-varying approach based on the recursive least squares algorithm (RLS) for
estimating IS at each time instant, in non-stationary conditions. We tested this
approach in simulated time-varying dynamics and in the analysis of
electroencephalographic (EEG) signals recorded from healthy volunteers and
timed with the heartbeat to investigate brain-heart interactions. In simulations, we
show that the proposed approach allows to track both abrupt and slowchanges in the
information stored in a physiological system. These changes are reflected in its
evolution and variability over time. The analysis of brain-heart interactions reveals
marked differences across the cardiac cycle phases of the variability of the time-
varying IS. On the other hand, the average IS values exhibit a weak modulation over
parieto-occiptal areas of the scalp. Our study highlights the importance of developing
more advanced methods for measuring IS that account for non-stationarity in
physiological systems. The proposed time-varying approach based on RLS
represents a useful tool for identifying spatio-temporal dynamics within the
neurocardiac system and can contribute to the understanding of brain-heart
interactions.
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1 Introduction

The human body is composed of several physiological and organ systems, each one with
its own distinct structural arrangement and complex functionality. This results in intricate
and variable output dynamics that are characterized by complexity and fluctuations (Bashan
et al., 2012; Schmal et al., 2022). The fundamental principles of physiology and clinical
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medicine often follow a reductionist approach that focuses on the
structural organization and dynamics of individual organ systems
when evaluating health and disease. On the other hand, the emerging
field of Network Physiology (NP) combines empirical and theoretical
knowledge from various disciplines to gain insights into the dynamic
interactions of diverse organs, physiological systems, and sub-systems as a
network. It encompasses extensive data analysis, modeling approaches,
and clinical applications to comprehend how these interactions occur in
different contexts. The goal is to understand how these interactions
manifest at the cellular, organism, and systemic levels, giving rise to
diverse physiological states and functions in both health and disease
(Ivanov 2021). In recent years, there has been a growing body of evidence
emphasizing the significance of examining the functional interactions
between the brain and the heart. For instance, cardiac arrhythmias have
been identified as a frequent cause of ischemic attacks (Pyner, 2014).
Furthermore, cognitive disorders can arise fromatrialfibrillation (Sabatini
et al., 2000), even without evident stroke (Dorrance and Fink, 2011).
Conversely, brain disorders such as stroke and epilepsy, believed to be
triggered by environmental stressors, can give rise to cardiovascular
disorders and have been demonstrated to induce both experimental
and clinical cardiac arrhythmias (Wilkinson et al., 1998). To better
elucidate these intricate mechanisms of neuroautonomic control
several approaches have been developed which are mainly based on
the study of the coupling between time series representative of the heart
and the brain activities. The coupling strength can be captured, for
instance, through the use of information theoretic measures or,
alternatively, directly from the structure of the cross-correlation
function. These approaches have been highly effective in
comprehending and characterizing brain-heart dynamics in various
experimental conditions, including wake and sleep (Bashan et al., 2012;
Faes et al., 2014; Lin et al., 2016), physiological stress and rest
(Antonacci et al., 2020; Pernice et al., 2021; Sciaraffa et al., 2021),
mental workload and relaxed conditions (Widjaja et al., 2015), as well as
emotion elicitation and neutral states (Schulz et al., 2013; Valenza et al.,
2016; Greco et al., 2019). An alternative often-used approach is the
study of heartbeat-evoked potentials (HEPs) (Schandry et al., 1986),
which are responses in the cortex that are synchronized with
contractions in the ventricles of the heart and can be identified by
the R-peak in an electrocardiogram (ECG) (Al et al., 2020). Specifically,
brain signals are segmented and timedwith respect to the ECGR-peaks,
and the relative potential is obtained through averaging (Luft and
Bhattacharya, 2015; Coll et al., 2021). While it is believed that HEPs are
connected to the neural processing of cardiac activity and can serve as
an indicator of the heart-to-brain directional interaction, the
interpretation of HEPs is still a matter of debate in the scientific
community, as their physiological significance and neural
mechanisms are not fully understood (Catrambone and Valenza,
2021). Recently, an approach to explore the brain responses evoked
by the heartbeats from an information-theoretic perspective was
introduced (Barà et al., 2023). This approach quantifies the
regularity of the electroencephalographic (EEG) signals in different
phases of the cardiac cycle through the computation of a local version of
the Information Storage (IS), a measure which reveals the information
content of the EEG signal at each time instant (Lizier et al., 2012). The IS
can be defined as the information contained in the past history of a
stochastic process that can be used to predict its future. Thus, it allows to
measure the regularity and predictability of a dynamic process and,
under Gaussian assumption, can be estimated within the identification

of a simple linear model (Barnett et al., 2009; Faes et al., 2015).
Moreover, this quantity is recognized as one of the three key
component processes constituting every act of information
processing in a network of interacting systems (i.e., information
storage, transfer, and modification) (Wibral et al., 2014). Within this
context, IS assumes a pivotal role in studying the dynamics of numerous
processes (Faes et al., 2019) and has been used to study the internal
dynamics of the human brain (Wibral et al., 2014), the cardiovascular
(Faes et al., 2016) and the cardiorespiratory (Faes et al., 2015) systems.

Both approaches, the HEP and the local IS, aim to investigate brain-
heart interactions focusing on the impact that the heartbeat has on
the EEG dynamics. However, in spite of their potential, the local
IS and evoked potentials may not be sufficient to take into
account the transient characteristics of the EEG signals
triggered by an external stimulus due to the stationarity
assumption required for its calculation (Stramaglia et al.,
2021; Barà et al., 2023). To address this limitation, a time-
varying (TV) approach can be used to identify the transient
pathways in the information stored in the brain as a response to
the heart activity. This approach does not require stationary
signals, and relies on an estimation algorithm which is a recursive
version of the least squares analysis, called recursive least squares
(RLS), involving a time-varying identification of a linear
autoregressive (AR) model (Haykin, 2002). In the literature,
the RLS algorithm has been used for connectivity estimation
in both time and frequency domains to analyse the EEG signals.
Specifically, Möller et al. (2001) proposed an application of RLS
algorithm with forgetting factor for the coherence estimation to
study the connectivity between pairs of EEG signals; Hesse et al.
(2003) introduced the same algorithm for the time-varying
estimation of the Granger causality to study the processing of
information in the human brain during the execution of a color-
word Stroop test; Astolfi et al. (2008) proposed the use of the
same RLS algorithm for the estimation of directed transfer
function and partial directed coherence with application to
EEG signals for the study of event related potentials; Milde
et al. (2010) compared the RLS algorithm with an approach
based on Kalman filter to study the processing of evoked brain
potentials from high dimensional data.

