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Estimating interactions between physiological systems is an important challenge in

modern biomedical research. Here, we explore a new concept for quantifying information

common in two time series by cross-compressibility. Cross-compression entropy (CCE)

exploits the ZIP data compression algorithm extended to bivariate data analysis. First,

time series are transformed into symbol vectors. Symbols of the target time series are

coded by the symbols of the source series. Uncoupled and linearly coupled surrogates

were derived from cardiovascular recordings of 36 healthy controls obtained during rest

to demonstrate suitability of this method for assessing physiological coupling. CCE at rest

was compared to that of isometric handgrip exercise. Finally, spontaneous baroreflex

interaction assessed by CCEBRS was compared between 21 patients suffering from

acute schizophrenia and 21 matched controls. The CCEBRS of original time series was

significantly higher than in uncoupled surrogates in 89% of the subjects and higher than in

linearly coupled surrogates in 47% of the subjects. Handgrip exercise led to sympathetic

activation and vagal inhibition accompanied by reduced baroreflex sensitivity. CCEBRS
decreased from 0.553 ± 0.030 at rest to 0.514 ± 0.035 during exercise (p < 0.001).

In acute schizophrenia, heart rate, and blood pressure were elevated. Heart rate

variability indicated a change of sympathovagal balance. The CCEBRS of patients with

schizophrenia was reduced compared to healthy controls (0.546 ± 0.042 vs. 0.507

± 0.046, p < 0.01) and revealed a decrease of blood pressure influence on heart rate in

patients with schizophrenia. Our results indicate that CCE is suitable for the investigation

of linear and non-linear coupling in cardiovascular time series. CCE can quantify causal

interactions in short, noisy and non-stationary physiological time series.

Keywords: compression, non-linear dynamics, entropy, symbolization, schizophrenia, handgrip, heart rate, blood

pressure

INTRODUCTION

One of the most challenging problems in biomedical research is to capture relationships between
different physiological subsystems. For example, alterations of the dynamic modulation of heart
rate have been found in patients suffering from various diseases (Voss et al., 1995, 1999; Bär et al.,
2007b). Revealing possible causes of these pathological changes is of increasing importance for
evaluating new therapeutic or diagnostic approaches.
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Heart rate and blood pressure are regulated via numerous
neural and hormonal feedback mechanisms to respond to
changing environments. Various types of pressure- and
chemoreceptors collect information from different subsystems
of the body. Thus, regulatory interdependencies are rather
complex and non-linear (Bär et al., 2007a; Porta et al., 2009). The
baroreflex is one of the most powerful mechanisms of short-term
heart rate modulation. Pressure receptors detect changes of blood
pressure and initiate adaptation of cardiac and vascular function.
Immediate influences on heart rate are vagally mediated (Voss
et al., 2009). The sympathetic system is also involved in the
baroreflex response with an impact on vessel tone, contractility
of the myocardium, etc. (Rudas et al., 1999). Thus, the baroreflex
can act on various time scales with considerable different delays.
Baroreflex sensitivity (BRS) has been used to relate heart rate and
blood pressure changes associated with a typical spontaneous
baroreflex pattern in a linear fashion.

Cardiac morbidity and mortality is increased in patients
with schizophrenia (Ifteni et al., 2014), but underlying causes
are not fully understood. In acute schizophrenia, changes in
heart rate regulation have been reported in numerous studies
(Bär et al., 2005a, 2006, 2007b,c, 2008b; Hingorani et al.,
2012). Pathologically altered cardiac modulation most probably
contributes to a higher vulnerability to arrhythmias and other
severe cardiac events, resulting in an overall elevated cardiac
mortality (Bär et al., 2005a, 2007c, 2008b; Ifteni et al., 2014).
Besides the vagal influence of breathing on heart rate (respiratory
sinus arrhythmia), BRS was demonstrated to be impaired in
schizophrenia (Bär et al., 2005a, 2007b, 2008a; Berger et al.,
2010; Schulz et al., 2013b, 2014, 2015). Recently, attempts have
been made to investigate non-linear properties of cardiovascular
function in these patients (Bär et al., 2007b; Schulz et al., 2013b,
2014).

There are various concepts for assessing interaction or
coupling in cardiovascular data (Schulz et al., 2013a). According
to the definition of causality provided by Wiener, a causal
influence on a variable (target) is present, if its forecast improves
by knowing another variable (source; Wiener, 1956). Many
approaches investigating directional influence rely to some
extend on Wiener’s principle (Hlavácková-Schindler et al., 2007;
Schulz et al., 2013a). First, Granger exploited autoregressive
models to evaluate whether predictability of the target’s future
increases by taking the source signal into account (Granger,
1969; Bressler and Seth, 2011; Faes et al., 2011). Non-linearities
and non-stationarities complicate the investigation of real
physiological data and can lead to an inadequate estimation of
Granger causality (Granger and Newbold, 1974; Bressler and
Seth, 2011). Concepts borrowed from information theory have
gained importance for describing the variability of physiological
time series and to estimate their interrelation (Voss et al.,
1995, 2009; Schreiber, 2000; Gourévitch et al., 2006; Hlavácková-
Schindler et al., 2007; Hlavácková-Schindler, 2011; Javorka et al.,
2011).

