470 research outputs found

    Symbolic Encryption with Pseudorandom Keys

    Get PDF
    We give an efficient decision procedure that, on input two (acyclic) cryptographic expressions making arbitrary use of an encryption scheme and a (length doubling) pseudorandom generator, determines (in polynomial time) if the two expressions produce computationally indistinguishable distributions for any pseudorandom generator and encryption scheme satisfying the standard security notions of pseudorandomness and indistinguishability under chosen plaintext attack. The procedure works by mapping each expression to a symbolic pattern that captures, in a fully abstract way, the information revealed by the expression to a computationally bounded observer. We then prove that if any two (possibly cyclic) expressions are mapped to the same pattern, then the associated distributions are indistinguishable. At the same time, if the expressions are mapped to different symbolic patterns and do not contain encryption cycles, there are secure pseudorandom generators and encryption schemes for which the two distributions can be distinguished with overwhelming advantage

    Non-Symbolic Fragmentation

    Get PDF
    This paper reports on the use of non-symbolic fragmentation of data for securing communications. Non-symbolic fragmentation, or NSF, relies on breaking up data into non-symbolic fragments, which are (usually irregularly-sized) chunks whose boundaries do not necessarily coincide with the boundaries of the symbols making up the data. For example, ASCII data is broken up into fragments which may include 8-bit fragments but also include many other sized fragments. Fragments are then separated with a form of path diversity. The secrecy of the transmission relies on the secrecy of one or more of a number of things: the ordering of the fragments, the sizes of the fragments, and the use of path diversity. Once NSF is in place, it can help secure many forms of communication, and is useful for exchanging sensitive information, and for commercial transactions. A sample implementation is described with an evaluation of the technology

    And now for something completely different: looking ahead to new encryption and secrecy protocols

    Get PDF
    Transmitting sensitive data over non-secret channels has always required encryption technologies to ensure that the data arrives without exposure to eavesdroppers. The Internet has made it possible to transmit vast volumes of data more rapidly and cheaply and to a wider audience than ever before. At the same time, strong encryption makes it possible to send data securely, to digitally sign it, to prove it was sent or received, and to guarantee its integrity. The Internet and encryption make bulk transmission of data a commercially viable proposition. However, there are implementation challenges to solve before commercial bulk transmission becomes mainstream. Powerful have a performance cost, and may affect quality of service. Without encryption, intercepted data may be illicitly duplicated and re-sold, or its commercial value diminished because its secrecy is lost. Performance degradation and potential for commercial loss discourage the bulk transmission of data over the Internet in any commercial application. This paper outlines technical solutions to these problems. We develop new technologies and combine existing ones in new and powerful ways to minimise commercial loss without compromising performance or inflating overheads

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference

    KEDGEN2: A key establishment and derivation protocol for EPC Gen2 RFID systems

    Get PDF
    International audienceThe EPC Class-1 Generation-2 (Gen2 for short) is a Radio Frequency IDentification (RFID) technology that is gaining a prominent place in several domains. However, the Gen2 standard lacks verifiable security functionalities. Eavesdropping attacks can, for instance, affect the security of applications based on the Gen2 technology. To address this problem, RFID tags must be equipped with a robust mechanism to authenticate readers before authorising them to access their data. In this paper, we propose a key establishment and derivation protocol, which is applied at both identification phase and those remainder operations requiring security. Our solution is based on a pseudorandom number generator that uses a low computational workload, while ensuring long term secure communication to protect the secrecy of the exchanged data. Mutual authentication of the tag and the sensor and strong notions of secrecy such as forward and backward secrecy are analysed, and we prove formally that after being amended, our protocol is secure with respect to these properties

    Dynamical systems as the main instrument for the constructions of new quadratic families and their usage in cryptography

    Get PDF
    Let K be a finite commutative ring and f = f(n) a bijective polynomial map f(n) of the Cartesian power K^n onto itself of a small degree c and of a large order. Let f^y be a multiple composition of f with itself in the group of all polynomial automorphisms, of free module K^n. The discrete logarithm problem with the pseudorandom base f(n) (solvef^y = b for y) is a hard task if n is sufficiently large. We will use families of algebraic graphs defined over K and corresponding dynamical systems for the explicit constructions of such maps f(n) of a large order with c = 2 such that all nonidentical powers f^y are quadratic polynomial maps. The above mentioned result is used in the cryptographical algorithms based on the maps f(n) – in the symbolic key exchange protocols and public keys algorithms

    Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits

    Full text link
    Motivated by the problem of simultaneously preserving confidentiality and usability of data outsourced to third-party clouds, we present two different database encryption schemes that largely hide data but reveal enough information to support a wide-range of relational queries. We provide a security definition for database encryption that captures confidentiality based on a notion of equivalence of databases from the adversary's perspective. As a specific application, we adapt an existing algorithm for finding violations of privacy policies to run on logs encrypted under our schemes and observe low to moderate overheads.Comment: CCS 2015 paper technical report, in progres

    Symbolic security of garbled circuits

    Get PDF
    We present the first computationally sound symbolic analysis of Yao\u27s garbled circuit construction for secure two party computation. Our results include an extension of the symbolic language for cryptographic expressions from previous work on computationally sound symbolic analysis, and a soundness theorem for this extended language. We then demonstrate how the extended language can be used to formally specify not only the garbled circuit construction, but also the formal (symbolic) simulator required by the definition of security. The correctness of the simulation is proved in a purely syntactical way, within the symbolic model of cryptography, and then translated into a concrete computational indistinguishability statement via our general computational soundness theorem. We also implement our symbolic security framework and the garbling scheme in Haskell, and our experiment shows that the symbolic analysis performs well and can be done within several seconds even for large circuits that are useful for real world applications

    08491 Abstracts Collection -- Theoretical Foundations of Practical Information Security

    Get PDF
    From 30.11. to 05.12.2008, the Dagstuhl Seminar 08491 ``Theoretical Foundations of Practical Information Security \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • 

    corecore