In this work, we exploit the RLS in combination with an iterative
solution of the well-known Yule-Walker equations, to estimate time-
specific IS in a non-stationary environment. In different simulation
settings, the proposed approach is tested and its performances in the
estimation of IS are evaluated. Alongside with this methodological
advancement, from an applicative point of view, we then investigate
the behaviour of the time-varying approach on EEG recordings to
analyze the regularity of the neural activity timed with the heartbeat
so as to assess brain-heart interactions.

The code necessary to compute the time-specific IS is collected
in the Time-VaryingIS Matlab toolbox, described in the
Supplementary Material and freely available for download at
https://github.com/YuriAntonacci/Time-VaryingIS.

2 Materials and methods

This section outlines the methodological approaches utilized for
assessing the information stored in a random process in a time-
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resolved way, under non-stationary conditions, based on estimating
time-varying predictability measures using linear models identified
via recursive least squares analysis.

2.1 Information-theoretic Preliminaries

Given a random variable V, the Shannon entropy is defined as
H(V) � −E[logp(v)], where p(v) is the probability density function
of V measured for the outcome v, and E[·] is the expectation
operator computing the statistical average over all possible values
v taken by V. A more specific quantity is the information content of
the single outcome v, defined as h(v) = − log p(v). This measure
allows a local analysis of the information content of a random
variable, i.e., an analysis focused on a specific outcome of the
variable, while the Shannon entropy can be interpreted as a
global measure, corresponding to the average information content
across all outcomes, i.e., H(V) � E[h(v)]. These concepts can be
generalized to any information-theoretic measure where a global
measure can be interpreted as the statistical average of its local
equivalent. For instance, the conditional entropy (CE) of variable V
with respect to another variable W quantifies the residual
information about V when W is known, representing the average
level of uncertainty that persists about V when the outcomes of W
are known: H(V|W) � E[h(v|w)], where h (v|w) = − log p (v|w) is
the local CE. Likewise, the mutual information (MI) measures the
information shared by the variables V and W, expressed as the
average amount of uncertainty about one variable that can be
resolved by the knowledge of the other: I(V;W) � E[i(v;w)],
where i (v; w) = log [p (v, w)/(p(v)p(w))] is the local MI. Note
that entropy, CE and MI are linked to each other in both their local
and global formulations, i.e., h(v) = i (v;w) + h (v|w) andH(V) = I(V;
W) + H(V|W). Note also that, while the MI is always non-negative,
the local MI can assume either positive or negative values; in the
latter case, learning the outcome w for the variable W is interpreted
as misinformative about the specific outcome v of the variable V
(Lizier et al., 2012).

2.2 Information storage

Let us take into account a dynamic system Y, whose progression
over time is governed by the discrete-time stochastic process Y = Yn

with n ∈ Z representing the temporal index. The scalar variable Yn

indicates the present state of the process, while the vector variable
Y−
n � [Yn−1Yn−2 . . .] is taken to represent the past states of the

process. The information storage (Lizier et al., 2012; Wibral
et al., 2014) has been defined as the information in an agent,
process or variable’s past that can be used to predict its future
(Lizier et al., 2012). Such storage refers to how dynamical systems
store, structure and transform historical and spatial information and
can be interpreted as a measure of the process regularity defined as:

SY,n � I Yn;Y
−
n( ) � E log

p yn, y−
n( )

p yn( )p y−
n( )[ ], (1)

where yn and y−
n refer to realizations of Yn and Y−

n , respectively. The
IS measures the predictability of the process at time n by quantifying

the average level of uncertainty about the current state of the process,
Yn, that can be resolved by the knowledge of its past states, Y−

n .
Assuming that Y is a Markov process with finite memory of

order p, its whole past history can be truncated using p time steps,
i.e., using the p − dimensional variable Wn ∈ Rp×1 such that
Y−
n ≈ Wn � [Yn−1, . . . , Yn−p]⊤. Then, the current state Yn can be

predicted as a linear combination of the past states by means of a
linear time-varying AR (TV-AR) model:

Yn � ∑p
k�1

ak,nYn−k + Un, (2)

where Un is the prediction error and ak,n is the AR coefficient at the
time instant n that relates the present state of the process with its
past state at lag k. Then, under Gaussian assumption of Yn, its
entropy can be expressed as (Cover, 1999):
H(Yn) � 1

2 log(2πe · σ2Yn
), where σ2Yn

represents the variance of
the process at the time instant n. Moreover, if Yn and Wn are
jointly Gaussian the conditional entropy of Yn given Wn can be
expressed as (Barnett et al., 2009): H(Yn|Wn) � 1

2 log(2πe · σ2Un
),

where σ2Un
is the variance of the prediction error Un at the relevant

time instant. Thus, the relation stated in Eq. 1 can be re-written as:

SY,n � H Yn( ) −H Yn|Wn( ) � 1
2
log

σ2Yn

σ2Un

, (3)

providing a viable way to compute the information stored in the
process at each specific time point. In particular, under ergodicity and
stationarity assumptions, the information stored in the process Y is
the same at each time n (SY,n = SY) returning the well-known time-
invariant IS measure (Lizier et al., 2011). On the other hand, whether
the process is non-stationary, the time-varying version of the IS
defined in (3) can be computed as described in the following
section. Note that, the definitions of MI and CE given in Section
2.1 are used in this work to characterize the interaction between
different random variables taken from the same individual random
process.