Here, we introduce cross-compression entropy (CCE), that
incorporates the principle idea of causality by adaption of a data
compression technique based on symbol transformation. CCE
exploits a popular string compression algorithm implemented

in common tools, like zip-archiving (Ziv and Lempel, 1977;
Baumert et al., 2004). Its application to biomedical data was
first proposed by Nagarajan (2002). The compressibility of heart
rate as a measure of short-term modulation allows forecasting
of arrhythmias and risk stratification (Baumert et al., 2004;
Truebner et al., 2006; Voss et al., 2008), and has also been
investigated in healthy subjects and non-cardiac diseases (Bär
et al., 2007b, 2009, 2012; Javorka et al., 2008; Schulz et al., 2010).
Compression entropy estimates to which extent a time series
can be reproduced by its own past by comparing symbols in a
lookahead buffer with recently encoded symbols. We modified
this approach to analyze common symbol sequences in bivariate
data sets. If a symbol pattern in the target’s lookahead buffer
occurs also in the memory of the source series but not in
the target’s own memory, the target can be represented by
fewer symbols knowing the source series. This compression
improvement can be interpreted as a reduction of uncertainty
about the target’s future.

The main objective of this study was to investigate whether
CCE is capable of quantifying baroreflex sensitivity. Therefore,
we synthesized surrogate data from cardiovascular data recorded
during rest. Additionally, we analyzed the effect of isometric
handgrip exercise on CCE in healthy subjects and compared
patients with acute schizophrenia to healthy subjects at rest.

MATERIALS AND METHODS

Data Recording and Preprocessing
Study 1: Healthy Controls
We conducted cardiovascular recordings in 38 right-handed
healthy volunteers at rest and during isometric exercise in supine
position. First, the maximum voluntary contraction (MVC) was
estimated. Subjects were asked to press a hand clenchmanometer
(handgrip, TSD121B, BIOPAC Systems Inc., Goleta, CA, USA)
with the maximum affordable power for 30 s. The highest
force achieved in three attempts was stored as individual MVC
(Iellamo et al., 1999). After 15min baseline recording at rest,
subjects performed an isometric handgripmaneuver maintaining
25% of MVC over 5min. Target and actual power were displayed
via a monitor fixed over the couch. Electrocardiogram (ECG) and
non-invasive blood pressure were recorded simultaneously by the
MP150 system (BIOPAC Systems Inc., Goleta, CA, USA). Both
signals were band pass filtered from 0.05 to 35Hz and digitized at
1,000Hz. This hardware filter setting is recommended by Biopac
Systems (e.g., in application notes 109 and 233, available at www.
biopac.com) in order to reduce high frequency distortions (e.g.,
power line frequency of 50Hz) and baseline drifts. Heart beat
intervals (BBI series) were extracted from the ECG, checked by
manual inspection and preprocessed by adaptive filtering (Wessel
et al., 2000). Bivariate cardiovascular data sets were built from
BBI and systolic blood pressure values (SBP) embedded in each
heart cycle. The data of two participants was excluded from
the analysis due to movement artifacts in the ECG. The final
group comprised 36 subjects (21 females, 15 males, age: 25.7 ±

4.7 years, BMI: 22.8 ± 3.1). To allow participants to adjust to
the environment, we excluded the first 5min of the recording
from the analysis. The last 4min of the handgrip exercise were
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extracted and compared to rest.Wewanted to avoid any potential
influence of different data sizes in both conditions on CCE
estimation. Thus, the same number of heart cycles was extracted
from the end of the resting state recording as analyzed during
exercise (average length of time series was N0 = 292 ± 43
samples).

Study 2: Acute Schizophrenia
ECG and non-invasive blood pressure were recorded in 21
patients with acute schizophrenia (9 females, 12 males, age:
31.5 ± 2.3 years, BMI: 24.5 ± 1.0) and 21 matched healthy
controls (9 females, 12 males, age: 32.1 ± 2.6 years, BMI: 23.8
± 0.9). Examinations were conducted at rest for 30 min in
supine position in a quiet room. The Task Force Monitor system
digitized ECG at 1,000Hz and automatically extracted heart beats
and blood pressure values from the raw signals. Resulting time
series were preprocessed by adaptive filtering (Wessel et al.,
2000). We refer to Bär et al. for details on data acquisition and
patients’ characteristics (Bär et al., 2007a).

Both studies were approved by the Ethics Committee of the
Medical Faculty of the Friedrich-Schiller-University Jena (Ethik-
Kommission). All participants gave their informed written
consent in accordance with the Declaration of Helsinki. Neither
patients nor controls suffered from any medical or additional
psychiatric disease, and none of them was receiving any
interfering medication that might affect cardiac autonomic
function. Diagnosis of paranoid schizophrenia was established by
a staff psychiatrist when symptoms of patients whowere admitted
to our inpatient wards fulfilled DSM-IV criteria (Diagnostic and
Statistical Manual of Mental Disorders, 4th edition, published by
the American Psychiatric Association). Healthy control subjects
were checked for neurological, psychiatric or other clinically
significant disorders.

Cross-Compression Entropy (CCE)
The basic steps to estimate CCE are illustrated in Figure 1A. In
the preprocessing procedure, characteristic values were extracted
from the recorded biosignals (Figure 1A, I Feature extraction).
The input time series were transformed into sequences of
symbols (e.g., xi to Xi). Recently, Schulz et al. proposed an
appropriate symbolization of cardiovascular data applying the
thresholds known from the dual sequence method, TBBI =

5 ms and TSBP = 1 mmHg (Malberg et al., 1999; Voss
et al., 1999; Schulz et al., 2013b). We adopted these thresholds
Tx transforming the input into three symbols in order to
differentiate distinct tachy- and brady-cardiac influences form
minor heart rate fluctuations.

