1,746 research outputs found

    A framework for robotized teleoperated tasks

    Get PDF
    "Premio al mejor artículo presentado en ROBOT 2011" atorgat pel Grupo de Robótica, Visión y Control de la Universidad de Sevilla, la Universidad Pablo Olavide i el Centro Avanzado de Tecnologías Aeroespaciales.Teleoperation systems allow the extension of the human operator’s sensing and manipulative capability into a remote environment to perform tasks at a distance, but the time-delays in the communications affect the stability and transparency of such systems. This work presents a teleoperation framework in which some novel tools, such as nonlinear controllers, relational positioning techniques, haptic guiding and augmented reality, are used to increase the sensation of immersion of the human operator in the remote site. Experimental evidence supports the advantages of the proposed framework.Award-winningPostprint (published version

    Feasibility Study of a Socially Assistive Humanoid Robot for Guiding Elderly Individuals during Walking

    Get PDF
    The impact of the world-wide ageing population has commenced with respect to society in developed countries. Several researchers focused on exploring new methods to improve the quality of life of elderly individuals by allowing them to remain independent and healthy to the maximum possible extent. For example, new walking aids are designed to allow elderly individuals to remain mobile in a safe manner because the importance of walking is well-known. The aim of the present study involves designing a humanoid robot guide as a walking trainer for elderly individuals. It is hypothesized that the same service robot provides an assistive and social contribution with respect to interaction between elderly users by motivating them to walk more and simultaneously provides assistance, such as physical assistance and gait monitoring, while walking. This study includes a detailed statement of the research problem as well as a literature review of existing studies related to walking companion robots. A user-centred design approach is adopted to report the results of the current first feasibility study by using a commercially available humanoid robot known as Pepper developed by Softbank-Aldebaran. A quantitative questionnaire was used to investigate all elements that assess intrinsic motivation in users while performing a given activity. Conversely, basic gait data were acquired through a video analysis to test the capability of the robot to modify the gait of human users. The results in terms of the feedback received from elderly subjects and the literature review improve the design of the walking trainer for elderly individuals

    高齢者とともに歩行する社会的支援ヒューマノイドに関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Design and Development of a Low Cost Platform to Facilitate Post-Stroke Rehabilitation of the Elbow/Shoulder Region

    Get PDF
    For post-stroke rehabilitation of the upper limbs, increased amounts of therapy are directly related to improved rehabilitation outcomes. As such, a low cost therapy platform is proposed suitable for facilitating active therapy and administering activeassist therapy to the shoulder/elbow region of the upper limbs of individuals post-stroke in a local clinic or domestic setting. Enabling a person to undergo intensive rehabilitation therapy outside of a rehabilitation hospital setting permits the amount of therapy administered to be maximised. While studies have shown that technological approaches to post-stroke rehabilitation do not produce better outcomes than equal amounts of traditional therapy in a rehabilitation hospital setting, a technological approach has the potential to have significant benefits when that therapy is being undertaken in a local clinic or domestic setting, where the individual undergoing therapy is relatively unsupervised. These benefits largely relate to a technological approach being more motivational for the person than an equivalent manual approach. However, for such an approach to be economically viable, effective, low cost devices are required. This document presents and critically discusses the design of this proposed low cost therapy platform along with possible routes for its further development

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Operating at a Distance-How a Teleoperated Surgical Robot Reconfigures Teamwork in the Operating Room

    Get PDF
    This paper investigates how a teleoperated surgical robot reconfigures teamwork in the operating room by spatially redistributing team members. We report on findings from two years of fieldwork at two hospitals, including interviews and video data. We find that while in non-robotic cases team members huddle together, physically touching, introduction of a surgical robot increases physical and sensory distance between team members. This spatial rearrangement has implications for both cognitive and affective dimensions of collaborative surgical work. Cognitive distance is increased, necessitating new efforts to maintain situation awareness and common ground. Moreover, affective distance is introduced, decreasing sensitivity to shared and non-shared affective states and leading to new practices aimed at restoring affective connection within the team. We describe new forms of physical, cognitive, and affective distance associated with teleoperated robotic surgery, and the effects these have on power distribution, practice, and collaborative experience within the surgical team

    IMPLEMENTING ETHICS INTO ARTIFICIAL INTELLIGENCE: A CONTRIBUTION, FROM A LEGAL PERSPECTIVE, TO THE DEVELOPMENT OF AN AI GOVERNANCE REGIME

    Get PDF
    The increasing use of AI and autonomous systems will have revolutionary impacts on society. Despite many benefits, AI and autonomous systems involve considerable risks that need to be managed. Minimizing these risks will emphasize the respective benefits while at the same time protecting the ethical values defined by fundamental rights and basic constitutional principles, thereby preserving a human centric society. This Article advocates for the need to conduct in-depth risk-benefit-assessments with regard to the use of AI and autonomous systems. This Article points out major concerns in relation to AI and autonomous systems such as likely job losses, causation of damages, lack of transparency, increasing loss of humanity in social relationships, loss of privacy and personal autonomy, potential information biases and the error proneness, and susceptibility to manipulation of AI and autonomous systems

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented
    corecore