2.3 Linear parametric estimation under non-
stationarity assumption: time specific
information storage

Given the analyzed stochastic process Y, the TV-AR model
reported in Eq. 2 can be formulated in compact form as:
Yn � A⊤

nWn + Un, where An � [a1,n, . . . , ap,n]⊤ ∈ Rp×1 is the
vector of the TV-AR coefficients to be estimated. For this
estimation task we use a recursive implementation of the least
squares method (RLS) which involves the minimization of the
cost function J (An) � ∑n

i�1(1 − c)n−i‖Zi‖2, where An ∈ Rp×n is a
matrix containing the temporal evolution of the p coefficients and
Zi � Yi −W⊤

i Ai−1 is a scalar value denoting the a-priori estimation
error computed as difference between the desired response Yi and
the estimated response Ŷi. The term (1 − c)n−i is the exponential
weighting factor, or forgetting factor, with 0 ≤ c < 1 which ensures
that the data in the distant past are “forgotten” in order to afford the
possibility of following the statistical variations in non-stationary
conditions; note that when c = 0 we have the ordinary least squares
prediction (Möller et al., 2001). In particular, this parameter controls
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the trade-off between the adaptation speed and the variance of the
estimate.

2.3.1 Time-varying autoregressive model
identification

The RLS algorithm to estimate the vector of AR coefficients consists
in the following computation steps (Milde et al., 2010): 1) choose a value
for the adaptation factor c and an order of the TV-ARmodel p; 2) define
Ap � [a1,p, . . . , ap,p]⊤ � 0 ∈ Rp×1 as the vector of coefficients at time p
andΦw

p � 0 ∈ Rp×p as the correlation matrix of the lagged term stored
in Wp; (iii) for n = p + 1 to N repeat the following steps.

Φw
n � 1 − c( )Φw

n−1 +WnW
⊤
n (4a)

Kn � Φw
n( )−1Wn (4b)

Zn � Yn −W⊤
n An−1 (4c)

An � An−1 + KnZn, (4d)
where Kn ∈ Rp×1 is the so-called gain vector and Zn ∈ R1×1 is

intended as the a-priori estimation error that can be viewed as a
“tentative” value of error before updating the AR coefficients vector.
For a detailed mathematical derivation of the RLS solution as
described in (Haykin, 2002), we refer the interested reader to the
Supplementary Material.

To complete the identification procedure of the TV-AR model
(2) it is necessary to obtain a recursion for the innovation variance.
In particular, when 0 < c < 1, following the results obtained in
(Grieszbach et al., 1994), it is possible to obtain a recursive
estimation of the time-varying innovation variance σ2Un

as follows:

σ2Un
� σ2Un−1 + c Z2

n − σ2Un−1( ). (5)

To complete the estimation procedure of the time specific IS, as
defined in Eq. 3, we need also a recursive estimation of the process
variance σ2Yn

, which is derived by assuming Gaussianity of the
process Y and as initial condition σ2U0

� 0, by the procedure
reported in the following. The autocovariance of the process (2)
is related to the TV-AR parameters via a time varying version of the
Yule-Walker equations (Lütkepohl, 2013):

Γk,n � ∑p
l�1

al,nΓk−l,n + δk0σ
2
Un
, (6)

where Γk,n � E[YnYn−k] represents the autocovariance of the process
defined at each lag k ≥ 0, and δk0 is the delta of Kronecher. In order to
determine the autocovariance of the process for each lag k and for
each time instant n, the TV-AR model can be written compactly
(Faes et al., 2015) as Spn � Ap

nS
p
n−1 + Up

n where:

Spn � Yn Yn−1 / Yn−p+1[ ]⊤,Ap
n �

a1,n / ap−1,n ap,n

1 / 0 0

..

.
1 ..

. ..
.

0 . . . 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Up
n �

Un

0

..

.

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Specifically, the covariance matrix of Spn can be expressed as a
discrete-time Lyapunov equation:

Γp0,n � E SpnS
p
n
⊤[ ] � Ap

nΓ
p
0,nA

p
n
⊤ + Λp

n , (8)
where Λp

n � E[Up
nU

p
n
⊤] ∈ Rp×p is the covariance matrix of Up

n .
Solving (8) for Γp0,n allows to obtain autocovariance values for lag
between 0 and p − 1, Γ0,n . . . Γp−1,n. Knowing that Γ0,n � σ2Yn

, the
innovation variance can be directly extracted from the
autocovariance structure of the process for each considered time
instant n.

To summarize, to compute the time specific IS we proceed as
follows: 1) starting from the TV-AR parameters (a1,n, . . . , ap,n, σ2Un

)
estimated via the RLS solution, compute the autocovariance of the
process Γp0,n solving the Lyapunov Eq. 8; 2) pick the element (1,1) of
the computed autocovariance to obtain a time specific estimation of
the variance of the process σ2Yn

; (iii) compute the time specific IS
following Eq. 3.

3 Simulation study

This section explores the behavior of the time-varying IS, by
modifying the statistical structure of a first-order autoregressive
process (AR (1)) over time changing the value of the
autoregressive coefficient according to predefined waveforms. We
design a univariate TV-AR process defined by the following
equation: Yn = a1,nYn−1 + Un, where Un is a zero-mean white
Gaussian noise with variance σ2Un

, with a1,n representing the
coupling strength between the past state and the present state of Y.
Assuming a sampling frequency fs = 500 Hz, one realization of the AR
(1) process was generated for a duration of 10s, resulting in a total of
N = 5000 data samples. The coefficient a1,n has been set to vary over
time as 1) a periodic square waveform and 2) a periodic sinusoidal
waveform, both oscillating in amplitude between 0.3 and 0.9, with
frequency of the oscillation f = 0.3 Hz. The duty cycle was set to 50%
for the square waveform. We performed two different analyses: in the
first, one single realization of the TV-AR process was generated for
each of the two periodic waveforms, carrying out the IS estimation
with different values of forgetting factor (1 − c ∈ {0.95, 0.97,
0.99})(Möller et al., 2001); in the second, we considered only the
periodic square waveform, to evaluate with more detail the effects of
the forgetting factor on the estimation of the time-varying IS. The
estimates of IS were performed when the forgetting factor varied
between 0.9 and 0.999 with a step size of 0.001. Then, two conditions
were considered, named ON when the amplitude of the square
waveform was 0.9, and OFF when the amplitude was 0.3, leading
to theoretical values of IS equal to 0.83 (ON, S+y−th) and 0.05 (OFF,
S−y−th), respectively. For each forgetting factor value and for each
condition, different performance parameters were computed: 1) the
bias defined as the difference between the average value of the
estimated IS and the true theoretical value, BIAS� E[Ŝy,n] − Sy−th
(BIAS-ON, BIAS-OFF); 2) the estimation variance
VAR� E[(Ŝy,n − E[Ŝy,n])2] (VAR-ON, VAR-OFF); 3) the average
values of bias and variance (BIAS, VAR) between the two conditions
computed as the average of absolute values for the bias and as a simple
average for the variance; 4) the rise time computed as the time required
for the estimate of IS to rise from the 10% of the lowest value, S−y−th, to
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the 90% of the highest value S+y−th; 5) the fall time computed as the
time required for the estimate of IS to fall from the 90% of the highest
value, S+y−th, to the 10% of the lowest value S−y−th; 6) the average value
between the rise and fall time, named as Rise-Fall time (RFT).