Xi =







2; xi − xi−1 > Tx

1; |xi − xi−1| ≤ Tx

0; xi − xi−1 < −Tx

The original compression procedure by Ziv and Lempel is
extensively described elsewhere (Ziv and Lempel, 1977; Baumert
et al., 2004). In the following, we briefly outline the idea modified
to analyze physiological signals (Nagarajan, 2002; Baumert et al.,
2004, 2005b). The encoding process is conducted in two adjacent
time windows shifted along the input. One filled with already
encoded symbols (memory) and one covering the current data

point and subsequent symbols (buffer). If the current substring
to be encoded (stored in the buffer) appears in the memory, it
can be skipped storing just the start and length of the redundant
memory string. Thus, the number of iterations needed to encode
the input can be reduced. Applying this procedure, self-similar
input strings can by compressed without losing information.

In the bivariate approach, the target series Yi is compressed
regarding the symbols of the source series X(i) (see Figure 1A,
III Cross-compression). In addition to the target buffer and
memory, a source memory window is defined. In Figure 1, all
windows have a length of three samples. Target symbols in the
buffer that also occur in the source memory can be skipped to
reduce the length of the compressed target series. If there is a
redundant substring, of the same length or longer, included in
the target memory, the matching source string is ignored because
compressibility is not improved by taking the source signal into
account. In this way, cross-compression is conditioned on self-
compressibility. The application of this procedure to an example
symbol series is illustrated and described in Figure 1B. In the
following, subsequences (e.g., of the input seriesXi) from element
k to l are denoted as Xl

k
=

[

Xk,Xk+1, ...,Xl

]

.

The target buffer window covers By symbols Y
p+By
p , starting at

the current data point Yp (coding position). These target symbols
are encoded using the symbols of the source memory window

X
p−1
p−Mx

with length Mx. The longest subseries X
p−Mx+v+n−2
p−Mx+v−1 ,

lasting n source symbols starting at element v, that matches the

target sequence Y
p+n−1
p is extracted. Instead of encoding the

whole target string, the starting point v and the length n of its
equivalent in the source memory and successor Xp+n is stored.
Hence, n target symbols can be passed and the new coding
position is Xp+n+1.

If there is a substring Y
p−My+k+l−2

p−My+k−1
with a length of l ≥ n

in the target memory that matches Y
p+l−1
p , the target symbols

were compressed equally or even more efficiently by the target’s
own memory (self-compression). In this situation, the matching

source symbols were ignored (n = 0) and the next symbol to be
encoded was Xp+1. The compression procedure can be described
by the following stepwise instructions:

Step 1: Define analysis windows initially.
Step 2: Find longest substring (of length n) in the source

memory that matches the target buffer string.
If n ≤ 1: Store v (v = 0), n and Y(p+1); shift all windows by 1

sample and go to step2.
If n > 1: Proceed with step 3.
Step 3: Find longest substring (of length l) in the target memory

that matches the target buffer string.
If l ≥ n: Store v (v= 0), n (n= 0) and Y(p+1), shift all windows

by 1 sample and go to step 2.
If l < n: Store v, n andY(p+n), shift all windows by n+1 samples

and go to step 2.

We defined CCEX→Y as the proportion of iterations that can
be saved compressing Yi by Xi with respect to the original

length of Yi. Thus, CCE rises with increasing amount of
information about the target series recurring in the source
series. Whenever a redundant substring, of length n > 1 and
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FIGURE 1 | Schematic illustration of cross-compression entropy (CCE) estimation. (A) Overview of the three basic steps to calculate CCE. I. Feature

extraction: Beat-to-beat intervals BBI and systolic blood pressure SBP were extracted from the recorded signals (ecg, electrocardiogram; bp, blood pressure).

II. Symbolization: Time series were transformed to symbol series Xi and Yi . III. Cross-compression: Symbols of Yi in the target window are encoded using the symbols

of Xi in the source window. (B) Compression procedure of example symbol series: in step j, a substring [0;1] in the target buffer YB = [0;1;2] occurs in the source

memory XM = [2;0;1] beginning at second place (v = 1) with a length of two symbols (n = 2). Redundant symbols (written in bold) can be skipped, storing start v,

length n, and the next symbol Y (n+p). In step j+1, a target substring YB = [1;2;0] of two symbols [1;2] occurs in the source memory XM = [1;2;1]. Because a string of

the same length that matches buffer symbols, is included in the target memory, compression is not enhanced by considering the source. Therefore, the redundant

strings are ignored (bold and red symbols) and the next symbol stored is Y (p+1). In the last step (j+2), no string with n > 1 was found and all windows were shifted

forth in time by one sample Y (p+1).

n > l, is found in the source memory and target buffer, the
number of steps needed to encode the target (Ncom) is reduced
by n. Assuming the input Yi of length N0 is compressed
by Xi in Ncom iterations, CCE is calculated by the equation
below:

CCEX→Y =
N0 − Ncom

N0

CCE is dependent on the length of the target memory window
(My), the target buffer window (By), and the source memory
window (Mx). We defined both memory windows to have
the same length (My = Mx) and reported only Mx in the
following analyses. Additionally, we introduced a shift of the
source window forth in time, overlap τ , to allow temporally
overlapping sequences in both windows. Possible starting points
v of matching sequences in the source window were restricted to

Frontiers in Physiology | www.frontiersin.org 4 May 2017 | Volume 8 | Article 282

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Schumann et al. Cross-Compression Entropy

v < Mx−τ+1. Thus, these sequences found in the target window
cannot temporal precede the respective pattern in the source
window. CCE assesses redundant information with several time
lags. If overlap τ > 0, all delays d with 0 ≤ d ≤Mx−τ contribute
to CCE estimation (1 ≤ d ≤Mx for τ = 0).

