
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2015

Threat Analysis, Countermeaures and Design Strategies for Threat Analysis, Countermeaures and Design Strategies for

Secure Computation in Nanometer CMOS Regime Secure Computation in Nanometer CMOS Regime

Raghavan Kumar
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Digital Circuits Commons, Hardware Systems Commons, Information Security Commons,

Statistical Methodology Commons, and the VLSI and Circuits, Embedded and Hardware Systems

Commons

Recommended Citation Recommended Citation
Kumar, Raghavan, "Threat Analysis, Countermeaures and Design Strategies for Secure Computation in
Nanometer CMOS Regime" (2015). Doctoral Dissertations. 430.
https://scholarworks.umass.edu/dissertations_2/430

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/430?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

THREAT ANALYSIS, COUNTERMEASURES AND
DESIGN STRATEGIES FOR SECURE COMPUTATION

IN NANOMETER CMOS REGIME

A Dissertation Presented

by

RAGHAVAN KUMAR

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2015

Electrical and Computer Engineering

c© Copyright by Raghavan Kumar 2015

All Rights Reserved

THREAT ANALYSIS, COUNTERMEASURES AND
DESIGN STRATEGIES FOR SECURE COMPUTATION

IN NANOMETER CMOS REGIME

A Dissertation Presented

by

RAGHAVAN KUMAR

Approved as to style and content by:

Wayne P. Burleson, Chair

Sandip Kundu, Member

Christof Paar, Member

Hava T. Siegelmann, Member

Christopher V.Hollot, Department Head
Electrical and Computer Engineering

To my parents

ACKNOWLEDGMENTS

It is really an incredible feeling to think that I have reached this last phase of my

graduate life. It is not about writing a chapter for my dissertation or submitting a

journal, rather it is about framing the appropriate sentences for the acknowledgments

section. This section might be optional, but it holds the key to how this document

and in turn the entire work shaped up during the past few years.

First and foremost, I would like to thank my advisor Prof. Wayne Burleson for

his constant guidance and support throughout my doctoral program. I am deeply

indebted to him for providing me an opportunity to join his group when I was stuck

in a not so noteworthy transition period. I appreciate him for allowing me to explore

various research problems of my interest throughout my PhD curriculum. He also

inspired me to actively collaborate with other research groups, keeping in mind the

significant contribution made by individual authors in a particular project. I am

immensely grateful to Prof. Sandip Kundu for supporting my profile to Prof. Wayne

Burleson while he was looking for a fresh PhD candidate. He has always been a source

of inspiration and knowledge throughout my stint at UMass. He has had a major

constructive impact on some of the research projects presented in this dissertation.

Special thanks go to Prof. Christof Paar and Prof. Hava Siegelmann for agreeing

to serve on my dissertation committee and for their constructive insights and com-

ments. I would also like to thank all the members of VLSI Circuits and Systems

Group (VCSG) at UMass for creating a positive work atmosphere and also helping

my transition as a PhD student during the initial days. My graduate life would have

been utterly boring if not for the amazing friends I have made at Amherst. I will

forever cherish the memories I had with the “Dunkin Coffee” group. Those long

v

walks to the various parking lots depending on the commute of the day will be sorely

missed.

During my PhD program, I had a unique opportunity to spend five amazing

months at University of Passau in the splendid Bavarian region of Germany. I thank

Dr. Ilia Polian for accepting to host me as a “Gastwissenschaftler” in his group.

A major portion of the work on parametric fault-injection attacks presented in this

dissertation was done during my stint at Passau. Special mention goes to Dr. Phillip

Jovanovic for being an admirable colleague and contributor/co-author during and

after my stay at Passau. Danke Schön. Apart from my stint at Passau, I also spent

three highly productive months at Intel Circuits Research Lab (CRL) as an intern.

I take this moment to thank everyone at CRL for providing me an opportunity to

apply my “academic” skill-sets for solving various state-of-the-art industry oriented

research problems.

My entire graduate life wouldn’t have been possible, if not for the constant love

and support of my wonderful parents. They have absorbed all the immense pressure

and troubles created by me when things were not particularly going well during

my graduate life. Thanking them alone wouldn’t do enough justice. This entire

dissertation is dedicated to them.

vi

ABSTRACT

THREAT ANALYSIS, COUNTERMEASURES AND
DESIGN STRATEGIES FOR SECURE COMPUTATION

IN NANOMETER CMOS REGIME

SEPTEMBER 2015

RAGHAVAN KUMAR

B.E., ANNA UNIVERSITY, CHENNAI, INDIA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Wayne P. Burleson

Advancements in CMOS technologies have led to an era of Internet Of Things

(IOT), where the devices have the ability to communicate with each other apart

from their computational power. As more and more sensitive data is processed by

embedded devices, the trend towards lightweight and efficient cryptographic prim-

itives has gained significant momentum. Achieving a perfect security in silicon is

extremely difficult, as the traditional cryptographic implementations are vulnerable

to various active and passive attacks. There is also a threat in the form of “hardware

Trojans” inserted into the supply chain by the untrusted third-party manufacturers

for economic incentives. Apart from the threats in various forms, some of the em-

bedded security applications such as random number generators (RNGs) suffer from

the impacts of process variations and noise in nanometer CMOS. Despite their dis-

vii

advantages, the random and unique nature of process variations can be exploited for

generating unique identifiers and can be of tremendous use in embedded security.

In this dissertation, we explore techniques for precise fault-injection in crypto-

graphic hardware based on voltage/temperature manipulation and hardware Trojan

insertion. We demonstrate the effectiveness of these techniques by mounting fault at-

tacks on state-of-the-art ciphers. Physically Unclonable Functions (PUFs) are novel

cryptographic primitives for extracting secret keys from complex manufacturing vari-

ations in integrated circuits (ICs). We explore the vulnerabilities of some of the pop-

ular “strong” PUF architectures to modeling attacks using Machine Learning (ML)

algorithms. The attacks use silicon data from a test chip manufactured in IBM 32nm

silicon-on-insulator (SOI) technology. Attack results demonstrate that the majority

of “strong” PUF architectures can be predicted to very high accuracies using limited

training data. We also explore the techniques to exploit unreliable data from “strong”

PUF architectures and effectively use them to improve the prediction accuracies of

modeling attacks. Motivated by the vulnerabilities of existing PUF architectures,

we present a novel modeling attack resistant PUF architecture based on non-linear

computing elements. Post-silicon validation results are used to demonstrate the ef-

fectiveness of the non-linear PUF architecture against modeling and fault-injection

attacks. Apart from the techniques to improve the security of PUF circuits, we also

present novel solutions to improve the performance of PUF circuits from the perspec-

tives of IC fabrication and system/protocol design. Finally, we present a statistical

benchmark suite to evaluate PUFs in conceptualization phase and also to enable

fine-grained security assessments for varying PUF parameters. Data compressibility

analyses for validating the statistical benchmark suite are also presented.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

CHAPTER

1. INTRODUCTION . 1

1.1 Hardware Security and Vulnerabilities . 1
1.2 Exploiting Process Variations in Security . 5
1.3 Contributions and Organization . 9

2. BACKGROUND . 11

2.1 Sources of CMOS Process Variations . 11

2.1.1 Manufacturing Process and Variations . 11

2.1.1.1 Systematic Variations . 13
2.1.1.2 Random Variations . 13

2.1.2 Environmental Variations and Aging . 13

2.2 PUF Terminologies and Performance Metrics . 14

2.2.1 Challenge-Response pairs (CRP) . 14
2.2.2 Performance Metrics . 14

2.2.2.1 Uniqueness . 15
2.2.2.2 Reliability . 16
2.2.2.3 Unpredictability . 17

ix

2.2.2.4 Uniformity . 18
2.2.2.5 Bit-aliasing probability . 18

2.3 PUF Design Flow . 18

2.3.1 Pre-fabrication phase . 20
2.3.2 Post-fabrication phase . 21

3. PARAMETRIC FAULT INJECTION ATTACKS ON
CRYPTOGRAPHIC HARDWARE . 23

3.1 Background . 24

3.1.1 Fault Injection Techniques . 24
3.1.2 Hardware Trojans . 27

3.2 V/T Fault Injection . 30
3.3 MAPLE Trojan-based Fault Injection . 33

3.3.1 TrojanConc: Doping Concentration Manipulation 35
3.3.2 TrojanArea: Dopant Area Manipulation . 36
3.3.3 Trojan Activation . 38
3.3.4 Threat Model . 41
3.3.5 Countermeasures and Detection . 42

3.3.5.1 Functional testing . 42
3.3.5.2 Side-channel analysis . 43
3.3.5.3 Optical Inspection . 44

3.4 Results . 45

3.4.1 LED-64 . 46

3.4.1.1 General Layout . 46
3.4.1.2 Circuit implementation . 47
3.4.1.3 Fault-based cryptanalysis . 47
3.4.1.4 Parametric fault injection . 50
3.4.1.5 V/T fault injection results . 51
3.4.1.6 Trojan fault injection results . 51
3.4.1.7 Cryptanalysis results . 52