Figure 1 displays the theoretical (black lines) and estimated
(orange lines) trends of the time-varying IS obtained for different
values of forgetting factor 1 − c ∈ {0.95, 0.97, 0.99} when a1,n
oscillates as a square (Figures 1A–C) or a sinusoidal
(Figures 1D–F) waveform. The coupling strength (a1,n) between
the past state, Yn−1, and the present state, Yn, controls the amount of
information contained in the system Y. In particular, the highest and
the lowest values of a1,n, i.e., 0.9 and 0.3, indicate the greatest or
lowest amount of information stored in the system, respectively.

The results show how the estimates of TV-IS follow the true
theoretical values exhibiting different behaviors in terms of bias
and variance depending on the value of the forgetting factor.The
trends depicted in Figure 1 demonstrate that the increase of the
forgetting factor from 0.95 (Figures 1A, D) to 0.99 (Figures 1C, F)
is associated with a reduction of the estimation variance regardless of
the waveform considered. This can be clearly observed by looking at the
variance of the estimate reported in brackets at the bottom of the
Figures 1A–C when the square waveform is considered. Moreover, the
increment of the adaptation factor c (which corresponds to a decrement
of the forgetting factor) affects the adaptation speed to transitions which

increases as well. Moreover, the average values of the IS estimated
within each steady state of the square waveform were consistently close
to the theoretical values (S+y−th, S

−
y−th) even if a slight underestimation

occurs when increasing the forgetting factor.
Figure 2 presents the trends of bias, variance, rise time, and fall

time for different values of the forgetting factor in the range of
0.9–0.999 (1 − c = 1 was excluded since it represents the OLS
solution in a stationary condition). The trends of bias and variance
obtained for the two steady states (ON-OFF) are reported separately
and then averaged in Figures 2A, B, respectively. The analysis of the
bias reveals that, as the forgetting factor increases, an increasing
overestimation in the OFF condition occurs, whereas in the ON
condition there is an increasing underestimation. These trends are
particularly noticeable when the forgetting factor exceeds 0.95, as the
curve takes on an exponential shape above this value. The variance
in the OFF condition appears to be negligible when the forgetting
factor is set to 0.97. As the value of 1 − c increases in the range of
0.99–0.996, the variance reaches a peak and subsequently decreases.
On the other hand, the ON condition exhibits a marked descending
trend in variance, which resembles the OFF phase trend when 1 − c
exceeds 0.99. Figure 2B illustrates the evolution of the overall
variance and bias as a function of 1 − c, revealing opposite
trends: the variance decreases as 1 − c increases, while the bias
increases. Figure 2C shows the rise and fall times required for the

FIGURE 1
Estimated and theoretical trends (orange lines and black lines respectively) for time-varying IS computed for different values of forgetting factor
(0.95, panels (A andD); 0.97, panels (B and E); 0.99, panels (C and F)when a1,n varies over time as: a squarewaveform (top row) and a sinusoidal waveform
(bottom row). For the square waveform, the theoretical true values of the IS are S+y−th and S−y−th for the highest and lowest steady states, and the average
values and variance of the IS estimates are reported on the top and on the bottom (in brackets) of the figure, respectively.
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response to transition, which increase when augmenting 1 − c.
Specifically, the rise and fall times approximately increase from
200 ms for 1 − c = 0.98–1.6 s for 1 − c = 0.996. The results presented
in Figures 2A–C are summarized in Figure 2D, which displays the
average trends of bias (BIAS), variance (VAR), and rise-fall time
(RFT) as a function of the forgetting factor. The trends of RFT and
BIAS exhibit almost identical shapes, both showing a marked
increase starting from 1 − c = 0.95, whereas the estimation
variance shows the opposite trend. It is worth noting that the
three curves intersect at a specific forgetting factor value between
0.97 and 0.98, as illustrated in the inset of Figure 2D.

4 Analysis of brain-heart interplay

This section employs the time-varying IS measure defined in
Section 2 to investigate the influence of the heartbeat on cortical
dynamics measured from scalp EEG. The regularity of neural
activity in relation to the heartbeat is analyzed by calculating the
mean and variability of the time-varying IS within specific temporal
windows that coincide with each identified heartbeat from the ECG.
The objective is to monitor changes in the predictability of EEG
signals over time and explore the connection between cardiac
activity and cortical processing of the heartbeat.

4.1 Data acquisition and pre-processing

In this investigation, 20 healthy individuals aged between 25 and
50 years (14 females; age: 25.21 ± 2.64 years), who were not undergoing
psychopharmacological therapy or taking any extended medication,
were monitored simultaneously from EEG and ECG signals. The
acquisitions have been performed in the early afternoon between
2.00 p.m. and 4.00 p.m. to guarantee consistent and replicable
experimental settings for all participants. The BrainAmp amplifier
(BrainCap MR, Brain Vision, LLC) was utilized to obtain 64 EEG
channels according to the international extended 10/20 system, with
the FCZ electrode serving as reference and the Inion electrode (Iz) as
ground (as shown in Figure 3A) (Zaccaro et al., 2022). The ECG signal
was recorded using a one-lead system (BIOPAC System, INC), with
both signals having a sampling frequency of 2 kHz. During the
experimental protocol, participants were requested to rest with their
eyes open, staring at a fixation cross at the center of a computer screen,
and permitting their thoughts to wander for around 10 min. The study
was endorsed by the Institutional Review Board of Psychology,
Department of Psychological, Health and Territorial Sciences, “G.
d’Annunzio” University of Chieti-Pescara (Protocol Number 44_26_
07_2021_21016), and adhered to the Italian Association of Psychology
and the Declaration of Helsinki guidelines, as well as its subsequent
amendments. Each subject provided written informed consent. For

FIGURE 2
Trends of the various performance parameters of the procedure for the estimation of the time-varying IS obtained for different values of forgetting
factor 1 − c in the interval [0.9, 0.999] (step size = 0.001). The time-varying IS was simulated by varying over time a1,n as a square periodic waveform.
Analysis of bias and variance in the ON and OFF conditions taken separately (A) or jointly and computed as average trends (B). (C) Analysis of the rise and
fall times used as a measure of adaptation speed to a transition. (D) Average trends for bias (BIAS), variance (VAR) and rise-fall time (RFT).
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additional information about the acquisition system and dataset, see
Zaccaro et al. (2022).