To estimate baroreflex modulation of heart rate induced by
changes of blood pressure, we defined BBI as the target signal
Yi and SBP as the source signal Xi. Considering the established
methods, e.g., joint symbolic dynamics JSD and the dual sequence
method (see below), baroreflex activity is likely expressed by
patterns of at least three consecutive, symmetric changes of BBI
and SBP. Delays from zero to three heart cycles were found to
be physiologically meaningful (Voss et al., 1999). We derived one
preset from this prior knowledge and calculated CCEBRS using
Mx = 4, By = 4, and τ = 3. CCEBRS captures redundant symbol
strings of lengths up to four symbols and delays from zero and
one sample. In study 1, we additionally analyzed the influence of
estimation settings on CCE results for Mx = {3,4,5,7,10}, By =

{3,4,5,7,10}, and τ = {0,1,3}.

Baroreflex Sensitivity (BRS)
Sensitivity of the baroreflex was quantified using the dual
sequence method (DSM; Malberg et al., 1999). The pattern of
spontaneous bradycardiac baroreflex regulation was defined as
three consecutive BBI and SBP synchronously increasing by at
least 5 ms and 1 mmHg, respectively. Linear regression was
performed on the three SBP-BBI-pairs of each sequence. The
mean slope was used as index of baroreflex sensitivity (BRSb)
given in ms/mmHg. Besides this classical bradycardiac influence,
a tachycardiac effect can be evaluated analyzing patterns of
decreasing SBP and BBI values (BRSt; Voss et al., 1999; Bär et al.,
2007a).

Joint Symbolic Dynamics (JSD)
The methodology of joint symbolic dynamics for analysis of
cardiovascular coupling was introduced by Baumert et al.
(2002). The time series of heart beat intervals and systolic
blood pressure values were transformed into symbol sequences
differentiating positive and non-positive changes. Subsequences
of three symbols were extracted (words). Relative frequencies of
joint occurrences of these words were represented by an 8 ×

8 word distribution matrix. The probabilities of all symmetric
and diametric word types were extracted from the matrix by
summing up all diagonal (JSDsym) and counter diagonal elements
(JSDdiam), respectively (Baumert et al., 2005a). JSDsym can be
interpreted as proportion of baroreflex-related patterns on the
whole recording. The algorithm was applied to cardiovascular
data in various studies (Baumert et al., 2005b, 2013a;Wessel et al.,
2009; Suhrbier et al., 2010).

Standard Indices of Heart Rate Variability
and Blood Pressure
Mean heart rate (HR), systolic and diastolic blood pressure (SBP,
DBP) were estimated by averaging the respective time series.
Standard deviation of heart beat intervals (sdNN), root mean
square of successive interval differences (RMSSD), and ratio of
low to high frequency power (LF/HF) were calculated to evaluate

global and short-term HR variability, and cardiac sympathovagal
balance (Malik et al., 1996). Univariate compression entropy
(HcBBI) was estimated following the original algorithm described
by Baumert with recommended window lengths w = 7, b = 3
(Baumert et al., 2004; Truebner et al., 2006). Additionally, we
calculated compression entropy of BBI transformed by Equation
(1) into three symbols (HcY) according to CCE preprocessing
with w= 7, b= 3.

Surrogate Data
The surrogate data approach (Theiler et al., 1992; Schreiber
and Schmitz, 2000) was applied to test the significance and the
non-linear nature of CCE of BBI by SBP (Schulz et al., 2013b).

(I) Uncoupled isospectral isodistribution pairs (sI) from the
original BBI and SBP time series were created to preserve
linear properties to test for coupling. Surrogate data sI have
the same frequency distribution and power spectra as the
original pairs of signals, but phases were taken randomly from
uniform distribution (0–2π). Inverse amplitude-adjusted
Fourier transform (IAAFT) was used to preserve distribution
of the original series and approximate the original power
spectrum.

(II) Isospectral isodistribution pairs (sII) from the original BBI
and SBP time series were created preserving cross-correlation
to test for coupling-non-linearity. These surrogate data
preserved the individual BBI and SBP spectra (IAAFT) as
well as the magnitude of their cross-spectrum obtained by
adding the same random number to the Fourier phases of the
two series. Thus, the linear coupling was maintained, whereas
non-linear interactions were destroyed (Nollo et al., 2002).

Data Analysis
Synthesized data was used to evaluate if CCE captures the
physiological cardiovascular coupling (sI) and to which extent
this coupling is non-linear (sII). Twenty independent surrogate
data sets of type sI and sII were derived from each of the resting
state time series in study 1 (n= 36).

Assuming the physiological coupling of original
cardiovascular time series to be destroyed in surrogates sI,
we expect smaller CCE results in the surrogate data. In
accordance to the probability of error p = 5%, we considered
CCE of one subject “significant,” i.e., confirming CCE to reflect
true interaction, if at most one of the surrogates revealed a higher
CCE than the original data. In the same way, we tested in how
many subjects CCE revealed significant non-linear coupling
using surrogates sII.

Wilcoxon signed rank test for paired samples was conducted
for comparison of parameters estimated during rest and exercise.
Statistical significance was assumed at commonly used p-value
levels: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

In study 2, independent samples of healthy controls and
patients suffering from acute schizophrenia were compared by
non-parametric rank sum test.