3.4.2 PRINCE . 54

3.4.2.1 General Layout . 54
3.4.2.2 Circuit implementation . 55
3.4.2.3 Fault-based cryptanalysis . 55
3.4.2.4 Parametric fault injection . 57

x

3.4.2.5 V/T fault injection results . 57
3.4.2.6 Trojan fault injection results . 58
3.4.2.7 Cryptanalysis results . 59

4. MODELING ATTACKS ON PHYSICALLY UNCLONABLE
FUNCTIONS . 63

4.1 PUF Targets . 65

4.1.1 Arbiter PUFs . 65
4.1.2 Feed-Forward Arbiter PUFs . 67

4.2 PUF Target’s Performance Analysis . 68
4.3 Employed Modeling Attacks . 72

4.3.1 Support Vector Machines . 73
4.3.2 Evolution Strategies . 74

4.4 Modeling Delay-based PUFs . 76
4.5 Modeling Attack Results for Delay-based PUFs . 78

4.5.1 Impact of Error-inflicted CRPs . 81

4.6 Hybrid attacks on delay-based PUFs . 86

4.6.1 Scope of Fault Injection . 87
4.6.2 Fault-injection assisted ES attacks . 89

5. MODELING ATTACK RESISTANT PUF DESIGN BASED ON
NON-LINEAR ELEMENTS . 95

5.1 Current-based PUFs . 96
5.2 Attacks on Existing Current-based PUFs . 98

5.2.1 Attack Model . 99
5.2.2 Attack Results . 101
5.2.3 Impact of Error-inflicted CRPs . 104
5.2.4 Hybrid attacks on Current-based PUFs . 106

5.2.4.1 Performance of Hybrid attacks . 108

5.3 Non-linear Current Mirror based PUF Architecture 111

5.3.1 Source of Non-linearity in nlcPUF . 111
5.3.2 Effect of Process Variations . 112
5.3.3 nlcPUF Architecture . 114
5.3.4 Implementation Details . 117

xi

5.3.5 Post-silicon Validation of nlcPUF . 117
5.3.6 Security Evaluation of nlcPUF architecture 117

5.3.6.1 Modeling attacks validation of nlcPUF 118

5.3.7 Hybrid Attacks on nlcPUF . 120

6. DESIGN STRATEGIES FOR PUF CIRCUITS AND
SYSTEMS . 124

6.1 Lithography Aware Design of Physically Unclonable Functions 124

6.1.1 Related work . 126
6.1.2 Exploiting Forbidden Pitches for Improving Uniqueness 126

6.1.2.1 Outline of the Proposed Scheme . 129

6.1.3 Lithographic Simulation Results . 129

6.1.3.1 Manufacturing Aware Physical Design
Framework . 129

6.1.3.2 Intra-die PV model . 132
6.1.3.3 Inter-die PV model . 132
6.1.3.4 Inter-wafer PV model . 133
6.1.3.5 Performance metrics computation 134

6.2 PHAP: Password based Authentication System using PUFs 137

6.2.1 Background and Related Work for PHAP 139
6.2.2 SIMPL Systems . 140
6.2.3 PHAP Architecture . 141
6.2.4 Authentication protocol . 143
6.2.5 Simulation Results . 146

6.2.5.1 PUF Block . 146
6.2.5.2 PHAP System . 147

6.2.6 Security Analysis of PHAP . 150

7. SILICON PROTOTYPING . 155

7.1 Measurement setup . 158

8. STATISTICAL BENCHMARKING FOR PUFS 161

8.1 Introduction . 161

xii

8.1.1 Need for Benchmarks . 162
8.1.2 Contributions . 163

8.2 Statistical Benchmarking . 163

8.2.1 Impact of varying challenge generation methods 165

8.3 Response Compressibility Analysis . 169

9. CONCLUSION AND FUTURE WORK . 173

9.1 Future Work . 176

BIBLIOGRAPHY . 179

xiii

LIST OF TABLES

Table Page

3.1 Comparison of Fault-injection Techniques . 24

3.2 Detection of Hardware Trojans . 27

3.3 Best-case V/T Fault Injection percentages for eight random instances
of LED-64 . 52

3.4 The PRINCE round constants . 55

3.5 Summary of Fault-injection Attacks . 61

3.6 Overview on the number of required faults . 61

4.1 Summary of arbiter PUF’s performance metrics from statistical
circuit simulations and post-silicon measurements 69

4.2 Summary of Feed-forward arbiter PUF’s performance metrics from
statistical circuit simulations and post-silicon measurements 72

4.3 Summary of modeling attacks on arbiter PUFs using silicon data 81

4.4 Summary of modeling attacks on Feed-forward arbiter PUFs using
silicon data . 82

4.5 Summary of the bit-flips measurements for delay-based PUF designs
in 32nm technology . 83

4.6 Summary of the impacts of error-inflicted CRPs on prediction rates
for arbiter PUFs . 85

4.7 Summary of the impacts of error-inflicted CRPs on prediction rates
for Feed-forward arbiter PUFs . 86

4.8 Summary of hybrid attack’s performance on arbiter and feed-forward
arbiter PUFs using silicon data . 93

xiv

4.9 Summary of some major results from modeling and hybrid attacks on
delay-based PUFs . 94

5.1 Standalone ML attack results on current-based PUFs using stable
CRPs from 32nm test chip . 104

5.2 Bit flip measurements from 32nm Current-based PUFs. Intrinsic bit
flips were observed from repeated measurements under optimal
conditions, whereas extrinsic bit flips were observed by changing
the operating conditions. 105

5.3 Impact of error-inflicted CRPs on ML prediction rates for
current-based PUFs . 105

5.4 Performance of hybrid attacks on current-based PUFs. The results
were averaged over 20 different PUF instances on test chip.
Around, 7% of unreliable CRPs were present in the training set
used in hybrid attacks. 111

5.5 Area details of a single instance of various nlcPUF circuits 117

5.6 Performance validation of nlcPUF and comparison to other strong
PUF architectures . 119

5.7 Security Validation of nlcPUF and comparison to other strong
PUFs . 122

6.1 Intra-die PV model . 132

6.2 Inter-die MP model . 132

6.3 Inter-die and Inter-wafer PV models . 134

6.4 Uniqueness validation results for litho-aware and conventional arbiter
PUFs . 135

6.5 Uniqueness validation results for litho-aware and conventional
current-based PUFs . 136

6.6 Impact of litho-aware design on other performance metrics for arbiter
PUFs . 136

6.7 Impact of litho-aware design on other performance metrics for
current-based PUFs . 137

xv

6.8 Description of Notations . 141

6.9 Password Card (either session or user password) . 144

6.10 Trusted Authority’s Database . 145

6.11 Authentication Protocol . 146

7.1 Available PUF circuits in sugarloaf . 156

7.2 Configuration bits description . 158

7.3 Area details of a single instance of various PUF circuits 159

xvi

LIST OF FIGURES

Figure Page

1.1 Moore’s law [68] . 6

2.1 Sources of variations in ICs . 12

2.2 PUF Performance metrics and dimensions . 15

2.3 PUF design flow . 19

2.4 Arbiter PUF circuit with on-chip LFSR for challenge generation 21

3.1 Percentage of correct and faulty computations as a function of Vdd

and temperature in PRINCE (left) and LED-64 (right) 34

3.2 Percentage of injected faults in a single nibble as a function of Vdd

and temperature in PRINCE (left) and LED-64 (right) 34

3.3 Cross-sectional view of (a) original inverter and (b) Trojan inverter
using doping concentration manipulation . 37

3.4 Layout of (a) original inverter and (b) Trojan inverter using dopant
area manipulation . 39

3.5 Electrical characteristics of the unmodified and Trojan inverters 39

3.6 Impact of process variations on Nominal VTC and the Trojan
VTC . 40

3.7 Triggering factor of the Trojan inverters . 40

3.8 Supply drawn current for PRINCE . 44

3.9 Supply drawn currents for the original and Trojan inverters 45

3.10 Layout of LED-64 . 46

xvii

3.11 Propagation of the injected fault . 48

3.12 Equation construction for the attack on LED-64 . 48

3.13 Overview of attack on LED-64 using fault injection 50

3.14 LED-64 analysis results . 53

3.15 Layout of PRINCE . 54

3.16 Overview of attack on PRINCE using 2 EX fault injections in stage 0
and 3 EX injections in stage 1 with τ0 = 212 and τ1 = 216. 56

3.17 Schematics of PRINCE MAPLE Trojans . 59

3.18 Trigger factor of the Trojan inverters inserted into LED-64 and
PRINCE . 60

3.19 Percentage of Trojan induced exploitable faults in LED-64 and
PRINCE . 60

3.20 PRINCE analysis results for stages 0 (upper) and 1 (lower) 61

4.1 (a)Arbiter PUF architecture with n stages; (b) NAND gate based
implementation of a single MUX/switch stage. The path of
propagation of two signals topi and boti is determined by the
challenge bit Ci. If Ci = 1, then topi+1 = topi and boti+1 = boti.
Else, topi+1 = boti and boti+1 = topi. 66

4.2 Fairness evaluation of arbiters based on bias point for choosing 0/1
output. The bias point is given by ∆(t) = TA − TB (a) A simple
D-Type flip-flop arbiter; (b) Plot showing the bias point of d-type
flip-flop arbiter for choosing 0/1 around 30 ps; (c) A simple
SR-NAND latch arbiter; (d) Plot showing the bias point of SR
NAND arbiter for choosing 0/1 approximately at 0 ps 68