The EEG signals were processed offline using the EEGLAB
signal processing Toolbox of MATLAB (Delorme and Makeig,
2004). A Hamming window FIR filter was applied to the signals
using a bandpass filter with cutoff frequencies ranging from 0.5 to
40 Hz. The signals were manually cleaned to eliminate artifacts and
noise that resulted from movements or improper electrode-skin
contact. Any noisy channel was spherically interpolated. To decrease
the influence of artifacts on the EEG signals, Independent
Component Analysis (ICA) was conducted using the fastICA
algorithm (Hyvärinen and Oja, 2000). Subsequently, the signals
were subsampled to 128 Hz to reduce redundancy between adjacent
samples before undergoing information-theoretic analysis, an re-
referenced to the average of all channels (Zaccaro et al., 2022). In the
case of the ECG signals, the R-peaks were detected using a modified
version of the Pan-Tompkins algorithm (Pan and Tompkins, 1985),
and a specifically-designed threshold-based peak detection
algorithm was employed to extract T and P waves. Two subjects
were not included in further analyses due to the presence of artifacts.
The final length of the recordings was 423.47 ± 27.5 s (range
320.26 s − 429.29 s).

4.2 Data analysis

The approach outlined in Section 2 was used to calculate the
time-varying IS for all EEG signals obtained from each subject. To
perform the computation of time-varying IS using the RLS
approach, following our previous work on the same dataset (Barà
et al., 2023), the order p of the TV-AR model was set to 5. Different
values of the forgetting factor (1 − c ∈ {0.95, 0.97, 0.99}) were used to
investigate its effects on real data analysis.

For each EEG signal, the time-varying IS was analyzed
separately in three different intervals defined by segmenting
each cardiac cycle, as depicted in Figure 3B, and in accordance
with Barà et al. (2023). To account for the impact of Cardiac Field
Artifact (CFA) on EEG signals, three intervals were defined, as the
electrical activity of the heart can affect the amplitude of EEG

signals depending on the phase of the cardiac cycle as well as on the
distribution of electrodes on the scalp (Dirlich et al., 1997). The
first segment (I1) started at the R-peak of the ECG signal and ended
80 ms after the T-wave peak, the second segment (I2) started at the
end of the first segment and ended 40 ms before the P-wave peak of
the following cardiac cycle, while the third segment (I3)
corresponded to the remainder of the cardiac cycle until the
R-peak of the subsequent cycle. The second segment I2 was
considered a low-CFA segment, while the impact of the artifact
was more significant during the QRS complex and T-wave,
especially for I1 and I3 (Dirlich et al., 1997). The analysis was
performed on the first 300 heartbeats following short-term heart
rate variability analysis guidelines (Shaffer and Ginsberg, 2017).
Mean and standard deviation (STD) values of the time-varying IS
were calculated for each electrode and subject within each of the
three segments. Additionally, to provide a reference independent
of time segmentation, mean and STD were also computed across
the entire cardiac cycle (Global interval (G)).

4.3 Statistical analysis

For each EEG channel and for each subject, TV-IS was firstly
averaged within the considered time interval (G, I1, I2, and I3) by
obtaining 300 values (one for each cardiac cycle) that were then
averaged to obtain a distribution across the 18 subjects. To obtain a
distribution also for the standard deviation of the TV-IS, this
procedure was repeated averaging the 300 values of STD
obtained for each subject. These procedures resulted in a
distribution for each parameter (MEAN and STD) and for each
interval (G, I1, I2, and I3) across the 18 subjects. The described
analysis was repeated changing the forgetting factor as in the
previously described simulation study (1 − c ∈ {0.95, 0.97, 0.99}).

The statistical analysis aimed to compare the distributions of
MEAN and STD of TV-IS measured across 18 subjects during the
whole cardiac cycle and during each of the three intervals, testing the
significance of the comparisons: G vs. I1, G vs. I2, and G vs. I3. A
second analysis aimed to compare the distributions of MEAN and
STD of the TV-IS measured across 18 subjects in the three intervals,

FIGURE 3
(A) Overview of the EEG electrode montage according with the international standard 10/20 highlighting the position of the 62 EEG electrodes
covering the scalp of the subjects. (B) Portion of the ECG signal (top row) and corresponding time-varying (bottom row) Information Storage within the
three intervals obtained after the segmentation of the cardiac cycle (I1 in green, I2 in red and I3 in purple).
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testing the significance of the comparisons: I1 vs. I2, I1 vs. I3, and I2
vs. I3. For both analyses, paired Student’s t-test was used and
Bonferroni correction for multiple comparisons was applied (n =
62 comparisons).

We computed also a measure of the effect size to assess the
magnitude of the differences observed among the analyzed intervals
for MEAN and STD. Denoting as μY1

and μY2
and with σ2Y1

and σ2Y2

the mean and the variance of the two equally sized distributions Y1

and Y2 obtained measuring the mean and the standard deviation of
the TV-IS across subjects, the Cohen’s d measure was computed as
(Sullivan and Feinn, 2012):

d � μY1
− μY2������������

σ2Y1
+ σ2Y2

( )/2√ . (9)

Typically a small effect size occurs for d = 0.2, whereas it is
considered large when d = 0.8 (Sullivan and Feinn, 2012). To
obtain a summary of the effect size, the values of Cohen’s d for
all the EEG electrodes for which the test was statistically significant
were averaged.