All analyses were performed in MATLAB (version 2012a, The
Mathworks Inc., Natick, MA, USA) and SPSS (version 23, IBM,
Chicago, IL, USA). Descriptive statistics are reported in mean
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values ± standard deviation. Linear dependencies were analyzed
by spearman correlation coefficient r and are reported together
with asterisks representing the estimated p-values (∗p < 0.05;
∗∗p < 0.01).

RESULTS

Study 1: Healthy Controls
First, CCE was tested to reveal physiological coupling by
comparing resting state cardiovascular recordings to uncoupled
surrogate data sets. In Figure 2, the proportion psI of subjects
with significant CCE is presented. The results were explicitly
dependent on the parameters Mx, By, and τ . The overlap seems
to influence the results systematically by limiting the maximum
amount of significant CCE. For τ = 0 (light gray bars in Figure 2)
the highest proportion psI = 36% was calculated using Mx = 3
and By = 4. There was no obvious linear dependency of psI on the
two window lengthsMx, By. With an overlap of one sample (τ =

1, dark gray bars in Figure 2), the highest amount of significant
results psI = 56% was estimated applying Mx = 3 together with
By = 5. The percentage seemed not to be proportional to either
of the window sizes Mx, By. Using τ = 3, psI was maximized to
97% in combination withMx = 3, irrespective of the choice of By
(black bars in Figure 2). With an overlap τ = 3, high psI-values
(psI ≥ 81%) were found when the window sizes were equal (Mx

= By). Enlarging the target window to By > Mx did not affect
psI because the buffer string was cut to the size of the memory
window (nmax =Mx). Thus, in the following analyses, the length
of the target window was limited to By ≤Mx.

The parameter most influential on psI appeared to be overlap
τ . It was adjusted to three samples (τ = 3) to maximize the
number of significant CCEs compared to uncoupled surrogates.
Numerical values of the results depicted in Figure 2 (black bars)
are reported in Table 1 (left column). In the right column of

FIGURE 2 | Proportion psI of subjects with significant

cross-compression entropy (CCE) results compared to uncoupled

surrogates (sI). The length of source memory window Mx (equal to target

memory window length My ), the length of target window By and the overlap τ

(gray shades of bars) were varied.

Table 1 the proportion psII of significant CCE results compared
to linearly coupled surrogates sII are listed (τ = 3).

Compared to uncoupled surrogates sI, the highest amount of
significant CCE results of psI = 97% was achieved using window
lengths of Mx = By = 3 and an overlap of τ = 3. This is in
accordance to JSD analyses of synchronous patterns consisting
of three symbols. Using these settings, original CCE exceeded
linearly coupled surrogates in psII = 64% of the subjects, which
was the maximum in sII-analysis. The a priori determined preset
(Mx = 4, By = 4, and τ = 3) revealed the second highest
proportion for each of the two types of surrogate data (psI = 89%,
psII = 47%, bold elements in Table 1).

During exercise condition, mean heart rate and both blood
pressure indices increased significantly (see Table 2). Parameters
of heart rate variability were reduced with RMSSD and HcBBI
at a high significance level (p < 0.001). Baroreflex sensitivity
with bradycardiac and tachycardiac influence decreased during
handgrip maneuver (BRSb: p < 0.05, BRSt: p < 0.001).
JSDsym and JSDdiam were not changed significantly by exercise
intervention. CCEBRS fell from 0.553 at rest to 0.514 (p < 0.001).
Compression entropy of symbolized heart beat intervals HcY was
higher during handgrip (p < 0.001).

At rest, CCEBRS was exclusively correlated to JSDsym

(r = 0.43∗∗). During handgrip, CCEBRS was correlated positively
to RMSSD (0.54∗∗), BRSb (0.44∗∗), and BRSt (0.36∗) and
negatively to HR (r = −0.63∗) and LF/HF (r = −0.60∗∗). The
relation of CCEBRS to JSDsym remained during exercise (JSDsym:
r = 0.43∗∗).

In Table 3, differences of CCE results at rest vs. exercise are
depicted. All parameter settings revealed significant decreases of
CCE during exercise. Using the CCEBRS-presets Mx = By = 4
(and τ = 3) the mean decrease was second largest and highly
significant (−0.038± 0.042, p < 0.001).

Study 2: Acute Schizophrenia
As depicted in Table 4, patients with acute schizophrenia
had an elevated mean heart rate (p < 0.001) and blood
pressure (p < 0.01). Heart rate variability was reduced in

TABLE 1 | Proportion of subjects with significant cross-compression

entropy (CCE) results compared to uncoupled sI and linearly coupled

surrogates sII.

Uncoupled surrogate Linearly coupled surrogate

data (sI) data (sII)

By\Mx 10 7 5 4 3 By\Mx 10 7 5 4 3

3 19% 50% 22% 78% 97% 3 14% 22% 3% 33% 64%

4 14% 39% 58% 89% 4 6% 17% 22% 47%

5 14% 25% 83% 5 14% 8% 42%

7 19% 86% 7 6% 44%

10 81% 10 53%

Lengths of the source memory window (with My = Mx ) and the target window By varied

from 3 to 10 samples. The overlap was adjusted to τ = 3 samples. For By > Mx CCE

results were not affected by increase of By . Bold values correspond to the a priori defined

parameter set (CCEBRS).
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patients (sdNN and HcBBI, p < 0.01). Increased LF/HF
ratio (p < 0.05) and diminished RMSSD (p < 0.001)
indicated a sympathetic predominance of heart rate modulation.
In contrast, compression entropy of symbolized heart beat
intervals (HcY) was almost identical in both groups (0.252
vs. 0.253).

