324 research outputs found

    Omega VLF timing revision 1

    Get PDF
    The report specifically discusses time dissemination techniques, including epoch determination, frequency determination, and ambiguity resolution. It also discusses operational considerations including equipment, path selection, and adjustment procedure. epoch (the actual location or timing of periodic events) is shown to be both maintainable and calibratable by the techniques described to better than 3-microsecond accuracy; and frequency (the uniformity of the time scale) to about one part in 10 to the 12th power

    Runtime Monitoring for Dependable Hardware Design

    Get PDF
    Mit dem Voranschreiten der Technologieskalierung und der Globalisierung der Produktion von integrierten Schaltkreisen eröffnen sich eine Fülle von Schwachstellen bezüglich der Verlässlichkeit von Computerhardware. Jeder Mikrochip wird aufgrund von Produktionsschwankungen mit einem einzigartigen Charakter geboren, welcher sich durch seine Arbeitsbedingungen, Belastung und Umgebung in individueller Weise entwickelt. Daher sind deterministische Modelle, welche zur Entwurfszeit die Verlässlichkeit prognostizieren, nicht mehr ausreichend um Integrierte Schaltkreise mit Nanometertechnologie sinnvoll abbilden zu können. Der Bedarf einer Laufzeitanalyse des Zustandes steigt und mit ihm die notwendigen Maßnahmen zum Erhalt der Zuverlässigkeit. Transistoren sind anfällig für auslastungsbedingte Alterung, die die Laufzeit der Schaltung erhöht und mit ihr die Möglichkeit einer Fehlberechnung. Hinzu kommen spezielle Abläufe die das schnelle Altern des Chips befördern und somit seine zuverlässige Lebenszeit reduzieren. Zusätzlich können strahlungsbedingte Laufzeitfehler (Soft-Errors) des Chips abnormales Verhalten kritischer Systeme verursachen. Sowohl das Ausbreiten als auch das Maskieren dieser Fehler wiederum sind abhängig von der Arbeitslast des Systems. Fabrizierten Chips können ebenfalls vorsätzlich während der Produktion boshafte Schaltungen, sogenannte Hardwaretrojaner, hinzugefügt werden. Dies kompromittiert die Sicherheit des Chips. Da diese Art der Manipulation vor ihrer Aktivierung kaum zu erfassen ist, ist der Nachweis von Trojanern auf einem Chip direkt nach der Produktion extrem schwierig. Die Komplexität dieser Verlässlichkeitsprobleme machen ein einfaches Modellieren der Zuverlässigkeit und Gegenmaßnahmen ineffizient. Sie entsteht aufgrund verschiedener Quellen, eingeschlossen der Entwicklungsparameter (Technologie, Gerät, Schaltung und Architektur), der Herstellungsparameter, der Laufzeitauslastung und der Arbeitsumgebung. Dies motiviert das Erforschen von maschinellem Lernen und Laufzeitmethoden, welche potentiell mit dieser Komplexität arbeiten können. In dieser Arbeit stellen wir Lösungen vor, die in der Lage sind, eine verlässliche Ausführung von Computerhardware mit unterschiedlichem Laufzeitverhalten und Arbeitsbedingungen zu gewährleisten. Wir entwickelten Techniken des maschinellen Lernens um verschiedene Zuverlässigkeitseffekte zu modellieren, zu überwachen und auszugleichen. Verschiedene Lernmethoden werden genutzt, um günstige Überwachungspunkte zur Kontrolle der Arbeitsbelastung zu finden. Diese werden zusammen mit Zuverlässigkeitsmetriken, aufbauend auf Ausfallsicherheit und generellen Sicherheitsattributen, zum Erstellen von Vorhersagemodellen genutzt. Des Weiteren präsentieren wir eine kosten-optimierte Hardwaremonitorschaltung, welche die Überwachungspunkte zur Laufzeit auswertet. Im Gegensatz zum aktuellen Stand der Technik, welcher mikroarchitektonische Überwachungspunkte ausnutzt, evaluieren wir das Potential von Arbeitsbelastungscharakteristiken auf der Logikebene der zugrundeliegenden Hardware. Wir identifizieren verbesserte Features auf Logikebene um feingranulare Laufzeitüberwachung zu ermöglichen. Diese Logikanalyse wiederum hat verschiedene Stellschrauben um auf höhere Genauigkeit und niedrigeren Overhead zu optimieren. Wir untersuchten die Philosophie, Überwachungspunkte auf Logikebene mit Hilfe von Lernmethoden zu identifizieren und günstigen Monitore zu implementieren um eine adaptive Vorbeugung gegen statisches Altern, dynamisches Altern und strahlungsinduzierte Soft-Errors zu schaffen und zusätzlich die Aktivierung von Hardwaretrojanern zu erkennen. Diesbezüglich haben wir ein Vorhersagemodell entworfen, welches den Arbeitslasteinfluss auf alterungsbedingte Verschlechterungen des Chips mitverfolgt und dazu genutzt werden kann, dynamisch zur Laufzeit vorbeugende Techniken, wie Task-Mitigation, Spannungs- und Frequenzskalierung zu benutzen. Dieses Vorhersagemodell wurde in Software implementiert, welche verschiedene Arbeitslasten aufgrund ihrer Alterungswirkung einordnet. Um die Widerstandsfähigkeit gegenüber beschleunigter Alterung sicherzustellen, stellen wir eine Überwachungshardware vor, welche einen Teil der kritischen Flip-Flops beaufsichtigt, nach beschleunigter Alterung Ausschau hält und davor warnt, wenn ein zeitkritischer Pfad unter starker Alterungsbelastung steht. Wir geben die Implementierung einer Technik zum Reduzieren der durch das Ausführen spezifischer Subroutinen auftretenden Belastung von zeitkritischen Pfaden. Zusätzlich schlagen wir eine Technik zur Abschätzung von online Soft-Error-Schwachstellen von Speicherarrays und Logikkernen vor, welche auf der Überwachung einer kleinen Gruppe Flip-Flops des Entwurfs basiert. Des Weiteren haben wir eine Methode basierend auf Anomalieerkennung entwickelt, um Arbeitslastsignaturen von Hardwaretrojanern während deren Aktivierung zur Laufzeit zu erkennen und somit eine letzte Verteidigungslinie zu bilden. Basierend auf diesen Experimenten demonstriert diese Arbeit das Potential von fortgeschrittener Feature-Extraktion auf Logikebene und lernbasierter Vorhersage basierend auf Laufzeitdaten zur Verbesserung der Zuverlässigkeit von Harwareentwürfen

