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Abstract

Discrete Cosine Transform (DCT)- and Fast Fourier Transform (FFT)- based Orthogonal

Frequency Division Multiplexing (OFDM) systems with a variety of angle modulations

are considered for data transmission. These modulations are used with the purpose of

achieving Constant Envelope (CE) transmitted signals, for superior power efficiency with

nonlinear High Power Amplifier (HPA), typically used at the transmitter in OFDM sys-

tems. Specifically, four angle modulations are considered: i) Phase Modulation (PM); ii)

Frequency Modulation (FM); iii) Continuous Phase Modulation (CPM); and iv) Contin-

uous Phase Chirp Modulation (CPCM). Descriptions of DCT- and FFT- based OFDM

systems with M-ary Pulse Amplitude Modulation (MPAM) mapper, with these modula-

tions, are given and expressions for transmitted signals are developed. The detection of

these signals in Additive White Gaussian Noise (AWGN) and multipath fading channels

is addressed. The receiver structure consists of arctangent demodulator followed by the

optimum OFDM receiver for memoryless PM and FM modulations. However, for CPM

and CPCM modulations that have inherent memory, arctangent demodulator followed

by correction with oversampling technique is used prior to the optimum OFDM receiver.

Closed-form expressions for Bit Error Rate (BER) have been derived and are function of:

i) Signal-to-Noise Ratio, (Eb/N0); ii) Modulation parameters; iii) Number of amplitude

levels of M-PAM mapper; and iv) parameters of multipath fading environment.

It is shown that, in general, BER performance of CE-DCT-OFDM system is su-

perior compared to that of conventional DCT-OFDM system, when the effect of HPA

in the system is taken into account. Also, it is observed that CE-DCT-OFDM system

outperforms CE-FFT-OFDM system by nearly 3 dB. The DCT- and FFT-OFDM sys-

tems with CPM and CPCM modulations are superior in BER performance compared to

i



PM and FM modulations in these systems. The use of CPCM in OFDM systems can

provide attractive trade off between bandwidth and BER performance. The performance

of CE-DCT-OFDM and CE-FFT-OFDM systems over Rayleigh and Rician frequency

non-selective slowly-varying fading channels are illustrated as a function of channel pa-

rameters and the penalty in SNR that must be paid as consequence of the fading is

determined.
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Chapter 1

Introduction to Thesis

1.1 Introduction

The search for better ways of living has been instrumental in advancing human civiliza-

tion. Over the last few decades, wireless communication has experienced rapid devel-

opment and has become indispensable to modern civilization. For instance, the latest

generations of cellular systems, data networks, Wireless Local Area Networks (WLANs),

home and personal networks are few examples. Between 2009 and 2014, global mobile

traffic increased nearly 66 times with an annual growth rate of 131 percent [1]. The

communication system design in these systems and networks has been always dominated

by the behavior of channel [2, 3]. Over a typical wireless channel, multipath propaga-

tion occurs due to reflections of the transmitted signal by objects and obstacles in the

channel environment. Figure 1.1 illustrates a link with three reflecting paths between

two devices located at points A and B. Due to the relative mobility of the devices these

points and the possibility that the reflecting objects in the environment are also mobile,

the wireless channel environment will be continuously changing over time. The channel

is analytically described by its impulse response in time-domain or, alternatively, in the

frequency-domain, by its transfer function. In Figures 1.2 and 1.3 are shown characteris-

tics of a three-path wireless channel between points A and B. The profile of the channel

shows that each path has its own associated delay and power. Over the first path the

transmitted signal arrives at the receiver 1 µs after it is transmitted and over the third

path the signal arrives with a 11 µs delay.
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Figure 1.1: Representation of a three-path wireless channel.
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Figure 1.2: Power vs. delay profile for a three-path wireless channel.
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Figure 1.3: Transfer function of a three-path wireless channel.

In a single carrier system, the symbols are transmitted serially and the transmitted

signal can be written as [4]:

x(t) =
∑
j

Xj q(t− (j − 1)Ts) (1.1)

where Xj are data symbols obtained from an arbitrary modulation constellation, q(t) is

the transmit pulse shape and Ts is the data symbol duration. The received signal can be

written as [4]:

y(t) = x(t) ∗ h(τ ; t) + n(t) =

∞∫
−∞

h(τ ; t)s(t− τ)dτ + n(t) (1.2)

where h(τ ; t) is the response of the channel at time t due to an impulse applied at time

(t− τ) and n(t) is the additive noise.

For a 3-path channel shown in Figure 1.1, the time dispersion causes spreading of the

modulation symbols in time domain, also known as the delay spread, and thus inter-

3



symbol interference (ISI) is introduced. This is reflected in frequency domain, by the

inverse relationship between bandwidth and delay spread. Since the delay spread are

distinct, the frequency response of the channel, H(f), will exhibit power fluctuation as

shown in Figure 1.3. Such fluctuation in the frequency domain will distort the received

signal. Therefore, dispersion in the time domain leads to frequency-selectivity in the fre-

quency domain. The coherence bandwidth of the channel, Bc, can be determined by the

reciprocal of maximum delay spread, τmax. That is, Bc = 1/τmax. If bandwidth of the

transmitted signal is greater than coherence bandwidth of the channel, the channel is said

to be frequency-selective and the signal is severely distorted by the channel. However,

if bandwidth of the transmitted signal is smaller than the coherence bandwidth of the

channel, the channel is said to be frequency-nonselective [4]. For a single carrier system

the coherence bandwidth of the channel is smaller than the modulation bandwidth and,

therefore, the frequency selectivity effect of the channel cannot be ignored. For example

consider a transmitted signal s(t) given by (1.1) over a 1 MHz channel shown in Figure

1.2. The signal bandwidth is nearly equal 1/Ts Hz. Therefore, if s(t) with a bandwidth

of 1 MHz, Ts = 1/(1× 106) = 1µs, is transmitted over a channel with τmax = 11µs, ISI

spanns over, 11 symbols (τmax/Ts). Such severe ISI must be corrected at the receiver to

provide reliable communication. Thus, in a single-carrier system, equalization is essential

to compensate for this ISI. There exists a number of techniques [5, 6, 7] for equalization

and they require estimation of channel by transmitting training sequence known to the

receiver. These estimation techniques vary in complexity, and accuracy [8, 9] and require

long training times with added problems of convergence due to time-varying nature of

the channel.

Multicarrier Modulation (MCM) is a wideband technique that is designed to overcome

the problems of transmitting information using a single carrier system over multipath

propagation environment. It has been demonstrated that such an MCM technique is

asymptotically optimum for high data rate transmission [10, 11]. Furthermore, MCM is

more robust than a single carrier system to severe multipath fading over the channel,

which is typical over a mobile wireless channel [12, 13]. In an MCM system the input

bit stream is converted into many parallel low data rate substreams that are transmit-

ted using different orthogonal subcarriers. Since symbol duration on each substream is

increased it makes the system less sensitive to channel delay spread. Also, MCM still
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maintains the original transmission rate and the bandwidth of each subchannel is much

less than the total bandwidth occupied by the signal and consequently has less coher-

ence bandwidth of the channel which mitigates the ill effects of multipath fading to a

large extent. In an MCM system, since several streams of data are transmitted simul-

taneously, a fade occurring over the channel is spread out over many parallel symbols

and each subcarrier experiences flat fading instead of frequency selective fading, thereby

making equalization simple and of reasonable complexity [14, 15, 16]. Moreover, when a

heavy fade occurs over a certain subcarrier, only part of the symbol under the affected

subcarrier will be destroyed while others will not be affected.

Orthogonal Frequency Division Multiplexing (OFDM) is a subclass of Multicarrier Mod-

ulation in which subcarriers in the system are chosen to be overlapping and orthogonal

to each other. Such a system is highly bandwidth efficient due to overlapping spectra

of adjacent subcarriers. The extraction of data over each individual subcarrier is still

possible as long as the orthogonality condition is maintained. However, orthogonality

among the subcarriers is destroyed due to ISI introduced over the multipath channel.

To eliminate the ISI almost completely, a guard time is introduced for each transmitted

OFDM block. The guard time is chosen larger than the expected maximum delay spread

of the channel, τmax, to overcome the effects of ISI. Consider an OFDM system with

N number of subcarriers, then the symbol period is given by T = NTs. If N = 250 is

chosen in the system, the symbol period is T = NTs = 250µs, which is nearly 23 times

that of τmax=11 µs. Therefore, ISI can be eliminated by using a guard time greater than

τmax=11 µs in this example.

1.2 Basics of OFDM

The OFDM system was first proposed by Chang in 1966 [17] to mitigate the effects of

multipath channel without losing data rate, for a bandlimited channel. Subsequently,

Saltzberg analysed the performance of such a system [18], and concluded that ”the strat-

egy of designing an efficient parallel system should concentrate more on reducing crosstalk

between adjacent channels than on perfecting the individual channels themselves, since

the distortions due to crosstalk tend to dominate”. A major contribution to OFDM was

presented by Weinstein and Ebert [19], who showed that the system can be implemented
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using Fast Fourier Transform (FFT) technique for modulation of data symbols. However,

such a system with FFT suffered from ISI problems. Another important contribution

was due to Peled and Ruiz [20], who introduced the concept of cyclic prefix (CP) to

overcome the problem of the ISI in an OFDM systems. OFDM has been adopted in

several communications standards such as IEEE 802.11a/g/n [21, 22, 23], HIPERLAN/2

[24], IEEE 802.16a/d/e [25, 26] and IEEE 802.20 [27]. In all these standareds FFT-based

OFDM system is used [28, 29, 30, 31]. More recently, there has been growing interest in

DCT-based OFDM system due to its attractive properties [32]-[49].

OFDM signaling consists of a set of orthogonal subcarriers that are independently mod-

ulated by data. The OFDM signal is the sum of these modulated subcarriers and it can

be expressed as:

x(t) =
∑
j

N−1∑
n=0

Xj(n) ϕn(t− (j − 1)T ), (j − 1)T ≤ t ≤ (j)T (1.3)

In (1.3), N is the number of OFDM subcarriers that are transmitted during the jth block.

The data symbols obtained from an arbitrary modulation constellation, (Xj(0), · · · ,
Xj(N−1)), modulate the N OFDM subcarrier, (ϕ0(t), · · · , ϕN−1(t)), over the jth signal-

ing interval. T is the OFDM symbol period and the subcarriers meet the orthogonality

condition. That is,
T∫

0

ϕn(t)ϕ∗k(t)dt =

1 n = k

0 otherwise
(1.4)

In an FFT-based OFDM system, complex exponential functions are used as orthogonal

subcarriers and are given by:

ϕn(t) =

√
1

T
ej2πfnt, 0 ≤ t < T, n = 0, 1, · · · , N − 1 (1.5)

where the frequency of the nth subcarrier is fn = n/T Hz and the subcarrier spacing

required to achieve orthogonality is given by 1/T Hz.

In a DCT-based OFDM system, cosinusoidal functions are used as orthogonal subcarriers
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and are given by:

ϕn(t) =

√
2

T
cos(2πfnt), 0 ≤ t < T, n = 0, 1, · · · , N − 1 (1.6)

where the frequency of the nthsubcarrier is fn = n/2T Hz and the subcarrier spacing

required to achieve orthogonality is given by 1/2T Hz.

The spectra of FFT- and DCT-based OFDM signals are shown in Figure 1.4 and 1.5,

respectively. It is noted that at the nth subcarrier frequency contributions due to all

subcarriers except the nth subcarrier are zero. Also it is noted that subcarriers overlap

and therefore the system is spectrally efficient.

A block diagram for generation of OFDM signal is shown in Figure 1.6. A high rate serial

data stream is converted into many low-rate parallel data streams. These parallel data

streams are then mapped to modulation symbols, for example using an MPAM mapper,

which are then modulated onto the orthogonal subcarriers. The sum of the modulated

subcarriers represents the transmitted OFDM signal.
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Figure 1.4: Spectrum of FFT-based OFDM signal with N = 8 and X(n) = +1 for all n.
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Figure 1.5: Spectrum of DCT-based OFDM signal with N = 8 and X(n) = +1 for all n.

Figure 1.6: Block diagram for generation of OFDM signal.

The advantages of DCT-based OFDM system over FFT-based OFDM system are:

1. In DCT-based OFDM system, the set of basis functions is well-known to have

excellent spectral compaction and energy concentration properties. Morevore, the

8



system has better frequency-selective filter bank compared to that in an FFT-based

system. As a result, the channel estimation and also the system performance can

be improved in noisy environments [33, 37].

2. Using IDCT for modulation and DCT for demodulation in a DCT-based OFDM

system results in better integrated system with reduced overall implementation cost

[33, 37]. The DCT is widely adopted in image/video coding standards (e.g. JPEG,

MPEG, H.261 [50, 51]).

3. The DCT uses real arithmetic compared to the complex arithmetic in FFT. This

reduces the signal processing complexity and power consumption in the system,

especially when an MPAM mapper is used [33, 37].

4. In the presence of frequency offset in an OFDM system, due to the energy-compaction

property of DCT, the ICI coefficients in DCT-based OFDM system are concentrated

around the main coefficient. As a result, the system is robust to Carrier Frequency

Offset (CFO) [33, 44].

5. When modulation symbols are real-valued, the bandwidth of a DCT-based OFDM

system is half the bandwidth of a corresponding FFT-based OFDM system [38].

The disadvantage of DCT-based OFDM system compared to an FFT-based OFDM sys-

tem is the additional prefilter needed at the receiver to satisfy the symmetric channel

impulse response constraint for short channels. For long channels, an FFT-OFDM sys-

tem also requires a prefilter to shorten the channel [33, 37]. From now onwards DCT-

and FFT-based OFDM systems would be referred to as DCT-OFDM and FFT-OFDM

systems, respectively.

1.3 Peak-to-Average Power Ratio (PAPR) in an

OFDM System

The transmitted OFDM waveform has high amplitude fluctuations caused by the sum-

mation of several modulated sinusoids, resulting in high values of PAPR. Using (1.5), in

9



(1.3), the FFT-OFDM signal can be written as:

xFFT (t) =
N−1∑
n=0

XFFT (n) ej2πnt/T , 0 ≤ t < T, (1.7)

where the scaled data symbols XFFT (n) are chosen from an M -point signal constella-

tion such as MPSK, MQAM, or MPAM, N is the number of subcarriers and T is the

duration of the OFDM symbol. It is noted that the suffix j in (1.3) has been dropped

for convenience. The signal can be written as:

xFFT (t) =
N−1∑
n=0

{<[XFFT (n)] + j=[XFFT (n)]} ∗ {cos(2πnt/T ) + jsin(2πnt/T )}

(1.8)

The real and imaginary parts of xFFT (t) are:

<[xFFT (t)] =
N−1∑
n=0

<[XFFT (n)]cos(2πnt/T )−=[XFFT (n)]sin(2πnt/T ) (1.9)

and

=[xFFT (t)] =
N−1∑
n=0

=[XFFT (n)]cos(2πnt/T ) + <[XFFT (n)]sin(2πnt/T ) (1.10)

Similarly using the basis functions in (1.6), the DCT-OFDM signal can be written as:

xDCT (t) =
N−1∑

0

XDCT (n) cos(πnt/T ), 0 ≤ t ≤ T (1.11)

The signal can be written as:

xDCT (t) =
N−1∑
n=0

{<[XDCT (n)] + j=[XDCT (n)]} ∗ {cos(πnt/T )} (1.12)

The real and imaginary parts of the signal are:
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<[xDCT (t)] =
N−1∑
n=0

<[XDCT (n)]cos(πnt/T ) (1.13)

and

=[xDCT (t)] =
N−1∑
n=0

=[XDCT (n)]cos(πnt/T ) (1.14)

Figures 1.7 and 1.8 show plots of DCT-OFDM and FFT-OFDM signals, for N = 16 and

X(n) ∈ {±1} (BPSK signal constellation), respectively. It is observed that the amplitude

of OFDM signals fluctuates over an expansive range of values.
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Figure 1.7: DCT-OFDM signal as a function of time.

The instantaneous signal powers of DCT-OFDM and FFT-OFDM signals are plotted in

Figures 1.9 and 1.10, respectively. The ratio of the peak power and the average power

of the signals in these figures are 10log10(4.058) = 6.1 dB and 10log10(4.279) = 6.3 dB,

respectively. It is noted that in these OFDM signals the peak power is nearly 4 times that

of the average power. In general, the transmitted OFDM signals have high PAPR and,

therefore a HPA with a large linear range is required in the system at the front end of the
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Figure 1.8: Real and imaginary parts of FFT-OFDM as a function of time .

transmitter; otherwise the transmitted OFDM signal will be nonlinearly distorted which

results in a loss of subcarrier orthogonality and hence turn degrades the performance of

the system. The typical transfer characteristics of a HPA is shown in Figure 1.11 and

consists of a linear region followed by a nonlinear region leading to the maximum output

level. It is noted that the HPA has limited linear region, beyond which it saturates to

the maximum output level. In the linear range the output power is equal to the input

power multiplied by a gain factor, but as the input power increases beyond the linear

range, the output power saturates.

The most efficient operating point is at the saturation point. However, for signals, with

large PAPR the operating point must be moved to the left for linear amplification.

Therefore, the average input power level must be decreased. This method of decreasing

the input power level is referred to as the input power backoff (IBO). In order to maintain

the peak input power level of the signal less they as equal to at the saturation level, the

IBO must be equal to the value of PAPR of the signal. It is noted that the HPA efficiency

is reduced significantly with an increase in the value of IBO. For example, the required

IBO for the DCT-OFDM signal shown in Figure 1.9 is 6.1 dB . At this value of backoff,
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Figure 1.9: Instantaneous power of DCT-OFDM signal.
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Figure 1.10: Instantaneous power of FFT-OFDM signal.
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Figure 1.11: Transfer characteristics of typical HPA.

the efficiency of a Class A high power amplifier is 0.5

106/10
× 100 = 12.3 % compared

to 50 % with zero IBO [52, 53]. In general, the high PAPR of OFDM signals requires

careful consideration particularly in the context of reducing energy costs in the overall

system design, as HPA is typically an integral part of the system. A major source for

reducing energy costs is to increase the efficiency of the HPA. However, this efficiency

is directly related to PAPR of the input OFDM signal. The problem becomes serious

in OFDM transmission as it is applied in many wireless standards. The PAPR problem

thus prevents OFDM from being adopted in the uplink communication standards, and,

besides power efficiency, it can also place severe constraints on the output power and

hence the coverage area in the downlink.
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1.4 Constant Envelope Signals and Systems

The general expression for Constant Envelope (CE) baseband signal can be written as:

s (t) = Ac e
jφ(t) (1.15)

where Ac is the signal amplitude and φ(t) is the information carrying phase. The instan-

taneous and the average power of the signal in (1.15) are the same. Therefore, the PAPR

of the signal is 0 dB. The benefit of such a signal is that it does not require backoff. The

HPA in the system can therefore be operated at the optimal saturation point thereby

maximizing the average transmit power. This will in turn maximize the power efficiency

of HPA. Constant envelope signals are highly attractive in systems where HPA is used.

Therefore, it is important to embed digital information into the phase φ(t) in (1.15). In

the literature, constant envelope Continuous Phase Modulation (CPM) [54, 55] has been

extensively examined for digital transmission using single carrier system. When multi-

carrier OFDM signal is embedded in the phase φ(t), it is possible to obtain CE-OFDM

signal. Such a signaling technique involves integration of multicarrier and constant en-

velope techniques in a single system as shown in Figure 1.12. The high PAPR OFDM

signal in the system is converted into a 0 dB PAPR CE-OFDM signal. This permits HPA

to operate near saturation level thus achieving maximum power efficiency. Figure 1.13

shows a comparison of instantaneous power of the DCT-OFDM and CE-DCT-OFDM

signals.

In order to generate constant envelope signal given by (1.15), the modulating signal

φ(t) must be real-valued. In general , the modulating signal in an OFDM system is

complex-valued. A real-valued modulating signal, however, can be obtained by tak-

ing IFFT of a conjugate symmetric vector. For example, if the input data vector

[XFFT (0), · · · , XFFT (N − 1)] of size 1 × N is given, a conjugate symmetric vector

[XFFT (0), · · · , XFFT (2N − 1)] of size 1× 2N can be obtained that satisfies the follow-

ing conditions:

XFFT ((N + n) = X∗FFT (N − n), n = 1, 2, · · · (1.16)

and

XFFT (0) = XFFT (N) = 0 (1.17)
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The IFFT of this vector is given by:

xFFT (k) =
2N−1∑
n=0

XFFT (n) ej2πkn/2N , (1.18)

Using (1.16) and (1.17), (1.18) can be written as

xFFT (k) =
N−1∑
n=1

XFFT (N − n) ej2πk(N−n)/2N+

X∗FFT (X(N − n)) e−j2πk(N−n)/2N , k = 0, · · · , 2N − 1 (1.19)

Using B +B∗ = 2<[B], (1.19) can be written as:

= 2<


N−1∑
n=1

XFFT (n) ej2πkn/2N

 (1.20)

Using the formula <[BC] = <[B]<[C]−=[B]=[C], (1.20) becomes

xFFT (k) = 2
N−1∑
n=1

<[XFFT (n)] cos(2πkn/2N)−=[XFFT (n)] sin(2πkn/2N) (1.21)

Thus, xFFT (k), k = 0, · · · , 2N − 1, is a real discrete-time signal. The equivalent

continuous-time real-valued OFDM signal is given by:

xFFT (t) = 2
N−1∑
n=1

<[XFFT (n)] cos(2πnt/T )−=[XFFT (n)]sin(2πnt/T ) (1.22)

In the case of DCT-OFDM system, the modulating signal generated by the system is

always real for real input data vector.

1.5 Literature Survey and Motivation

The FFT-based OFDM system has been extensively examined in the literature [56, 57,

58, 59, 60]. In recent years, several researchers have been investigating the use of al-

ternative discrete transform technique such as DCT in place of FFT in OFDM systems
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Figure 1.12: Block diagram of CE-OFDM system.
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[39, 40, 41]. These studies show that the major advantage of using DCT in an OFDM

system is that it can achieve better noise-immunity and hence can provide better BER

performance than the conventional FFT-based OFDM system. Also, DCT-OFDM sys-

tem can reduce the overall implementation cost.

