67 research outputs found

    Joint Detection and Decoding of High-Order Modulation Schemes for CDMA and OFDM Wireless Communications

    Get PDF
    Wireless communications call for high data rate, power and bandwidth efficient transmissions. High-order modulation schemes are suitable candidates for this purpose as the potential to reduce the symbol period is often limited by the multipath-induced intersymbol interference. In order to reduce the power consumption, and at the same time, to estimate time-variant wireless channels, we propose low-complexity, joint detection and decoding schemes for high-order modulation signals in this dissertation. We start with the iterative demodulation and decoding of high-order CPM signals for mobile communications. A low complexity, pilot symbol-assisted coherent modulation scheme is proposed that can significantly improve the bit error rate performance by efficiently exploiting the inherent memory structure of the CPM modulation. A noncoherent scheme based on multiple symbol differential detection is also proposed and the performances of the two schemes are simulated and compared. Second, two iterative demodulation and decoding schemes are proposed for quadrature amplitude modulated signals in flat fading channels. Both of them make use of the iterative channel estimation based on the data signal reconstructed from decoder output. The difference is that one of them has a threshold controller that only allows the data reconstructed with high reliability values to be used for iterative channel estimation, while the other one directly uses all reconstructed data. As the second scheme has much lower complexity with a performance similar to the best of the first one, we further apply it to the space-time coded CDMA Rake receiver in frequency-selective multipath channels. We will compare it to the pilot-aided demodulation scheme that uses a dedicated pilot signal for channel estimation. In the third part of the dissertation, we design anti-jamming multicarrier communication systems. Two types of jamming signals are considered - the partial-band tone jamming and the partial-time pulse jamming. We propose various iterative schemes to detect, estimate, and cancel the jamming signal in both AWGN and fading channels. Simulation results demonstrate that the proposed systems can provide reliable communications over a wide range of jamming-to-signal power ratios. Last, we study the problem of maximizing the throughput of a cellular multicarrier communication network with transmit or receive diversity. The total throughput of the network is maximized subject to power constraints on each mobile. We first extend the distributed water-pouring power control algorithm from single transmit and receive antenna to multiple transmit and receive antennas. Both equal power diversity and selective diversity are considered. We also propose a centralized power control algorithm based on the active set strategy and the gradient projection method. The performances of the two algorithms are assessed with simulation and compared with the equal power allocation algorithm

    Adaptive multiple symbol decision feedback for non-coherent detection.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2006.Non-coherent detection is a simple form of signal detection and demodulation for digital communications. The main drawback of this detection method is the performance penalty incurred, since the channel state information is not known at the receiver. Multiple symbol detection (MSD) is a technique employed to close the gap between coherent and non-coherent detection schemes. Differentially encoded JW-ary phase shift keying (DM-PSK) is the classic modulation technique that is favourable for non-coherent detection. The main drawback for standard differential detection (SDD) has been the error floor incurred for frequency flat fading channels. Recently a decision feedback differential detection (DFDD) scheme, which uses the concept of MSD was proposed and offered significant performance gain over the SDD in the mobile flat fading channel, almost eliminating the error floor. This dissertation investigates multiple symbol decision feedback detection schemes, and proposes alternate adaptive strategies for non-coherent detection. An adaptive algorithm utilizing the numerically stable QR decomposition that does not require training symbols is proposed, named QR-DFDD. The QR-DFDD is modified to use a simpler QR decomposition method which incorporates sliding windows: QRSW-DFDD. This structure offers good tracking performance in flat fading conditions, while achieving near optimal DFDD performance. A bit interleaved coded decision feedback differential demodulation (DFDM) scheme, which takes advantage of the decision feedback concept and iterative decoding, was introduced by Lampe in 2001. This low complexity iterative demodulator relied on accurate channel statistics for optimal performance. In this dissertation an alternate adaptive DFDM is introduced using the recursive least squares (RLS) algorithm. The alternate iterative decoding procedure makes use of the convergence properties of the RLS algorithm that is more stable and achieves superior performance compared to the DFDM