4.3 Feed-forward arbiter PUF . 69

4.4 Arbiter PUF’s performance metrics distribution from statistical
circuit simulations . 70

4.5 Arbiter PUF’s performance metrics distribution from post-silicon
measurements . 71

xviii

4.6 Methodology for analyzing the performance metrics of PUF
circuits . 73

4.7 Feed-forward arbiter PUF’s performance metrics distribution from
statistical circuit simulations . 74

4.8 Feed-forward arbiter PUF’s performance metrics distribution from
post-silicon measurements . 75

4.9 Data classification in Support Vector Machines . 76

4.10 Delay difference parameters for (a) Ci = 0 and (b) Ci = 1 77

4.11 Individual delay components of a single stage of an arbiter PUF 77

4.12 Prediction errors from SVM attacks on 64, 80 and 128 stage arbiter
PUFs . 80

4.13 Prediction errors from SVM attacks on 64, 80 and 128 stage
feed-forward arbiter PUFs . 80

4.14 Prediction errors from ES attacks on 64, 80 and 128 stage arbiter
PUFs . 81

4.15 Prediction errors from ES attacks on 64, 80 and 128 stage
feed-forward arbiter PUFs . 82

4.16 Impact of the error-inflicted CRPs on the prediction rates of SVM
attacks for arbiter PUFs . 84

4.17 Impact of the error-inflicted CRPs on the prediction rates of ES
attacks for arbiter PUFs . 84

4.18 Impact of the error-inflicted CRPs on the prediction rates of SVM
attacks for Feed-forward arbiter PUFs . 85

4.19 Impact of the error-inflicted CRPs on the prediction rates of ES
attacks for Feed-forward arbiter PUFs . 86

4.20 Delay-difference distributions of error-free and error-inflicted CRPs
from arbiter PUFs . 88

4.21 Delay-difference distributions of error-free and error-inflicted CRPs
from feed-forward arbiter PUFs . 88

xix

4.22 Amount of bit-flips with ∆tn < ∆tmin for arbiter PUFs 89

4.23 Amount of bit-flips with ∆tn < ∆tmin for feed-forward arbiter
PUFs . 90

4.24 Impact of the number of error-inflicted CRPs on the strength of PUF
models . 91

4.25 Performance of hybrid attacks on arbiter PUFs under the presence of
6% error-inflicted CRPs . 92

4.26 Performance of hybrid attacks on feed-forward arbiter PUFs under
the presence of 7% error-inflicted CRPs . 92

5.1 Current-based PUF architecture [61]. Ca[i] and Cb[i] represents the
challenge bits of a single stage. The inputs to the sense amplifier
are the currents Ia and Ib. outputb refers to the complimentary
form of the output bit. 98

5.2 Current difference modeling parameters for Current-based PUFs 100

5.3 Prediction errors from SVM attacks for 64, 80 and 128 stage
Current-based PUFs . 102

5.4 Prediction errors from ES attacks for 64, 80 and 128 stage
Current-based PUFs . 103

5.5 Performance of SVM attacks on Current-based PUFs with
error-inflicted CRPs. 106

5.6 Performance of ES attacks on Current-based PUFs with
error-inflicted CRPs. 106

5.7 Current-difference distributions of error-free and error-prone
CRPs . 108

5.8 Percentage of unstable CRPs from circuit simulations whose current
difference is lower than 5 nA . 108

5.9 Correlation coefficient versus the number of unstable CRPs used in
hybrid attacks . 110

5.10 Performance of hybrid attacks with 7% error-inflicted CRPs 110

5.11 Non-linear current mirror [91] . 112

xx

5.12 Non-linear transfer characteristic of the current mirror 113

5.13 Impact of process variations on the transfer characteristic of
Non-linear current mirror . 113

5.14 Proposed PUF Architecture. Ia and Ib are the output currents that
are compared to generate the response bit. 115

5.15 (a) Current switch, (b) Sense amplifier. The input currents to the
current switch are I topin , Ibotin and the output currents are I topout and
Ibotout. Cib is the inverted challenge bit (Cib = ∼ Ci). 116

5.16 Mean and standard deviation of current shift ratios in an 80-stage
nlcPUF circuit . 116

5.17 PUF Performance metrics distributions. (a) Inter-class HD (b)
Intra-class HD (c) Uniformity and (d) Bit-aliasing probability 118

5.18 Prediction errors from SVM attacks for 64, 80 and 128 stage
nlcPUF . 120

5.19 Prediction errors from ES attacks for 64, 80 and 128 stage
nlcPUF . 120

5.20 Impact of error-inflicted CRPs on SVM prediction rates for 64, 80
and 128 stage nlcPUF . 121

5.21 Impact of error-inflicted CRPs on ES prediction rates for 64, 80 and
128 stage nlcPUF . 121

5.22 Prediction errors from hybrid attacks for 64, 80 and 128 stage
Current-based PUFs . 122

6.1 Forbidden pitches in 45nm and 32nm nodes . 128

6.2 Dipole light source . 130

6.3 Simulation methodology to compute uniqueness . 131

6.4 Sensitivity of CD to gate spacing . 133

6.5 Prediction errors from SVM attacks on Litho-aware arbiter PUFs 137

6.6 Prediction errors from SVM attacks on Litho-aware current-based
PUFs . 138

xxi

6.7 PHAP Architecture . 142

6.8 Timing diagram for PHAP . 145

6.9 Hamming Distance distribution of the PUF block 147

6.10 Hamming distance distribution of the LFSR output 148

6.11 Hamming distance distribution for various session passwords
experiment . 148

6.12 Hamming distance vs Rpadded varying from 1 to 40 bits 149

6.13 Hamming distance vs Rpadded varying by 1 bit . 150

6.14 Simulation time and Probability plot . 152

7.1 Unpackaged and Packaged sugarloaf die photos . 156

7.2 Architecture of PUF portion in sugarloaf . 157

7.3 Challenge generation for PUF circuits in sugarloaf 158

7.4 Layout snapshot of the PUF banks with controller logic 159

7.5 Post-silicon validation setup . 160

8.1 Proportion of 0’s and 1’s in XOR arbiter PUFs for Mersenne Twister
based challenges . 164

8.2 NIST scores for XOR arbiter PUFs for Mersenne Twister based
challenges . 165

8.3 Proportion of 0’s and 1’s in XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators with scrambling 167

8.4 NIST sum of scores for XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators with scrambling 167

8.5 Proportion of 0’s and 1’s in XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators without scrambling 168

8.6 NIST sum of scores for XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators without scrambling 169

xxii

8.7 Compression ratios for MT generator based XOR arbiter PUFs using
7z(left) and Advcomp(right) algorithms . 170

8.8 Compression ratios for scrambled halton(top) and sobol(bottom)
generators based XOR arbiter PUFs using 7z(left) and
Advcomp(right) algorithms . 171

8.9 Compression ratios for unscrambled halton(top) and sobol(bottom)
generators based XOR arbiter PUFs using 7z(left) and
Advcomp(right) algorithms . 172

xxiii

CHAPTER 1

INTRODUCTION

1.1 Hardware Security and Vulnerabilities

The role of embedded systems in day-to-day life has improved significantly in the

last decade and this trend will likely continue in the forthcoming days. Some major

embedded systems include smartphones, tablets, payment systems, smart cards and

medical devices. The trend of ubiquitous computing has therefore seen a great scope

of improvement and has led to an era of Internet of Things (IoT), where the devices

have communication ability in addition to computation power. However, because of

their ubiquitous nature, they also bring out security and privacy issues as they pose

an ideal target for attackers. In particular, protection of sensitive data stored on the

devices has brought forth an alarming issue and demands cryptographic protection.

Majority of the embedded systems pose tight constraints on area and energy

because of their low cost. So, the trend towards lightweight cryptographic primitives

is becoming extremely popular in the design market. Most of the primitives based on

classical cryptography are based on the concept of a secret binary key embedded on

the device. However, they pose some serious security vulnerabilities especially against

physical attacks (invasive, non-invasive and side-channels) and software attacks. The

fact that the key has to be stored in a non-volatile memory further aggravates the

problem.

As explained above, cryptographic hardware blocks in safety and security critical

systems increasingly constitute a target for attackers. Fault-based attacks [6, 10, 12]

aim at determining the secret key or other protected data by actively manipulating

1

the system during operation and thus compromising the system integrity. Such ap-

proaches fall into the category of active side-channel cryptanalysis, in order to distin-

guish them from passive techniques that derive the secret information from measured

operational parameters such as power consumption or timing [40, 63]. A number of

fault-based attacks have been proposed in the recent years and were successful in

breaking state-of-the-art ciphers using one or a small number of faults [29,34,37,56].

Consequently, current and emerging cryptographic circuits must be capable of with-

standing such attacks. In order to design appropriate countermeasures, it is important

to understand the attacks, their limits, and the criteria for their success.

The attacks from the latest generation mentioned above require a very high preci-

sion on the fault injection. One part of this requirement is spatial resolution: the fault

must show up in the desired locations (memory cells, registers or logic gates) while

not affecting other locations. The second relevant property is the temporal resolution:

the fault must be present in a given point of time (e. g., after the end of a specific

round of encryption) and absent at other times. For example, the one-fault-injection-

attack on AES-128 [56] identifies a set of secret key candidates which is sufficiently

small for practical brute-force search under the condition that the fault affects one

or multiple bits of one byte of the cipher state after round 8. If multiple bytes of

this state or bytes during rounds other than 8 are affected by the fault injection, the

mathematical analysis will loose validity and the correct secret key will no longer be

found.

The physical techniques to inject faults can be broadly divided into low-cost, low-

precision and high-cost, high-precision approaches [6]. Here, the term “cost” refers

to the necessary equipment as well as to the qualification of its operator. Low-cost,

low-precision fault-injection methods include operating the device under a reduced

power supply (underfeeding), tampering with the clock signal (introducing a glitch),

overheating the device, irradiating it with X-rays, ion beams, white or ultraviolet

2

light and may or may not involve de-packaging the circuit in order to expose the

active areas of its transistor. These techniques typically do not achieve good spatial

and temporal resolutions at the same time. They are suited for attacks such as

manipulating the round counter of a cipher in order to reduce the number of rounds

applied during encryption, or manipulating the program counter of a microprocessor

in order to jump over certain instructions. Methods with high or very high spatial and

temporal resolution include laser irradiation, precise application of electromagnetic

pulses1, and the use of focused-ion beam.