In [42], it is noted that, particularly, for one-dimensional (1-D) mappers (real-valued

formats), such as BPSK and MPAM, DCT-OFDM system can completely avoid the

in-phase/quadrature-phase (IQ) imbalance problem, which is typically present in con-

ventional FFT-OFDM system. In addition, it is possible to use fast DCT algorithm

to achieve fewer computational steps in the system than using corresponding FFT al-

gorithm. In [38], DCT is used to implement multicarrier modulation because of the

bandwidth advantage it offers. A DCT-OFDM system is proposed in [43] using
√
M -ary

Amplitude Shift Keying (ASK) mapper. A DCT-based implementation can also be em-

ployed in an OFDM system with 2-D modulations (complex-valued formats) [44].

The performance analysis of DCT-OFDM system over a variety of multipath fading

channels is considered in several recent works. By using a symmetrically extended data

sequence, a DCT-OFDM system is examined in [45]. For the case of static and expo-

nentially decaying channel profiles, with intersymbol interference (ISI), it is shown that

the lower bound on throughput of DCT-OFDM system is greater than that of the DFT-

OFDM system. The conditions on the impulse response of a frequency-selective channel

for diagonalization using DCT into parallel, decoupled, and memoryless subchannels are

derived in [36]. In [44], the performance of the DCT-OFDM system with a zero-padding

guard interval scheme and an MMSE receiver over time-varying multipath Rayleigh fad-

ing channel is investigated. The results show that employing a DCT-OFDM system

rather than the conventional DFT-OFDM system can provide better bit error probabil-

ity performance.

Several algorithms to correct Carrier Frequency Offset (CFO) by using DCT in an OFDM

system, over an AWGN channel are examined in [46]. Due to the energy-compaction

property of DCT, there is less ICI leakage to adjacent subcarriers in DCT-OFDM system

than in an FFT-OFDM system, and thus is robust to frequency offset [44, 33]. In [33],

it is shown that DCT Type-II multicarrier system can perfectly diagonalize frequency-

selective channels without requiring channel knowledge. It is also observed that DCT-

OFDM transceiver with and without the Partial Transmit Sequence (PTS) can achieve
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average power reduction compared to the conventional FFT-OFDM system [47]. In [48],

several channel estimation methods for DCT-OFDM system are proposed such as Least

Square (LS), Minimum Mean Square Error (MMSE), and Compressed Sensing estima-

tors.

A major drawback of OFDM system is that the transmitted signal suffers from high

values of PAPR which results in spectral broadening and intermodulation distortion par-

ticularly when the signal is passed through a nonlinear HPA before transmission over the

channel [61, 62]. Thus, a large amount of input power backoff is required which leads to

reduced efficiency of HPA [54, 63]. There are several techniques to deal with the PAPR

problem in an OFDM system such as coding, partial transmission sequences, clipping and

filtering, selected mapping, tone reservation and interleaving etc [64, 65, 66, 67, 68, 69].

These techniques offer a variety of trade-offs in terms of complexity, performance and

spectral efficiency. It is noted that these techniques do not completely eliminate the

PAPR problem and may or may not require side information to be communicated to the

receiver. Constant Envelope OFDM (CE-OFDM) designs can completely eliminate the

problem of PAPR in an OFDM system. In such a system, angle modulation is used in

place of I-Q modulation to create constant envelope transmitted signal with 0 dB PAPR.

This permits HPA to operate near saturation level and thus achieving maximum power

efficiency [70]. Due to this major advantage, CE-FFT-OFDM is being researched for ap-

plications in wireless [70]-[91], optical [92, 93, 94], powerline [95, 96] and satellite [97, 98]

communications as well as in radar systems [99, 100].

OFDM system with angle modulation is proposed in [71]. In such a system, orthogonal

time functions are employed to transmit data by using “amplitude or frequency mod-

ulation, or any other type of modulation suitable for the transmission of continuously

varying time functions.”

In [72], a constant envelope signaling approach is proposed in which the complex OFDM

signal is split into signals and then phase modulation is used. Since the standard complex

OFDM signal is split into two constant envelope signals, bandwidth efficiency is traded off

by this approach for power efficiency. It is shown using simulations that the bit error per-

formance of such a system is poorer compared to that of the corresponding conventional

OFDM system by a few decibels. In [73], the performance of phase-modulated OFDM

in AWGN channels is studied. The analysis shows poorer bit error rate performance
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for low frequency subcarriers than for high frequency subcarriers. In [74], the suitabil-

ity of constant envelope multi-carrier modulation technique for the implementation of

1Gbps wireless link at 60 GHz is investigated. This technique combines OFDM and

phase modulation to achieve: (i) constant envelope signal which allows HPA to operate

near saturation level and thus maximizing power efficiency, and (ii) robust performance

over multipath fading channel. When OFDM with PM is compared with OFDM with

CPM, it is observed that the latter suffers from a 3 dB performance loss, when differ-

ential demodulation is used. In [75], a constant envelope binary OFDM system with

PM is presented and analyzed in AWGN channel. Approximate bandwidth requirements

are predicted using the Carson’s rule and the root-mean square bandwidth for Gaussian

angle modulated process. In the study of BER performance, a high carrier-to-noise ratio

assumption (CNR > 10dB) is made in the analysis and ideal filters are used in the

receiver frontend. Estimates are made on the transmitted data symbols by using IFFT

demodulation at receiver. It is shown that the modulation index controls the spectral

spreading and detection performance. In [76], the spectral properties of OFDM system

with phase modulation are studied. It is shown that the fractional out-of-band power of

transmitted signals can be better than conventional OFDM signals. Sub-optimum PM

demodulator is analyzed for BER performance and compared to the optimum receiver.

It is shown that the sub-optimum receiver performs close to the optimum for small mod-

ulation index and at high SNRs.

In [77], a noncoherent CE-OFDM receiver is presented and analyzed. The matched-filter

bank followed by the phase demodulator eliminates the effect of unknown phase shifts

caused by the channel. The performance of this noncoherent receiver over Rayleigh and

Ricean flat fading channels is also presented. It is shown that, for small modulation index

and high SNR, simulation results are in good agreement with analytical approximations.

In [78], a frequency-domain equalizer is proposed for CE-OFDM in multipath Rayleigh

fading channel. It is shown that uncoded CE-OFDM, unlike uncoded OFDM, can exploit

the frequency diversity of the channel. Compared to conventional OFDM system, CE-

OFDM system is shown to offer gains in performance and in power amplifier efficiency. In

[79], the influence of PM in CE-OFDM on ISI is analyzed and then a method is proposed

to reduce ISI using zero-padding pattern in the transmitted OFDM symbol.

In [80], a novel receiver structure for CE-OFDM based on the Taylor series expansion is
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presented. The receiver allows for a simpler implementation without the need to compute

the arctangent at the receiver. It is shown that the receiver performs well compared to the

conventional arctangent based receiver for small and moderate modulation indices < 0.7,

for both AWGN and multipath fading channels. In [81], spectrally precoded OFDM and

CE-OFDM systems are examined. The spectrally precoded OFDM signal provides very

small power spectral sidelobes and the CE-OFDM signal exhibits 0 dB PAPR. A specific

CE-OFDM block signaling format is proposed to incorporate spectral precoding with

an aim to suppress sidelobe power more effectively than in a conventional non-precoded

CE-OFDM.

In [82], the performance of CE-OFDM system in multipath fading channels using FDE

is studied. Several channel estimation techniques that use low-PAPR OFDM signals are

examined in the presence of SSPA and TWTA amplifiers in the system. In [83], the ap-

plication of convolutional coding to CE-OFDM is studied. A bound on the performance

of convolutionally coded CE-OFDM is derived and illustrated. It is shown that chan-

nel coding with interleaving provides good performance for low to moderate modulation

indices. In [84], a threshold receiver for CE-OFDM is considered. It is noted that the

receiver design depends on the modulation index used in the system. In [85, 86], the

performance of OFDM system with FM for digital communication over Rayleigh-fading

channel is examined. In such a system, OFDM baseband signal is used to modulate the

frequency of the carrier signal. Expressions are derived for the BER for QAM-mapper

in the system. Some techniques for improving the performance of such a system for data

communication over a Rayleigh fading channel are suggested. In [87], CE-OFDM system

that uses PM in AWGN and multipath channels is explored. A theoretical approach

instead of Carson’s rule is used to analyze bandwidth of the system. It is shown that

bandwidth requirement is determined by factors such as input data variance and mod-

ulation index of PM. The results show that the system requires the same bandwidth as

that of the conventional OFDM system for low values of modulation index.

In [38], a DCT-based multicarrier system with CPM is examined over fading channel for

error probability performance using simulation. Results show that a larger modulation

index, h, results in better performance. However, large value of h in such a system re-

quires proper phase detection and correction.

Based on the above literature survey, it is observed that FFT-based OFDM systems are
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well examined. However, DCT-based OFDM systems have not received much attention

despite the fact that such systems have several attractive properties useful in communi-

cation system. Thus, the motivation for this thesis is to investigate constant envelope

OFDM signal designs for data communications. A wide range of angle modulations are

considered for achieving constant envelope designs such as: i) PM; ii) FM; iii) CPM; and

iv) CPCM. Both DCT- and FFT-based OFDM systems are examined. A generic system

is used for examining these systems. A comprehensive study of these systems in terms

of BER performance, bandwidth efficiency, complexity etc. is presented.

1.6 Thesis Objectives

There are four major objectives for this thesis. They are:

1. DCT- and FFT-OFDM Systems with PM

A system is presented to describe both DCT- and FFT-OFDM systems with PM.

Expressions for bandwidth of signals in these systems are given. The detection

of these signals in AWGN and fading channels (Rayleigh and Rician) is addressed

and closed-form expression for BER of these systems are derived and illustrated

as a function of SNR, modulation index, number of levels of MPAM mapper, and

statistical parameters of noise environment. DCT-OFDM and FFT-OFDM systems

with PM are compared in terms of BER, bandwidth, and structure of receivers.

Also, the BER performances of DCT-OFDM system with PM and conventional

DCT-OFDM system are compared as a function of IBO when TWTA amplifier is

used in these systems.

2. DCT- and FFT-OFDM Systems with FM

A system description is given that can be used for both DCT- and FFT-OFDM

systems with FM. The bandwidths of signals in these systems are determined.

The detection of signals in these systems in AWGN and fading channels (Rayleigh

and Rician) is addressed and closed-form expressions for BER are derived and

illustrated. A comparison of the two systems in terms of BER, bandwidth, and

structure of receivers is provided. Also, the effect of TWTA amplifier in these

systems on BER performance is examined as a function of IBO.
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3. DCT- and FFT-OFDM Systems with CPM

The concept of Continuous Phase Modulation (CPM) is introduced in DCT- and

FFT-OFDM systems. A generic description of DCT- and FFT-OFDM systems

with CPM is given and described. While these exist a wide class of CPM, in

this thesis full-response CPM with rectangular pulse shaping is used. Detection

of signals in these systems in AWGN and fading channels (Rayleigh and Rician)

is addressed and a receiver structure that uses phase detector followed by phase

correction with oversampling is suggested. Closed-form expressions for BER over

AWGN and fading channels are derived and illustrated. The performances of DCT-

OFDM system with CPM and conventional DCT-OFDM system are compared as

a function of IBO when TWTA amplifier is used in these systems.

4. DCT- and FFT-OFDM Systems with CPCM

Chirp (Linear FM) modulation provides attractive wideband signals suitable for ap-

plication in systems where interference rejection is important. In this thesis, DCT-

and FFT-OFDM systems with CPCM are presented. The signals in these systems

are described and their detection in AWGN and fading channels (Rayleigh and Ri-

cian) is addressed and a receiver structure is suggested. Closed-form expressions

for BER are derived and illustrated as a function chirp modulation parameters,

SNR, number of levels of MPAM mapper and noise environment parameters. The

influence of TWTA amplifier in DCT-OFDM system with CPCM and conventional

DCT-OFDM system is examined as a function of IBO.

1.7 Thesis Organization

In Chapter 2, a generic description of FFT- and DCT-OFDM systems is given. The con-

cept of guard interval/Cyclic prefix is mathematically explained in both continuous- and

discrete-time. The PAPR statistics of FFT- and DCT-OFDM signals are presented. The

models of HPA, both SSPA and TWTA, are described. The effect of IBO on efficiency

of HPA is also illustrated.

In Chapter 3, DCT- and FFT-OFDM systems with PM are studied. The performance

analyses of these systems in AWGN and fading channels are presented. The bandwidths

of DCT- and FFT-OFDM signals with PM are developed. The effect of HPA on BER of
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these systems is illustrated.

In Chapter 4, DCT- and FFT-OFDM systems with FM are considered. The detection

of signals in these systems in AWGN and fading channels is addressed. The BER per-

formances of both systems are derived and illustrated. Also the effect of HPA on BER

of these systems is examined.

In Chapter 5, DCT- and FFT-OFDM systems with CPM are presented and their prop-

erties are studied. The detection performance of signals in these systems in AWGN and

fading channels is examined. The effect of HPA on system bit error probability is also

discussed.

In Chapter 6, CPCM is introduced in DCT- and FFT-OFDM systems. These systems are

examined for their BER performances over AWGN and fading channels. The behaviour

of these systems in the presence of HPA is illustrated.

In Chapter 7, the contributions of this thesis and the conclusions from the results ob-

tained are summarized. Also, areas for further research in the light of the needs of modern

communication systems are outlined.

1.8 Conclusions

An introduction to the thesis relevant to the objective set out for the thesis is provided.

Literature survey and motivation for the problems attempted in the thesis are given. The

orgnazation of thesis is also provided.
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Chapter 2

Generic FFT- and DCT-OFDM System

2.1 Introduction

In the previous Chapter some basic properties of OFDM system were identified. In this

Chapter, the system is examined in more detail. A generic block diagram is presented to

examine both DCT- and FFT-OFDM systems. The importance of cyclic prefix/guard in-

terval in these systems is explained. The PAPR statistics of OFDM signals are presented

and typical HPA models used in an OFDM system are examined.

2.2 Baseband OFDM System

A generic block diagram of a baseband OFDM system is shown in Figure 2.1 and can be

used to study both FFT- and DCT-OFDM systems. The difference between these two

systems is that, in the latter system IDCT/DCT are used for modulation/demodulation

and in the former system IFFT/FFT are used for modulation/demodulation. The data

source is assumed to be a sequence of binary digits [a0, a1, a2, · · · ] where al, l = 0, 1, · · ·
is either a 0 or a 1 with P (al = 0) = P (al = 1) = 1/2. The bit duration is assumed to

be equal to Tb sec and the corresponding data rate is thus equal to R = 1/Tb bps. The

output of the data source is grouped into blocks of N symbols with each symbol made up

of K bits and each symbol is mapped to one of M = 2K amplitude levels by an MPAM

mapper. Such a mapper is referred to as a memoryless mapper, as its current output is a

function of only the current input. The corresponding signal space diagrams for 2-PAM

and 4-PAM mappers are shown in Figure 2.2. For the case of 2-PAM mapper K = 1 and

hence M = 2. The mapper maps incoming bit 1 to +1 V and bit 0 to −1 V . For the

4-PAM mapper, K = 2 and therefore M = 4. The mapping of symbols to amplitudes

levels can be done in a number of ways. The preferred assignment is one in which the
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Figure 2.1: The generic block diagram of DCT- and FFT-OFDM baseband transceiver
system.

adjacent signal amplitudes differ by one binary digit as illustrated in Figure 2.2 (b). This

mapping is called Gray coding. By using this technique for the case of 4-PAM mapper,

the mapper maps incoming symbols as given below:

00→ −3

01→ −1

11→ +1

10→ +3

(2.1)

The output of the signal mapper, in general, can be thought of as a discrete-time real

signal as shown in Figure 2.3. The S/P converter enhances the duration of each symbol

by a factor of N and converts serial data to parallel data. The output of this block can

be written as a vector of N real numbers given by:

X = [X(0), X(1), X(2), · · · , X(N − 1)] (2.2)

The discrete signal representing the data is fed to an N -point IFFT/IDCT block to

obtain

x = [x(0), x(1), x(2), · · · , x(N − 1)] . (2.3)
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Figure 2.2: Signal space diagrams for (a) 2-PAM and (b) 4-PAM mappers.

Figure 2.3: Discrete time signal at the output for MPAM mapper.
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In order to differentiate samples in DCT- and FFT-OFDM systems, suffixes DCT and

FFT are used, respectively

2.2.1 FFT-OFDM Signal

In this case, the relationship between (2.2) and (2.3) can be written as:

xFFT (k) =
N−1∑
n=0

XFFT (n) ej2πkn/N , k = 0, · · · , N − 1, (2.4)

The parallel signal from the IFFT block is then converted to serial signal by using the

P/S converter and then fed to D/A block to obtain

xFFT (t) =
N−1∑
n=0

XFFT (n) ej2πnt/T , 0 ≤ t ≤ T (2.5)

where T is the OFDM symbol duration and n/T is the frequency of the nth subcarrier.

For a 2-PAM mapper used in the system, T = NTb, Tb is the duration of the data

from the source. For a 4-PAM mapper T = NTs, where Ts = KTb. It is noted that

[XFFT (0), XFFT (1), · · · , XFFT (N − 1)] representes a block of N data symbols and the

complex functions ej2πnt/T , n = 0, 1, · · · , N − 1 are referred to as the subcarriers of the

system and are orthogonal to each other. It can be shown that the discrete sequence

[xFFT (0), xFFT (1), · · · , xFFT (N − 1)] can be obtained by sampling xFFT (t) at t =

(kT )/N, k = 0, 1, , · · · , N − 1. That is,

xFFT (k) = xFFT (t) |t=kT/N=
N−1∑
n=0

XFFT (n) ej2πkn/N , k = 0, · · · , N − 1, (2.6)

and its frequency-domain representation is:

XFFT (n) =
1

N

N−1∑
k=0

xFFT (k) e−j2πkn/N , n = 0, · · · , N − 1 (2.7)
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It is noted that

1

N

N−1∑
k=0

ej2πpk/N e−j2πqk/N =

1 p = q

0 otherwise
(2.8)

2.2.2 DCT-OFDM Signal

The relationship between (2.2) and (2.3) can be written as:

xDCT (k) =
N−1∑
n=0

XDCT (n) cos(πn(2k + 1)/2N), k = 0, · · · , N − 1 (2.9)

The parallel signal from the IDCT block is converted to serial signal by using the P/S

converter and then fed to D/A block to obtain

xDCT (t) =
N−1∑
n=0

XDCT (n) cos(2πnt/2T ), 0 ≤ t ≤ T (2.10)

where T is OFDM symbol duration and n/2T is the frequency of the nth subcarrier.

It is noted that [XDCT (0), XDCT (1), · · · , XDCT (N − 1)] representes a block of N data

symbols and the cosinusoidal functions cos(2πnt/2T ), n = 0, 1, · · · , N − 1, are referred

to as the subcarriers of the system and are orthogonal to each other. It can be shown

that discrete sequence [xDCT (0), xDCT (1), · · · , xDCT (N − 1)] can be obtain by sampling

xDCT (t) at t = T (2k + 1)/2N, k = 0, 1, · · · , N − 1. That is,

xDCT (k) = xDCT (t) |t=T (2k+1)/2N=

√
2

N

N−1∑
n=0

XDCT (n)B(n) cos(πn(2k + 1)/2N),

k = 0, · · · , N − 1 (2.11)

where

B(n) =


√

1
2 n = 0

1 k = 1, · · · , N − 1
(2.12)
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and the corresponding frequency-domain signal is:

XDCT (n) =

√
2

N

N−1∑
k=0

xDCT (k) B(n) cos(πn(2k+ 1)/2N), n = 0, · · · , N − 1 (2.13)

It is noted that:

√
2

N

N−1∑
k=0

B(p) cos(πp(2k + 1)/2N) B(q) cos(πq(2k + 1)/2N) =

1 p = q

0 otherwise

(2.14)

The output of D/A converter, x(t), is then amplified using HPA and transmitted over

the channel.

At the receiver the received signal x(t)+n(t) is fed to A/D block followed by S/P converter

to obtain parallel signal. This is fed to FFT/DCT block followed by an equalizer. The

output of the equalizer is fed to MPAM demapper followed by P/S block to obtain an

estimate of the transmitted data sequence.

2.3 Guard Interval/Cyclic Prefix

In an OFDM system guard interval is inserted at the transmitter between successive

OFDM blocks to achieve ISI-free operation at the receiver. This guard interval, Tg, is

designed such that Tg ≥ τmax so that the effect of channel is absorbed in this guard

interval. Although the introduction of guard interval results in a small reduction in

spectral efficiency of the system, ISI is eliminated. This aspect is described for both

DCT- and FFT-OFDM systems in the next Section.