    Low-Power and Error-Resilient VLSI Circuits and Systems.

    Full text link
    Efficient low-power operation is critically important for the success of the next-generation signal processing applications. Device and supply voltage have been continuously scaled to meet a more constrained power envelope, but scaling has created resiliency challenges, including increasing timing faults and soft errors. Our research aims at designing low-power and robust circuits and systems for signal processing by drawing circuit, architecture, and algorithm approaches. To gain an insight into the system faults due to supply voltage reduction, we researched the two primary effects that determine the minimum supply voltage (VMIN) in Intel’s tri-gate CMOS technology, namely process variations and gate-dielectric soft breakdown. We determined that voltage scaling increases the timing window that sequential circuits are vulnerable. Thus, we proposed a new hold-time violation metric to define hold-time VMIN, which has been adopted as a new design standard. Device scaling increases soft errors which affect circuit reliability. Through extensive soft error characterization using two 65nm CMOS test chips, we studied the soft error mechanisms and its dependence on supply voltage and clock frequency. This study laid the foundation of the first 65nm DSP chip design for a NASA spaceflight project. To mitigate such random errors, we proposed a new confidence-driven architecture that effectively enhances the error resiliency of deeply scaled CMOS and post-CMOS circuits. Designing low-power resilient systems can effectively leverage application-specific algorithmic approaches. To explore design opportunities in the algorithmic domain, we demonstrate an application-specific detection and decoding processor for multiple-input multiple-output (MIMO) wireless communication. To enhance the receive error rate for a robust wireless communication, we designed a joint detection and decoding technique by enclosing detection and decoding in an iterative loop to enhance both interference cancellation and error reduction. A proof-of-concept chip design was fabricated for the next-generation 4x4 256QAM MIMO systems. Through algorithm-architecture optimizations and low-power circuit techniques, our design achieves significant improvements in throughput, energy efficiency and error rate, paving the way for future developments in this area.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110323/1/uchchen_1.pd