In this work, we suggest two techniques for fault injection that do not require

elaborate equipment while providing sufficient precision for attacks of the latest gen-

eration. The first technique is based on careful selection of the parameters under

which the circuit is operated: power supply voltage Vdd and temperature T . We

search for Vdd/T combinations which lead to injection of faults that satisfy the re-

quirements for the cryptanalysis. In contrast, earlier approaches produced faults of

low precision and predictability and were not suited for latest-generation attacks. We

demonstrate this technique, called V/T fault injection, using a complex two-stage

attack on two recent lightweight block ciphers.

The second fault-injection technique employs hardware Trojans to facilitate fault

injection. Hardware Trojans [87] are malicious modifications of a circuit unintended

by its designer; they can be applied by the untrusted manufacturer or a third-party

intellectual property block provider. Here, we introduce a new class of hardware

Trojans, called MAnufacturing Process LEvel, or MAPLE Trojans. These Trojans are

applied to individual logic gates of the circuit and are activated non-deterministically,

with a probability (called (triggering factor) being sufficiently high to conduct fault-

1EM techniques are quoted in [6] under the low-cost category. However, recent results suggest
that they can be used for high-precision attacks [93].

3

based cryptanalysis, but sufficiently low to make their detection extremely challenging

or even impossible in practice.

We evaluate both fault-injection methods using the same settings and compare

them with each other and with previously introduced fault-injection techniques. In

particular, we demonstrate that both methods are applicable for successful fault-based

cryptanalysis of state-of-the-art ciphers. We discuss in-depth the effectiveness of

known countermeasures against the proposed fault-injection methods and outline the

key differences to earlier threats. In particular, we show that the post-manufacturing

detection methods that traditionally have been considered as a remedy against hard-

ware Trojans are of little use against MAPLE Trojans. While we have no indication

of actual circuits having been manipulated in this way, the theoretical existence of

the threats outlined by our work suggests the need to re-think protection of safety-

and security-relevant hardware components.

The vulnerabilities of existing cryptographic hardware blocks have been one of

the major driving forces behind the search of novel, efficient and secure cryptographic

primitives. Moreover, the ever-shrinking transistor sizes has resulted in tiny embed-

ded devices with computing and networking power. Some examples include radio-

frequency identifiers, smart cards, PDAs, etc. As these devices store and process

sensitive data, they demand efficient and lightweight cryptographic protection. The

traditional cryptographic implementations are based on a digital secret key stored in

the device. As some of these embedded devices are extremely resource constrained,

storing a secret key in a non-volatile memory might be extremely expensive. Moti-

vated by these drawbacks, Physically Unclonable Functions (PUFs) have been pro-

posed in the literature as an efficient way of generating unique and secret identifiers

from the complex and unpredictable nature of silicon.

4

1.2 Exploiting Process Variations in Security

The semiconductor industry has been continuously driven by Moore’s law, which

states that the number of transistors in an integrated circuit doubles approximately

every two years. The trend is shown in Figure 1.1. Technology scaling has been the

dominant force behind Moore’s law. However, aggressive technology scaling is also

impacted by variations from process, voltage, temperature and aging to certain extent,

also known as PVTA variations. Significant effort is spent by designers to combat the

variations, especially in complex systems consisting of billions of transistors. Apart

from these variations, the semiconductor industry is also facing non-certainties in the

form of scaling limits. It has been predicted that the technology scaling can continue

up to around 7nm, below which the number of transistors in the channel region will

not be sufficient to generate enough drain current. Researchers are exploring various

post-CMOS devices like nano-wires, graphene, carbon nanotubes, etc.

Managing and mitigating process variations in integrated circuits have been exten-

sively explored, especially in sub-nm design era. Random dopant fluctuation (RDF)

is one of the major sources of process variations. RDF results in a variation in the

number of dopant atoms in the channel region. This in turn changes the threshold

voltage of a transistor. Due to the impact of process variations, logic gates suffer from

delay variations. Process variations also impact the performance of memory elements

such as Static Random Access Memory (SRAM). As the amount of process variations

increase with reducing transistor sizes, significant effort is spent on managing them.

However, there are also possibilities to utilize increasing process variations in a con-

structive fashion. Such techniques are gaining popularity in semiconductor industry,

where the process variations are used to generate unique signatures in integrated cir-

cuits [66,80]. These circuits are often referred to as Physically Unclonable Functions

(PUFs). The concept of PUFs were first introduced in [86].

5

Figure 1.1. Moore’s law [68]

A PUF is a partially disordered system that maps a set of external inputs also

known as challenges C to a response R. A challenge associated with its response is

known as a challenge-response pair (CRP). In silicon PUFs, the mapping function is

decided by process variations arising during the manufacturing process. The manu-

facturing process is extremely complicated especially in sub-45 nm design space and

is hard to control even by the manufacturer. This ensures that a manufacturer cannot

produce an identical tuple of ICs with the same layout. This behavior is exploited

in the design of PUF circuits. PUFs can be employed in several security related

applications and the scope is often limited by the number of responses that can be

6

generated. PUFs can be broadly classified into “strong” and “weak” PUFs based

on the number of independent responses that it can generate. Please note that the

terms “strong” and “weak” do not have any reference to the security level of a PUF.

A strong PUF can produce a large number of responses (Ri) for different inputs Ci

and can be used in security protocols, key establishment and device authentication.

A classical example for a strong PUF is an arbiter PUF [86]. A weak PUF, on the

other hand, has a reduced response space and produce only a single response in the

worst case scenario. So, the response(s) must be kept secure from the external world

and must never be shared with a third party. The weak PUFs can be used in classical

crypto-systems for deriving the secret key. One of the typical examples for a weak

PUF is an SRAM PUF [30,31].

As PUFs find strong potential for deployment in security systems, they must sat-

isfy some properties. Some of the security properties of a strong PUF as described

in [78] are: (i) Cloning a strong PUF is highly impossible. (ii) Entire CRP collection

by an attacker within a short amount of time is impossible. (iii) A subset of CRPs

should not leak any information to predict the response of a challenge outside the

subset. These properties have been exploited in the literature for the development of

various security protocols based on PUFs. Some examples include device identifica-

tion [86], key exchange [73], oblivious transfer [76] etc. The commercial applications

employing PUF circuits require that any two responses from two different PUF in-

stances of the same type should have a significant difference. This property of PUFs

is referred to as uniqueness. To ensure stable authentication, PUFs are expected to

produce the same response for a challenge under any operating condition, which is

measured in terms of reliability. Finally, a PUF should be unpredictable such that an

attacker possessing a subset of CRP pairs should be unable to predict the response for

a challenge outside that subset. More details on performance metrics of PUF circuits

can be found in chapter 2.

7

Although PUFs seem to be a promising alternative to classical cryptography,

they must overcome some concerns to be trusted fully secure. One such concern is

the robustness of PUF circuits. A PUF is expected to produce the same response

whenever queried with a particular challenge. However, due to the presence of on-chip

substrate noise, temperature and voltage fluctuations, some of the responses become

highly unreliable. Several circuit and system level schemes to improve the reliability

of PUF circuits have been proposed in the literature. Prominent examples include

error-correction schemes [92], feedback-supply control [45, 49, 89], helper data [14],

fuzzy extractors [19], etc. Another major concern for PUFs is their vulnerability to

modeling attacks. Moreover, unreliable challenge-response pairs can also be used to

improve the performance of modeling attacks. The unreliable challenge-response pairs

can leak some side-channel information to extract more data-dependent information

from PUF circuits. So, unreliability and security vulnerabilities of PUF circuits are

closely related to each other and must be addressed in order to consider them fully

secure.

In this work, we study the vulnerabilities of some popular “strong” PUF archi-

tectures to various attacks using simulated and silicon data. The PUF circuits were

implemented in IBM 32nm Silicon-on-Insulator (SOI) technology and validated using

post-silicon measurements. In particular, we study the vulnerabilities of PUF circuits

to modeling attacks using Machine Learning (ML) algorithms. The ML algorithms

construct a model based on the challenge-response training set. The performance of

modeling attacks depends on the robustness of the challenge-response pairs. If there

are some unreliable challenge-response pairs in the training set, the learning phase of

the ML algorithms is severely impacted and limited prediction accuracies are achieved.

To that extent, we propose a hybrid attack that exploits the data-dependent informa-

tion present in unreliable challenge-response pair and uses it constructively to push

the prediction accuracies achieved by ML algorithms. Motivated by the vulnera-

8

bilities of existing PUF circuits, we also present a modeling attack resistant PUF

architecture using non-linear current mirrors. The post-silicon validation results of

the proposed non-linear PUF architecture are also presented. Finally, a statistical

benchmark suite to evaluate and enable fine-grained security assessments of PUF

architectures is presented.

1.3 Contributions and Organization

The major contributions of this dissertation include:

1. Techniques to extract secret keys from cryptographic hardware through the use

of hardware Trojans and precise voltage and temperature manipulation.

2. Techniques to attack delay-based PUF designs using modeling attacks.

3. Methodologies for exploiting side-channel information to improve the perfor-

mance of modeling attacks.

4. Design and post-silicon validation of a modeling attack resistant PUF design in

32nm SOI process.