2.3.1 FFT-OFDM System

Continuous Time Domain Description

A guard interval which is commonly called the Cyclic Prefix (CP) is added to the time-

domain signal after the P/S conversion in the transmitter. The CP is a copy of the last

part of the OFDM symbol, greater than or equal to the maximum delay spread of the
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Figure 2.4: OFDM symbol with CP

channel, appended to the beginning of the symbol as shown in Figure 2.4. Thus, the

OFDM signal with CP can be written as:

xFFT (t) =
N−1∑
n=0

XFFT (n) ej2πfnt, −Tg ≤ t ≤ T (2.15)

At the receiver, the received signal can be written as:

u(t) = xFFT (t) ∗ h(τ) + n(t) =

∞∫
−∞

h(τ)xFFT (t− τ)dτ + n(t) =

τmax∫
−∞

h(τ)xFFT (t− τ)dτ + n(t) (2.16)

where h(τ) is the channel impulse response with 0 ≤ τ ≤ τmax and n(t) is the additive

noise. The received signal during the guard interval, which has interference from the

previous block is ignored and u(t) over 0 ≤ t ≤ T is processed. The estimate of XFFT (k)

is made by correlating u(t) with the kth subcarrier as shown in Figure 2.5 and the output

can be expressed as:

u(k) =

T∫
0

u(t)ϕ∗k(t)dt, k = 0, 1, · · · , N − 1 (2.17)
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Figure 2.5: Structure of OFDM demodulator using a bank of N correlators

where

ϕk(t) =

√
1

T
ej2πfkt, 0 ≤ t < T, k = 0, 1, · · · , N − 1 (2.18)

and
T∫

0

ϕn(t)ϕ∗k(t)dt =

1 n = k

0 otherwise
(2.19)

Thus,

u(k) = XFFT (k)

τmax∫
0

h(τ)e−j2πfkτdτ +

T∫
0

n(t))ϕ∗k(t)dt (2.20)

u(k) = XFFT (k)H(k) +Nu(k) (2.21)

where H(k) is Fourier transform of h(τ). From (2.21), it is noted that the system is

ISI-free by virtue of using guard interval. Moreover, the channel equalization is carried

out in the frequency-domain by a bank of scalars, [H(0), H(1), · · · , H(N − 1)].
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Discrete Time Description

In this Section, ISI-free operation is explained using discrete time representation of

OFDM signal. Sampling xFFT (t), h(t) and u(t) at t = kTs, we obtain:

xFFT (k) = xFFT (t) |t=kTs , k = −Ng, · · · , 0, · · · , N − 1 (2.22)

h(k) = h(τ) |τ=kTs , k = 0, 1, · · · , v − 1 (2.23)

and

u(k) =
v−1∑
r=0

h(r)xFFT (k − r) + n(k), k = −Ng, · · · , 0, · · · , N − 1 (2.24)

where Ng is the number of guard samples (Ng ≤ Tg/Ts), v is the length of channel

impulse response v ≤ τ/Ts and (v ≤ Ng ) and n(k) are the samples of the noise n(t).

Ignoring the guard samples the received signal can be written as:

u(k) =
v−1∑
r=0

h(r)xFFT (k − r) + n(k), k = 0, · · · , N − 1 (2.25)

The transmission of CP makes the linear convolution (2.25) equivalent to a circular

convolution [101]. Ignoring the noise samples, (2.25) can be written as:

u(k) = IFFT {H(n)XFFT (n)} =
N−1∑
n=0

H(n)X(n)ej2πnk/N , k = 0, · · · , N − 1 (2.26)

where

H(n) =
1

N

N−1∑
k=0

h(k)e−j2πnk/N , n = 0, · · · , N − 1 (2.27)

and

XFFT (n) =
1

N

N−1∑
k=0

xFFT (k)e−j2πnk/N , n = 0, · · · , N − 1 (2.28)

The channel h(k) are zero-padded from v ≤ k ≤ N . It is noted that N received data

symbols are equal to the transmitted symbols scaled by the value of channel gains. ISI

is avoided since the kth symbol is not impacted by the N − 1 other symbols. Therefore,

using CP provides ISI-free operation.
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Figure 2.6: OFDM symbol with symmetric extension.

2.3.2 DCT-OFDM System

Continuous Time Domain Description

A guard interval of duration 2 Tg (Tg prefix + Tg suffix) which is a symmetrical extension

of xDCT (t) is appended in the case of DCT-OFDM signal [33, 102, 103] as shown in Figure

2.6.

The signal with guard interval can be written as:

xDCT (t) =
N−1∑
n=0

XDCT (n) cos(2πfnt), −Tg ≤ t ≤ T + Tg (2.29)

At the receiver, a front-end prefilter that is asymmetrical extension of the channel impulse

response is used to achieve ISI-free operation [33, 34]. The received signal can be written

as:

u(t) = xDCT (t) ∗ h(τ) + n(t) =

∞∫
−∞

h(τ)xDCT (t− τ)dτ + n(t)

=

τmax∫
−∞

h(τ)xDCT (t− τ)dτ + n(t) (2.30)
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where h(τ) is the channel impulse response with −τmax ≤ τ ≤ τmax and n(t) is the

additive noise.

The received signal during the guard interval, which has interference from the

previous block is ignored and u(t), 0 ≤ t ≤ T , is processed. The estimate of XDCT (k) is

made by correlating u(t) with the kth subcarrier as shown in Figure 2.5 and the output

can be expressed as:

u(k) =

T∫
0

u(t)ϕk(t)dt, k = 0, 1, · · · , N − 1 (2.31)

where

ϕk(t) =

√
2

T
cos(2πfkt), 0 ≤ t < T, k = 0, 1, · · · , N − 1 (2.32)

and
T∫

0

ϕn(t)ϕk(t)dt =

1 n = k

0 otherwise
(2.33)

Thus,

u(k) = XDCT (k)

τmax∫
−τmax

h(τ) cos(2πfkτ)dτ +

T∫
0

n(t))ϕ∗k(t)dt (2.34)

u(k) = X(k)H(k) +Nu(k) (2.35)

where H(k) is Fourier cosine transform of h(τ). From (2.35), it is noted that the system

is ISI-free when guard interval is used. Moreover, the channel equalization is carried out

in the frequency-domain by a bank of scalars, [H(0), H(1), · · · , H(N − 1)].

Discrete Time Description

In this Section, ISI-free operation is explained using discrete time representation of DCT-

OFDM signal. Sampling xDCT (t), h(t) and u(t), we obtain:

xDCT (k) = xDCT (t) |t=T (2k+1)/2N , k = −Ng, · · · , 0, · · · , N +Ng − 1 (2.36)

h(k) = h(τ) |τ=kTs , k = 0, , · · · , v − 1 (2.37)
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Figure 2.7: Symmetries for (a) x(k) and (b) h(k) to convert linear convolution into a
symmetric convolution.

where v is the length of the channel impulse response. The Figure 2.7 (a) shows an

example of symmetric extension of x(k) using prefix and suffix. Figure 2.7 (b) illustrates

an example of symmetric extension of h(k). Symmetric extension of h(k) can be written

as:

h(k) = h(τ) |τ=kTs , k = −v + 1, · · · , 0, · · · , v − 1 (2.38)

The received signal samples can be expressed as:

u(k) =
v−1∑

r=−v+1

h(r)xDCT (k − r) + n(k), k = −Ng, · · · , 0, · · · , N +Ng − 1 (2.39)

where n(k) are the samples of the noise signal n(t). The guard interval samples are

ignored and the received signal can be written as:

u(k) =
v−1∑
r=0

h(r)xDCT (k − r) + n(k), k = 0, · · · , N − 1 (2.40)
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The transmission of a symmetrically extended guard time makes the linear convolution

in (2.40) equivalent to a symmetric convolution [33, 34, 102]. Using the convolution-

multiplication property of DCT [33, 102], and ignoring the noise samples, (2.40) can be

written as:

u(k) = IDCT {H(n)XDCT (n)} =

√
2

N

N−1∑
n=0

H(n)XDCT (n)B(n) cos(πn(2k+ 1)/2N),

k = 0, · · · , N − 1 (2.41)

where IDCT {•} repersents IDCT operator;

H(n) = 2
N∑
k=0

h(k)B(n) cos(πnk/N), n = 0, · · · , N − 1 (2.42)

and

XDCT (n) =

√
2

N

N−1∑
k=0

xDCT (k)B(n) cos(πn(2k + 1)/2N), n = 0, · · · , N − 1 (2.43)

It is noted that N received data symbols are equal to the transmitted symbols scaled by

values of channel gains. ISI is avoided since the kth symbols is not affected by the N − 1

other symbols. Therefore, using guard interval provides ISI-free operation.

2.4 PAPR of OFDM Signals

2.4.1 PAPR Statistics

The PAPR of an OFDM signal x(t) is defined as the ratio of its maximum value of power

to its average power. That is,

PAPR =

max
0≤t≤T

{
|x(t)|2

}
1
T

∫ T
0 |x(t)|2 dt

(2.44)

The computation of PAPR in (2.44) can be approximated by using samples of x(t) and

the reasons for this approach are: i) most systems are implemented in discrete-time; ii)
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computation in continuous-time is too complex as closed-form expression is difficult to

arrive at; and iii) when an oversampling rate of 4 times that of Nyquist rate is used,

it closely approximates continuous-time PAPR given by (2.44). The PAPR of J-times

oversampled signal x(t) is given by:

PAPR =
max

{
|x(k)|2 , k = 0, 1, · · · , JN − 1

}
1
JN

∑JN−1
k=0 |x(k)|2

(2.45)

For FFT- and DCT-OFDM signals x(k) are given by:

xFFT (k) =
N−1∑
n=0

XFFT (n) ej2πkn/JN , k = 0, · · · , JN − 1, (2.46)

and

xDCT (k) =

√
2

N

N−1∑
n=0

XDCT (n)B(n) cos(πn(2k+ 1)/2JN), k = 0, · · · , JN − 1 (2.47)

The Complementary Cumulative Distribution Function (CCDF) of the PAPR is used to

estimate the PAPR of a given OFDM system. The CCDF denotes the probability that

the PAPR of an OFDM data block exceeds a given threshold, PAPR0. An approximate

lower bound on PAPR for an OFDM system with N subcarriers can be obtained [104]

and is given by:

Pr(PAPR > PAPR0) ≈ 1−
(

1− e(−PAPR0)
)N

(2.48)

Figures 2.8 shows CCDFs of PAPR for an OFDM signal for N = 32, 64, 128, 256, 512, and

1024. It is noted that PAPR increases as the number of subcarriers (N) in the system.

The CCDFs of PAPR of DCT- and FFT-OFDM systems with QPSK mapper for N = 32

are shown in Figure 2.9. It is noted that PAPR bound for N = 32, also shown in Figure

2.8, closely matches with simulation results.

The significance of PAPR of a modulated signal is that it significantly affects the ability

of the signal to be processed by HPA used in the transmitted of the system . The high

PAPR of OFDM signal requires HPA with a large linear range capable of accommodating

the dynamic range of the signal. Otherwise, the nonlinear distortion caused by the HPA
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Figure 2.8: CCDF of PAPR of an OFDM signal for N = 32, 64, 128, 256, 512, and 1024.
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results in the loss of subcarrier orthogonality and hence degrades BER performance of

the system. To determine the effect of PAPR on OFDM system performance, nonlinear

HPA models must be defined. These models and their impact on OFDM signals with

high PAPR are discussed in the next Section.

2.4.2 Models of HPA and their effects

HPA is a necessary stage in most communication systems, as signals must be equipped

with enough power to reach required distances with good fidelity. The HPA is typically

modeled as a memory-less nonlinear device. The output of HPA can be written as:

xout(t) = G(A(t)) ej[φ(t)+Θ(A(t))] (2.49)

where A(t)ej[φ(t)] is the input to HPA, G[A(t)] and Θ[A(t)] are the AM/AM and the

AM/PM distortion functions, respectively. In practice two models of HPA are used.

They are: i) Solid State Power Amplifier (SSPA) and ii) Traveling-Wave Tube Amplifier

(TWTA). The characteristics of these amplifiers are described below:

Solid State Power Amplifier

The SSPA is the most commonly used HPA in wireless communication systems. The

functions G[A(t)] and Θ[A(t)] for this model can be written as [105]:

G[A(t)] =
G0A(t)[

1 + (
A(t)
Asat

)2p
]1/2p (2.50)

and

Θ[A(t)] = 0 (2.51)

where G0 is the amplifier gain, p controls the sharpness of the saturation region and Asat

is the input saturation level. Using (2.50) and (2.51) in (2.49), the output of SSPA can

be written as:

xout(t) =
G0A(t)[

1 + (
A(t)
Asat

)2p
]1/2p ej[φ(t)] (2.52)
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Traveling-Wave Tube Amplifier

The TWTA is a wideband amplifier widely used in communication systems [106]. The

AM/AM and AM/PM functions for this amplifier can be written as [107]:

G[A(t)] =
G0A(t)

1 + (
A(t)
Asat

)2
(2.53)

and

Θ[A(t)] =
αφA(t)2

1 + βφA(t)2
(2.54)

where αφ and βφ are nonzero constants. It is noted that TWTA model is relatively more

nonlinear than the SSPA model. Using (2.53) and (2.54) in (2.49), the output of TWTA

can be written as:

xout(t) =
G0A(t)

1 + (
A(t)
Asat

)2
e
j[φ(t)+

αφA(t)
2

1+βφA(t)
2 ]

(2.55)

As a comparison, the AM/AM functions for SSPA (for p = 3, 10) and TWTA are shown

in Figure 2.10. The AM/PM function for TWTA is shown in Figure 2.11.

In order to minimize the nonlinear distortion caused by the HPA in an OFDM system,

an input power backoff (IBO) is required and is given by [108]:

IBO =
A2
sat

Pin
(2.56)

where Pin is the average power of the input signal.

In Figures 2.12 and 2.13, results of computer simulations of BER performance of DCT-

OFDM (N = 64) system with 8-PSK mapper are shown for HPA with various IBO levels.

The BER performance for the SSPA model for 0 ≤ IBO ≤ 10 dB is shown in Figure

2.12. It is noted that there exist irreducible error for IBO = 0 dB. However, when IBO

= 10 dB this error can be overcome. For the TWTA model BER performance is shown

in Figure 2.13 for 0 ≤ IBO ≤ 18 dB . It is noted that the irreducible error exists for

IBO = 0 dB. To overcome this an IBO of 18 dB is required, which is 8 dB more than

that required in the case of SSPA. In addition it is noted that the TWTA model is more
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Figure 2.10: AM/AM functions for SSPA (for p = 3, 10) and TWTA for Asat = 2.
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nonlinear than the SSPA model.
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Figure 2.12: BER performance of DCT-OFDM (8-PSK, N = 64) system with SSPA for
various values of IBO.

The relationship between efficiency and IBO for a Class A HPA is given by [52, 53]:

ηA =
.5

IBO
× 100% , IBO ≥ 1 (2.57)

The efficiency of Class A HPA as a function of IBO is shown in Figures 2.14. it is

observed that the efficiency is inversely proportional to IBO. The maximum efficiency,

(50 %) occurs at IBO = 0 dB.

It is noted that the undesirable effects of HPA nonlinearities can be reduced by increasing

IBO, which is an unsatisfactory solution, since HPA efficiency reduces with IBO. The

amount of IBO required is a function of the PAPR of the input OFDM signal to the HPA

and a large PAPR leads to an increased value of IBO thereby reducing the HPA efficiency

which is undesirable particularly for battery-powered systems. Therefore, increasing the

IBO is not a good solution to overcome the problem of PAPR. Constant envelope OFDM

signal design provides a good solution to this problem, as such a signal design offers 0
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Figure 2.13: BER performance of DCT-OFDM (8-PSK, N = 64) system with TWTA
for various values of IBO.
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Figure 2.14: Efficiency (ηA) of Class A HPA as a function of IBO.
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dB PAPR and hence does not require IBO and provides high efficiency of HPA in the

system.

2.5 Conclusions

In this Chapter, a generic description of FFT- and DCT-OFDM systems is given. The

concept of guard interval/Cyclic prefix is mathematically explained in both continuous-

and discrete-time for these systems and it is shown that ISI-free operation is possible with

the appropriate use of guard interval/Cyclic prefix. The PAPR statistics of FFT- and

DCT-OFDM signals are presented and it is shown that PAPR increases as the number

of subcarriers in the system. The models of HPA, both SSPA and TWAT, are described.

The effect of IBO on the efficiency of HPA is illustrated. It is noted that by using CE-

OFDM signals, it is possible to reduce IBO to 0 dB and increase the efficiency of HPA

in the system.
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Chapter 3

Constant Envelope DCT- and FFT-OFDM

Systems with PM1,2,3

3.1 Introduction

A generalized OFDM system with PM (CE-DCT- and CE-FFT-OFDM systems) is pre-

sented for data transmission. In the system, MPAM mapper is used. The system is

described, illustrated, and examined for its properties. The detection of signals in this

system in AWGN and fading channels is addressed. It is shown that the receiver structure

consists of phase demodulator followed by the optimum OFDM detector. Expressions

for bandwidth of CE-DCT and CE-FFT-OFDM systems are developed and presented.

Closed-form expressions for BER performance of the receiver are derived and illustrated

as a function of Eb/N0, M , hp, and statistical parameters of densities of noise environ-

ment. The effect of TWTA amplifier on BER of the system is also presented.

.1. Rayan H. Alsisi and Raveendra K. Rao,”Performance Comparison of Constant Enve-
lope DCT- and FFT-based OFDM Systems with Phase Modulation over Frequency-
Nonselective Fading Channels,” 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, Canada, Oc-
tober 2017, pp. 1-6.

2. Rayan H. Alsisi and Raveendra K. Rao, ”Performance of constant envelope DCT based
OFDM system with M-ary PAM mapper in AWGN channel,” 2017 Annual IEEE Inter-
national Systems Conference (SysCon 2017), Montreal, Canada, April 2017, pp. 1-7.

3. Rayan H. Alsisi and Raveendra K. Rao,”Discrete Cosine Transform Based Orthogonal
Frequency Division Multiplexing with Phase Modulation and Constant Envelope,” In-
ternational Conference on Electronics, Information, and Communication (ICEIC 2017),
Phuket, Thailand, January 2017, pp. 35-40.
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3.2 Signals in DCT- and FFT-OFDM Systems with

PM

A phase modulated OFDM bandpass signal can be written as:

s(t) = Accos(2πfct+ φ(t)), 0 ≤ t ≤ T (3.1)

where Ac and fc are the carrier amplitude and frequency of the signal and φ(t) is the

information carrying phase and is given by:

φ(t) = kp x(t) (3.2)

where kp is the phase sensitivity constant of the modulator and x(t), 0 ≤ t ≤ T , is the

real-valued OFDM signal carrying information about data to be transmitted. It is noted

that s(t) is a constant envelope signal. The information carrying phase φ(t) in CE-FFT-

and CE-DCT-OFDM systems are given by:

φFFT (t) = kpxFFT (t) = kp

√
2

Tσ2
s

N−1∑
n=0

XFFT (n)cos(2πnt/T ) (3.3)

and

φDCT (t) = kpxDCT (t) = kp

√
2

Tσ2
s

N−1∑
n=0

XDCT (n)cos(πnt/T ) (3.4)

where xFFT (t) and xDCT (t) represent real signals of DCT- and FFT-OFDM systems

with MPAM mapper. In the case of FFT-OFDM system xFFT (t) is obtained using

conjugate symmetry of input data vector as explained in Chapter 1 and in the case of

DCT-OFDM system, xDCT (t) is real-valued

3.3 CE-OFDM Transmitter

The block diagram of CE-OFDM transmitter is shown in Figure 3.1. A block of N

symbols from a high rate data rate source is first passed through S/P converter to obtain

a set of N low rate parallel data streams. These symbols are then passed to an MPAM
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Figure 3.1: Transmitter and receiver structures for CE-OFDM system with PM

mapper whose output is a vector [X(0), X(1), · · · , X(N − 1)]T consisting of N symbols.

For an MPAM mapper, X(n), n = 0, 1, · · · , N − 1, ∈ {±1,±3, · · · ,±(M − 1)} and is

used to generate the OFDM signal x(t) which is fed to a phase modulator to obtain CE-

OFDM signal s(t). This signal is amplified by HPA and transmitted using an antenna

over the communication channel.

Using (3.2) and (3.3) in (3.1), CE-FFT-OFDM signal can be written as:

s(t) = Accos

2πfct+

√
2

Tσ2
s
kp

N−1∑
n=0

XFFT (n)cos(2πnt/T )

 (3.5)

Using (3.2) and (3.4) in (3.1), CE-DCT-OFDM signal can be written as:

s(t) = Accos

2πfct+

√
2

Tσ2
s
kp

N−1∑
n=0

XDCT (n)cos(πnt/T )

 (3.6)
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where σ2
s is the variance of data symbols and is given by:

σ2
s = E

[
|Xn|2

]
=

1

M

M∑
i=1

(2i− 1−M)2 =
M2 − 1

3

The average power and energy of signals in (3.5) and (3.6) are:

Ps =
1

T

T∫
0

s(t)2 =
A2
c

2

and

Es = PsT =
A2
cT

2

ForN information symbols per transmission, the average bit energy is Eb = A2
cT/2N log2M .

Bandwidth of CE-OFDM Signals

PM is a nonlinear modulation technique and its bandwidth is complex to analyze. How-

ever, a rough estimate of bandwidth can be obtained using Maclaurin series expansion

of PM signal in (3.1). That is,

s(t) = Ac[cos(2πfct)− φ(t)sin(2πfct)−
1

2!
φ2(t)cos(2πfct) + · · · ] (3.7)

For φ(t)� 1, the first two terms in the series are sufficient to represent the signal. That

is,

s(t) ≈ Accos2πfct− Acφ(t)sin2πfct (3.8)

This represents the narrowband case and the bandwidth of such a signal is at least 2W

Hz, where W is the bandwidth of the modulating OFDM signal x(t). As φ(t) becomes

larger, the bandwidth of the signal broadens. A useful expression for bandwidth in such

a case is given by the Root Mean Square (RMS) bandwidth of the signal [109], and is

equal to max(2hp; 2)W Hz, where hp = kpmax |x(t)|, is the modulation index. For the

case of FFT-OFDM message signal W = N/T Hz and for DCT-OFDM message signal
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W = N/2T Hz [44, 38].

3.4 CE-OFDM Receiver: Signal Detection and

Performance

The block diagram of CE-OFDM receiver is shown in Figure 3.1 and consists of cas-

cade of Band Pass Filter (BPF), phase demodulator, Low Pass Filter (LPF), OFDM

demodulator, MPAM demapper, and P/S converter blocks.

Figure 3.2: Ideal bandpass filter characteristic

The received signal (z(t) = s(t) + w(t)) is first passed through a BPF, H1(f), with

characteristic as shown in Figure 3.2, where B is the bandwidth of CE-OFDM signal

s(t). The bandwidth B is in excess of twice the OFDM message signal bandwidth W Hz

by an amount that depends on the modulation index of the PM signal s(t). The noise

w(t) is modelled as AWGN with zero mean and PSD of N0/2 Watts/Hz. The input to

the phase demodulator can be written as

y(t) = s(t) + n(t), 0 ≤ t ≤ T (3.9)

where n(t) represents the output of BPF due to the input w(t) and can be represented

in terms of its in-phase and quadrature components. Thus, the output of the phase

50



Figure 3.3: Phasor diagram of y(t)

demodulator is a low pass signal with bandwidth equal to message signal, W Hz. The

LPF output is then fed to the OFDM demodulator followed by the MPAM demapper

and P/S converter to get an estimate of transmitted data.