4.4 Results of real data analysis

Figure 4 shows the grand average distributions over the scalp
of the MEAN index computed over the whole cardiac cycle
(listed as G, panels A, E, I) and within each interval I1, I2 and I3

for three different values of forgetting factor. The average trends
shown by the time-varying approach when computed during G,
I1, I2 and I3 are very similar to each other, irrespective of the
value of the forgetting factor used for the estimation procedure.
The values of IS vary between 1.25 and 1.45 nats when 1 − c =
0.99 and between 1.35 and 1.50 nats when 1 − c ∈ {0.95, 0.97},
with the information content which is mainly localized in the
parietal and occipital areas with the involvement also of the
frontal area of the scalp.

Figure 5 shows the distributions over the scalp of the logarithmic
p-values obtained as a result of the statistical analyses described in
Section 4.3, for the MEAN IS index computed for each subject,
electrode and interval and for different values of the forgetting
factor. The time-varying approach with forgetting factor 1 − c ∈
{0.95, 0.97} underlines no statistical significance between pairs of
intervals. On the other hand, the use of a forgetting factor equal to
0.99 points out a diverse situation, with a large number of
statistically significant differences in the MEAN IS between pairs
of intervals. These differences are such that the MEAN IS is higher
during G than I1 and lower during G than both I2 and I3 (panel E),
and lower during I1 than I2 and I3, and during I2 than I3 (panel F).
However, these differences, though statistically significant, are very
little, as documented by the very low effect size that they produce.
Indeed, the Cohen’s d assumes an average value over the scalp that is
never greater than 0.05. When the forgetting factor is less than 0.99,
the Cohen’s d is always below 0.03, irrespective of the pairs of
intervals considered for the statistical analysis.

FIGURE 4
Grand average distributions over the scalp of the MEAN index, for each time interval, obtained by estimating time-varying IS of the EEG signals with
different values of forgetting factor (0.95-(A–D), 0.97-(E–H), 0.99-(I–L)). G indicates the computation over the whole cardiac cycle whereas I1, I2 and I3
represent each analyzed interval taken as fraction of the cardiac cycle.
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FIGURE 5
Distributions over the scalp of the logarithmic p-values obtained as a result of the statistical analysis carried out by comparing the distributions
across the 18 subjects of the MEAN time-varying IS computed with values of forgetting 1 − c ∈ {0.95, 0.97, 0.99}, in all the time windows analyzed. Given
two intervals i and j, white and black filled circles on a specific position over the scalp denote that the MEAN IS is significantly higher or lower during i and
during j, respectively.

FIGURE 6
Grand average distributions over the scalp of the STD index, for each time interval, obtained by estimating time-varying IS of the EEG signals with
different values of forgetting factor (0.95-(A–D), 0.97-(E–H), 0.99-(I–L)). G indicates the computation over the whole cardiac cycle whereas I1, I2 and I3
represent each analyzed interval taken as fraction of the cardiac cycle.
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Figure 6 shows the grand average distributions over the scalp of
the STD index computed over the whole cardiac cycle (G, panels A,
E, I) and within each interval I1, I2 and I3 for three different values of
forgetting factor. The values of STD increase while decreasing the
forgetting factor, highlighting a higher variability of the IS associated
with low forgetting factor. For all forgetting factors, the highest
fluctuations of the IS are condensed in the frontal and parieto-
occipital regions, while lower values of STD are observed in the
central-temporal regions. These regional differences are observed
for all intervals.The highest values of STD occur for the three
analyzed cases in the global interval (panels A, E, I), while the
standard deviation values become weaker moving from I1 to I3
(panels C–D, G-H, K-L). Figure 7 shows the distributions over the
scalp of the logarithmic p-values obtained as a result of the statistical
analysis carried out as described in Section 4.3 for the STD values
extracted from each subject, electrode and interval. The standard
deviation of the time-varying IS assumes a significantly higher value
over the whole scalp during G than in each specific interval (panels
A, C, E). When looking at the comparison between intervals, the
STD does not vary significantly between I1 and I2 (except for only
one electrode), while it decreases significantly moving from I1 to I3
and from I2 to I3 (panels B, D, F). The effect size measure confirms
the relevance of the changes between intervals, as it is always higher
than 1.5, independently from the value of the forgetting factor used
for the estimation procedure (except while comparing I1 vs. I2 when
d < 1 was obtained).

5 Discussion

This study aimed to introduce a novel approach to investigate
the temporal evolution of the information stored in a physiological

system. This approach exploits the RLS algorithm to estimate time-
specific IS in a non-stationary environment. Its performances in the
estimation of IS were explored in different simulation settings and
then tested on neural signals related to different phases of the cardiac
cycle to investigate brain-heart interactions.

5.1 Simulation study

The simulation study was conducted to analyze the effectiveness
of the proposed approach to estimate the time-specific IS in controlled
non-stationary conditions. To achieve this objective, we varied the
TV-AR coefficient a1,n over time using predefined square and
sinusoidal waveforms in two simulated scenarios. The estimation
procedure was repeated for three distinct values of forgetting factor
(1− c ∈ {0.95, 0.97, 0.99}) and the resulting trends were then compared
with the true theoretical values. Then, we evaluated the impact of the
forgetting factor on the estimation of IS by computing the bias, the
variance, the fall time, and the rise time for different values of 1 − c in
the interval [0.9, 0.999].

The estimation of IS using the RLS algorithm highlights its
ability to accurately track the transitions imposed by periodic
waveforms, as shown in Figure 1. This result is in agreement
with previous findings which demonstrated the accuracy, the
consistency, and the efficiency of the RLS algorithm in estimating
time-varying versions of Coherence (Möller et al., 2001), Directed
Transfer Function, Partial Directed Coherence (Astolfi et al., 2008),
and Granger Causality (Hesse et al., 2003; Milde et al., 2010) in
simulation studies. Our results demonstrate a significant impact of
the forgetting factor on bias, variance, and response time to
transitions. Bias increases with higher values of the forgetting
factor, while the latter two exhibit an opposite trend. The trends