5. Design strategies to improve the performance of PUF circuits.

6. Statistical benchmark suite for analysis of PUF architectures.

The rest of this dissertation is organized as follows. In chapter 2, some back-

ground information on various sources of process variations is presented. We also

discuss the different performance metrics used to characterize PUF circuits. In chap-

ter 3, we present the different techniques to extract the secret key from cryptographic

blocks. Different techniques include voltage and temperature manipulation and hard-

ware Trojan insertion. We also present the performance of fault-injection techniques

by using them to extract the secret key from state-of-the-art ciphers. Some of the

9

countermeasures against fault-injection attacks are also presented. Chapter 4 focuses

on modeling and hybrid attacks on popular delay-based PUF designs. Simulation

and silicon data from PUF circuits are used to validate the performance of modeling

and hybrid attacks. In chapter 5, we present the design and post-silicon measure-

ments of a novel modeling attack resistant PUF design based on non-linear current

mirrors. The performance of the proposed PUF is compared against the best-in-class

current-based PUF architecture and the results are presented. Chapter 6 discuss the

different design strategies to improve the performance metrics of PUF circuits. The

different strategies include fabrication-aware design of PUF circuits and a PUF based

protocol to improve the authentication capabilities of security systems. In chapter 7,

we present the architecture of the 32nm test chip known as sugarloaf and the post-

silicon validation setup. Finally, chapter 8 discusses the statistical benchmark suite

and data compressibility analysis of PUFs.

10

CHAPTER 2

BACKGROUND

Some background information related to PUFs are presented in this chapter.

Along with some background information, the methodology to compute the perfor-

mance metrics of a PUF circuit are also presented. The methodology presented is the

basis for all performance metrics computation described in the document.

2.1 Sources of CMOS Process Variations

The sources of process variations in ICs are summarized in this section. Some

of the sources of variations are shown in Figure 2.1. From the perspective of PUF

circuits, the sources of variations can be either desirable or undesirable. The desirable

source of variations refers to process manufacturing variations (PMV) as identified

in [39]. The environmental variations and aging are undesirable for PUF circuits.

2.1.1 Manufacturing Process and Variations

The IC manufacturing process consists of several steps [57]: patterning, etching,

doping, film deposition and planarization. A monochromatic light source is focused

via a set of optical lenses on a mask containing the desired pattern to be printed

onto the silicon wafer. After the wafer is exposed, some parts are etched out through

a chemical process and then the surface is planarized using Chemical Mechanical

Polishing (CMP) [57]. This process is repeated several times over for printing the

patterns. Moreover, diffusion/ion implantation is used to dope certain regions of

the wafer. Each of these steps cannot be repeated faithfully from wafer to wafer

11

Manufacturing
process variations

Variations in device
dimensions

Environmental
variations

Aging effects

Fluctuations in
transistor parameters

Variations in circuit’s
characteristics (delay,

power, etc.)

Non uniform conditions during fabrication

Limited resolution in IC fabrication

Figure 2.1. Sources of variations in ICs

or even from die to die within the same wafer. Owing to lens material limitations,

the wavelength of the light source has not scaled down below 193nm, though the

transistor dimensions have scaled down to 22nm. This is also a significant contributor

to variations in structures printed on the wafer. Variations occur due to imperfections

in:

• Light source - exposure intensity (dose)

• Lens system - aberration

• Mask

• Etching process - Line Edge Roughness (LER)

12

• Doping process

• CMP process

• Alignment - defocus

• Optical Proximity Effects

These imperfections result in variations in physical parameters that lead to varia-

tions in electrical parameters like threshold voltage and current. This in turn affects

timing, power consumption, etc. These variations can be random or systematic [57].

Systematic variations should be suppressed as they affect the uniqueness of PUFs. On

the other hand, random variations are unpredictable and improve the performance of

a PUF.

2.1.1.1 Systematic Variations

Systematic component of process variations includes variations in lithography sys-

tem, nature of layout and CMP [11]. By performing a detailed analysis of the layout,

the systematic sources of variations can be predicted in advance and accounted in

design step. If the layout is not available for analysis, the variations can be assigned

statistically [11].

2.1.1.2 Random Variations

Random variations refer to non-deterministic sources of variations. Some of the

random variations include random dopant fluctuations (RDF), line edge roughness

(LER) and oxide thickness variations. The random variations are often modeled using

random variables for design and analysis purposes.

2.1.2 Environmental Variations and Aging

Environmental variations are detrimental to PUF circuits. Some of the common

environmental sources of variations include power supply noise, temperature fluc-

13

tuations and external noise. These variations must be minimized to improve the

reliability of PUF circuits.

Aging is a slow process and it reduces the frequency of operation of circuits by

slowing them down. Circuits are also subjected to increased power consumption and

functional errors due to aging [90].

2.2 PUF Terminologies and Performance Metrics

The terminologies and performance metrics used in the field to evaluate PUF

devices are briefly summarized in the following sections.

2.2.1 Challenge-Response pairs (CRP)

As the name suggests, PUF circuits can be envisioned as a function mapping a set

of inputs to outputs. However, as identified in [58], PUF circuits do not implement

a true function as they can produce different outputs for an input under different

operating conditions. The inputs to a PUF circuit are known as challenges and

outputs are referred to as responses. A challenge associated with its corresponding

response is known as a Challenge-Response pair (CRP). In an application scenario,

responses of a PUF circuit are collected and stored in a database. This process is

generally known as enrollment. Under verification or authentication process, the

PUF circuit is queried with a challenge from the database. The response is then

compared against the one stored in the database. If the responses match, the device

is authenticated.

2.2.2 Performance Metrics

There are different important metrics used to analyze a PUF circuit, namely

uniqueness, reliability, unpredictability, uniformity and bit-aliasing probability [60].

The performance metrics are defined in different measurement dimensions as shown

in Figure 2.2. The different measurement dimensions are time, device and space.

14

space

device

time

Uniqueness
Bit aliasing probability

Uniformity
Unpredictability

Reliability

Figure 2.2. PUF Performance metrics and dimensions

Uniqueness and bit-aliasing probability are measured across different devices. Re-

liability is measured across time and uniformity and unpredictability are measured

across space.

2.2.2.1 Uniqueness

PUF devices are primarily used to generate unique signatures for device authenti-

cation. In this application, it is desirable to have a large difference between responses

from any two PUF instances. Here, the two PUF instances may be from the same

wafer or different wafers. A typical measure used to analyze uniqueness is known as

inter-distance and is given by [39,60]:

dinter(C) =
2

k(k − 1)

i=k−1∑
i=1

j=k∑
j=i+1

HD(Ri, Rj)

m
x 100%. (2.1)

In equation 2.1, HD(Ri, Rj) is the Hamming distance between two responses Ri

and Rj of m bits long for a particular challenge C and k is the number of PUF

15

instances under consideration. The desired inter-distance is 50%. By carefully looking

at equation 2.1, one can correspond the inter-distance dinter(C) to the mean of the

Hamming distance distribution obtained over k chips for a challenge C. It is also

useful to obtain the standard deviation of Hamming distance distribution given by

σinter(C), which measures the extent of deviation in Hamming distance from the

desired inter-distance. Lower σinter(C) is preferable for PUF design. As uniqueness

is measured across devices, it is denoted in the device axis in Figure 2.2.

While designing a PUF circuit, inter-distance is often measured through circuit

simulations. A common practice is to perform Monte Carlo simulations over a large

population of PUF instances. Though there is no single concrete number for the

number of PUF instances to be considered for simulation purposes, it is safe to assume

around 1000 samples to obtain a good estimate of uniqueness. In simulations, care

must be taken to efficiently model various sources of manufacturing variations in

CMOS circuits, as they directly translate into uniqueness. During the simulations,

manufacturing variations are modeled using a gaussian distribution. In such cases,

mean and standard deviation of the gaussian distribution under consideration must

correspond to either inter-die or inter-wafer variations’ statistics.

2.2.2.2 Reliability

A challenge applied to a PUF operating on an integrated circuit will not necessar-

ily produce the same response under different operating conditions as the circuit is

subject to environmental variations. The robustness of PUF’s responses is measured

in terms of reliability. Reliability of a PUF refers to its ability to produce the same

response for a particular challenge under varying operating conditions. Reliability

can be measured by looking at the average number of flipped bits in responses for the

same challenge under different operating conditions. A common measure of reliability

is intra-distance given by [24,39,60]:

16

dintra(C) =
1

s

s∑
j=1

HD(Ri, R
′
i,j)

m
x 100%. (2.2)

In equation 2.2, Ri is the response of a PUF to challenge C under nominal con-

ditions, s is the number of samples of response Ri obtained at different operating

conditions, R′i,j corresponds to jth sample of response Ri for challenge C and m is the

number of bits in the response. Intra-distance is expected to be 0% for ideal PUFs,

which corresponds to 100% reliability. The terms intra-distance (dintra) and reliability

have been used interchangeably further in this chapter. Given dintra, reliability can

always be computed (100− dintra(%)).

2.2.2.3 Unpredictability

Responses from a PUF circuit must be unpredictable in order to ensure that the

signatures/keys are safe from adversaries possessing information about the responses

to different challenges from the same device. One of the measures of unpredictability

is the amount of randomness in responses from the same PUF device. This can be

evaluated using NIST tests [24, 58]. Silicon PUFs produce unique responses based

on intrinsic process variations, that are very difficult to clone or duplicate by the

manufacturer. However, by measuring responses from a PUF device for a subset of

challenges, it is possible to create a model that can mimic the PUF under consider-

ation. Several modeling attacks on PUF circuits have been proposed in the litera-

ture [32, 51, 53, 54, 62, 78]. The type of modeling attack depends on the PUF circuit.