3.4.1 Phase Demodulator

The phase demodulator consists of arctangent block to detect the phase of the received

signal, using arctan

{
yQ(t)

yI (t)

}
, where yQ(t) and yI(t) are quadrature and in-phase com-

ponents of y(t), followed by a phase unwrapper [110]. The noise, n(t) at the input of the

phase demodulator can be expressed as

n(t) = nI(t)cos2πfct− nQ(t)sin2πfct (3.10)

where nI(t) and nQ(t) are the in-phase and quadrature components of filtered w(t). In

polar form (3.10) can be written as

n(t) = m(t)cos[2πfct+ Ψ] (3.11)

where the envelope m(t) and phase Ψ(t) are given by:

m(t) =
√

[n2
I(t) + n2

Q(t)] (3.12)
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and

Ψ(t) = arctan

{
nQ(t)

nI(t)

}
(3.13)

Thus, the input to the phase demodulator can be written as

y(t) = Accos[2πfct+ φ(t)] +m(t)cos[2πfct+ Ψ(t)], (3.14)

which, in polar form, can be written as:

y(t) = v(t)cos[2πfct+ θ(t)] (3.15)

where v(t) represents the envelope and θ(t) the phase angle of y(t) in (3.14). The phase

diagram of y(t) is shown in Figure 3.3. Ignoring m(t), as its variation is restricted by the

limiter in the phase demodulator, it is evident from Figure 3.3 that the phase of y(t) is

given by [109, 110]:

θ(t) = φ(t) + ε(t) (3.16)

where

ε(t) = arctan

{
m(t)sin[Ψ(t)− φ(t)]

Ac +m(t)cos[Ψ(t)− φ(t)]

}
(3.17)

is the phase noise. For high value of Carrier-to-Noise Ratio (CNR), Ac >> m(t), (3.16)

can be approximated by:

θ(t) ≈ φ(t) +
m(t)

Ac
sin[Ψ(t)− φ(t)] (3.18)

The output of the phase demodulator is proportional to θ(t) and is given by

r(t) =
1

kp
θ(t) (3.19)

Using (3.18) in (3.19), we get

r(t) = x(t) + nd(t) (3.20)

where

nd(t) =
m(t)

kpAc
sin[Ψ(t)− φ(t)] (3.21)
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The PSD, SNd(f), of nd(t) is related to the PSD, SNQ(f), of nQ(t) [110, 111] and is

given by

SNd(f) =

{
1

kpAc

}2

SNQ(f) (3.22)

where

SNQ(f) =

N0, |f | ≤ B
2

0, otherwise
(3.23)

The phase demodulator output is applied to LPF of bandwidth equal to that of meassage

signal x(t), W Hz. The LPF allows the message signal x(t) to pass through and rejects

out-of-band noise due to nd(t). The transfer function of LPF is

H2(f) =

1, |f | ≤ W

0, otherwise
(3.24)

The output of LPF can be written as

u(t) = x(t) + nu(t) (3.25)

The PSD, SNu(f), of nu(t) at the output of LPF is given by

SNu(f) =

N0/k
2
pA

2
c , |f | ≤ W

0, otherwise
(3.26)

and, thus, the average power of nu(t) is:

W∫
−W

N0k
2
d

Ac
df =

2WN0

k2
pA

2
c

(3.27)

3.4.2 OFDM Demodulator

The OFDM demodulator block shown in Figure 3.4 consists of two stages, a demodula-

tor followed by a detector. The demodulator projects the incoming signal u(t) on to an

N -dimensional orthogonal signal space and the detector outputs are applied to MPAM

demappers to estimate the transmitted information symbols based on the projected co-
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ordinates. The N outputs of the demodulator are u(0), u(1), · · · , u(N − 1). The jth of

Figure 3.4: Structure of OFDM demodulator

these outputs is given by:

u(j) =

T∫
0

u(t)ϕj(t)dt (3.28)

where ϕj(t), j = 0, 1, · · · , N − 1 are given in (1.5) and (1.6) for FFT- and DCT-OFDM

systems. Using (3.25) in (3.28), u(j) can be written as:

u(j) = X(j)/
√
σ2
s +Nu(j); j = 0, 1, .., N − 1 (3.29)

The mean of u(j) is,

E[u(j)] = E[X(j)/
√
σ2
s +Nu(j)] = E[X(j)/

√
σ2
s ] (3.30)

where X(j) ∈ {±1,±3, ...,±(M − 1)}. It is noted that the mean is independent of the

noise nu(t). However, the variance of u(j) is dependent on the characteristic of the noise

54



Figure 3.5: Signal constellation of MPAM demapper

nu(t). and is given by:

V ar[u(j)] = σ2
u(j) = E

{
[u(j)− E {u(j)}]2

}
(3.31)

The variance can be shown to be given by:

V ar[u(j)] = σ2
u =

2WN0

k2
pA

2
c
, j = 0, 1, · · · , N − 1 (3.32)

3.4.3 BER Probability of CE-OFDM system

In this Section, the BER performance of the CE-OFDM receiver is derived. Consider the

output of the jth correlator fed to the MPAM demapper as shown in Figure 3.4. That

is,

u(j) =
X(j)√
σ2
s

+Nu(j)

where X(j) ∈ {±1,±3, · · · ,±(M − 1)}, σ2
s = ((M2 − 1)/3) is the variance of data

symbols, and Nu(j) is a zero Gaussian random variable with variance σ2
u given by (3.32).

The signal constellation of MPAM demapper is shown in Figure 3.5. It is noted that

there exist two types of points in the constellation. There are M − 2 inner points and

2 outer points (s1 and sM ) in the constellation. If an inner point is transmitted, there

will be an error in detection if |Nu(j)| > 1
2dmin, where dmin = 2√

σ2s

. For the outer

points, the probability of error is one-half of the error probability of an inner points since

noise can cause error in only one direction. Since Nu(j) is a zero-mean Gaussian random

variable with variance given by (3.32), the error probability of inner points is given by:
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Pinner = Prob.

[
|Nu(j)| > 1

2
dmin

]
= 2Prob.

[
Nu(j) >

1

2
dmin

]
(3.33)

= 2

∞∫
1/

√
σ2s

1√
2πσ2

u

e

(
−x2/2σ2u

)
dx (3.34)

Pinner = 2Q

√ A2
ch

2
p

2WN0σ2
s

 (3.35)

where

Q(x) =
1√
2π

∞∫
x

e−y
2/2dy (3.36)

and for the outer points, the probability of error is

Pouter =
1

2
Pinner (3.37)

Therefore, the symbol error probability for the jth MPAM mapper can be written as:

Ps =
1

M

M∑
i=1

Prob. [error | si sent]

=
1

M
[(M − 2)Pinner + 2Pouter]

= 2

(
M − 1

M

)
Q

√ A2
ch

2
p

2WN0σ2
s


(3.38)

Using the values of W for message signals DCT- and FFT-OFDM systems, the symbol

error probabilities for the CE-FFT- and CE-DCT-OFDM systems are given by:

PsFFT = 2

(
M − 1

M

)
Q

√3h2
p log2(M)Eb

(M2 − 1)N0

 (3.39)

and

PsDCT = 2

(
M − 1

M

)
Q

√6h2
p log2(M)Eb

(M2 − 1)N0

 (3.40)

In the receiver, there are N demappers and each has the same symbol error probability
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given by (3.39) and (3.40). The average of N symbol error is simply given by (3.39) and

(3.40). It is noted that for hp = 1, (3.40) reduces to the well-known expression symbol

error rate of MPAM system [6]. Converting the symbol error rate to Bit Error Rate

(BER), we get

Pb ≈
Ps

log2(M)
(3.41)

The BER for the CE-FFT- and CE-DCT-OFDM systems are given by:

PbFFT ≈ 2

(
M − 1

M log2(M)

)
Q

√3h2
p log2(M)Eb

(M2 − 1)N0

 (3.42)

and

PbDCT ≈ 2

(
M − 1

M log2(M)

)
Q

√6h2
p log2(M)Eb

(M2 − 1)N0

 (3.43)

The BER given by (3.42) and (3.43) are functions of hp, modulation index, M , number

of amplitude levels in MPAM mapper, and Eb/N0, signal-to-noise ratio.

3.5 Performance of CE-OFDM system over Fading

Channels

Wireless channel introduces various impairments and effects that cause degradation of

SNR leading to poor BER performance. In this study, slow frequency non-selective fading

channels are considered, as they represent many practical wireless channel environment.

There are several statistical models available to describe fading effects; however, Rayleigh

and Rician models are used in our study. Also, the BER performance of CE-OFDM

system over flat Rayleigh and Rician channels is evaluated.

3.5.1 Frequency Non-Selective Fading Channel

The received CE-OFDM signal over a frequency non-selective fading channel can be

modeled as: ∞∫
−∞

h(τ)s(t− τ)dτ + w(t) (3.44)
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where s(t) is the transmitted signal, w(t) is AWGN and h(t) is the impulse response of

the channel and is given by

h(t) = αejφ0δ(t) (3.45)

Using (3.45) in (3.44), the received signal can be written as:

z(t) = αejφ0s(t) + n(t) (3.46)

where α and φ0 are the channel amplitude and phase, respectively. In the frequency

domain, the channel is described by H(f) = F [h(t)] = αejφ0 denoting that it is constant

at all frequencies and hence the channel is frequency non-selective. Such a channel is

referred to as flat-fading channel. The channel amplitude is treated as a random quan-

tity. When it is a zero-mean complex-valued Gaussian process, its envelope is Rayleigh

distributed. The pdf of Rayleigh distributed random variable α is given by:

pα(α;σ) =
α

σ2
e−α

2/2σ2 , α ≥ 0 (3.47)

where σ is the scale parameter of the distribution

Another pdf that is commonly used to model the envelope is the Rice distribution.

The pdf of Rician random variable can be expressed as:

pα(α; a, σ) =
α

σ2
e
α2+a2

2σ2 I0

[αa
σ2

]
, a ≥ 0, α ≥ 0 (3.48)

where I0(z) is the modified Bessel function of the first kind with order zero. The pdfs of

Rayleigh and Rice random variables are shown in Figures 3.6 and 3.7, respectively.

3.5.2 BER performance of CE-OFDM system

The instantaneous SNR and the average SNR per bit can be represented as γ = α2Eb/N0

and γ̄ = E
{
α2
}
Eb/N0, respectively. To obtain the bit error rate (Pb) of CE-OFDM

system over a fading channel, the conditional BER is averaged over the pdf of γ and can

be written as [112]:

Pb =

∞∫
0

Pb(γ)pγ(γ)dγ (3.49)
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Figure 3.6: Probability density function of Rayleigh random variable as a function of σ.

where Pb(γ) from (3.42) and (3.43) is given by:

Pb(γ) = 2

(
M − 1

M log2(M)

)
Q

(√
qα2Eb

N0

)
= 2

(
M − 1

M log2(M)

)
Q (
√
qγ) (3.50)

where q =
3h2p log2(M)

M2−1
, for FFT-OFDM system and for DCT-OFDM system q =

6h2p log2(M)

M2−1
.

3.5.3 Rayleigh Fading Channel

The Rayleigh channel is characterized with no direct LOS path. Since α is Raleigh

distributed, α2 has a chi-square pdf with two degrees of freedom. Consequently, the pdf

of γ can be shown to be given by [112]:

pγ(γ) =
1

γ̄
exp

(
−γ
γ̄

)
, γ ≥ 0 (3.51)

59



0 1 2 3 4 5 6
α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p α
(α

;a
,σ

)

a = 0

a = 0.5

a = 1

a = 2
a = 4

Figure 3.7: Probability density function for Rice random variable for σ = 1 and various
values of a.

Using (3.50) and (3.51) in (3.49), Pb is given by

Pb = 2

(
M − 1

M log2(M)

)
1

πγ̄

π/2∫
0

∞∫
0

exp

(
− qγ

2sin2(θ)
− γ

γ̄

)
dγdθ (3.52)

where an alternate expression for Q(z) has been used and is given by:

Q(z) =
1

π

π/2∫
0

exp

(
− z2

2sin2(θ)

)
dθ (3.53)

Upon simplification of (3.52) [113], the bit error rate can be written as:

Pb =

(
M − 1

M log2(M)

)1−
√

1

1 + 1
qγ̄/2

 (3.54)
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The BER given by (3.54) is a function of hp, modulation index, M , and γ̄, the average

SNR of the received signal over Raleigh fading channel. In deriving (3.54), it is assumed

that the channel phase shift φ0 is estimated from the received signal without error and

remains constant during the observation interval.

3.5.4 Rician Fading Channel

The Rician channel has one strong direct LOS component and many indirect weaker

components. Since α is Rice distributed, γ is noncentral chi-square distributed and is

given by [112]:

pγ(γ) =
(1 +K) e−K

γ̄
exp

[
−(1 +K) γ

γ̄

]
I0

2

√(
K +K2

)
γ

γ̄

 , γ ≥ 0 (3.55)

where K is the Rice factor expressed in dB as:

K = 10 log
a2

2σ2
dB

where a2 represents the power of signal from LOS path and σ2 is the power of signals

from non LOS paths. For the special case when the K = 0, the Rician density reduces

to Rayleigh density. Using (3.50) and (3.55) in (3.49), we get

Pb =
2

π

(
M − 1

M log2(M)

)
(1 +K) e−K

γ̄

π/2∫
0

∞∫
0

exp

[
− qγ

2sin2(θ)
− (1 +K) γ

γ̄

]

I0

2

√(
K +K2

)
γ

γ̄

 dγdθ (3.56)

where Q(z) given in (3.53) has been used. Upon simplifcation of (3.56) [113] , the bit

error rate can be written as:

Pb =
2

π

(
M − 1

M log2(M)

) π/2∫
0

(1 +K)sin2(θ)

(1 +K)sin2(θ) + qγ̄/2
exp

[
− Kqγ̄/2

(1 +K)sin2(θ) + qγ̄/2

]
dθ

(3.57)
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It is noted that BER is a function of hp, modulation index, M , K, Rice factor and γ̄,

average SNR of received signal over Rician channel. In deriving (3.57), it is assumed

that the channel phase shift φ0 is estimated from the received signal without error and

remain constant during the observation interval.

3.6 Numerical Results and Discussion

In this Section numerical results of probability of bit error performances of CE-DCT- and

CE-FFT-OFDM systems are presented and discussion of these results is also included.

The effect of HPA on BER performances of these systems is also persented.

3.6.1 Performance in AWGN Channel

The expressions for BER in AWGN channel for CE-DCT- and CE-FFT-OFDM systems

are given by (3.42) and (3.43), respectively. They are functions of hp, modulation index,

M , number of amplitude levels in MPAM mapper, and Eb/N0, signal-to-noise ratio. The

BER performances of these systems are shown in Figure 3.8 as a function of hp and Eb/N0

for a 2-PAM mapper. It is observed that CE-DCT-OFDM system performs better than

the corresponding CE-FFT-OFDM system. For example at Pb = 10−5, hp = 0.6, Eb/N0

required for CE-DCT-OFDM system is nearly 3 dB less than that required for CE-FFT-

OFDM system. Also, it is observed that BER decreases as hp increases for a fixed value

of Eb/N0. For example, at Pb = 10−5, Eb/N0 required for hp = 0.2 is 9.5 dB more

than that required for hp = 0.6. Table 3.1 summarizes Eb/N0 required at Pb = 10−5 for

both systems as a function of hp. In Figure 3.9, probability of bit error performances

Table 3.1: Comparison of CE-DCT- and CE-FFT-OFDM systems (2-PAM mapper) at
Pb = 10−5 as a function of hp

hp
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
1.2 8.004 11.016
1.0 9.588 12.598
0.8 11.526 14.536
0.6 14.025 17.035
0.4 17.547 20.557
0.2 23.567 26.578
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Figure 3.8: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems for (2-PAM mapper) over AWGN channel.

of CE-DCT- and CE-FFT-OFDM systems are shown, for 4-PAM mapper in the system.

Table 3.2 summarizes Eb/N0 required at Pb = 10−5 for both systems as a function of

hp. It is observed that BER decreases as hp increases for a fixed value of Eb/N0.

Table 3.2: Comparison of CE-DCT- and CE-FFT-OFDM systems (4-PAM mapper) at
Pb = 10−5 as a function of hp

hp
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
1.2 11.851 14.561
1.0 13.435 16.445
0.8 15.373 18.383
0.6 17.872 20.882
0.4 21.393 24.404
0.2 27.414 30.424

Figure 3.10. shows BER performance of CE-DCT-OFDM system for 8-PAM mapper as

a function of hp and Eb/N0. In the same figure, BER performance of CE-FFT-OFDM

is also shown. Table 3.3 summarizes Eb/N0 required at Pb = 10−5 for both systems as

a function of hp. The probability of bit error performances of CE-DCT- and CE-FFT-

OFDM systems with hp = 0.6 for various values of M are illustrated in Figures 3.11 and
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Figure 3.9: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems for (4-PAM mapper) over AWGN channel.
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Figure 3.10: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems for (8-PAM mapper) over AWGN channel.
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Table 3.3: Comparison of CE-DCT- and CE-FFT-OFDM systems (8-PAM mapper) at
Pb = 10−5 as a founction of hp

hp
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
1.2 16.203 19.213
1.0 17.787 20.797
0.8 19.725 22.734
0.6 22.224 25.234
0.4 25.746 28.756
0.2 31.766 34.776

3.12, respectively. For both systems, it is noted that BER increases as the modulation

order M increases. For example, for CE-DCT-OFDM system (M = 4, hp = 0.6) at BER

= 10−5, Eb/N0 = 14.025 dB is required, whereas for M = 4 and M = 8, Eb/N0 = 17.872

dB and 22.224 dB are required, respectively. At Pb = 10−5, the systems with M = 4

and 8 are worse than the system with M = 2 by 3.8 and 8.2 dB, respectively. However,

spectral efficiency improves with increased value of M in the system.
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Figure 3.11: Probability of bit error performance of CE-DCT-OFDM system as a
function of M for hp = 0.6 over AWGN channel.

The BER performances of both systems can be controlled by appropriately choosing hp

and M as shown in Figures 3.13 and 3.14. For example, CE-DCT-OFDM system with
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Figure 3.12: Probability of bit error performance of CE-FFT-OFDM system as a
function of M for h = 0.6 over AWGN channel.

M = 8 and hp = 1.2 outperforms corresponding system with M = 2 and hp = 0.2 by 7.4

dB at BER = 10−5.

Figures 3.15 and 3.16 show comparison of simulation and theoretical BER results for

CE-DCT-OFDM system (N = 64 subcarriers) for M = 4 and M = 8, respectively. It is

noted that simulation and theoretical results are nearly the same.

3.6.2 Performance over Fading Channels

The expression for BER over Raleigh fading channel is given by (3.54). Figures 3.17,

3.18, and 3.19 show Pb of CE-DCT- and CE-FFT-OFDM systems for M = 2, 4, and 8,

respectively. Figures 3.8 and 3.17 show the probability of bit error performances of both

systems for 2-PAM mapper for AWGN and flat Rayleigh fading channels, respectively. It

is noted that, the presence of signal fading causes a large increase in the Eb/N0 required to

achieve the same level of BER as that for the AWGN channel. For example, at hp = 0.6

to achieve BER equal to 10−5 over AWGN channel CE-DCT-OFDM system requires

14.025 dB. However, the same system over Rayleigh fading channel requires, 48.105 dB

to achieve the same BER. The reason for this large increase in Eb/N0 required can be
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Figure 3.13: Probability of bit error performance of CE-DCT-OFDM system as a
function of hp and M over AWGN channel.
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Figure 3.14: Probability of bit error performance of CE-FFT-OFDM system as a
function of hp and M over AWGN channel.
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Figure 3.15: Comparison of analytical and simulation results for CE-DCT-OFDM
system (4-PAM mapper) over AWGN channel.
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Figure 3.16: Comparison of analytical and simulation results for CE-DCT-OFDM
system (8-PAM mapper) over AWGN channel.
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Figure 3.17: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rayleigh fading channel.
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Figure 3.18: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rayleigh fading channel.
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Figure 3.19: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rayleigh fading channel.

understood by examining the density function of SNR of the received signal, given by

(3.51), where the exponential form places some values of signal power at very low levels.

For higher values of signal power, the error rates are negligible. Therefore, the average

BER is dominated by the intervals over which the SNR is low and BER is high. As a

result, a large increase in average signal power, which greatly widens the density of SNR

given (3.51), is needed to reduce the probability that the instantaneous signal power lies

in the region of high BER.

The expression for BER for Rician fading channel is given by (3.57). The BER is not

only a function of hp, M and γ̄, but also depends on K, Rice factor. Figures 3.20,

3.21 and 3.22 depict Pb vs γ̄, average SNR, of CE-DCT- and CE-FFT-OFDM systems

for M = 2, 4 and 8, for Rician fading channel with K = 6 dB, respectively. The

comparison of probability of bit error performances of CE-DCT- and CE-FFT-OFDM

systems for M = 2 and hp = 1 over AWGN, Rician and Rayleigh channels as a function

of average SNR are shown in Figures 3.23 and 3.24, respectively. It is noted that there

is a penalty in SNR that must be paid as consequence of fading. Tables 3.4 and 3.5

summarize SNR required at Pb = 10−3, 10−4 and 10−5 for CE-DCT- and FFT-OFDM
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Figure 3.20: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 3.21: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 3.22: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rician fading channel (K = 6 dB).

systems over AWGN, Rician and Rayleigh channels, respectively.

Table 3.4: Comparison of probability of bit error performances of CE-DCT-OFDM
system over AWGN, Rician and Rayleigh channels.

Pb
Average SNR (dB)

AWGN Rician Raleigh

10−3 6.789 15.118 24.162

10−4 8.398 23.873 34.851

10−5 9.588 34.851 43.542

Table 3.5: Comparison of probability of bit error performances of CE-FFT-OFDM
system over AWGN, Rician and Rayleigh channels.

Pb
Average SNR (dB)

AWGN Rician Raleigh

10−3 9.799 18.132 27.111

10−4 11.409 27.861 36.851

10−5 12.598 36.674 46.655
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Figure 3.23: Comparison of probability of bit error performances of CE-DCT-OFDM
system (2-PAM mapper, hp = 1) over AWGN, Rician (K = 6 dB) and Rayleigh

channels.