All baroreflex indices revealed impaired cardiovascular
regulation in patients with schizophrenia. Bradycardiac
baroreflex sensitivity in controls was twice as high when
compared to controls (p < 0.001). Indices of joint symbolic
dynamics were shifted from symmetric to diametric patterns
in schizophrenia, demonstrating a decreased occurrence of
baroreflex patterns (p < 0.001). CCEBRS indicated a loss of
compressibility of heart rate by blood pressure in patients
(p < 0.01).

TABLE 2 | Results of signed rank test of autonomic indices during rest vs.

exercise condition.

Parameter Resting state Exercise Significance

CARDIOVASCULAR INDICES

HR (min−1) 64.54 ± 9.59 73.73 ± 10.88 ***

LF/HF 1.58 ± 1.73 2.13 ± 2.22 n.s.

sdNN (ms) 65.87 ± 23.24 60.61 ± 28.04 n.s.

RMSSD (ms) 58.85 ± 27.12 41.40 ± 24.41 ***

HcBBI 0.903 ± 0.054 0.875 ± 0.036 *

HcY 0.258 ± 0.001 0.269 ± 0.003 ***

SBP (mmHg) 112.31 ± 12.09 120.56 ± 15.03 ***

DBP (mmHg) 69.80 ± 9.52 80.23 ± 10.97 ***

BAROREFLEX INDICES

BRSb (ms/mmHg) 19.39 ± 10.72 14.93 ± 10.32 *

BRSt (ms/mmHg) 19.67 ± 10.10 13.56 ± 8.43 ***

JSDsym 0.241 ± 0.082 0.216 ± 0.088 n.s.

JSDdiam 0.056 ± 0.039 0.061 ± 0.031 n.s.

CCEBRS 0.553 ± 0.030 0.514 ± 0.035 ***

Results given in mean ± standard deviation. HR, heart rate; sdNN, standard deviation

of normal heart beat intervals; RMSSD, root mean square of successive heart beat

intervals; SBP, systolic blood pressure; DBP, diastolic blood pressure; BRSb, bradycardiac

baroreflex sensitivity; BRSt, tachycardiac baroreflex sensitivity; JSDsym, joint symbolic

dynamics symmetric patterns; JSDdiam, joint symbolic dynamics diametric patterns;

CCEBRS, cross-compression entropy (Mx = My = 4, By = 4 and τ = 3); HcBBI,

compression entropy (w= 3, t= 7, no overlap); HcY , compression entropy of symbolized

heart rate (w = 3, t = 7, no overlap). *p < 0.05; ***p < 0.001.

In Figure 3, the distribution of the delay d and length
n of redundant symbol strings during cross-compression are
depicted. Starting position v was converted into the respective
delay d = τ−Mx+v. In both groups, primarily synchronous
patterns (d = 0) contributed to CCE. The length of symbol
patterns n varied from 0–4 samples, where n = 0 means that
either no symbols occurred in both the source memory and target
buffer, or a redundant string of at least the same length was
found in the target memory (see Figure 1B). Single recurring
symbols (n= 1) were found most frequently, but only substrings
with n ≥ 2 improve cross-compression effectively. The average
probability to find redundant strings of length n = 0 and n = 4
was higher in patients with schizophrenia.

In the group of healthy controls, CCEBRS was correlated to
both JSD parameters (JSDsym r = 0.66∗∗, JSDdiam r =−0.47∗).

TABLE 4 | Results of rank sum test of autonomic indices in healthy

subjects vs. acute schizophrenia.

Parameter Healthy controls Schizophrenia Significance

CARDIOVASCULAR INDICES

HR (min−1) 65.17 ± 5.29 81.18 ± 11.89 ***

LF/HF 1.29 ± 1.23 2.31 ± 2.20 *

sdNN (ms) 85.52 ± 31.59 56.76 ± 25.77 **

RMSSD (ms) 58.97 ± 25.77 31.1 ± 18.18 ***

HcBBI 0.798 ± 0.060 0.728 ± 0.102 **

HcY 0.253 ± 0.001 0.252 ± 0.001 n.s.

SBP (mmHg) 120.48 ± 10.34 134.66 ± 14.09 **

DBP (mmHg) 73.64 ± 8.28 84.08 ± 11.67 **

BAROREFLEX INDICES

BRSb (ms/mmHg) 22.47 ± 12.02 11.15 ± 9.30 ***

BRSt (ms/mmHg) 18.41 ± 9.45 13.84 ± 7.26 ***

JSDsym 0.437 ± 0.071 0.262 ± 0.106 ***

JSDdiam 0.016 ± 0.012 0.056 ± 0.038 ***

CCEBRS 0.546 ± 0.042 0.507 ± 0.046 **

Results given in mean ± standard deviation. HR, heart rate; sdNN, standard deviation

of normal heart beat intervals; RMSSD, root mean square of successive heart beat

intervals; SBP, systolic blood pressure; DBP, diastolic blood pressure; BRSb, bradycardiac

baroreflex sensitivity; BRSt, tachycardiac baroreflex sensitivity; JSDsym, joint symbolic

dynamics symmetric patterns; JSDdiam, joint symbolic dynamics diametric patterns;

CCEBRS, cross-compression entropy (Mx = My = 4, By = 4 and τ = 3); HcBBI,

compression entropy (w= 3, t= 7, no overlap), HcY , compression entropy of symbolized

heart rate (w = 3, t = 7, no overlap). *p < 0.05; **p < 0.01, ***p < 0.001.