    Principles of Mobile Communication

    Full text link

    Constant Envelope DCT- and FFT- based Multicarrier Systems

    Get PDF
    Discrete Cosine Transform (DCT)- and Fast Fourier Transform (FFT)- based Orthogonal Frequency Division Multiplexing (OFDM) systems with a variety of angle modulations are considered for data transmission. These modulations are used with the purpose of achieving Constant Envelope (CE) transmitted signals, for superior power efficiency with nonlinear High Power Amplifier (HPA), typically used at the transmitter in OFDM systems. Specifically, four angle modulations are considered: i) Phase Modulation (PM); ii) Frequency Modulation (FM); iii) Continuous Phase Modulation (CPM); and iv) Continuous Phase Chirp Modulation (CPCM). Descriptions of DCT- and FFT- based OFDM systems with M-ary Pulse Amplitude Modulation (MPAM) mapper, with these modulations, are given and expressions for transmitted signals are developed. The detection of these signals in Additive White Gaussian Noise (AWGN) and multipath fading channels is addressed. The receiver structure consists of arctangent demodulator followed by the optimum OFDM receiver for memoryless PM and FM modulations. However, for CPM and CPCM modulations that have inherent memory, arctangent demodulator followed by correction with oversampling technique is used prior to the optimum OFDM receiver. Closed-form expressions for Bit Error Rate (BER) have been derived and are function of: i) Signal-to-Noise Ratio, (Eb/N0); ii) Modulation parameters; iii) Number of amplitude levels of M-PAM mapper; and iv) parameters of multipath fading environment. It is shown that, in general, BER performance of CE-DCT-OFDM system is superior compared to that of conventional DCT-OFDM system, when the effect of HPA in the system is taken into account. Also, it is observed that CE-DCT-OFDM system outperforms CE-FFT-OFDM system by nearly 3 dB. The DCT- and FFT- OFDM systems with CPM and CPCM modulations are superior in BER performance compared to PM and FM modulations in these systems. The use of CPCM in OFDM systems can provide attractive trade off between bandwidth and BER performance. The performance of CE-DCT-OFDM and CE-FFT-OFDM systems over Rayleigh and Rician frequency non-selective slowly-varying fading channels are illustrated as a function of channel parameters and the penalty in SNR that must be paid as consequence of the fading is determined

    Low-complexity Noncoherent Iterative CPM Demodulator for FH Communication

    Get PDF
    In this paper, we investigate the noncoherent iterative demodulation of coded continuous phase modulation (CPM) in frequency hopped (FH) systems. In this field, one important problem is that the complexity of the optimal demodulator is prohibitive unless the number of symbols per hop duration is very small. To solve this problem, we propose a novel demodulator, which reduces the complexity by applying phase quantization and exploiting the phase rotational invariance property of CPM signals. As shown by computational complexity analysis and numerical results, the proposed demodulator approaches the performance of the optimal demodulator, and provides considerable performance improvement over the existing solutions with the same computational complexity

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Soft-in soft-output detection in the presence of parametric uncertainty via the Bayesian EM algorithm

    Get PDF
    We investigate the application of the Bayesian expectation-maximization (BEM) technique to the design of soft-in soft-out (SISO) detection algorithms for wireless communication systems operating over channels affected by parametric uncertainty. First, the BEM algorithm is described in detail and its relationship with the well-known expectation-maximization (EM) technique is explained. Then, some of its applications are illustrated. In particular, the problems of SISO detection of spread spectrum, single-carrier and multicarrier space-time block coded signals are analyzed. Numerical results show that BEM-based detectors perform closely to the maximum likelihood (ML) receivers endowed with perfect channel state information as long as channel variations are not too fast

    EM-Based iterative channel estimation and sequence detection for space-time coded modulation

    Get PDF
    Reliable detection of signals transmitted over a wireless communication channel requires knowledge of the channel estimate. In this work, the application of expectationmaximization (EM) algorithm to estimation of unknown channel and detection of space-time coded modulation (STCM) signals is investigated. An STCM communication system is presented which includes symbol interleaving at the transmitter and iterative EM-based soft-output decoding at the receiver. The channel and signal model are introduced with a quasi-static and time-varying Rayleigh fading channels considered to evaluate the performance of the communication system. Performance of the system employing Kalman filter with per-survivor processing to do the channel estimation and Viterbi algorithm for sequence detection is used as a reference. The first approach to apply the EM algorithm to channel estimation presents a design of an online receiver with sliding data window. Next, a block-processing EM-based iterative receiver is presented which utilizes soft values of a posteriori probabilities (APP) with maximum a posteriori probability (MAP) as the criterion of optimality in both: detection and channel estimation stages (APP-EM receiver). In addition, a symbol interleaver is introduced at the transmitter which has a great desirable impact on system performance. First, it eliminates error propagation between the detection and channel estimation stages in the receiver EM loop. Second, the interleaver increases the diversity advantage to combat deep fades of a fast fading channel. In the first basic version of the APP-EM iterative receiver, it is assumed that noise variance at the receiver input is known. Then a modified version of the receiver is presented where such assumption is not made. In addition to sequence detection and channel estimation, the EM iteration loop includes the estimation of unknown additive white Gaussian noise variance. Finally, different properties of the APP-EM iterative receiver are investigated including the effects of training sequence length on system performance, interleaver and channel correlation length effects and the performance of the system at different Rayleigh channel fading rates
    corecore