Figure 3.25 illustrates the effect of K on BER performances for CE-DCT- and CE-FFT-

OFDM systems for M = 4 and hp = 0.5. It is evident that BER decreases as the value of

K increases. For example at BER of 10−4, the average SNR required for K = 18 dB is

nearly by 30 dB less than that required for K = 2 dB. It is well known that as K →∞,

Rician density approaches that of Gaussian density.

3.7 CE-DCT- and DCT-OFDM Systems with

TWTA Amplifier

The undesirable effects of nonlinear HPA in an OFDM system can be mitigated by

increasing IBO, as discussed in Chapter 2. For the DCT-OFDM system, one needs to

adjust the average input power so that the peaks of the signal are rarely clipped. That

is, one needs to apply an IBO to the signal prior to amplification. In the case of CE-

DCT-OFDM system with power amplifier, the input and output signals can be written
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Figure 3.24: Comparison of probability of bit error performances of CE-FFT-OFDM
system (2-PAM mapper, hp = 1) over AWGN, Rician (K = 6 dB) and Rayleigh

channels as a function of SNR.
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Figure 3.25: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper, hp = 0.5)as function of Rice factor for Rician Channel.
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as:

xin(t) = A ejφ(t) (3.58)

and

xout(t) = G(A) ej[φ(t)+Θ(A)] (3.59)

It is noted from (3.58) and (3.59) that the power amplifier has no impact on the perfor-

mance of CE-DCT-OFDM system, as no IBO is needed since the instantaneous nonlin-

earity results in a constant amplitude and a constant phase shift. Computer simulations

have been used to study the BER performances of both CE-DCT-OFDM and DCT-

OFDM systems with TWTA amplifier in the them, as a function of the IBO. Figure 3.26

compares BER performances of CE-DCT-OFDM system (64 subcarriers, 4-PAM map-

per, hp = 1.2, 1.5) and DCT-OFDM system (64 subcarriers, QPSK mapper) for IBO= 0

dB and 4 dB, for TWTA amplifier model with αφ = π/12 βφ = 0.25. The DCT-OFDM

system with IBO= 0 dB has an error floor of nearly 3.20× 10−2 . At BER = 10−3, the

IBO required for the DCT-OFDM system is 4 dB, with Eb/N0 = 13.8 dB. However,

the CE-DCT-OFDM system with IBO= 0 dB and hp = 1.5 achieves a BER of 10−3 at

Eb/N0 = 12.8 dB.
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Figure 3.26: Probability of bit error performances of CE-DCT-OFDM and performance
of DCT-OFDM systems as a function of IBO for TWTA.
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3.8 Conclusions

A generic description of DCT- and FFT-OFDM systems with PM is presented. These

systems are referred to as CE-DCT- and CE-FFT-OFDM systems. In these systems the

transmitted signals have 0 dB PAPR due to the use of PM and, therefore, costly PAPR

mitigation techniques are not required. The BER performance analyses of these systems

over AWGN and flat fading channels are presented and closed-form expressions for BER

have been derived. The results show that the CE-DCT-OFDM system outperforms the

CE-FFT-OFDM system by nearly 3 dB. It is also observed that BER performances of

these systems can be controlled by appropriately choosing hp and the numbers of levels

in MPAM mapper in these systems. The BER simulation results are nearly the same as

that of theoretical BER results. BER performances of CE-DCT- and CE-FFT-OFDM

systems over AWGN, Rician and Rayleigh channels, as a function of system and noise

environment parameters are presented. The power penalty required as consequence of

fading has been estimated for both Rayleigh and Rician channels. It is observed that

power penalty required is higher for Rayleigh than for Rician channel, as in the latter

there exist direct LOS path while in former there is no LOS path. BER performances of

CE-DCT-OFDM and DCT-OFDM systems with nonlinear TWTA amplifier in them are

compared as a function of IBO. The results show CE-DCT-OFDM system is attractive

compared to DCT-OFDM system, as no IBO is required in the former system.
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Chapter 4

Constant Envelope DCT- and FFT-OFDM

Systems with FM4,5

4.1 Introduction

In this Chapter, DCT- and FFT-OFDM systems with FM are considered. These sys-

tems with MPAM mapper are described, illustrated, and examined for transmission of

data. Detection and performance of signals in these systems are addressed. The receiver

structure consists of an FM demodulator followed by the optimum OFDM demodulator.

Closed-form expressions for BER of these systems over AWGN and fading channels are

derived and illustrated as a function of Eb/N0, M , and modulation index hf . Expres-

sions for bandwidth of CE-DCT and CE-FFT-OFDM systems with FM are developed

and given. A comparison of DCT- and FFT-OFDM systems with FM and PM is also pro-

vided. The effect of TWTA amplifier on BER performances of conventional DCT-OFDM

and CE-DCT-OFDM systems is also presented

.4. Rayan H. Alsisi and Raveendra K. Rao,”Constant Envelope DCT- and FFT-based OFDM
Systems with Frequency Modulation in Flat Fading Channels,” 2017 8th IEEE Annual
Information Technology, Electronics and Mobile Communication Conference (IEMCON),
Vancouver, Canada, October 2017, pp. 576-581.

5. Rayan H. Alsisi and Raveendra K. Rao, ”Performance Comparison of Constant Envelope
DCT and FFT Based OFDM Frequency Modulation,” 2017 IEEE International Confer-
ence on Signal Processing, Informatics, Communication and Energy Systems (SPICES),
Kollam, India, August 2017.
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4.2 DCT- and FFT-OFDM Signals with FM

An FM modulated OFDM bandpass signal can be written as:

s(t) = Accos(2πfct+ φ(t)) , 0 ≤ t ≤ T (4.1)

where Ac and fc are carrier amplitude and frequency, T is the duration of OFDM symbol

and φ(t) is the information carrying phase and can be written as:

φ(t) = 2πkf

t∫
0

x(ε)dε (4.2)

where x(t) is the real-valued OFDM signal carrying information about data to be trans-

mitted and kf is frequency deviation constant.

In the case of FFT-OFDM system, the information carrying phase can be written as:

φFFT (t) = 2πkf

t∫
0

xFFT (ε)dε = 2πkf

t∫
0

N−1∑
n=0

√
2

Tσ2
s
XFFT (n)cos(2πnε/T )dε. (4.3)

and in the case of DCT-OFDM system, it is given by:

φDCT (t) = 2πkf

t∫
0

xDCT (ε)dε = 2πkf

t∫
0

N−1∑
n=0

√
2

Tσ2
s
XDCT (n)cos(πnε/T )dε (4.4)

where xFFT (t) and xDCT (t), given by (1.22) and (1.6), respectively, represent real signals

of DCT- and FFT-OFDM systems with MPAM mapper.

4.3 CE-OFDM Transmitter

The transmitter of an OFDM system with FM is shown in Figure 4.1. A block of N

symbols from a data source is first passed through S/P converter to obtain a set of N low

rate parallel data symbols. These are then passed to an MPAM mapper, whose output

can be represented by a vector [X(0), X(1), · · · , X(N − 1)]T consisting of N symbols.
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For an MPAM mapper in the system, X(n), n = 0, 1, · · · , N − 1 take values from the set

{±1,±3, · · · ,±(M − 1)} and is used to generate the OFDM signal x(t) which is then fed

to the FM modulator to obtain CE-OFDM signal s(t). This signal is fed to HPA whose

output is transmitted using an antenna over the communication channel.

Using (4.3) in (4.1), CE-FFT-OFDM signal can be written as:

s(t) = Accos

2πfct+ 2πkf

√
2

Tσ2
s

XFFT (0)t+
T

2π

N−1∑
n=1

XFFT (n)

n
sin(2πnt/T )


(4.5)

Using (4.4) in (4.1), CE-DCT-OFDM signal can be written as:

s(t) = Accos

2πfct+ 2πkf

√
2

Tσ2
s

XDCT (0)t+
T

π

N−1∑
n=1

XDCT (n)

n
sin(πnt/T )


(4.6)

The average power of s(t) is A2
c/2 and its energy is A2

cT/2. For N log2(M) bits of

information per transmission, the average bit energy is Eb = A2
cT/2N log2(M). The

variance of the data symbols, σ2
s is equal to ((M2 − 1)/3). The bandwidths of signals

in (4.5) and (4.6) are given by max(2hf , 2)W Hz [109], where W is the bandwidth of

message signal. For the FFT-OFDM system, the message signal bandwidth is W = N/T

Hz and for DCT-OFDM system, W = N/2T Hz [38, 44], where hf is the modulation

index and is given by hf =
kf max|x(t)|

W .

4.4 CE-OFDM Receiver: Signal Detection and

Performance

The CE-OFDM receiver, shown in Figure 4.1, consists of cascade of BPF, FM demod-

ulator, LPF, OFDM demodulator, MPAM demapper, and P/S converter blocks. The

additive white Gaussian noise w(t) with two-sided PSD N0/2 Watts/Hz is added to

s(t) and the received signal z(t) = s(t) +w(t) is passed through BPF, H1(f), with char-

acteristic as shown in Figure 3.2. The input to the FM demodulator can be written

as: y(t) = s(t) + n(t), 0 ≤ t ≤ T , where n(t) represents the output of BPF due to the

input w(t). The signal at the output of the FM demodulator is then passed through
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Figure 4.1: Transmitter and receiver structures for DCT- and FFT-OFDM systems
with FM

LPF with bandwidth equal to message bandwidth W . The LPF output is then fed to

OFDM demodulator followed by MPAM demapper and P/S block to get an estimate of

information transmitted.

4.4.1 FM Demodulation

FM demodulation consists of arctangent block, phase unwrapper and differentiator. Arc-

tangent block is used to detect the phase of the received signal by taking arctangent of

the ratio of quadrature and in phase components of the received signal as explained in

Chapter 3. The phase unwrapper is used to unwrap the demodulated phase of the signal.

Differentiator is used to recover the modulating signal.

As explained in Chapter 3, the phase of y(t) is given by (3.18) as:

θ(t) ≈ φ(t) +
m(t)

Ac
sin[Ψ(t)− φ(t)] (4.7)

where m(t) is given by (3.12) represents the envelope of n(t) and Ψ(t) is given by (3.13)
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represents the phase of n(t). The output of the FM demodulator is given by,

r(t) =
1

kf
· 1

2π

dθ(t)

dt
(4.8)

Using (4.7) in (4.8), we get

r(t) = x(t) + nd(t) (4.9)

where

nd(t) =
1

kf
· 1

2πAc

d(m(t)sin[Ψ(t)− φ(t)])

dt
(4.10)

The PSD of SNd(f) is related to the PSD of
d nQ(t)

dt [110, 111] and is given by:

SNd(f) =

{
1

2πAckf

}2

|j2πf |2 SNQ(f) (4.11)

The above step follows from the fact that
d nQ(t)

dt can be obtained by passing nQ(t)

through a differentiator with the transfer function j2πf . Thus,

SNd(f) =

{
f

Ackf

}2

SNQ(f) (4.12)

where

SNQ(f) =

N0, |f | ≤ B
2

0, otherwise
(4.13)

In (4.13), B represents the bandwidth of s(t) in (4.1). The FM demodulator output is

applied to LPF of bandwidth W Hz which passes the message signal x(t) and rejects

out-of-band noise due to nd(t).The output of LPF can be written as:

u(t) = x(t) + nu(t) (4.14)

The PSD SNu(f) of nu(t) is given by:

SNu(f) =

N0

(
f

Ackf

)2

, |f | ≤ W

0, otherwise

(4.15)
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and its average noise power is

W∫
−W

N0

Ackf

2
f2df =

2W 3N0

3k2
fA

2
c

(4.16)

4.4.2 OFDM Demodulator

The signal u(t) is then passed to the OFDM demodulator. As discussed in Chapter 3,

Section 3.4.2, the input to the jth correlator in the demodulator can be written as:

u(j) =

T∫
0

u(t)ϕj(t)dt = X(j)/
√
σ2
s +Nu(j); j = 0, 1, .., N − 1 (4.17)

with mean

E[u(j)] = E[X(j)/
√
σ2
s +Nu(j)] = E[X(j)/

√
σ2
s ] (4.18)

and variance

V ar[u(j)] = σ2
u =

2W 3N0

3k2
fA

2
c
j = 0, 1, · · · , N − 1 (4.19)

The BER performance of the CE-OFDM receiver can be derived by observing the output

of the jth correlator fed to the MPAM demapper is given by:

u(j) =
X(j)√
σ2
s

+Nu(j)

where X(j) ∈ {±1,±3, · · · ,±(M − 1)}, σ2
s = ((M2 − 1)/3) is the variance of data

symbols, and Nu(j) is a zero Gaussian random variable with variance σ2
u given by (4.19).

The symbol error probability can then be written as [Section 3.4.3]:
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Ps =
1

M

M∑
i=1

Prob. [error | si sent]

=
1

M
[(M − 2)Pinner + 2Pouter]

= 2

(
M − 1

M

) ∞∫
1/

√
σ2s

1√
2πσ2

u

e

(
−x2/2σ2u

)
dx

(4.20)

Simplifying (4.20), the probability of symbol error probability of jth demapper in the

demodulator can be written as

Ps = 2

(
M − 1

M

)
Q

√ 3A2
ch

2
f

2WN0σ2
s

 (4.21)

Since, W = N/T and W = N/2T for FFT- and DCT-OFDM signals, respectively, the

symbol error probability Ps for the jth demapper of CE-FFT- and CE-DCT-OFDM

systems are given by:

PsFFT = 2

(
M − 1

M

)
Q

√9h2
f log2(M)Eb

(M2 − 1)N0

 (4.22)

and

PsDCT = 2

(
M − 1

M

)
Q

√18h2
f log2(M)Eb

(M2 − 1)N0

 (4.23)

In the receiver, there are N demappers and each has the same symbol error probability.

The average of symbol error probabilities of N demapper is simply given by (4.22) and

(4.23), as all are equally likely. Converting the symbol error rate to bit error rate, we get

Pb ≈
Ps

log2(M)
(4.24)
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The BER for CE-FFT- and CE-DCT-OFDM systems are thus given by:

PbFFT ≈ 2

(
M − 1

M log2(M)

)
Q

√9h2
f log2(M)Eb

(M2 − 1)N0

 (4.25)

and

PbDCT ≈ 2

(
M − 1

M log2(M)

)
Q

√18h2
f log2(M)Eb

(M2 − 1)N0

 (4.26)

The bit error rates given by (4.25) and (4.26) are functions of Eb/N0, hf , modulation

index, and M .

4.5 Performance of CE-OFDM System over Fading

Channels

The performance of CE-OFDM receiver over flat Rayleigh and Rician fading channels

can be determined by modeling the received signal over the fading channel as:

∞∫
−∞

h(τ)s(t− τ)dτ + w(t) (4.27)

where s(t) is the transmitted signal, w(t) is AWGN and h(t) = αejφ0δ(t). The instan-

taneous SNR and the average SNR per bit are γ = α2Eb/N0 and γ̄ = E
{
α2
}
Eb/N0,

respectively. To obtain the bit error rate (Pb) of CE-OFDM system over a fading channel,

the conditional BER is averaged over the Probability Density Function (pdf) of γ and

can be written as [112]:

Pb =

∞∫
0

Pb(γ)pγ(γ)dγ (4.28)

where Pb(γ) represents the bit error probability of CE-OFDM system at the instantaneous

SNR γ. Using (4.25) and (4.26) a generalized expression for Pb(γ) can be written as

Pb(γ) = 2

(
M − 1

M log2(M)

)
Q

(√
Lh2

fα
2Eb
N0

)
= 2

(
M − 1

M log2(M)

)
Q
(√

Lh2
fγ
)

(4.29)
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where L =
9 log2(M)

M2−1
for CE-FFT-OFDM system and L =

18 log2(M)

M2−1
for CE-DCT-OFDM

system.

BER Expression for Rayleigh Fading Channel

For Rayleigh fading channel, the pdf of γ is given by[112]:

Pγ(γ) =
1

γ̄
exp

(
−γ
γ̄

)
, γ ≥ 0 (4.30)

Using (4.29) and (4.30) in (4.28), and using Q(z) given in (3.53), Pb can be shown to be

given by

Pb = 2

(
M − 1

M log2(M)

)
1

πγ̄

π/2∫
0

∞∫
0

exp

(
−

Lh2
fγ

2sin2(θ)
− γ

γ̄

)
dγdθ (4.31)

Integrating (4.31) [113], the bit error rate expression for CE-OFDM system can be shown

to be given by:

Pb =

(
M − 1

M log2(M)

)1−

√√√√ Lh2
f γ̄/2

1 + Lh2
f γ̄/2

 (4.32)

It is noted that BER is a function of hf , modulation index, M , and γ̄, average SNR per

bit of the received signal. In deriving (4.32), it is assumed that the channel phase shift

φ0 is estimated from the received signal without error and remains constant during the

observation interval.

BER Expression for Rician Fading Channel

For Rician fading channel, the pdf of γ is given by [112] as:

pγ(γ) =
(1 +K) e−K

γ̄
exp

[
−(1 +K) γ

γ̄

]
I0

2

√(
K +K2

)
γ

γ̄

 , γ ≥ 0 (4.33)
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Using (4.29) and (4.33) in (4.28), and using Q(z) given in (3.53), Pb can be written as:

Pb =
2

π

(
M − 1

M log2(M)

)
(1 +K) e−K

γ̄

π/2∫
0

∞∫
0

exp

[
−

Lh2
fγ

2sin2(θ)
− (1 +K) γ

γ̄

]

I0

2

√(
K +K2

)
γ

γ̄

 dγdθ (4.34)

Simplifying (4.34) [113], the expression for bit error rate can be written as:

Pb =
2

π

(
M − 1

M log2(M)

) π/2∫
0

(1 +K)sin2(θ)

(1 +K)sin2(θ) + Lh2
f γ̄/2

exp

[
−

KLh2
f γ̄/2

(1 +K)sin2(θ) + Lh2
f γ̄/2

]
dθ

(4.35)

The BER is a function of hf , M , K, Rice factor, and γ̄, average SNR per bit of the

received signal. Again, it is assumed that φ0 is estimated without error and remains

constant during the observation interval.

4.6 Numerical Results and Discussion

In this Section numerical results of probability of bit error rate performances of CE-DCT-

and CE-FFT-OFDM systems are presented. A comparison of these systems in terms of

BER and bandwidth is also provided. The effect of TWTA amplifier on system BER is

also discussed .

4.6.1 Performance in AWGN Channel

The expressions for probability of bit error, Pb, in AWGN channel for CE-DCT- and CE-

FFT-OFDM systems are given by (4.25) and (4.26), respectively. The CE-DCT-OFDM

system performs better than CE-FFT-OFDM system by nearly 3 dB. Figure 4.2 depicts

Pb as a function of hf (= 0.1, 0.2, and 0.6) and Eb/N0 for 2-PAM mapper for both

systems. It is observed that BER increases as hf decreases for a fixed value of SNR.

For example, at Eb/N0 = 8 dB the BER for CE-DCT-OFDM system with hf = 0.2 is
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Figure 4.2: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over AWGN channel.

Table 4.1: Comparison of CE-DCT- and CE-FFT-OFDM systems (2-PAM mapper) at
Pb = 10−5 as a function of hf

hf
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
0,7 7.915 10.925
0.6 9.254 12.264
0.5 10.837 13.848
0.4 12.775 15.786
0.3 15.274 18.285
0.2 18.7960 21.806

1.09 × 10−1, and at hf = 0.6 it is 1.114 × 10−4. Table 4.1 summarizes Eb/N0 required

at 10−5 for CE-DCT- and CE-FFT-OFDM systems as a function of hf .

The probability of bit error performances of CE-DCT- and CE-FFT-OFDM systems for

4-PAM and 8-PAM mappers as a function of hf (= 0.1, 0.2 and 0.6) are shown in Figures

4.3 and 4.4, repersentivly. Tables 4.2 and 4.3 summarize Eb/N0 required at Pb = 10−5

as a function hf for both CE-OFDM systems.

The probability of bit error performances of the two CE-OFDM systems for hf = 0.6

are plotted as a function of number of levels in the MPAM mapper (M = 2, 4, 8, 16,
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Figure 4.3: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over AWGN channel.

Table 4.2: Comparison of CE-DCT- and CE-FFT-OFDM systems (4-PAM mapper) at
Pb = 10−5 as a function of hf

hf
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
0.7 11.761 14.772
0.6 13.100 16.111
0.5 14.684 17.694
0.4 16.622 19.632
0.3 19.121 22.131
0.2 22.643 25.653

and 32) in Figures 4.5 and 4.6. It is observed that BER increases as M increases for a

fixed value of Eb/N0. It can also be observed that at Pb = 10−5, Eb/N0 required for 8-

PAM mapper is 8.2 dB more than that required for 2-PAM mapper for both CE-OFDM

systems. However, OFDM systems with 8-PAM mapper are more spectrally efficient

than systems with 2-PAM mapper. The data rate and spectral efficiency of CE-OFDM

system are given by:

Rr =
N log2(M)

T
b/s
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Figure 4.4: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over AWGN channel.

Table 4.3: Comparison of CE-DCT- and CE-FFT-OFDM systems (8-PAM mapper) at
Pb = 10−5 as a founction of hf

hf
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
0.7 16.114 19.124
0.6 17.453 20.463
0.5 19.036 22.046
0.4 20.976 23.985
0.3 23.473 26.484
0.2 26.995 30.005

and

η =
Rr
B

=
N log2(M)

T [max(2hf , 2)W ]
b/s/Hz

Since, W = N/T and W = N/2T for FFT- and DCT-OFDM systems, the spectral

efficiencies of these systems are thus given by:

ηCE−FFT−OFDM =
log2(M)

max(2hf , 2)
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and

ηCE−DCT−OFDM =
2 log2(M)

max(2hf , 2)

In order to understand the tradoff between M and hf in CE-OFDM system, Pb as a

function of hf and M as are plotted in Figures 4.7 and 4.8 for CE-DCT- and CE-FFT-

OFDM systems, respectively. It is apparent that Pb improves for higher values of M and

hf . The CE-DCT-OFDM system with M = 8 and hf = 0.6 outperforms a corresponding

system with M = 4 and hf = 0.2 by nearly 5.2 dB at BER = 10−5.