TABLE 3 | CCE differences at rest vs. exercise.

ByM̃x 10 7 5 4 3

3 −0.014 ± 0.027** −0.012 ± 0.029* −0.012 ± 0.026* −0.017 ± 0.028** −0.038 ± 0.041***

4 −0.015 ± 0.026** −0.017 ± 0.029** −0.015 ± 0.03* −0.038 ± 0.042***

5 −0.009 ± 0.022* −0.027 ± 0.035*** −0.039 ± 0.041***

7 −0.029 ± 0.031*** −0.037 ± 0.04***

10 −0.037 ± 0.045***

Results are given in mean values ± standard deviation. Statistical significance was computed by signed rank test. Asterisks were attached to significant differences (*p < 0.05; **p <

0.01, ***p < 0.001). The target memory window has the same size as the source memory window (My = Mx ). Previously defined CCEBRS with Mx = My = 4, By = 4 and τ = 3 was

written in bold letters.
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FIGURE 3 | Distribution of delay d (A) and length n (B) of redundant

symbol patterns during cross-compression (standard deviation indicated

by error bars, white: controls, gray: patients). (A) Percentage frequency h of

delays d being zero and minus one sample. (B) Percentage frequency h of

lengths n being 0–4 samples.

In patients with acute schizophrenia, cardiac indices HR
(r =−0.50∗∗) as well as symbolic metrics JSDsym (r = 0.53∗∗)
and JSDdiam (r =−0.61∗∗) correlated to CCEBRS.

DISCUSSION

The main objective of this work was to introduce CCE
and to evaluate whether it can quantify the strength of
baroreflex influence on heart rate. We defined a preset
for CCEBRS estimation based on previous assumptions, and
investigated CCE’s dependence on various parameter settings.
Surrogate analysis revealed that CCEBRS captures physiologically
meaningful cardiovascular coupling that is both linear and
non-linear. CCEBRS was significantly reduced in controls during
exercise and in patients with acute schizophrenia at rest when
compared to healthy subjects at rest.

In study 1, we investigated the influence of parameter settings
on CCE estimation. A priori, one preset was determined for
the assessment of baroreflex interaction. CCEBRS focuses on a
rapid coupling mechanism, as we use short window lengths
and a large overlap. Interaction delays defined by that preset
were zero and one heart cycle. Thus, it can be assumed that
only parasympathetic influence contributes to CCEBRS. Surrogate
analysis sI with varying window sizes Mx and By confirmed
that cardiovascular coupling occurs on different time scales.
Interaction delays covered by CCE analysis, ranged from zero to
seven samples and length of redundant information ranged from
2 to 10 samples.

The comparison to linearly coupled surrogates sII indicated
that especially instantaneous interaction, i.e., when the source
window was as small as the overlap (Mx = τ ), is of non-linear
nature. Regulatory mechanisms of this temporal dynamic react
promptly to sudden environmental changes. Heart rate (HR)

itself has an immediate influence on blood pressure. Several
feedback loops are involved in HR modulation. For example,
respiratory sinus arrhythmia acts on HR due to changes of
breathing. This, in turn, affects blood pressure. Thus, respiratory
rhythms can be found in the cardiovascular system as well. The
variety of interacting physiological mechanisms and the need
for immediate responses may explain the non-linear nature of
short-term coupling.

During exercise, the metaboreflex was initiated by metabolites
accumulated in the contracting muscles (Goodwin et al., 1972).
The elevation of efferent sympathetic nerve activity leads to
an increase of systemic vessel tone and has inotropic and
chronotropic impacts on the heart (Boushel, 2010). The central
command is supposed to facilitate the cardiac sympathetic
activation by parasympathetic withdrawal (Boushel, 2010; Fisher
et al., 2010). CCE decrease using all calculation settings
corroborates changes of cardiovascular coupling across all
resulting time scales (Iellamo et al., 1999; Fisher et al., 2010).
We found an increase of mean HR, systolic and diastolic blood
pressure and diminished short-term HR fluctuations (RMSSD
and HcBBI). These findings indicate cardiovascular decoupling
mediated through the sympathetic and parasympathetic system
in order to allow concurrent blood pressure and HR increase.

In schizophrenia, we found a similar shift in sympathovagal
balance and a reduction of cardiovascular coupling. HR and
blood pressure were increased drastically. In the same line of
thought, cardiovascular decoupling may be responsible for a
missing mutual compensation of HR and blood pressure. The
loss of sensitivity of baroreceptors might contribute to the
pathologically impaired regulation. Similar to physical stress,
mental load has been demonstrated to cause vagal inhibition as
an adaptational mechanism in healthy controls (Bär et al., 2007a).
Mental stress in acute schizophrenia might cause autonomic
changes, like cardiovascular decoupling and, thus, tachycardia
and hypertension. Indications of pathological changes of central
regulation in schizophrenia include reduced activity of themedial
prefrontal cortex. A lack of inhibitory control over amygdala-
mediated responses to arousal might cause central suppression
of vagal cardiovascular modulation (Bär et al., 2007a).