A successful modeling attack on a PUF implementation may not be effective for other

PUF implementations. Modeling attacks can be made harder by employing some con-

trol logic surrounding the PUF block, that prevents direct read-out of its responses.

One such technique is to use a secure one-way hash over PUF responses. However,

if PUF responses are noisy and have significant intra-distance, this technique will

require some sort of error-correction on PUF responses prior to hashing [92].

17

2.2.2.4 Uniformity

Uniformity is a measure of the proportion of ’0’s and ’1’s in a PUF’s k bit response.

In other words, the number of challenges that produce ’0’s and ’1’s must be equal in

an ideal scenario. Uniformity of a PUF is evaluated using,

(Uniformity)i =
1

k

k∑
j=1

ri,j x 100% (2.3)

where ri,j is the jth bit of a k bit response from chip i. As uniformity is measured

across the k-bit response, it is denoted in the space axis in Figure 2.2.

2.2.2.5 Bit-aliasing probability

If bit-aliasing happens in a PUF circuit, then different chips may produce nearly

identical responses. Bit-aliasing of the i-th bit in PUF response is given by,

(Bit-aliasing)j =
1

n

n∑
i=1

ri,j x 100% (2.4)

where ri,j is the j-th bit of a k bit response from chip i. As bit-aliasing is measured

across n devices, it is denoted in the device axis in Figure 2.2.

2.3 PUF Design Flow

This section focuses on a generalized design flow adopted for any type of PUF

instantiation using standard CMOS gates. PUF design flow includes two broad steps,

namely

• Pre-fabrication phase and

• Post-fabrication phase

We describe pre-fabrication phase in section 2.3.1 and post-fabrication phase in

section 2.3.2.

18

Architecture
specification	

RTL design
and behavior

modeling	

DFT
design	

Logic
synthesis	

Transistor-
level netlist	

 Device variation

model	

Statistical
verification	

Is
performa
nce target

met?	

Floor-planning,
Place and route	

Layout versus
schematic check	

Transistor-level
netlist with parasitic

capacitances 	

Device and
Interconnect

variation model	

Statistical 	

post-layout
verification	

Is
performa
nce target

met?	

No	

Yes	

Yes	

No	

 Generate GDS
files for

“fabrication”	

Figure 2.3. PUF design flow

19

2.3.1 Pre-fabrication phase

Any PUF design flow is built upon traditional ASIC design flow, with some spe-

cific steps for variation modeling and statistical verification. A complete PUF design

flow is shown in Figure 2.3. As shown in Figure 2.3, PUF design starts from the

architecture specification by defining general design goals and performance require-

ments. This is followed by a register-transfer level (RTL) design for the PUF circuit

under consideration using Verilog and/or VHDL. Together with design for testing

(DFT) techniques, a logic synthesis procedure is performed upon the developed RTL

code to generate a gate-level netlist along with sub-circuit modules to describe the

transistor-level netlist. A PUF-specific design process of introducing device variation

models is important to enable statistical verification of PUF metrics such as unique-

ness and reliability. If this verification fails, i.e., the performance metrics target of

the PUF under consideration is not met, then the process to this step should be re-

peated with modifications to improve the PUF metrics. Upon statistical verification

failure, a common place in the design process to inspect is the standard cell library.

Often, the standard cell libraries are optimized to tolerate process variations. In such

cases, standard cell libraries specific for PUF design process must be built. If the

verification process succeeds, the design process continues further to physical design

phase including floor-planning, placement and routing and layout-versus-schematic

verification. Once the physical model of PUF circuit is available, the more realistic

device and variation models with extracted parasitics can be used for post-layout

statistical verification. If this final verification fails, either the layout or the original

design has to be modified. A successful verification at this phase should result in the

delivery of GDSII files for fabrication.

To introduce variations to a specific device parameter during the verification

phase, Monte Carlo (MC) based approach can be used to instantiate random values

from a normal distribution or from a post-silicon parameter variation profile available

20

through chip measurements. Each MC iteration produces one PUF instance. Usu-

ally, a large number of PUF instances (MC iterations) are required for uniqueness

validation process. Supply voltage and temperature fluctuations are assigned over

the netlist with extracted parasitic capacitances and simulations are performed for

reliability and security/unpredictability analysis. Note that the focus of verification

should be the post-layout stage and sufficient number of MC iterations should be

performed, while the verification of pre-layout netlist can have reduced number of

MC iterations.

2.3.2 Post-fabrication phase

Once the pre-fabrication phase is complete, the generated GDS files are sent for

fabrication. The fabricated PUF circuit must be tested for exact real time perfor-

D	

 Q	

 D	

 Q	

 D	

 Q	

Q	

 D	

 Q	

 D	

SET	

CLK	

n-bit Challenge	

Arbiter PUF Circuit	

1-bit or n-bit response 	

Figure 2.4. Arbiter PUF circuit with on-chip LFSR for challenge generation

21

mance analysis. The challenges for the PUF circuit under consideration can be gener-

ated using an external equipment or generated inside the chip using a pseudo-random

number generator like Linear Feedback Shift Register (LFSR), as shown in Figure 2.4.

Although an arbiter PUF circuit is shown, any “strong” PUF implementation can be

used. LFSR will start generating pseudo-random challenges, when set signal is pulled

high. Usually post-silicon validation of PUF is done by storing the waveform of re-

sponses along with challenges. The CRPs are then extracted from the waveform

files. The CRP extraction methods for pre-silicon and post-silicon validation are al-

most similar in nature. The only minor concern is that pre-silicon waveforms have

accurate time reference and post-silicon measurements may have some time uncer-

tainties due to clock jitter and external noise. Hence, automatic data synchronization

must be employed to use the same CRP extraction method for pre- and post-silicon

validations.

22

CHAPTER 3

PARAMETRIC FAULT INJECTION ATTACKS ON
CRYPTOGRAPHIC HARDWARE

In this chapter, we present the techniques to extract secret keys from cryptographic

blocks. The first technique is based on voltage and temperature manipulation such

that precise faults are injected. By carefully manipulating the Vdd and T values, pre-

cise faults up to single bit precision can be injected1. This technique is referred to

as V/T injection further in the document. The second technique is based on harware

Trojans insertion to facilitate transient fault injection. The proposed hardware Tro-

jans, also known as MAPLE (MAnufacturing Process LEvel) Trojans, are based on

manipulating the electrical characteristics of logic gates, such that non-deterministic

fault injection is achieved2. The triggering probability of MAPLE Trojans is suffi-

ciently low to mask their detectability. The techniques are validated and compared

using the same settings to enable fair comparison. In particular, we demonstrate the

effectiveness of the proposed techniques by employing them to break state-of-the-art

ciphers.

The remainder of this chapter is organized as follows. The next section provides

background on fault-injection techniques and hardware Trojans. The V/T injection

and the MAPLE Trojan-based injection are described in detail in Sections 3.2 and

3.3, respectively. Attacks on several cryptographic circuits using both fault-injection

techniques are reported in Section 3.4.

1This work was published in [48]

2This work was published in [47]

23

Table 3.1. Comparison of Fault-injection Techniques

Method Properties Countermeasures

Effort No. of Foundry-side Light sensors, Voltage Fixed Concurrent Frequent key

attempts attacker shielding drop sensors Vdd error-detection regeneration
L

o
w

-p
re

ci
si

o
n Vdd manipulation Low Small No No Yes Yes Yes Limited

Clock manipulation Low Small No No No No Yes Limited

Overheating Low Medium No No Potentially No Yes Somewhat

X-rays, ion beam Medium Small No Limited Yes No Yes Limited

White / UV light Medium Large No Yes Yes No Yes Yes

H
ig

h
-p

r. Laser High Small No Yes Yes No Yes Limited

Electromagnetic High Small No Somewhat Yes No Yes Limited

Focused ion beam Very high Small No Yes Yes No If functional Limited

N
ew

V/T manipulation Low-medium Large No No Unlikely Yes Yes Yes

Trojan-assisted Low Medium-large Yes No Unlikely Yes Yes Yes

3.1 Background

This section presents an overview on fault injection techniques3 in order to relate

them to the methods introduced in this chapter. Moreover, since one of the techniques

is based on hardware Trojans, we also provide background information on this class

of threats to hardware security in Section 3.1.2.

3.1.1 Fault Injection Techniques

Methods to inject faults into digital circuits with the aim of fault-based cryptanal-

ysis are summarized in Table 3.1. Low-cost techniques [4, 6] include manipulation of

power-supply voltage Vdd, manipulation of the clock signal and overheating of the

device. All these techniques do not require elaborate equipment or a cooperating

attacker at the foundry which manufactures the circuit. They are usually effective in

introducing faults quickly but are not very good in controlling the location and the

time of the injected faults.

Since the techniques in this chapter involve Vdd manipulation, we discuss earlier

related approaches in more detail. Voltage manipulation based attacks can involve

either introducing a well-timed glitch into the power supply or under-powering the

device. Glitch based fault injection alters the state of the latches or flip-flops, thereby

3It is important to distinguish malicious fault injections for cryptanalysis from fault-injection
campaigns run on circuit models in order to study their resilience to transient faults [3, 55], which
are not focused in this chapter.

24

affecting the control and data path logic of the circuit. A successful attack on a RSA

implementation using this technique was proposed in [81], and a similar attack on

AES implemented in an SRAM-based FPGA was demonstrated in [15]. In under-

powering attacks, the propagation delays of some combinational gates may increase

and lead to timing errors. This can cause a flip-flop to capture the erroneous value.