0 5 10 15 20 25 30
Eb/N0 (dB)

10-5

10-4

10-3

10-2

10-1

100

P
ro
ba

bi
lit
y
of

bi
t
er
ro
r,

P b

Theoretical CE-DCT-OFDM, M=2, h=0.6
 Theoretical CE-DCT-OFDM, M=4, h=0.6
 Theoretical CE-DCT-OFDM, M=8, h=0.6
 Theoretical CE-DCT-OFDM, M=16, h=0.6
Theoretical CE-DCT-OFDM, M=32, h=0.6

Figure 4.5: Probability of bit error performance of CE-DCT-OFDM system as a
function of M for hf = 0.6 over AWGN channel.

Figure 4.9 compares simulation results and theoretical Pb for CE-DCT-OFDM system

(N = 64 subcarriers) with M = 4 for hf = 0.2 and 0.4. It is noted that for hf = 0.2,

simulation result is nearly the same as theoretical result and for hf = 0.4, the theoretical

BER is not as accurate as simulation result but still is within 1 dB of the former. It is

observed that for smaller value of hf theoretical results are nearly the same as that of

simulations, whereas for larger values of modulation index simulation results are not as

accurate as theoretical results.
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Figure 4.6: Probability of bit error performance of CE-FFT-OFDM system as a
function of M for hf = 0.6 over AWGN channel.
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Figure 4.7: Probability of bit error performance of CE-DCT-OFDM system as a
function of hf and M over AWGN channel.
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Figure 4.8: Probability of bit error performance of CE-FFT-OFDM system as a
function of hf and M over AWGN channel.
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Figure 4.9: Comparison of analytical and simulation results of BER for EC-DCT-
OFDM system (4-PAM mapper) over AWGN channel.
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4.6.2 Performance in Fading Channels

The expression for Pb over Raleigh fading channel is given by (4.32). Figures 4.10,

4.11, and 4.12 show Pb of CE-DCT- and CE-FFT-OFDM systems for M = 2, 4, and 8

respectively, for hf = 0.1, 0.6 and 1.6. It is noted that, the presence of signal fading

requires a large increases in Eb/N0 to achieve same levels of BER that can be achived

over AWGN channel. In order to achieve BER equal to 10−5, CE-DCT-OFDM system

(hf = 0.6,M = 2) requires Eb/N0 = 9.254 dB on an AWGN channel. However, when

the same system is operated over Rayleigh channel, to achieve the same BER an average

SNR of 43.112 dB is required.
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Figure 4.10: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rayleigh fading channel.

The expression for BER for Rician fading channel is given by (4.35). The BER is not only

a function of hf , M and γ̄, but also depends on K, Rice factor. Pb vs. γ̄ for M = 2, 4

and 8 CE-DCT- and CE-FFT-OFDM systems for K = 6 dB are illustrated in Figures

4.13, 4.14 and 4.15, respectively, as a function of hf (= 0.1, 0.6, and 1.6).

In order to compare probability of bit error performances of CE-OFDM systems over

AWGN, Rician and Rayleigh channels, Pb vs.γ̄ are plotted for M = 2 and hf = 0.7

in Figures 4.16 and 4.17. Tables 4.4 and 4.5 summarize average SNR required at Pb =
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Figure 4.11: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rayleigh fading channel.
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Figure 4.12: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rayleigh fading channel.
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Figure 4.13: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 4.14: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 4.15: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rician fading channel (K = 6 dB).

10−3, 10−4 and 10−5 for CE-DCT- and CE-FFT-OFDM systems over AWGN, Rician

and Rayleigh channels, respectively.

Table 4.4: Comparison of probability of bit error performances of CE-DCT-OFDM
system (M = 2, hf = 0.7) over AWGN, Rician (K = 6 dB) and Rayleigh channels

Pb
Average SNR dB

AWGN Rician Raleigh

10−3 5.116 13.118 22.163

10−4 6.725 22.221 32.251

10−5 7.915 32.151 42.242

Table 4.5: Comparison of probability of bit error performances of CE-FFT-OFDM
system (M = 2, hf = 0.7) over AWGN, Rician (K = 6 dB) and Rayleigh channels

Pb
Average SNR dB

AWGN Rician Raleigh

10−3 8.127 16.142 25.111

10−4 9.735 25.222 35.251

10−5 10.925 35.156 45.155

The effect of Rice factor K on probability of bit error of CE-OFDM system (4-PAM
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Figure 4.16: Comparison of probability of bit error performances of CE-DCT-OFDM
system (2−PAM mapper, hf = 0.7) over AWGN, Rician (K = 6 dB) and Rayleigh

channels.

mapper, hf = 0.5) is illustrated in Figure 4.18. It is noted that the BER decreases as

K increases. For example, at BER = 10−5 the average SNR required for K = 18 dB is

nearly 30 dB less than that required for K = 2 dB. It is well known that as K → ∞,

Rician density approaches that of Gaussian density.

4.6.3 Effect of TWTA Amplifier on System Performance

To understand the effect of TWTA amplifier on the system BER performance, two sys-

tems are considered; DCT-OFDM system with QPSK mapper and DCT-OFDM system

(4-PAM mapper) with FM (CE-DCT-OFDM system). While in the former system sig-

nals are non-constant envelope, in the latter system signals are constant-envelope and

hence have 0 dB PAPR. The BER performances over AWGN channel of these systems

with TWTA amplifier in them have been simulated and are shown in Figure 4.19. It

is observed that DCT-OFDM system with IBO= 0 dB performs quite poorly compared

to the performance of the same system with IBO=4 dB. Also, it can be observed that

DCT-OFDM system with 0 dB IBO has an error floor at BER of nearly 3.20 × 10−2.
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Figure 4.17: Comparison of probability of bit error performances of CE-FFT-OFDM
system (2−PAM mapper, hf = 0.7) over AWGN, Rician (K = 6 dB) and Rayleigh

channels.
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Figure 4.18: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper, hf = 0.5) as a function of Rice factor for Rician Channel.
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At BER= 10−4, the IBO required for DCT-OFDM system exceeds 4 dB, whereas CE-

DCT-OFDM system (hf = 0.4) achieves this BER with IBO=0 dB

0 2 4 6 8 10 12 14 16 18 20 22
Eb/N0 (dB)

10-4

10-3

10-2

10-1

100

P
ro
ba

bi
lit
y
of

bi
t
er
ro
r,

P b

DCT-OFDM, IBO=0 dB
DCT-OFDM, IBO=4 dB
DCT-OFDM, Ideal PA
CE-DCT-OFDM, hf=0.4

CE-DCT-OFDM, hf=0.2

Figure 4.19: Probability of bit error performances of CE-DCT-OFDM and DCT-OFDM
systems as a function of IBO for TWTA.

4.6.4 Comparison of PM and FM with DCT- and FFT-OFDM

In this Section, comparison of probability of bit error performances of CE-OFDM systems

with PM and FM is persented. For this purpose, probability of bit error performances

of DCT-OFDM system (M = 4) with PM (hp = 0.6) and DCT-OFDM system (M = 4)

with FM (hf = 0.6) are compared. For these systems, Pb vs. average SNR are plotted

in Figure 4.20 for AWGN, Rayleigh, and Rician (K = 6 dB) channels. Similar plots are

shown in Figure 4.21 for FFT-OFDM system with PM and FM. It is noted that FM

performs better than PM in OFDM systems. For example at Pb = 10−5, over AWGN

channel, average SNR required for DCT-OFDM system with FM is nearly 4.8 dB less

than that required for DCT-OFDM system with PM. The bandwidths of DCT-OFDM

system with PM and FM are give max(2hp, 2)W and max(2hf , 2)W , respectively. It

is noted that DCT-OFDM system with FM can offer better BER performance than

DCT-OFDM system with PM at the same bandwidths.
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Figure 4.20: Probability of bit error performances of DCT-OFDM system (4−PAM
mapper) with PM (hp = 0.6) and FM (hf = 0.6) over AWGN, Rician (K = 6 dB) and

Rayleigh channels.

0 5 10 15 20 25 30 35 40 45 50
γ̄ (dB)

10-5

10-4

10-3

10-2

10-1

100

P
ro
ba

bi
lit
y
of

bi
t
er
ro
r,

P b

Theoretical CE-FFT-OFDM-PM, hp=0.6

 Theoretical CE-FFT-OFDM-FM, hf=0.6

AWGN Rician

Rayleigh

Figure 4.21: Probability of bit error performances of FFT-OFDM systems (4−PAM
mapper) with PM (hp = 0.6) and FM (hf = 0.6) over AWGN, Rician (K = 6 dB) and

Rayleigh channels.
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4.7 Conclusions

A generalized description of constant envelope DCT- and FFT-OFDM systems, with

MPAM mapper, with FM is given and signals in these systems are mathematically de-

scribed. Performance analysis of these systems over AWGN and fading channels are

carried out and closed-form expressions for BER are derived and illustrated as a func-

tion of system parameters such as modulation index of FM, SNR, number of levels of

M-PAM mapper and parameters of channel environment. It is observed that CE-DCT-

OFDM system is superior to CE-FFT-OFDM system by nearly 3 dB. Power penalty

required for these systems over fading channels is assessed and tabulated. The effect of

TWTA amplifier in DCT-OFDM system on BER performance is also presented as func-

tion of IBO and compared with performance of CE-DCT-OFDM system with IBO= 0

dB. Comparison of DCT-OFDM system with PM and FM is also provided.

101



Chapter 5

Constant Envelope DCT- and FFT-OFDM

Systems with CPM6

5.1 Introduction

As discussed in the previous Chapters 3 and 4, in an OFDM system with angle modulation

signals have 0 dB PAPR, which permits HPA to operate near saturation level achieving

maximum power efficiency. Continuous Phase Modulation (CPM) is a manifestation of

PM used in communication systems for its attractive bandwidth and power properties

[54, 55]. It is possible to introduce systematic correlation among adjacent data samples in

an OFDM system with CPM, which can be exploited to better BER performance of the

system. Moreover signals in such a system are constant envelope and, hence, require no

costly PAPR reduction techniques [54]. The intent of this Chapter is to introduce CPM in

DCT- and FFT-OFDM systems and examine their BER performances over Gaussian and

fading channels. Also expressions for effective bandwidth of two systems are developed

and presented.

.6. Rayan H. Alsisi and Raveendra K. Rao ,”DCT- and FFT-based OFDM Systems with
Continuous Phase Modulation over Flat Fading Channels,” 2017 International Conference
on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah,
UAE, November 2017, pp. 1-6.
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5.2 Signals in DCT- and FFT-OFDM Systems with

CPM

The OFDM-CPM signal can be written as:

s (t) = Ac cos (2πfct+ φ(t) + φ0) , 0 ≤ t ≤ T (5.1)

where Ac and fc represent carrier amplitude and frequency, φ0 is the starting phase

assumed zero without loss of generality, and φ(t) is the information carrying phase and

is given by:

φ(t) = 2πh
N−1∑
k=0

x(k) q(t− kTs) 0 ≤ t ≤ T (5.2)

where h is the modulation index, T = NTs is the OFDM symbol duration, and x(k), k =

0, · · · , N −1, are the real-valued OFDM message signal. xFFT (k) and xDCT (k), respec-

tively, are used to denote message signals in DCT- and FFT-OFDM systems. The phase

function q(t) is the integral of some frequency shaping pulse f(t), i.e.,

q(t) =

t∫
0

f(τ)dτ 0 ≤ t ≤ Ts (5.3)

If f(t) = 0, t < 0 and t > Ts the signal is referred to as full-response CPM. Several

frequency shaping pulses for f(t) can be used [54]. When a rectangle pulse shape is used,

f(t) and q(t) are given by

f(t) =

 1
2Ts

0 ≤ t ≤ Ts

0 Otherwise
(5.4)

and

q(t) =

 t
2Ts

0 ≤ t ≤ Ts
1
2 Ts ≤ t

(5.5)

In Figure 5.1 and 5.2, f(t) and q(t) are shown for rectangular pulse shaping function.

103



Figure 5.1: Rectangular frequency pulse shaping function f(t)

Figure 5.2: Phase function g(t) for rectangular frequency pulse function

Using (5.5) in (5.2), The information carrying phase can be written as

φ(t) =
πhx(k)

Ts
(t− kTs) + πh

k−1∑
j=0

x(j), kTs ≤ t ≤ (k + 1)Ts, k = 0, 1, · · · , N − 1 (5.6)

In (5.6),
∑−1
j=0 x(j) = 0. It is noted that during the kth information symbol, the phase is

a function of not only x(k) but also is a function of x(k−1), x(k−2), · · · , x(0). The quan-

tity πh
∑k−1
j=0 x(j) is referred to as the accumulated phase and is always modulo 2π. In the

case of FFT-OFDM system with MPAM mapper, real-valued xFFT (k) can be obtained by

using conjugate symmetric data vector, [0, XFFT (0), · · · , XFFT (N − 1), 0, X∗FFT (N − 1),

· · · , X∗FFT (0)], as input to the IFFT block and it is given by (1.21). In the case of cor-

responding DCT-OFDM system with MPAM mapper, x(k)’s are real and is given by
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(2.11). Figure 5.3 shows φ(t) as a function of t for a CE-DCT-OFDM system (2-PAM

mapper) with number of subcarriers N = 8.
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Figure 5.3: Phase φ(t) in a CE-DCT-OFDM system (2-PAM mapper) with 8
subcarriers.

5.3 OFDM System with CPM: Transmitter

The block diagram of transmitter in an OFDM system with CPM is shown in Figure 5.4.

A block of N serial symbols from a data source goes into a S/P converter. The output of

this block is fed to an MPAM mapper whose output is a vector [X(0), X(1), · · · , X(N −
1)]T of N elements. For an MPAM mapper in the system, X(n), n = 0, 1, · · · , N − 1 ∈
{±1,±3, · · · ,±(M − 1)} are used to generate x(k). In the case of an FFT-OFDM sys-

tem, xFFT (k) is obtained by using conjugate symmetric data vector, [0, XFFT (0), · · · ,
XFFT (N − 1), 0, X∗FFT (N − 1), · · · , X∗FFT (0)] as input to IFFT block. In a DCT-

OFDM system the input to IDCT block is [X(0), X(1), · · · , X(N − 1)]. The x(k),

k = 0, · · · , N − 1, are then fed to a CPM modulator to obtain modulated signal s(t),

which is transmitted after amplification by HPA over the communication channel. Using
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(5.5) in (5.2), the CPM modulated signals in FFT- and DCT-OFDM systems can be

written as:

s(t) = Accos (2πfct+ φFFT (t)) 0 ≤ t ≤ T (5.7)

and

s(t) = Accos (2πfct+ φDCT (t)) 0 ≤ t ≤ T (5.8)

The average power and energy of s(t) are A2
c/2 and A2

cT/2. For N log2(M) bits per

OFDM symbol the average bit energy is Eb = A2
cT/2N log2(M). The variance of the

data symbols, σ2
s , is equal to ((M2 − 1)/3).

Figure 5.4: Transmitter and receiver structures of OFDM system with CPM

Bandwidth of CPM Modulated OFDM Signals

The effective bandwidth of the modulated signal in (5.1) can be written as: [114, 115]:

B =

√
4
∫∞

0 [(f − f0)P (f)] df∫∞
0 P (f)df

(5.9)

where P (f) is the positive frequency part of the spectral density of the signal in (5.1)
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and (5.9) can be approximated by [114]:

B =

√√√√√4h2

Ts

Ts∫
0

f2(t)dt (5.10)

where f(t) is the frequency pulse. For rectangular pulse shaping considered in this work,

B = hW Hz, where for FFT-OFDM message signal W = N/T Hz and for DCT-OFDM

message signal W = N/2T Hz

5.4 OFDM System with CPM: Receiver

The receiver block diagram of OFDM system with CPM is shown in Figure 5.4 and

consists of Band Pass Filter (BPF), phase demodulator, Low Pass Filter (LPF), sampler,

phase difference, OFDM demodulator, MPAM demapper, and P/S converter blocks.

The received signal (z(t) = s(t) + w(t)) goes through a BPF, H1(f), with characteristic

as shown in Figure 3.2, where B is the bandwidth of s(t) and is in excess of twice the

message signal bandwidth W Hz by an amount that depends on the modulation index h

of the CPM signal s(t). The noise w(t) is modelled as AWGN with zero mean and PSD

of N0/2 Watts/Hz. The input to the phase demodulator is given by:

y(t) = s(t) + n(t), 0 ≤ t ≤ T (5.11)

where n(t) represents the output of BPF due to input w(t). The output of the phase

demodulator is a low pass signal with bandwidth equal to message signal, W Hz. The

LPF output is then fed to the sampler to obtain JN samples of the demodulated phase

signal, where J is the oversampling factor, which are fed to phase difference block to

get the phase difference of neighbor samples. The output of this block is fed to OFDM

demodulator followed by the MPAM demapper and P/S converter to get an estimate of

transmitted data.
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5.4.1 Phase Demodulation and OFDM Demodulator

As explained in Chapter 3, the phase demodulator consists of arctangent block to detect

the phase of the received signal, using arctan

{
yQ(t)

yI (t)

}
, where yQ(t) and yI(t) are the

quadrature and in-phase components of y(t), followed by a phase unwrapper. The phase

of y(t) can be written as:

θ(t) ≈ φ(t) +
m(t)

Ac
sin[Ψ(t)− φ(t)] (5.12)

where m(t) is given by (3.12), Ψ(t) is given by (3.13). The output of LPF can be written

as:

θ(t) = φ(t) + Φ(t) (5.13)

The PSD of noise at the output of LPF is:

S(f) =

N0/A
2
c , |f | ≤ W

0, otherwise
(5.14)

and its average power is
W∫
−W

N0

Ac
df =

2WN0

A2
c

(5.15)

The signal θ(t) is fed to sampler to obtain JN samples of θ(t), J being the oversampling

factor. That is,

θ[i] = θ(t) |
t= i

J Ts
, i = 0, · · · , JN − 1 (5.16)

The phase difference between adjacent samples is then given by:

∆θ̃ = θ̃i+1 − θ̃i (5.17)

which can be written as:

∆θ̃ = (φi+1 − φi) + (Φi+1 − Φi) (5.18)
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The estimated value of x̃(k) can be shown to be equal to:

x̃(k) =
1

hπ

J−1∑
l=0

(
φ(Jk+1)+l − φ(Jk)+l

)
+
(

Φ(Jk+1)+l − Φ(Jk)+l

)
(5.19)

That is,

x̃(k) = x(k) +
1

hπ

(
ΦJ(k+1) − Φ(Jk)

)
(5.20)

x̃(k)’s are then fed to OFDM demodulator (FFT or DCT block) to get X̃(n) and can be

written as:

X̃(n) = X(n)/
√
σ2
s +N(n); n = 0, 1, · · · , N − 1 (5.21)

where

N(n) =
1

hπ

N−1∑
k=0

(
Φn,J(k+1) − Φn,Jk

)
ϕk (5.22)

are Gaussian. The mean and variance of X̃(n) are given by:

E[X̃(n)] = E[X(n)/
√
σ2
s +N(n)] = E[X(n)/

√
σ2
s ] (5.23)

and

V ar
[
X̃(n)

]
= σ2 =

4WN0

h2π2A2
c

; n = 0, 1, · · · , N − 1 (5.24)

5.4.2 BER Probability of OFDM system with CPM

Consider the output of the nth correlator of OFDM demodulator fed to the MPAM

demapper . That is,

X̃(n) =
X(n)√
σ2
s

+N(n)

where X(n) ∈ {±1,±3, · · · ,±(M − 1)}, σ2
s = ((M2 − 1)/3) is the variance of data

symbols, and N(n) are zero Gaussian random variables with variance σ2 given by (5.24).

Using the technique explained in Chapter 3, the symbol error probability of the nth

demapper can be written as:
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Ps =
1

M

M∑
i=1

Prob. [error | si sent]

=
1

M
[(M − 2)Pinner + 2Pouter]

= 2

(
M − 1

M

) ∞∫
1/

√
σ2s

1√
2πσ2

e

(
−x2/2σ2

)
dx

(5.25)

Simplifying (5.25), the probability of symbol error can be written as

Ps = 2

(
M − 1

M

)
Q

(√
(πh)2A2

c

4WN0σ2
s

)
(5.26)

Since, W = N/T and N/2T for FFT- and DCT-OFDM signals, respectively. The symbol

error probabilities for CE-FFT- and CE-DCT-OFDM systems are given by:

PsFFT = 2

(
M − 1

M

)
Q

(√
(πh)2 3 log2(M)Eb

2(M2 − 1)N0

)
(5.27)

and

PsDCT = 2

(
M − 1

M

)
Q

(√
(πh)2 3 log2(M)Eb

(M2 − 1)N0

)
(5.28)

By observing that in the receiver, there are N demappers and each has the same symbol

error probability, the average symbol error probability is simply given by (5.26). Convert-

ing the symbol error rate to BER, the BER for CE-FFT- and CE-DCT-OFDM systems

are given by:

PbFFT ≈ 2

(
M − 1

M log2(M)

)
Q

(√
(πh)2 3 log2(M)Eb

2(M2 − 1)N0

)
(5.29)

and

PbDCT ≈ 2

(
M − 1

M log2(M)

)
Q

(√
(πh)2 3 log2(M)Eb

(M2 − 1)N0

)
(5.30)
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The BER performances given by (5.29) and (5.30) are a functions of Eb/N0, signal-to-

noise ratio, h, modulation index, and M .

5.5 Performance over Fading Channels

Using (5.26) and following the approach presented in Section 3.5.2, a generalized expres-

sion for Pb(γ) can be written as

Pb(γ) = 2

(
M − 1

M log2(M)

)
Q

(√
I(πh)2α2Eb

N0

)
= 2

(
M − 1

M log2(M)

)
Q

(√
I(πh)2γ

)
(5.31)

where I = 3
log2(M))

M2−1
and 3

2
log2(M))

M2−1
for CE-DCT- and CE-FFT-OFDM systems. In

(5.31), γ represents the instantenus SNR of the received signal over the fading channel.