FIGURE 7
Distributions over the scalp of the logarithmic p-values obtained as a result of the statistical analysis carried out by comparing the distributions
across the 18 subjects of the STD of the time-varying IS computed with values of forgetting 1 − c ∈ {0.95, 0.97, 0.99}, in all the time windows analyzed.
Given two intervals i and j, white and black filled circles on a specific position over the scalp denote that the STD of the IS is significantly higher and lower
during i and during j, respectively.
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shown in Figure 2 for the investigated indices indicate an
intersection within the range of 1 − c ∈ [0.97, 0.98], which
identifies a potential optimal value for the forgetting factor.
Previous studies highlighted the influence of the forgetting factor
on the estimation performance in terms of BIAS of estimation
(Möller et al., 2001; Hesse et al., 2003; Astolfi et al., 2008;
Ciochina et al., 2009; Milde et al., 2010) documenting a suitable
range for this parameter between 0.96 and 0.99. This range ensures a
proper trade-off between the response time to a transition (which
increases for low values of c) and the variance of estimate (which
increases with high values of c). It should be noted that the results
obtained in this study may vary depending on several factors, e.g.,
the number of available data samples for the estimation procedure,
the waveform utilized to modify the time-varying autoregressive
parameter a1,n, and the number of imposed transitions within the
analyzed time window. These factors can potentially influence the
estimation performance of the RLS algorithm.

5.2 Application to brain-heart interactions

The time-varying estimation of IS was firstly computed on brain
signals acquired during a resting condition and then synchronized
with the heartbeat to study brain-heart interactions. The grand
average distributions over the scalp obtained for the MEAN index
(Figure 4) indicate that the information stored in the human brain at
rest is primarily localized in the parieto-occipital areas, and this result
appears to be independent of the forgetting factor. This finding may
suggest a more regular activity of the brain promoted by the activation
of the default mode network (DMN). Previous studies in the literature
have associated the DMN activity with an increase in EEG power in
the alpha and beta frequency bands in parietal and occipital regions
(Dirlich et al., 1998; Fox and Raichle, 2007). Additionally, the scalp
maps obtained in this study are comparable with those obtained in our
previous work, where we computed a local version of IS under
stationarity assumption (Barà et al., 2023).

The similarity of the distributions across subjects for the average
values of IS within each interval suggests that the physiological
phenomena underlying the regularity of neural rhythms are
consistent throughout the cardiac cycle and are not influenced by the
CFA. In fact, we defined the intervals according to a previous definition
(Barà et al., 2023) tomitigate the influence of theCFA,which is known to
be prominent in the first and third interval (Dirlich et al., 1997).

The results of the statistical analyses conducted on the MEAN
index (Figure 5) reveal significant differences primarily observed in
the fronto-temporal and parieto-occipital brain regions. These
differences are only evident when 1 − c = 0.99. Specifically, the
findings suggest that the information stored in the brain signals is
higher during interval I2 than in intervals I1 and only occasionally G.
This implies that cardiac activity may impact the predictive
information of EEG dynamics, leading to increased regularity and
predictability, as measured by the time-varying IS. These results can be
related to previous findings suggesting that larger HEPs are localized
over the right temporal-parietal regions over the scalp, which play a
crucial role in modulating autonomic and behavioral aspects of
emotion-related arousal (Luft and Bhattacharya, 2015). However,
these comparisons produced a very low effect size (d < 0.05)
indicating that the study requires a higher number of experimental

subjects or merely that the cardiac activity does not have an influence
on brain regularity (Sullivan and Feinn, 2012; Barà et al., 2023). The
statistical analyses confirm that the results may be affected by the
forgetting factor, thus suggesting that the RLS algorithm should be
employed with multiple values of forgetting factor, as also confirmed
in previous studies (Möller et al., 2001; Astolfi et al., 2008).

The asymmetric trends of the p-values shown in Figure 5,
obtained by changing the forgetting factor, can be explained
through a methodological observation. As demonstrated in the
simulation study, the variance of the estimate increases as the
value of the forgetting factor decreases. Consequently, the variance
of the MEAN index distributions in the different intervals tends to
increase, making it more challenging to reject the null hypothesis (no
differences between the mean of the IS in the two intervals).

The grand average distributions of the STD index reveal high
variability primarily localized over the scalp areas (Figure 6), where the
information stored is higher (Figure 4). This finding is consistent with
the simulation study results (Figure 1A–C), where higher variance
values were associated with higher values of IS in the ON condition
when compared to the OFF condition. Furthermore, we note a
consistent trend where the STD decreases as the forgetting factor
increases. This trend is in line with the results obtained from the
simulation studies presented in Figure 2, where an increase in the
forgetting factor corresponded to a decrease in the estimation variance.

Another notable finding is the modulation of STD values across
the different intervals, indicating that the variability of the information
stored in the EEG signals is influenced by the course of time (Figure 6).
This result demonstrates that the STD of IS changes depending on
whether it is computed globally or within the time windows
corresponding to the different phases of the cardiac cycle, thus
confirming previous findings reported in (Barà et al., 2023).

The results of the statistical analyses conducted on the STD
parameter (Figure 7) reveal a significant decrease in STD values
when going from the first to the third interval, regardless of the
forgetting factor used for the estimation procedure. This suggests
that the cardiac pulse near the R-peak of each heartbeat serves as a
trigger and can influence the fluctuation in EEG regularity.
Moreover, the gradual reduction in variability over time in the
EEG signals indicates a diminishing impact of the heartbeat, which
may be associated with a decrease in the perturbation of the IS
measure until the occurrence of the next stimulus (Barà et al., 2023).
These findings are further supported by the effect size measure,
consistently exceeding a value of d > 1.5, regardless of the forgetting
factor indicating very high statistical significance.

The results presented in this application-oriented context
emphasize the significance of EEG regularity variability in
exploring the fundamental mechanisms of brain-heart
communication. These findings strengthen the efficacy of
employing both the mean and variability of time-varying IS,
estimated with different forgetting factor values, as a tool for
discerning the behavior of interacting physiological systems
during transitions across different states.