One such attack to break a smart card implementation of AES was shown in [82]. All

these attacks do not require high precision.

Two further low-precision techniques from Table 3.1 use X-rays/ion beam or illu-

minating by strong ultraviolet or white light. These approaches require some equip-

ment and may necessitate de-processing of the circuit. The expected time until first

errors show up depends on the energy of the used source, but tends to be rather long

for light-based methods.

High-precision methods that can target individual circuit structures are laser

light, electromagnetic emissions and focused ion beam. They generally require de-

processing of the circuit, expensive or very expensive equipment and skilled operators.

Furthermore, identifying the circuit structure for fault injection requires either knowl-

edge about the circuit layout and the correspondence of layout locations to specific

variables in the cryptographic algorithm, or the ability to derive such correspondence

by reverse engineering.

The techniques introduced in this chapter, are associated with high precision

and low effort. V/T manipulation, explained in Section 3.2, requires some effort

to determine the voltage and the temperature which are optimal for fault injection,

and also some equipment to accurately control the temperature. The Trojan-assisted

technique from Section 3.3 of this chapter relies, as the sole technique in Table 3.1,

on a cooperating attacker involved in the manufacturing process. However, once the

manipulated circuit has been produced, fault injection is easy. Both techniques are

25

probabilistic: not every run of the circuit will result in a fault, and not all injected

faults are exploitable for cryptanalysis.

The rightmost five columns of Table 3.1 summarize relevant countermeasures

against malicious fault injections and their effectiveness. One class of countermea-

sures aims at preventing access to critical circuit structures or identifying attempts

to open the package to gain such access. These methods are effective against opti-

cal fault injection and may be effective against further methods (X-rays, ion beam,

EM) if they require de-packaging, but not against manipulation of voltage, clock fre-

quency or temperature. Voltage droop sensors detect significant deviations of Vdd

at the sensed node(s) from their nominal values. They will identify direct and sub-

stantial manipulation of power supply voltage and should be rather effective against

methods that induce parasitic currents, including X-rays, ion beams, white/UV/laser

light, EM, and, to some extent, overheating. The proposed injection methods do alter

Vdd, but the extent of manipulation is limited (within 10–20% of the nominal value).

While it is possible to deploy sensors that will detect such small deviations, they will

frequently trigger false alarms because these values are regularly observed in normal

operation (in absence of any fault injection) due to power-supply noise [74].

If the circuit is equipped with circuitry that fixes Vdd at its specified value and

prevents its change, all fault-injections involving voltage, including the proposed tech-

niques, are thwarted. It may be possible to circumvent this protection, but this will

necessitate opening the package. Concurrent error-detection (by duplication and com-

parison or by employing error-detecting codes) is generally effective against faults due

to arbitrary causes, including malicious fault injections. However, the cost of these

schemes is often prohibitive (100% and more in area and power consumption) and

not all faults are detected. Using focused ion beam, it is possible to deactivate the

error-detecting circuitry.

26

The final countermeasure in Table 3.1 is on protocol level: the key is frequently

exchanged. This approach is effective against fault injections which require a large

number of clock cycles, including the proposed techniques. Successful cryptanalysis

may require multiple exploitable fault injections with the same secret key, and the

key may loose validity before enough exploitable faults have been injected. Note that

key regeneration does not detect an attack but only prevents it. In general, frequent

regeneration and secure distribution of secret keys is associated with costs and may

be difficult to perform when the attacker has physical access to the device, as assumed

in fault-based attack scenario.

Note that all countermeasures mentioned in Table 3.1 can, in principle, be circum-

vented by the attacker with some degree of efforts. It is obvious from the table that

V/T manipulation and Trojan-assisted fault injection have a countermeasure profile

which is completely different compared to earlier fault-injection methods and may

require countermeasures which have typically not been employed in the past.

Table 3.2. Detection of Hardware Trojans

Type Functional Side-channel Optical

testing analysis inspection

Small Trojan Easy Difficult Medium

Large Trojan Difficult Easy Easy

Dopant-level Medium Very difficult Very difficult

MAPLE Trojan Impossible Very difficult Very difficult

3.1.2 Hardware Trojans

The term “hardware Trojans” subsumes diverse techniques ranging from manip-

ulation of the circuit by the foundry to threats in intellectual-property blocks from

third-party providers or in CAD tools used to design the circuit. Since the MAPLE

Trojans used in this work belong to the class of foundry-side manipulations, we re-

strict the discussion in this section to such threats; more details can be found in [87].

In general, the third-party manufacturer modifies the circuit such that it can develop

undesired behavior, including:

27

• Denial of service (deactivating or producing constant or random outputs).

• Changing the circuit function.

• Establish a hidden side-channel.

The MAPLE Trojans used in this work have been designed for active fault-based

cryptanalysis. We are not aware of earlier hardware Trojans created or used for this

purpose.

A hardware Trojan consists of two parts: trigger, which activates the Trojan,

and payload, which performs the undesired action. The Trojan may be triggered

by an external event (such as the application of a specific input combination to the

circuit inputs or setting Vdd to a particular value) or by an internal event (such as a

counter reaching a pre-defined value or transistor wear-out of some degree [21]). Most

hardware Trojans assume a cooperative attack model : one attacker (called foundry-

side attacker in this chapter) is located within the foundry and manipulates the

manufacturing process, and the second attacker triggers the Trojan payload in a

manufactured circuit that is used in application.

Since hardware Trojans are present in the manufactured circuit, it is generally

possible to identify them by testing. Three basic strategies are known for Trojan

detection [69]:

• Functional testing [16] checks if the function implemented by the circuit corre-

sponds to the specification by applying input vectors using either an external

tester or on-chip built-in self-test blocks.

• Side-channel analysis [87] determines parameters such as timing or power con-

sumption of the potentially affected circuit and compares them with expected

values for a Trojan-free circuit.

28

• Optical inspection [33] is a destructive technique consisting of mapping the

individual active and metal layers of the de-packaged circuit and checking them

against the original circuit layout.

Table 3.2 summarizes the general detection properties of these methods for conven-

tional Trojans, MAPLE Trojans introduced in this chapter, and related dopant-level

Trojans [9].

It turns out that the complexity (and thus the size) of the Trojan is key to choosing

the optimal detection method. A large Trojan might have a complex triggering con-

dition which could be difficult to find, and therefore it may not be feasible to activate

the Trojan during functional testing and observe its effects. On the other hand, the

large circuitry will have impact on the circuit’s delay and power consumption and will

likely be identified by side-channel analysis. In contrast, the triggering condition of

a small Trojan must be simple because it is implemented with only a few logic gates.

As a consequence, it is feasible to check all such simple conditions during functional

test such as to detect the Trojan. Side-channel analysis will be less effective as the

few logic gates have a smaller contribution to the overall delay or power consumption

and will probably be dominated by random variations. Finally, the optical analysis

will, in theory, find both small and large Trojans, but it is obviously easier to find

Trojans that are associated with more added or changed logic gates and/or affect

more circuit locations.

A very recent Trojan insertion technique, which inspired our MAPLE Trojans,

modifies the logic function of a logic gate by exchanging the dopant polarity of tran-

sistors within the gate [9]. This modification corresponds to a stuck-at fault of a

multiplicity equal to the number of manipulated logic gates and is detectable by

functional testing. Note that the attack on the random number generated reported

in [9] was not detected because it was tested by a built-in test self block and the

expected signature was manipulated. This circumvention would not be possible in

29

the usual tester-based scenario. Dopant-level Trojans may create side-channel effects

and could be detected by side-channel analysis, but if only few logic gates are af-

fected, the test equipment must have a very high sensitivity. Detecting the Trojans

from [9] by optical inspection is not impossible but very difficult because no logic

is added and removed and the modifications only involve layers transparent to most

analytical methods. Recent work indicates that dopant-level Trojans can be detected

using optical reverse-engineering at a very high cost that is almost 16 times higher

than the detection of metal layers by optical detection [85].

The MAPLE Trojans inherit poor detectability of dopant-level Trojans by side-

channel analysis and optical inspection and avoid detection by functional testing due

to their dependency on Vdd and non-deterministic nature. This will be explained in

detail in Section 3.3.5.

3.2 V/T Fault Injection

Fault injection into cryptographic hardware can have one of the following three

consequences. First, the fault may have no visible effect on the circuit outputs, either

because the injection was not strong enough or because it did not propagate to the

output. We call this situation fault-free (FF). Second, the fault may be exploitable

(EX), that is, correspond to the requirements of the considered attack scenario. Third,

it may not correspond to these requirements; we call such a fault not exploitable (NE).

For example, the attack on the LED-64 block cipher considered in this work

requires fault injection in one of the 16 four-bit nibbles of the state at a certain point

of time within round 30. A fault that flips one, two, three or all four bits of one such

nibble while leaving the other nibbles untouched is exploitable, while faults flipping

bits in multiple nibbles or at different time points are not. The other cipher considered

here, PRINCE, has two types of exploitable faults: one restricted to a single nibble

in round 9 and the other restricted to a single nibble in round 8. Cryptanalysis takes

30

the ciphertext C calculated by the fault-free circuit from plaintext P using secret key

k, and the fault-affected ciphertext C ′ calculated from the same P and k but by the

circuit to which the fault injection was applied. If the injected fault was exploitable,

cryptanalysis will either derive the key k from C and C ′ or restrict the number of

key candidates. This is done by constructing a system of equations and solving them

after k. If the injected fault was not exploitable, the equations will be inconsistent

and in most cases have no solution.