JSD and CCE both evaluate the occurrence of baroreflex
related patterns in heart rate and systolic blood pressure symbol
series. The JSD outcome is a word distribution matrix that
allows one to extract the synchronous occurrence of specific
symbol patterns (e.g., symmetric and diametric), whereas CCE
estimates a causal influence of SBP on BBI by evaluating cross-
compressibility. In contrast, BRS quantifies the mean magnitude
of the baroreflex reaction no matter how often the reflex is
initiated throughout the recording. In healthy subjects at rest,
CCE and JSD were correlated to one another, and neither was
correlated to any HRV index. The symbolic measures are less
sensitive to the amplitude of heart rate fluctuations. In resting
condition, variability of heart rate might not be driven primarily
by the influence of blood pressure, but rather by respiratory
activity. In patients as well as controls during exercise, CCEBRS
correlated positively to vagal indices (RMSSD, BRSb, BRSt) and
negatively to markers dominated by the sympathetic system
(HR, LF/HF). This relationship supports our assumption that
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CCEBRS measures vagal baroreflex control that is inhibited by
sympathetic cardiac activity. Relevant literature suggests, that in
addition to the baroreflex, the impact of breathing on HR was
decreased in patients (Peupelmann et al., 2009; Schulz et al.,
2015) and during exercise (Goodwin et al., 1972; Iellamo et al.,
1999). In these conditions, the contribution of the baroreflex
to HR regulation seems to be different from rest. We failed to
find these correlations in either JSD index. This might be one
reason why both JSD measures were not changed significantly
during exercise. In contrast, CCE reflected the suppression of
baroreflex regulation initiated by the metaboreflex. Considering
the absence of correlation to compression entropy of symbolized
heart beat intervals (HcY), we conclude that CCEBRS is not driven
by univariate symbol series’ variability.

Some limitations should be addressed. The amount of 20
surrogate datasets per subject appears to be hardly enough to
conduct statistical testing, but was a trade-off between practicality
and informative value. So-called “significant” CCE results mean
that CCE of the original data set was higher than CCE calculated
on at least 19 of 20 surrogates (5% error). Parameters for CCEBRS
assessment were defined a priori by considering baroreflex
dynamics. The influence of calculation settings on CCE results
was investigated in terms of surrogate analysis. These parameters
are not transferrable to other physiological systems and should be
defined according to the investigated dynamics individually.

CCE estimates predictability of one coarse-grained time series
by another. The occurrence of target symbol patterns in the
source series increases CCE, but only if compression by the
target’s own past is enhanced. Improving compressibility can
be interpreted as an increase of predictability of the target’s
future by the source series, beyond the target’s history, which
is in compliance with the principle of causality formulated by
Wiener and Granger (Wiener, 1956; Granger, 1969; Bressler and
Seth, 2011). The direction of coupling is implicated by stating a
minimum delay of redundant symbol patterns. Although a lag
of zero theoretically does not represent a directed interaction,
instantaneous influence involves physiologically meaningful
baroreflex coupling (Ottesen and Olufsen, 2011; Faes et al.,
2012). In future developments, cross-compressibility should be
conditioned on additional time series. When analyzing the
cardiovascular system, the opportunity to account for respiration
is important. Respiratory sinus arrhythmia and baroreflex
regulation dominate short-term heart rate variability and interact
on the central and peripheral level. It was shown that respiratory
sinus arrhythmia might lead to an overestimation of the causal
influence of SBP on BBI (Porta et al., 2012).

Some interesting properties make the CCE subject worthy of
further investigation. In contrast to most established interaction
measures with adjustable but constant delay, CCE allows the
delay of coupling to vary during the time of acquisition. This
is because redundant symbol patterns at different positions in
the source window (start v) and with different lengths (n)
can contribute to CCE outcome. Although CCE is so flexible,
it is easy to interpret as it is defined by the ratio of two
lengths. Post-hoc analysis of v and n allows the identification

of dominant delay and length of redundant patterns. In the
current study, cardiovascular regulation across different time
scales and different time lags could be quantified by a single
number.

The method is easy to implement and robust to non-
stationarities in the data under investigation. Analyzing
symbolized time series is less sensitive to outliers and noise. By
converting the input into a much smaller set of symbols, detailed
information about the amplitude is removed. For example,
every increase above Tx is converted into the same symbol,
even if the amplitude is artificially high (outlier). Noise that is
limited to the detailed information (amplitude smaller than Tx),
will be diminished after symbolization. There are numerous
possibilities for how input time series can be translated into
symbol sequences. Patterns of several consecutive samples may
be used to encode the original signal (Berg et al., 2010; Schinkel
et al., 2012; Müller et al., 2013). The symbolization procedure
may also be modified to analyze the data on multiple scales
(Costa et al., 2002; Baumert et al., 2012, 2013b). In general,
the more symbols are used in the transformation, the better
the symbol series resembles the time series. Here, the choice
of three different symbols implies substantial coarse-graining
of the input series. Besides fixed amplitudes (TBBI = 5 ms and
TSBP = 1 mmHg), thresholds can be defined with regard to
the time series’ variance (e.g., multiples of standard deviation).
This approach is more adaptive to the underlying variability. In
this study, we attempted to separate minor fluctuations from
significant changes of blood pressure and heart rate. It appeared
obvious to apply thresholds approved in the context of baroreflex
analysis. Although compression entropy of symbolized BBI
was different in study 1 but almost identical in study 2, we
found CCEBRS differences in both studies. Thus, we believe
there is no bias of CCE outcome due to the symbolization
itself. But the symbolization scheme has an influence on
compressibility estimates and should be designed with regards to
the investigated issue.

In conclusion, we have demonstrated the suitability of
CCE for estimating coupling of cardiovascular time series.
CCE is sensitive to changes induced by exercise and revealed
pathological impairments in patients with schizophrenia. Our
data suggest that CCE is able to quantify interactions in short,
noisy, and non-stationary data.
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