    An On-chip PVT Resilient Short Time Measurement Technique

    Get PDF
    As the CMOS technology nodes continue to shrink, the challenges of developing manufacturing tests for integrated circuits become more difficult to address. To detect parametric faults of new generation of integrated circuits such as 3D ICs, on-chip short-time intervals have to be accurately measured. The accuracy of an on-chip time measurement module is heavily affected by Process, supply Voltage, and Temperature (PVT) variations. This work presents a new on-chip time measurement scheme where the undesired effects of PVT variations are attenuated significantly. To overcome the effects of PVT variations on short-time measurement, phase locking methodology is utilized to implement a robust Vernier delay line. A prototype Time-to-Digital Converter (TDC) has been fabricated using TSMC 0.180 µm CMOS technology and experimental measurements have been carried out to verify the performance parameters of the TDC. The measurement results indicate that the proposed solution reduces the effects of PVT variations by more than tenfold compared to a conventional on-chip TDC. A coarse-fine time interval measurement scheme which is resilient to the PVT variations is also proposed. In this approach, two Delay Locked Loops (DLLs) are utilized to minimize the effects of PVT on the measured time intervals. The proposed scheme has been implemented using CMOS 65nm technology. Simulation results using Advanced Design System (ADS) indicate that the measurement resolution varies by less than 0.1ps with ±15% variations of the supply voltage. The proposed method also presents a robust performance against process and temperature variations. The measurement accuracy changes by a maximum of 0.05ps from slow to fast corners. The implemented TDC presents a robust performance against temperature variations too and its measurement accuracy varies a few femto-seconds from -40 ºC to +100 ºC. The principle of robust short-time measurement was used in practice to design and implement a state-of-the-art Coordinate Measuring Machine (CMM) for an industry partner to measure geometrical features of transmission parts with micrometer resolution. The solution developed for the industry partner has resulted in a patent and a product in the market. The on-chip short-time measurement technology has also been utilized to develop a solution to detect Hardware Trojans

    PET Respiratory Motion Correction in Simultaneous PET/MR

    Get PDF
    In Positron Emission Tomography (PET) imaging, patient motion due to respiration can lead to artefacts and blurring, in addition to quantification errors. The integration of PET imaging with Magnetic Resonance (MR) imaging in PET/MR scanners provides spatially aligned complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this thesis, we form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality. The approach is practical, having minimal impact on clinical PET/MR protocols, with no need for external respiratory monitoring, using standard MR sequences and minimal extra acquisition time. First we validate the use of PET-derived respiratory signal to use for motion tracking, that uses raw PET data only, via Principal Component Analysis (PCA), then set up the tools to carry out PET Motion Compensated Image Reconstruction (MCIR). We introduce a joint PET-MR motion model, using one minute of PET and MR data to provide a motion model that captures inter-cycle and intra-cycle breathing variations. Different motion models (one/two surrogates, linear/polynomial) are evaluated on dynamic MR data sets. Finally we apply the methodology on 45 clinical PET-MR patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using Standardised Uptake Value (SUV) changes in avid lesions. Lesion detectability changes are explored with a study where two radiologists identify lesions or ’hot spots’, with confidence levels, in uncorrected and motion-corrected images. In summary, we developed a methodology for motion correction in PET/MR by using a joint motion model and demonstrated the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data, with one minute of extra scan time, and no external hardware

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Proceedings of the Sixth Annual Precise Time and Time Interval (PTTI) Planning Meeting

    Get PDF
    Time and frequency measurements are described for navigation and reference systems. Time measuring instruments and experiments performed are discussed
    corecore