BER Expression for Rayleigh Fading Channel

Using (5.31) and (3.51) in (3.49), and using Q(z) given in (3.53), Pb for Rayleigh fading

channel can be shown to be given by

Pb = 2

(
M − 1

M log2(M)

)
1

πγ̄

π/2∫
0

∞∫
0

exp

(
− I(πh)2γ

2sin2(θ)
− γ

γ̄

)
dγdθ (5.32)

Integrating (5.32) [113], the bit error rate can be shown to be given by:

Pb =

(
M − 1

M log2(M)

)1−

√√√√ 1

1 + 1
I(πh)2γ̄/2

 (5.33)

It is noted that BER is a function of h, modulation index, M , and γ̄, average SNR of

received signal over Rayleigh channel.
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BER Expression for Rician Fading Channel

For the Rician channel, the pdf of γ is given by (3.55). Using (5.31) and (3.55) in (3.49),

and using Q(z) given in (3.53), Pb for Rician channel can be shown to be given by

Pb =
2

π

(
M − 1

M log2(M)

)
(1 +K) e−K

γ̄

π/2∫
0

∞∫
0

exp

[
− I(πh)2γ

2sin2(θ)
− (1 +K) γ

γ̄

]

I0

2

√(
K +K2

)
γ

γ̄

 dγdθ (5.34)

Upon simplification of (5.34) [113] , we get:

Pb =
2

π

(
M − 1

M log2(M)

)
π/2∫
0

(1 +K)sin2(θ)

(1 +K)sin2(θ) + I(πh)2γ̄/2
exp

[
− KI(πh)2γ̄/2

(1 +K)sin2(θ) + I(πh)2γ̄/2

]
dθ (5.35)

Again, it is noted that BER is a function of hp, modulation index, M , and γ̄, average

SNR of received signal over Rician channel. Also, BER is a function of K, Rice factor of

the density function.

5.6 Numerical Results and Discussion

Numerical results of probability of bit error performances of DCT- and FFT-OFDM

systems with CPM are presented and discussed next.

5.6.1 Performance in AWGN Channel

The expressions for BER in AWGN channel for both systems are given by (5.29) and

(5.30). The Pb vs. Eb/N0 plots for CE-DCT- and CE-FFT-OFDM systems for 2−PAM

mapper are shown in Figure 5.5 for h = 0.1, 0.2 and 0.6. Table 5.1 summarizes Eb/N0

required at Pb = 10−5 for both systems as a function of h. It is noted that CE-DCT-

OFDM system performs better than the corresponding CE-FFT-OFDM system. For
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example at Pb = 10−5, h = 0.4, Eb/N0 required for CE-DCT-OFDM system is nearly 3

dB less than that required for CE-FFT-OFDM system. Also, it is observed that BER

decreases as h increases. The probability of bit error performances of CE-DCT- and
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Figure 5.5: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over AWGN channel.

Table 5.1: Comparison of CE-DCT- and CE-FFT-OFDM systems (2-PAM mapper) at
Pb = 10−5 as a function of h

h
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
0.7 5.753 8.766
0.6 7.092 10.102
0.5 8.676 11.686
0.4 10.614 13.624
0.3 13.113 16.123
0.2 16.635 19.645

CE-FFT-OFDM systems for 4−PAM and 8-PAM mappers are shown in Figures 5.6 and

5.7, respectively. Tables 5.2 and 5.3 summarize Eb/N0 required at Pb = 10−5 for both

systems as a function of h.

The BER performances of CE-DCT- and CE-FFT-OFDM systems with h = 0.6 for

various values of M are shown in Figures 5.8 and 5.9, respectively. For both systems, it is
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Figure 5.6: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over AWGN channel.

Table 5.2: Comparison of CE-DCT- and CE-FFT-OFDM systems (4-PAM mapper) at
Pb = 10−5 as a function of h

h
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
0.7 9.599 12.610
0.6 10.939 13.949
0.5 12.522 15.533
0.4 14.461 17.471
0.3 16.959 19.969
0.2 20.481 23.492

noted that BER increases as M increases. For CE-DCT-OFDM system with h = 0.6 and

M = 2, to achieve BER = 10−5, Eb/N0 = 8.676 dB is required, whereas for M = 4 and

M = 8 systems to achieve the same error rate, Eb/N0 = 12.522 dB and Eb/N0 = 16.875

dB are required, respectively. At Pb = 10−5, systems with M = 4 and M = 8 are worse

than the system with M = 2 by 3.8 and 8.2 dB, respectively. However, the spectral

efficiency of the system improves with increased value of M . The BER performances

of both systems can be controlled by varying h and M as shown in Figures 5.10 and

5.11. The CE-DCT-OFDM system with M = 8 and h = 0.6 outperforms corresponding
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Figure 5.7: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over AWGN channel.

Table 5.3: Comparison of CE-DCT- and CE-FFT-OFDM systems (8-PAM mapper) at
Pb = 10−5 as a function of h

hp
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
0.7 13.952 16.963
0.6 15.291 18.302
0.5 16.875 19.885
0.4 18.813 21.823
0.3 21.312 24.322
0.2 24.834 27.844

system with M = 2 and h = 0.1 by 7.4 dB at BER = 10−5.

Figure 5.12 and 5.13 compare simulation results with those of theoretical BER results

given by (5.29) for CE-DCT-OFDM system (N = 64) for M = 2 and M = 4, respectively.

5.6.2 Performance over Fading Channels

The expression for BER over Raleigh fading channel is given by (5.33). Figures 5.14,

5.15, and 5.16 show Pb of CE-DCT- and CE-FFT-OFDM systems for M = 2, 4, and 8

over Rayleigh channel, respectively. It is noted that Pb decreases as h increases for a
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Figure 5.8: Probability of bit error performance of CE-DCT-OFDM system as a
function of M for h = 0.6 over AWGN channel.
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Figure 5.9: Probability of bit error performance of CE-FFT-OFDM system as a
function of M for h = 0.6 over AWGN channel.
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Figure 5.10: Probability of bit error performance of CE-DCT-OFDM system as a
function of h and M over AWGN channel.
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Figure 5.11: Probability of bit error performance of and CE-FFT-OFDM system as a
function of h and M over AWGN channel.
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Figure 5.12: Comparison of analytical and simulation results for CE-DCT-OFDM
system (2-PAM mapper) over AWGN channel.
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Figure 5.13: Comparison of analytical and simulation results for CE-DCT-OFDM
system (4-PAM mapper) over AWGN channel.

118



fixed value of SNR. Also, it is observed that CE-DCT-OFDM system performs better

than CE-FFT-OFDM system. The expression for BER for Rician fading channel is
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Figure 5.14: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rayleigh fading channel.

given by (5.35). The BER is not only a function of h, M and γ̄, but also depends on

K, Rice factor. Figures 5.17, 5.18 and 5.19 depict Pb of CE-DCT- and CE-FFT-OFDM

systems for Rician channel for M = 2, 4 and 8, respectively, for K = 6 dB . It is noted

that CE-DCT-OFDM system performs better than CE-FFT-OFDM system.

The comparison of Pb performances of CE-DCT- and CE-FFT-OFDM systems, for M =

2 and h = 0.7, over AWGN, Rician and Rayleigh channels as a function of average SNR

are shown in Figures 5.20 and 5.21, respectively. Tables 5.4 and 5.5 summarize average

SNR required at Pb = 10−3, 10−4 and 10−5 for CE-DCT- and CE-FFT-OFDM systems

over these channels.
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Figure 5.15: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rayleigh fading channel.
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Figure 5.16: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rayleigh fading channel.
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Figure 5.17: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rician fading channel (K = 6 dB).

Table 5.4: Comparison of probability of bit error performances of CE-DCT-OFDM
system over AWGN, Rician and Rayleigh channels.

Pb
Average SNR (dB)

AWGN Rician Raleigh

10−3 2.954 11.128 20.165

10−4 4.564 20.165 30.215

10−5 5.753 29.851 40.532

Table 5.5: Comparison of probability of bit error performances of CE-FFT-OFDM
system over AWGN, Rician and Rayleigh channels.

Pb
Average SNR (dB)

AWGN Rician Raleigh

10−3 5.965 14.151 23.112

10−4 7.574 23.111 33.151

10−5 8.764 32.774 43.555
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Figure 5.18: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 5.19: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 5.20: Comparison of probability of bit error performances of CE-DCT-OFDM
system (2−PAM mapper, h = 0.7) over AWGN, Rician (K = 6 dB) and Rayleigh

channels.

Figure 5.22 shows the effect of K on Pb. The results were obtained for CE-DCT- and

CE-FFT-OFDM systems with M = 4 and h = 0.5 for various values of K. It is noted

that the Pb decreases as the value of K increases. It is well known that as K → ∞,

Rician density approaches that of Gaussian density.

5.7 CE-DCT- and DCT-OFDM Systems with

TWTA Amplifier

Figure 5.23 compares the Pb performances of CE-DCT-OFDM system with 4−PAM

mapper with IBO =0 dB and DCT-OFDM system with QPSK mapper with IBO = 0

dB and 4 dB for TWTA amplifier model. It is observed that CE-DCT-OFDM system is

far superior compared to DCT-OFDM system. The DCT-OFDM system with 0 dB IBO

has an error floor at a bit error rate of nearly 3.20× 10−2 . At BER equal to 10−3, the

IBO required for DCT-OFDM system is more than 4 dB. However, the CE-DCT-OFDM

system with (h = 0.4) achieves this BER= 10−3 with 0 dB IBO.

123



0 5 10 15 20 25 30 35 40 45 50
γ̄ (dB)

10-5

10-4

10-3

10-2

10-1

100

P
ro
ba

bi
lit
y
of

bi
t
er
ro
r,

P b

Theoretical CE-FFT-OFDM, AWGN Channel
 Theoretical CE-FFT-OFDM, Rician Channel
 Theoretical CE-FFT-OFDM, Raleigh Channel

Figure 5.21: Comparison of probability of bit error performances of CE-FFT-OFDM
system (2-PAM mapper, h = 0.7) over AWGN, Rician (K = 6 dB) and Rayleigh

channels.
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Figure 5.22: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems as function of Rice factor.
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Figure 5.23: Probability of bit error performances of CE-DCT- and of DCT-OFDM
systems as a function of IBO for TWTA model.

5.7.1 Comparison of BER of OFDM System with FM, PM

and CPM

In this Section, comparison of probability of bit error performances of DCT- and FFT-

OFDM systems with PM, FM and CPM are persented as a function of SNR. In these

systems, 4−PAM mapper is used with hp = 0.6 , hf = 0.6 and h = 0.6 for PM, FM, and

CPM, respectively. Figures 5.24 and 5.25, respectively, depict these results for DCT- and

FFT-OFDM systems over AWGN, Rician and Rayleigh channels. It is noted that DCT-

and FFT-OFDM systems with CPM perform better than the corresponding systems with

FM and PM. For example at Pb = 10−5 over AWGN channel, Eb/N0 required for CPM

system is nearly 6.9 dB and 2.2 dB less than Eb/N0 required for PM and FM systems,

respectively.
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Figure 5.24: Comparison of probability of bit error performancess of DCT-OFDM
system (4−PAM) with PM (hp = 0.6), FM (hf = 0.6) and CPM (h = 0.6) over AWGN,

Rician (K = 6 dB) and Rayleigh channels.
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Figure 5.25: Comparison of probability of bit error performancess of FFT-OFDM
system (4−PAM) with PM (hp = 0.6), FM (hf = 0.6) and CPM (h = 0.6) over AWGN,

Rician (K = 6 dB) and Rayleigh channels.
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5.8 Conclusion

In this Chapter, CPM is introduced in DCT- and FFT-OFDM systems. Structures of

transmitter and receiver are given and BER analyses are presented over AWGN and

fading channels. Closed-form expressions for BER are obtained and illustrated. A com-

parison of DCT- and FFT-OFDM systems with PM, FM, and CPM in terms of BER

is persented. It is shown that CPM can be gainfully employed to achieve better BER

compared to FM and PM in OFDM system.
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Chapter 6

Constant Envelope DCT- and FFT-OFDM

Systems with CPCM7

6.1 Introduction

Continuous Phase Chirp Modulation (CPCM) is used for data communication due to

its attractive properties such as: anti-eavesdropping, anti-interference capability and

low-Doppler sensitivity. It produces a transmitted signal bandwidth much greater than

the bandwidth of the information signal being sent. CPCM can be used in an OFDM

system to correlate data samples at the transmitter and this correlation can be exploited

to achieve better bit error rate (BER) performance of the system. It is noted that

CPCM be viewed as a subclass of CPM and produce constant envelope signals, which

are attractive in OFDM systems with HPA in them [116, 117]. In this Chapter, OFDM

system with CPCM is considered. Both DCT- and FFT- OFDM systems are considered

and their BER performances are analysed over AWGN and fading channels. Closed-form

expressions for BER over these channels are derived and illustrated. Effective bandwidth

expressions of these systems are developed and presented.

.7. Rayan H. Alsisi and Raveendra K. Rao,” Constant Envelope DCT- and FFT-based
OFDM Systems with Continuous Phase Chirp Modulation over Fading Channels,” 2017
2nd International conferences on Information Technology, Information Systems and Elec-
trical Engineering (ICITISEE), Yogyakarta, Indonesia, November 2017, pp.211-216.
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6.2 Signals in DCT- and FFT-OFDM Systems with

CPCM

The general expression for OFDM-CPCM signal can be written as:

s (t) = Ac cos (2πfct+ φ(t) + φ0) , 0 ≤ t ≤ T (6.1)

where Ac and fc are the carrier amplitude and frequency, φ0 is the starting phase assumed

to be zero without loss of generality, and φ(t) is the information carrying phase given by:

φ(t) = x(k)g (t− kTs) + πq
k−1∑
i=0

x(i), kTs ≤ t ≤ (k + 1)Ts (6.2)

where the data symbol duration is Ts, and x(k), k = 0, · · · , N − 1, are the real-valued

OFDM signal carrying the message signal. The phase function g(t) in (6.2) is given by

g(t) =


0 t ≤ 0, t > Ts

2π
∫ t

0 f(τ)dτ, 0 ≤ t ≤ Ts

πq = π(h− w) t = Ts

(6.3)

where f(t) for chirp signalling is given by:

f(t) =

 0 t ≤ 0 t > Ts
h

2Ts
− w

T 2s
t 0 ≤ t ≤ Ts

(6.4)

Using (6.4) in (6.3), the phase function can be written as:

g(t) =


0 t ≤ 0, t > Ts

π

[
h t
Ts
− w

(
t
Ts

)2
]

0 ≤ t ≤ Ts

πq = π (h− w) t = Ts

(6.5)

In (6.5) h and w represent the peak-to-peak frequency deviation divided by 1/Ts, and

the frequency sweep width divided by 1/Ts, respectively. It is noted that h and w

are dimensionless parameters. Since q = (h − w), the pair (h,w) is chosen to be the
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independent signal modulation parameters. In Figure 6.1 and 6.2 f(t) and g(t) are

shown for arbitrary values of (h,w). The phase during kTs ≤ t ≤ (k+ 1)Ts is a function

of not only x(k), but also is a function of x(k − 1), x(k − 2), · · · , x(0). The quantity

πq
∑k−1
i=o x(i) in (6.2) is the accumulated phase and phase is always modulo 2π.
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Figure 6.1: Phase and frequency as a function of time for x(k) = ±1

In the case of an FFT-OFDM system, real-valued message signal (xFFT (k)) is obtained

by using conjugate symmetric data vector, [0, X(0), · · · , X(N − 1), 0, X∗(N − 1), · · · ,
X∗(0)], as input to the IFFT block. Unlike in FFT-OFDM system, in DCT-OFDM

system the modulating signal (xDCT (k))is always real valued; when MPAM mapper is

used in the system.

6.3 OFDM System with CPCM: Transmitter

The block diagram of transmitter is shown in Figure 6.2. As explained in Chapter 5, a

block of N data symbols goes through an S/P converter. The parallel data from this

block is fed to an MPAM mapper to obtain a vector [X(0), X(1), · · · , X(N − 1)]T of

N elements which are used to generate signal x(k). After passing this signal through
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P/S converter, the signal is fed to CPCM modulator to generate the modulated signal

s(t). This signal is fed to HPA whose its output is transmitted over the communication

channel.

Using (6.2) in (6.1), the signals in FFT- and DCT-OFDM systems with CPCM can be

written as:

s(t) = Accos (2πfct+ φFFT (t)) (6.6)

and

s(t) = Accos (2πfct+ φDCT (t)) (6.7)

The average power and energy of s(t) are A2
c/2 and A2

cT/2. For N log2(M) bits per

OFDM symbol, the average bit energy is Eb = A2
cT/2N log2(M). and the variance of

the data symbols, σ2
s , is ((M2 − 1)/3). The bandwidth of s(t) can be found using the

approach used for CPM in Chapter 5. For both FFT- and DCT-OFDM systems, the

bandwidth is given by

[
2

√
h2
4 −

hw
4 + w2

3

]
W Hz, where W is the bandwidth of message

signal. For FFT and DCT-OFDM systems the message bandwidths (W) are N/T Hz

and N/2T Hz, respectively.

Figure 6.2: Block diagram of CE-OFDM system with CPCM
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6.4 OFDM Sytem with CPCM: Receiver

The receiver structure is shown in Figure 6.2 and consists of cascade of BPF, PM de-

modulator, LPF, sampler, phase difference, OFDM demodulator, MPAM demapper, and

P/S converter blocks. The received signal (s(t) + w(t)) is passed through a bandpass

filter H1(f) with characteristic as shown in Figure 3.2, where B is the bandwidth

of s(t). The noise w(t) is modelled as AWGN with zero mean and power spectral

density of N0/2 Watts/Hz. The input to the PM demodulator can be written as

y(t) = s(t) + n(t), 0 ≤ t ≤ T , where n(t) represents the output of the BPF due to

the input w(t). The output of phase demodulator is fed to LPF and then to sampler to

obtain JN samples of the phase signal, where J is the oversampling factor. The output

of sampler is fed to phase difference block to get the phase difference of neighbor samples.

OFDM demodulator is then used followed by the MPAM demapper and P/S converter

to get an estimate of transmitted data.

6.4.1 Analysis over AWGN Channel

The signal z(t) is passed through an ideal bandpass filter whose output can be written

as:

y(t) = s(t) + n(t) (6.8)

where n(t) can be represented in terms of in-phase and quadrature components. Following

the steps used in Chapter 5, the power spectral density of the noise at the output of LPF

is given by[110, 111]:

S(f) =

N0/A
2
c , |f | ≤ W

0, otherwise
(6.9)

and its average power is
W∫
−W

N0

A2
c
df =

2WN0

A2
c

(6.10)

The signal from the LPF is then passed to the a sampler to obtain samples of θ(t) given

by:

θ[i] = θ(t) |
t= i

J Ts
, i = 0, · · · , JN − 1 (6.11)
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where J denotes the oversampling factor. The phase difference between adjacent samples

is given by:

∆θ̃ = θ̃i+1 − θ̃i (6.12)

Equation (6.12) can be written as:

∆θ̃ = (φi+1 − φi) + (Φi+1 − Φi) (6.13)

The signal x̃(k) can be shown to be given by:

x̃(k) =
1

(h− w)π

J−1∑
J=0

(
φ(Jk+1)+l − φ(Jk)+l

)
+
(

Φ(Jk+1)+l − Φ(Jk)+l

)
(6.14)

Simplifying (6.14), we get:

x̃(k) = x(k) +
1

(h− w)π

(
ΦJ(k+1) − Φ(Jk)

)
(6.15)

which is fed to the OFDM demodulator to obtain X̃(n). That is

X̃(n) = X(n)/
√
σ2
s +N(n); n = 0, 1, · · · , N − 1 (6.16)

where

N(n) =
1

(h− w)π

N−1∑
k=0

(
Φn,J(k+1) − Φn,Jk

)
ϕk (6.17)

By observing that X̃(n) are Gaussian its mean and variance are given by:

E[X̃(n)] = E[X(n)/
√
σ2
s +N(n)] = E[X(n)/

√
σ2
s ] (6.18)

with

V ar
[
X̃(n)

]
= σ2 =

4WN0

(h− w)2π2A2
c

; n = 0, 1, · · · , N − 1 (6.19)

The BER performances of the DCT and FFT-OFDM systems with CPCM can be de-

termined by feeding the output of OFDM demodulator to the MPAM demapper. That
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is,

X̃(n) =
X(n)√
σ2
s

+N(n)

where X(n) ∈ {±1,±3, · · · ,±(M − 1)}, σ2
s = ((M2 − 1)/3), and N(n) are a zero mean

Gaussian random variables with variance σ2 given by (6.19). The symbol error probability

for the jth MPAM mapper, following the steps given in Section 3.4.3, can be written as:

Ps = 2

(
M − 1

M

)
Q

(√
(h− w)2π2 A2

c

4WN0σ2
s

)
(6.20)

Since, W = N/T and N/2T for FFT- and DCT-OFDM signals, respectively, the symbol

error probabilities for CE-FFT- and CE-DCT-OFDM system are given by:

PsFFT = 2

(
M − 1

M

)
Q

(√
(h− w)2π2 3 log2(M)Eb

2(M2 − 1)N0

)
(6.21)

and

PsDCT = 2

(
M − 1

M

)
Q

(√
(h− w)2π2 3 log2(M)Eb

(M2 − 1)N0

)
(6.22)

In the receiver, there are N demappers and each has the same symbol error probability

given by (6.21) and (6.22). The average of N symbol error probabilities is simply given

by (6.21) and (6.22). The symbol error rate is related BER and is given by

Pb ≈
Ps

log2(M)
(6.23)

Using (6.23) and symbol error rate expressions, the BER expressions for CE-FFT- and

CE-DCT-OFDM systems with CPCM are given by:

PbFFT ≈ 2

(
M − 1

M log2(M)

)
Q

(√
(h− w)2π2 3 log2(M)Eb

2(M2 − 1)N0

)
(6.24)

and

PbDCT ≈ 2

(
M − 1

M log2(M)

)
Q

(√
(h− w)2π2 3 log2(M)Eb

(M2 − 1)N0

)
(6.25)

The BER for both systems are function of (h, w), modulation parameters, Eb/N0, signal-

to-noise ratio, and M , the number of amplitude levels in PAM mapper.
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6.5 Performance over Fading Channels

The performances of DCT- and FFT-OFDM systems with CPCM over Rayleigh and

Rician fading channels can be derived following steps given in Chapter 3, Section 3.5.2.