5.3 Further remarks and limitations

The study of the interplay between the brain and the heart could
offer a more thorough understanding of the physiological
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mechanisms that control heart rate, blood pressure, and other
cardiovascular processes, as well as helping in the identification
of biomarkers that can be predictive of cognitive decline (Ottaviani,
2018) or cardiovascular disease (Doehner et al., 2018).
Understanding brain-heart interactions has been identified in the
literature as a non-trivial task and the majority of the works debating
this topic analyzed the HEPs as a response to the cortical processing
of the heartbeat occurring in the brain and reflecting the interaction
between the heart and the brain. This potential typically occurs
around 200–500 ms after the onset of the R-wave of the ECG signal
and can be obtained through the averaging of the EEG traces across
multiple trials (Park and Blanke, 2019; Petzschner et al., 2019).
However, several studies pointed out how the amplitude and timing
of HEPs can be influenced by a variety of factors, including heart rate
variability, respiration, emotional state, and cognitive processes, thus
leading to contrasting results (Coll et al., 2021). The methodology
used to analyze the HEPs is quite different from the time-varying IS
and a direct comparison of our results with other studies which used
the HEP is difficult to be performed. Indeed, the time-varying
approach can uncover the presence of repetitive EEG patterns
tied to the heartbeat. However, when using the HEP, the
averaged trend of how the cardiac electrical stimulus flows across
the scalp can blur the presence of local regularity patterns.
Nevertheless, we found a good agreement of the results here
presented and other studies in literature using a non-parametric
cluster-based permutation technique (Schandry et al., 1986; Park
and Blanke, 2019; Coll et al., 2021) or a local version of the IS based
on stationarity assumption of the EEG signals (Barà et al., 2023). The
former identified the influence of heartbeats on neural activity at the
fronto-central electrodes and in a time interval between 300 and
600 ms after the ECG R-peak, confirming the importance of the
interval I2 as the less influenced by the CFA and more related with
the emergence of HEPs. The latter studies demonstrated that the
heartbeat is capable of evoking alterations in the information
processed by the brain activity manifested mainly through the
changes in the standard deviation of the local information
storage rather than its mean values. Further studies should focus
on an exhaustive comparison between the two approaches, highlight
similarities and differences, and to provide a comprehensive analysis
of the cortical dynamics induced by heartbeat.

Despite the above-reported advantages and potentialities of the
proposed novel approach, there are as well some limitations that
should be taken into account. First, the use of the Independent
Component Analysis (ICA) may lead to remove not only CFA but
also important information related to the cortical processing of the
heartbeat, being both generated by the same source (Park and
Blanke, 2019). One possible solution could be the application of
current-source density transformation which allows to minimize
EEG signal artifacts while preserving the ability to analyze HEPs
(Kayser and Tenke, 2015). Secondly, the analysis here reported
should be repeated in the domain of cortical sources to avoid the
well-known blurring effect of the EEG and its consequences on the
dynamical analysis of EEG data (Anzolin et al., 2019). In addition,
it is important to note that the analyses carried out in this study
were limited to the resting condition only. To gain a more
comprehensive understanding of the HEPs, it is necessary to
compare our results to those obtained during experimental
conditions where subjects engage in tasks commonly used to

study the HEP, such as the heartbeat counting task described in
(Schandry et al., 1986), or in the presence of pathological
conditions such as depression or nightmare disorder (as
investigated in (Terhaar et al., 2012)). Moreover, the statistical
comparisons among the various time intervals, in the absence of a
second experimental condition, could introduce bias into the
analysis. In this study, the time interval during which the CFA
is expected to be absent (e.g., I2) was compared with the other time
intervals in which the CFA could potentially be present. Therefore,
despite the precautionary application of Independent Component
Analysis (ICA), certain statistically significant differences in the
MEAN or STD indexes might be attributed to the presence of an
artifact.

With regard to the results obtained in this study, a further
consideration should be made. Previous works have
demonstrated that during the transition from one state to
another, the physiological network structure undergoes
consistent reorganization (Ivanov et al., 2021). Despite the
established association between dominant brain rhythms and
emergent physiological states, our understanding of the nature,
dynamics, and interaction between different physiological
systems across physiological stage transitions remains
incomplete. For instance, as shown in (Wang et al., 2019),
sleep periods exhibit numerous abrupt transitions among sleep
stages and short awakenings, with continuous fluctuations within
sleep stages triggering micro-states and brief arousals. Moreover,
it has been shown how the variability of heart rate (Sammito
et al., 2016), brain activity (Fafrowicz et al., 2019), and their
interactions (Candia-Rivera et al., 2022) can be modulated
during the day and in response to the executed task. In line
with this perspective, heart and brain activities can exhibit
fluctuations across various physiological stages in response to
the time of day, which, in turn, may affect the obtained results. In
the current study, acquisitions were conducted in the early
afternoon to ensure stability and reproducibility of
experimental conditions for all participants. Therefore, further
investigations are needed to explore brain-heart interactions to
gain a more comprehensive understanding of the complex
relationships between brain activity and heart function during
different states of consciousness.

6 Conclusion

This study presented a novel approach for measuring time-
varying information in a complex system, which can be applied
even in non-stationary conditions. The method was validated
through simulations and then applied to study brain-heart
interactions using real data. The results provided insights into
how this approach can track abrupt changes in the information
stored in a stochastic process. These changes are primarily
reflected in the evolution of the system over time, and in its
variance, which becomes higher when there is higher
information stored in the system.

The results obtained in the study of brain-heart interactions
have shown that, although the average information stored in
different phases of the cardiac cycle is comparable, there is a
modulation over-time of the local variability of the IS that could
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be used as a distinctive feature when assessing brain-heart
interactions. The proposed method, based on the recursive
identification of an AR model, can be exploited as a useful
supplementary tool for studying physiological systems where the
assumption of stationarity does not hold. However, further analyses
are envisaged to more in depth compare the results obtained in this
work with those obtained in (Barà et al., 2023) by performing a
systematic comparison between the behaviors of the local and the
time-varying approaches.

Future developments will aim at testing the proposed novel on
different biosignals in the context of network physiology, to provide
new tools to analyze over-time the information stored in
physiological (Antonacci et al., 2021a; Koutlis et al., 2021) and
non-physiological (Antonacci et al., 2021b) complex systems.
Moreover, a complete time-varying estimation of the information
processing could be provided in a network of multiple interacting
dynamical systems in the framework of information dynamics (Faes
et al., 2016). As a further step, the recently introduced topology
identification via recursive sparse online learning (Zaman et al.,
2020) will allow to broaden the approach here introduced with a
sparsity constraint (Antonacci et al., 2023), so as to track time-
varying information decomposition in network systems.
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