A generalized expression for Pb(γ) over fading channels can be written as

Pb(γ) = 2

(
M − 1

M log2(M)

)
Q

(√
I(h− w)2π2α2Eb

N0

)

= 2

(
M − 1

M log2(M)

)
Q

(√
I(h− w)2π2γ

)
(6.26)

where I = 3
log2(M))

M2−1
, and 3

2
log2(M))

M2−1
for DCT- and FFT-OFDM systems with CPCM,

respectively.

BER Expressions for Rayleigh Fading Channel

Using (6.26) and averaging over the density of γ, given by (3.51), the bit error rate for

Rayleigh fading channel is given by:

Pb =

(
M − 1

M log2(M)

)1−

√√√√ 1

1 + 1
Iπ2(h−w)2γ̄/2

 (6.27)

The BER given by (6.27) is a function of (h,w), modulation parameters, M , and γ̄,

average SNR per bit of the received signal.

BER Performance over Rician Fading Channel

Using (6.26) and averaging over the density of γ, given by (3.55), the bit error rate

expression for Rician fading channel is given by:

Pb =
2

π

(
M − 1

M log2(M)

) π/2∫
0

(1 +K)sin2(θ)

(1 +K)sin2(θ) + Iπ2(h− w)2γ̄/2

exp

[
− KIπ2(h− w)2γ̄/2

(1 +K)sin2(θ) + Iπ2(h− w)2γ̄/2

]
dθ (6.28)
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As (6.28) shows, the BER is a function of (h,w), modulation parameters, M , K, Rice

factor, and γ̄, average SNR per bit of the received signal.

6.6 Numerical Results and Discussion

The numerical results of probability of bit error performances of DCT- and FFT-OFDM

systems with CPCM are presented and discussed.

6.6.1 Performance over AWGN Channel

The BER expressions given by (6.24) and (6.25) are functions of (h, w), modulation

parameters, Eb/N0, and M . In order to understand the effect of modulation parameters

on bit error rate, Pb vs. Eb/N0 are plotted as a function of (h, w), in Figure 6.3, 6.4, and

6.5 for both DCT- and FFT-OFDM systems with CPCM, for M = 2, 4, and 8. Tables

6.1, 6.2 and 6.3 summarize Eb/N0 required at Pb = 10−5 as a function of (h, 0.15) for

these systems.
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Figure 6.3: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) as a function of (h, 0.15) over AWGN channel.
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Table 6.1: Comparison of CE-DCT- and CE-FFT-OFDM systems (2-PAM mapper) at
Pb = 10−5 as a function of (h, 0.15)

(h,w)
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
(0.9, 0.15) 5.154 8.164
(0.8, 0.15) 6.397 9.407
(0.7, 0.15) 7.848 10.858
(0.6, 0.15) 9.591 12.601
(0.5, 0.15) 11.774 14.784
(0.4, 0.15) 14.696 17.707
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Figure 6.4: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) as a function of (h, 0.15) over AWGN channel.

In Figures 6.6, 6.7 and 6.8, Pb for both systems (M = 2, 4, and 8) are plotted as a function

of (1, w). Tables 6.4, 6.5 and 6.6 summarize Eb/N0 required at Pb = 10−5 as a function

of (1, w). It is evident from these figures that Pb decreases as h increases for fixed value

of w, and also Pb increases as w increases for fixed value of h. Also, it is observed that

CE-DCT-OFDM system performs better than corresponding CE-FFT-OFDM system by

nearly 3 dB.

It can also be observed that for both CE-OFDM systems (8-PAM mapper, (0.6, 0.15)),

at Pb = 10−5, Eb/N0 required are 4.351 and 8.198 dB more than that required for cor-
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Table 6.2: Comparison of CE-DCT- and CE-FFT-OFDM systems (4-PAM mapper) at
Pb = 10−5 as a function of (h, 0.15)

(h,w)
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
(0.9, 0.15) 9.001 12.011
(0.8, 0.15) 10.244 13.254
(0.7, 0.15) 11.695 14.705
(0.6, 0.15) 13.438 16.448
(0.5, 0.15) 15.621 18.631
(0.4, 0.15) 18.543 21.553
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Figure 6.5: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) as a function of (h, 0.15) over AWGN channel.

responding systems with 4-PAM and 2-PAM mappers, respectively. However, OFDM

systems with 8-PAM mapper are more spectrally efficient than systems with 4-PAM and

2-PAM mappers.

It is also apparent that CE-DCT-OFDM system (8-PAM mapper, and (1, 0.3)) outper-

forms a corresponding system (4,-PAM mapper, and (1, 0.9)) by nearly 8.7 dB, at BER

= 10−5.

Figure 6.9 compares simulation and theoretical results of Pb for CE-DCT-OFDM system

(4-PAM mapper) with N = 64 subcarriers, for two sets of modulation parameters, (0.7,
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Table 6.3: Comparison of CE-DCT- and CE-FFT-OFDM systems (8-PAM mapper) at
Pb = 10−5 as a function of (h, 0.15)

(h,w)
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
(0.9, 0.15) 13.353 16.363
(0.8, 0.15) 14.596 17.606
(0.7, 0.15) 16.047 19.057
(0.6, 0.15) 17.789 20.800
(0.5, 0.15) 19.973 22.983
(0.4, 0.15) 22.8895 25.906
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Figure 6.6: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) as a function of (1, w) over AWGN channel.

0.25) and (0.5, 0.2). It is noted that for (0.5, 0.2), simulation result is nearly the same as

theoretical result and for (0.7, 0.25), the theoretical BER is not as accurate as simulation

result but still is within 2 dB of the former. It is observed that for smaller values of h and

w theoretical results are nearly the same as that of simulations, whereas for larger values

of modulation parameters simulation results are not as accurate as theoretical results.
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Table 6.4: Comparison of CE-DCT- and CE-FFT-OFDM systems (2-PAM mapper) at
Pb = 10−5 as a function of (1, w)

(h,w)
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
(1, 0.3) 5.753 8.764
(1, 0.5) 8.676 11.686
(1, 0.6) 10.614 13.624
(1, 0.7) 13.113 16.123
(1, 0.8) 16.635 19.645
(1, 0.9) 22.655 25.666
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Figure 6.7: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) as a function of (1, w) over AWGN channel.

6.6.2 Performance over Fading Channels

The expression for Pb over Raleigh fading channel is given by (6.27). Figures 6.10, 6.11,

and 6.12 show Pb of DCT- and FFT-OFDM systems with CPCM for M = 2, 4, and

8, respectively, as a function of (h,w). It is noted that, the presence of signal fading

requires a large increases in Eb/N0 to achieve same levels of BER that can be achived

over AWGN channel. In order to achieve BER equal to 10−5, CE-DCT-OFDM system

(h = 0.9, w = 0.15,M = 2) requires Eb/N0 = 5.154 dB on an AWGN channel, whereas

over Rayleigh channel, to achieve the same BER an average SNR of 39.143 dB is required.
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Table 6.5: Comparison of CE-DCT- and CE-FFT-OFDM systems (4-PAM mapper) at
Pb = 10−5 as a function of (1, w)

(h,w)
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
(1, 0.3) 9.599 12.610
(1, 0.5) 12.522 15.533
(1, 0.6) 14.461 17.471
(1, 0.7) 16.959 19.969
(1, 0.8) 20.481 23.491
(1, 0.9) 26.502 29.512
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Figure 6.8: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) as a function of (1, w) over AWGN channel.

The expression for BER for Rician fading channel is given by (6.28). The BER is not only

a function of (h,w), M and γ̄, but also depends on K, Rice factor. Pb vs. γ̄ for M = 2, 4

and 8 for DCT- and FFT-OFDM systems with CPCM for K = 6 dB are illustrated in

Figures 6.13, 6.14 and 6.15, respectively, as a function of (h,w).

In order to compare probability of bit error performances of CE-OFDM systems over

AWGN, Rician and Rayleigh channels, Pb vs.γ̄ are plotted for M = 2 and (0.9, 0.15)

in Figures 6.16 and 6.17. Tables 6.6 and 6.7 summarize average SNR required at Pb =

10−3, 10−4 and 10−5 for CE-DCT- and CE-FFT-OFDM systems over AWGN, Rician
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Table 6.6: Comparison of CE-DCT- and CE-FFT-OFDM systems (8-PAM mapper) at
Pb = 10−5 as a function of (1, w)

(h,w)
CE-DCT-OFDM CE-FFT-OFDM

Eb/N0 (dB) Eb/N0 (dB)
(1, 0.3) 13.952 16.963
(1, 0.5) 16.875 19.885
(1, 0.6) 18.813 21.823
(1, 0.7) 21.311 24.322
(1, 0.8) 24.834 27.844
(1, 0.9) 30.854 33.865
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Figure 6.9: Comparison of analytical and simulation results of BER for CE-DCT-
OFDM system (4-PAM mapper) over AWGN channel.

and Rayleigh channels, respectively.

Table 6.7: Comparison of CE-DCT-OFDM system (M = 2, (0.9, 0.15)) over AWGN,
Rician (K = 6 dB) and Rayleigh channels

Pb
Average SNR dB

AWGN Rician Raleigh

10−3 2.356 10.405 19.313

10−4 3.964 19.121 29.232

10−5 5.154 29.126 39.143
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Figure 6.10: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rayleigh fading channel.
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Figure 6.11: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rayleigh fading channel.
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Figure 6.12: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rayleigh fading channel.
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Figure 6.13: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (2-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 6.14: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 6.15: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (8-PAM mapper) over Rician fading channel (K = 6 dB).
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Figure 6.16: Comparison of probability of bit error performances of CE-DCT-OFDM
system (M = 2, (0.9, 0.15)) over AWGN, Rician (K = 6 dB) and Rayleigh channels.
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Figure 6.17: Comparison of probability of bit error performances of CE-FFT-OFDM
system (M = 2, (0.9, 0.15)) over AWGN, Rician (K = 6 dB) and Rayleigh channels.
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Table 6.8: Comparison of CE-FFT-OFDM system (M = 2, (0.9, 0.15)) over AWGN,
Rician (K = 6 dB) and Rayleigh channels

Pb
Average SNR dB

AWGN Rician Raleigh

10−3 5.366 13.915 22.141

10−4 6.975 22.152 32.149

10−5 8.164 32.154 42.143

The effect of Rice factor K on probability of bit error performance of CE-OFDM system

(4-PAM mapper, (0.9, 0.2)) is illustrated in Figure 6.18. It is noted that BER decreases

as K increases. For example, at BER = 10−5 the average SNR required for K = 18 dB

is nearly 30 dB less than that required for K = 2 dB. It is well known that as K →∞,

Rician density approaches that of Gaussian density.

0 5 10 15 20 25 30 35 40 45 50
γ̄ (dB)

10-5

10-4

10-3

10-2

10-1

100

P
ro
ba

bi
lit
y
of

bi
t
er
ro
r,

P b

Theoretical CE-DCT-OFDM
 Theoretical CE-FFT-OFDM

K=18 dB K=7 dB

K=2 dB

Figure 6.18: Probability of bit error performances of CE-DCT- and CE-FFT-OFDM
systems (4-PAM mapper, (0.9, 0.2)) as a function of Rice factor.

6.6.3 Effect of TWTA Amplifier on System Performance

The effect of TWTA amplifier on the system BER performance is examined for two

systems: DCT-OFDM system with QPSK mapper and DCT-OFDM system (4-PAM
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mapper) with CPCM. While in the former system signals are non-constant envelope, in

the latter system signals are constant-envelope. The BER performances over AWGN

channel of these systems with TWTA amplifier in them have been simulated and are

shown in Figure 6.19. It is noted that DCT-OFDM system with 0 dB IBO has an error

floor at BER of nearly 3.20× 10−2. At BER= 10−4, the IBO required for DCT-OFDM

system exceeds 4 dB, whereas CE-DCT-OFDM system with modulation parameters

(0.7, 0.25) achieves this BER with IBO=0 dB
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Figure 6.19: Probability of bit error performances of CE-DCT-OFDM and DCT-OFDM
systems as a function of IBO for TWTA.

6.6.4 Comparison of DCT- and FFT-OFDM system with FM,

CPM, and CPCM

Comparison of probability of bit error performances of DCT- and FFT-OFDM systems

with CPCM, CPM and FM is persented. For this purpose, probability of bit error

performances of DCT-OFDM system (M = 4) with CPCM (h = 0.8, w = 0.1), DCT-

OFDM system (M = 4) with CPM (h = 0.6) and DCT-OFDM systems with FM (hf =

0.6) are compared. Pb vs. average SNR for these systems are shown in Figure 6.20,

for AWGN, Rayleigh, and Rician (K = 6 dB) channels. Similar plots are shown in

148



Figure 6.21 for FFT-OFDM system with CPCM, CPM and FM. It is observed that by

controlling h and w, CPCM system can be designed to perform better than CPM and

FM in OFDM systems. The use of CPCM in OFDM systems can provide attractive

trade off between bandwidth and BER performance.
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Figure 6.20: Probability of bit error performances of DCT-OFDM system (4−PAM
mapper) with CPCM (h = 0.8, w = 0.1), CPM (h = 0.6) and FM (hf = 0.6) over

AWGN, Rician (K = 6 dB) and Rayleigh channels.
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Figure 6.21: Probability of bit error performances of FFT-OFDM systems (4−PAM
mapper) with CPCM (h = 0.8, w = 0.1), CPM (h = 0.6) and FM (hf = 0.6) over

AWGN, Rician (K = 6 dB) and Rayleigh channels.

6.7 Conclusion

DCT- and FFT-OFDM systems with CPCM is introduced. The transmitted signals

in these systems are constant envelope and are highly suitable in systems with HPA

in them. Block diagrams of transmitter and receiver in these systems are given and

explained. BER analyses over AWGN and flat fading channels are presented and closed-

form expressions for BER have been obtained. The results show that BER performance

of CE-DCT-OFDM system is better than CE-FFT-OFDM system. It also noted that by

appropriately choosing modulation parameters (h,w) system can be designed to perform

better than CPM, FM and PM in OFDM systems.
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Chapter 7

Conclusions

7.1 Introduction

In this Chapter, a summary of contributions of this thesis is provided and suggestions

are made for further research in the light of the results obtained.

7.2 Summary of Contributions

A class of multicarrier systems called CE-OFDM is proposed and examined. Both FFT-

and DCT-based systems with MPAM mapper in them are considered. The signals in these

systems have constant envelope and, hence, have 0 dB PAPR. This property of signals

in these systems eliminate the need for costly and complex PAPR reduction techniques

in them thereby enhancing their energy efficiency, particularly, when HPA is employed.

To achieve constant envelope signals in OFDM systems four well-known modulations,

typically employed in single-carrier communication systems, are used. They are: i) PM,

ii) FM, iii) CPM, and iv) CPCM. While the first two are memoryless modulations, the

other two are modulations with memory. The latter two modulations are proposed in an

OFDM system to purposely introduce systematic memory among the data samples at

the output of IFFT/IDCT block so that the memory introduced can be exploited at the

receiver to better BER performance of the system. The CE-OFDM systems are examined

for their transmitter and receiver structures, bandwidths, and BER performances over

AWGN, Rayleigh, and Rician channels. The influence of HPA in these systems on system

BER performance is also examined. Based on the work presented in the thesis, following

are the chief contributions and observations:

1. Generic descriptions of transmitter and receiver structures are given that can be

used to examine both DCT- and FFT-based OFDM systems with angle modu-

lations. These systems are referred to as CE-DCT-OFDM and CE-FFT-OFDM
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systems. The receiver structure for memoryless modulations such as FM and PM

consists of arctangent demodulation followed by optimum OFDM receiver. How-

ever, when modulations with memory are used in OFDM systems, a modified re-

ceiver is required to exploit the inherent memory in modulated signal. In this thesis

a receiver structure is presented that consists of arctangent demodulator followed

by oversampling with correction block prior to the optimum OFDM receiver.

2. The detection of CE-OFDM signals in AWGN channel is addressed and closed-

form expressions for BER are derived and extensively illustrated. The BER of

CE-OFDM system, in general, is a function of Eb/N0, Signal-to-Noise-Ratio, mod-

ulation parameters, hp for PM, hf for FM, h for CPM and (h,w) for CPCM, and

numbers of amplitude levels of M-PAM mapper. Table 7.1 provides a comparison

of BER performances of DCT- and FFT-OFDM systems as a function of various

angle modulations.

Table 7.1: Eb/N0 required at Pb = 10−5 for various modulations in an OFDM system
(2-PAM mapper).

Modulation Type
Eb/N0 (dB)

DCT-OFDM system FFT-OFDM system
PM, hp = 0.7 12.686 15.696
FM, hf = 0.7 7.915 10.925

CPM, h = 0.7 5.753 8.766
CPCM, (h = 0.9, w = 0.15) 5.154 8.164

3. It is shown that, in general, CE-DCT-OFDM system outperforms CE-FFT-OFDM

system by nearly 3 dB, for identical system and modulation parameters. The DCT-

and FFT-OFDM systems with CPM and CPCM are far superior, in terms of BER,

compared to systems with PM or FM. However, the receivers are more complex

with the former compared to latter systems. Thus, it is observed that there exist

tradeoffs among power, complexity, and bandwidth in CE-OFDM systems. In

general, CE-OFDM system BER decreases as a function of increasing value of

modulation parameters such as hp, hf , h and (h,w). However, an increase in the

value of modulation parameters increases the bandwidth of the system. Finally, it

is noted that as the number of levels in the MPAM mapper in CE-OFDM system

is increased, the system BER increases; however, spectral efficiency of the system
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increases with the increases in the number of levels in the mapper. Therefore, in

the design of a CE-OFDM system appropriate choice of system and modulation

parameters must be made depending on the needs of the communication system.

4. Closed-form expressions for BER of CE-OFDM systems have been derived and

extensively illustrated as a function of system and modulation parameters and

parameters of densities of Rayleigh and Rician environment. In general, severe

power penalty must be paid due to signal fading over these channels. It is observed

that power penalty needed over Rayleigh channel is higher than that required over

Rician channel. This is due to the fact that over Rayleigh channel there is no direct

LOS path between the transmitter and receiver, whereas over Rician channel there

exist such as path. Table 7.2 compares power penalties for various modulations for

Rayleigh and Rician channels.

Table 7.2: Power penalty required for various modulations in an OFDM system
(2-PAM mapper) over fading channels at Pb = 10−5.

Modulation Type
Eb/N0 (dB)

Rician Rayleigh
DCT-OFDM FFT-OFDM DCT-OFDM FFT-OFDM

PM, hp = 0.7 24.011 24.021 34.254 34.427
FM, hf = 0.7 24.236 24.231 34.327 34.239

CPM, h = 0.7 24.098 24.019 34.779 34.791
CPCM, (0.9, 0.15) 23.972 23.991 33.989 33.979

5. The effect of TWTA amplifier on the BER of CE-OFDM systems is presented. It

is shown that without appropriate IBO conventional OFDM systems perform very

poorly. However, it is shown that CE-OFDM systems are far superior in terms of

BER and require absolutely no IBO.

6. Easy-to-compute expressions for bandwidth of CE-OFDM systems have been de-

termined. They are summarized in Table 7.3. In Figure 7.1 are shown bandwidth

as function of modulation parameters for PM, FM, CPM and CPCM in an OFDM

system. The spectral efficiency of a communication system is the number of bits/sec

that can be transmitted per unit Hz of bandwidth and is an important metric used

to characterize the system. The spectral efficiencies of an OFDM system with PM,
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FM, CPM, and CPCM are depicted in Figure 7.2 as function of modulation pa-

rameters.

The bandwidth of CE-OFDM system, when modulation parameters are small

(hp, hf , h, (h,w)), is nearly the same as that of non-constant envelope OFDM sys-

tem that uses I-Q modulation technique. However, as the modulation parameters

increase in value in CE-OFDM system, the bandwidth of the system increases. For

example, CE-OFDM system with FM with hf = 2 requires twice the bandwidth

of non-constant envelope OFDM system with I-Q modulation. It is noted that

non-constant envelope OFDM signals when passed through HPA results in spectral

broadening if sufficient IBO is not employed. However, CE-OFDM signals when

passed through HPA do not suffer from spectral broadening.

Table 7.3: Expressions for bandwidth of transmitted signal in CE-OFDM system for
various modulation.

Modulation Type BW (Hz)
PM max

(
2hp, 2

)
W

FM max
(
2hf , 2

)
W

CPM max (h, 2)W

CPCM max

([
2

√
h2
4 −

hw
4 + w2

3

]
, 2

)
W

There exist a variety of communication situation where CE-OFDM systems presented

in this thesis can be deployed. For example, over power-limited satellite communication

channels CE-OFDM system is highly attractive compared to single-carrier systems that

require complex techniques to over come the effect of multipath. Also, CE-OFDM sys-

tems are highly desirable over such channels, as signal in them are constant envelope.

Also, CE-OFDM system can be used as a standalone system to replace the existing

conventional OFDM system, particularly over channels that kill the performance due to

insufficient power backoff.

7.3 Suggestion for Further Research

It is important to translate theoretical research into practical systems that can be imple-

mented . In this context, further research is needed to develop prototype of CE-OFDM
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Figure 7.1: Bandwidth as a function of modulation parameters (N = 64, T = 1) for
various angle modulation in an OFDM system.
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Figure 7.2: Spectral efficiency as a function of modulation parameters (8PAM mapper,
T = 1, and N = 64) for various angle modulation in an OFDM system.
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system presented in this thesis.

One of the observation in the thesis is that severe power penalty is needed when operat-

ing CE-OFDM systems over fading channels. Therefore, techniques are needed to reduce

this power penalty. It is well-known that channel coding and interleaving techniques can

be used to better performance over fading channels. It would be interesting to examine

CE-OFDM systems using these techniques.

In the thesis, performance of CE-OFDM system over non-frequency selective fading

channels was considered. It is important to examine CE-OFDM system over frequency-

selective channels. Also, the system needs to be examined in imperfect channel state

information.

There has been an increasing attention given to communication at high frequencies in-

cluding the 60 GHz band. A study of how CE-OFDM systems can be designed to

function at these frequencies requires further research.
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