The idea of V/T manipulation is to operate a circuit under reduced power-supply

voltage Vdd and/or elevated temperature T . Running multiple encryptions under

such out-of-spec parameters will lead to bit-flips at different circuit locations. These

bit-flips are random to some extent, because they are aggravated by local noise.

In general, the further Vdd and T are from their nominal values, the higher is the

probability of fault injection at any location in the circuit. If the parameter are close

to nominal, most encryptions will be from class FF. If the parameters are very far

from nominal, many locations will tend to flip, and the injected faults will be from

class NE. The aim of our technique is to find Vdd/T combinations under which EX

faults occur with a sufficient rate for practical cryptanalysis.

It is important to stress that the fault injection is not based on increasing the

delay of paths within the circuit and inducing a delay fault at the circuit outputs or

flip-flops. While this mechanism is possible, it is extremely prone to process variations

and not well-controllable. We assume that the circuit is run at a sufficiently low clock

frequency for all gates to switch and that the faults are due to noise-induced bit-flips

at individual gates.

In order to find the Vdd/T combination suited for injection of EX faults, we perform

an analysis in two steps. The first step is an electrical-level simulation analysis of a

circuit model which offers the access to all internal nodes. For several values of T , the

power-supply voltage is swept between a small and a large value with small intervals.

31

For each combination, several encryptions are run and the number of FF, EX and NE

faults are determined by leveraging the access to the circuit structures. For example,

the attacks considered here require single-nibble fault injection; this is checked by

simply looking up the value stored in the registers. Starting the voltage sweep with

a value close to nominal Vdd, most encryptions will be FF, then slowly reducing the

power-supply voltage, the number of FF encryptions will decrease and more faults

will be EX (restricted to a single nibble) or NE. At some point, the voltage will be

so low that multiple nibbles will be affected in nearly all cases and faults will become

NE. The Vdd/T combination which lead to the highest proportion of EX faults is then

recorded.

While the first step of the procedure assumes a simulation model of the circuit,

the actual fault-based cryptanalysis is applied to a specific manufactured instance

of the circuit. Because of manufacturing process variability, the Vdd/T combination

obtained for the simulation model with nominal parameters may not be the best for

that instance. Therefore, in the second step, the characterization is continued for the

actual manufactured circuit instance. The voltage is swept around the values obtained

during the simulation-based first step. A key difference with the first step is the lack

of access to internal structures of a physical circuit. For this reason, the classification

of a fault is performed as follows. Any obtained ciphertext C ′ is first compared with

the fault-free ciphertext C; if they match, the encryption is categorized as FF. Then,

cryptanalysis using C and C ′ is attempted. If it yields no solution, an NE fault is

assumed, otherwise an EX fault is assumed. Strictly speaking, an NE fault might

result in an equation system with an (incorrect) solution and therefore be wrongly

categorized as EX, but such situations are rare.

Once the Vdd/T combination has been determined, the actual attack is performed.

Note that some cryptographic functions, including the LED-64 cipher, require only

one EX fault injection for a successful attack. In such a situation, several encryp-

32

tions are performed and cryptanalysis is attempted after each of them; once it is

successful, the key is determined and the protection is broken. Other attacks, such

as the attack on PRINCE, necessitate multiple fault injections using the same se-

cret key. Again, several encryptions are performed and the fault-affected ciphertexts

corresponding to EX faults are stored. Once a sufficient number of them has been

collected, cryptanalysis can be invoked and will yield the secret key.

To give more insights on the characterization procedure, the ciphers PRINCE and

LED described in Section 3.4 were designed in 45nm CMOS technology and the impact

of voltage sweep on the device was observed. Voltage was varied in steps of 2mV,

although more fine tuning is possible [5]. To increase the probability of noise-induced

fault injection, temperature T was also varied. The percentage of correct and faulty

computations under different Vdd and T values are shown in Fig 3.1. The probability

of correct and faulty computations converge to 50% at some Vdd for a given T . Below

this point, multiple faults are injected into the circuit and may be non-exploitable.

The exact numbers for exploitable faults along with the stimuli values are presented

in Section 3.4. As the cryptanalysis framework for LED-64 and PRINCE requires

fault injection in a single nibble, Vdd and T values over which a fault is injected into

a single nibble were evaluated. The distributions of single nibble fault injection as a

function of Vdd and T are shown in Fig 3.2. Note that the single nibble faults shown in

Fig 3.2 include the fault injections happening throughout the cipher circuit. However,

only the faults injected in certain rounds are exploitable (details in Section 3.4). So,

the percentage of exploitable faults will be lower than the bounds shown in Fig 3.2.

The exploitable faults’ statistics are presented in Sections 3.4.1.5 and 3.4.2.5.

3.3 MAPLE Trojan-based Fault Injection

This section presents MAnufacturing Process LEvel (MAPLE) techniques for

hardware Trojan insertion in an IC to facilitate fault-injection attacks. MAPLE

33

 0

 20

 40

 60

 80

 100

 880 885 890 895 900 905 910 915

P
er

ce
n

ta
g

e
o

f
co

m
p

u
ta

ti
o
n

s

Vdd(mV)

Correct - 25°

Correct - 40°

Faulty - 25°

Faulty - 40°

 0

 20

 40

 60

 80

 100

 855 860 865 870 875 880 885 890

P
er

ce
n

ta
g

e
o

f
co

m
p

u
ta

ti
o
n

s

Vdd(mV)

Correct - 25°

Correct - 40°

Faulty - 25°

Faulty - 40°

Figure 3.1. Percentage of correct and faulty computations as a function of Vdd and
temperature in PRINCE (left) and LED-64 (right)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 880 885 890 895 900

P
er

ce
n

ta
g

e
o

f
in

je
ct

ed
 f

a
u

lt
s

Vdd(mV)

25°

35°

40°

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 860 862 864 866 868 870 872 874 876

P
er

ce
n

ta
g

e
o

f
in

je
ct

ed
 f

a
u

lt
s

Vdd(mV)

25°

35°

40°

Figure 3.2. Percentage of injected faults in a single nibble as a function of Vdd and
temperature in PRINCE (left) and LED-64 (right)

Trojans are based on altering a logic gate’s electrical characteristics by modifying

the doping concentration or dopant area within a transistor of the attacked logic

gate. Inspired by dopant-level Trojans [9], MAPLE Trojans do not modify the metal,

polysilicon and active areas and therefore are extremely hard to detect by optical

inspection [9, 33]. However, the major difference of MAPLE Trojans from dopant-

level Trojans is their probabilistic activation: the fault is injected with rather low

probability (which makes it hard to detect by functional testing but is still sufficient

for cryptanalysis) whereas the Trojans from [9] induced deterministic, stuck-at like

behaviour. As MAPLE Trojans are inserted in either manufacturing process or layout

34

levels and involve changes in electrical characteristics, they fall under the category of

parametric Trojans [87].

3.3.1 TrojanConc: Doping Concentration Manipulation

This technique focuses on altering the Vin/T -Vout/T characteristic also known

as Voltage Transfer Characteristic (VTC) of the target logic gate by reduction of

substrate doping concentration in one or more transistors. The doping concentrations

play a vital role in determining the threshold voltage of a transistor (Vth) as identified

by Equation 3.1,

V NMOS
th = 2φb +

√
2εsiqNa2φb

Cox

+ Vfb, (3.1)

where φb is the bulk potential, εsi is the permittivity of silicon, Na is the doping

concentration of the carriers in the substrate, Ni is the intrinsic carrier concentration

of undoped substrate and Cox is the gate oxide capacitance. The bulk potential φb is

given by,

φb =
kT

q
ln
Na

Ni

, (3.2)

where k is the Boltzman’s constant, T is the temperature and q is the electronic

charge. At ambient room temperature (T = 298 K), the value of kT
q

is around 25 mV.

MAPLE Trojans exploit the dependence of threshold voltage on carrier concentra-

tion Na, which is clearly observed in Equation 3.1. By reducing Na, the threshold

voltage Vth of an nMOS transistor is increased. In a pMOS transistor, Vth is reduced

by increasing doping concentration. Therefore, the malicious foundry can create a

Trojan gate, e.g., a Trojan inverter with a manipulated VTC as shown in Fig 3.3 by

changing Na. The MAPLE Trojan shown in Fig 3.3 highlights the change in doping

concentration for only nMOS transistors, even though doping concentrations can be

altered in both the transistors.

35

The VTC of a Trojan inverter along with the VTC of a normal inverter is shown

in Fig 3.5, where the doping concentration was varied by a factor of 10±3. Note that

the transistor becomes stronger and induce a shift in the switching voltage Vm (the

input voltage for which the output voltage of the gate is around 0.5 V) because the

threshold voltages Vth were reduced by doping concentration manipulation based on

Equation 3.1. This type of gate modification is referred to as the MAPLE Trojan

TrojanConc. Due to the modified VTC of the Trojan inverter, there could exist input

voltage points greater than 0.5 V such that the output voltage is still above 0.5 V.

This forces the logic gate driven by the Trojan inverter to observe an input ’1’ rather

than ’0’ and the driven gate’s output will flip unless its side-input is controlling.

Insertion effort

The doping concentration manipulation per se is a regular part of many manu-

facturing processes. Controlling Na is exploited by (trusted and untrusted) foundries

to create transistors with different threshold voltage levels, such as low-Vth, high-Vth,

or ultra high-Vth etc. For this purpose, different exposure time to the carrier beam is

used for different logic gates within the same circuit. This in turn requires a different

mask for each concentration level to be used within the circuit. Inserting a Trojan-

Conc Trojan is equivalent to introducing an additional concentration level, which

however is far outside the regular process specification. As a consequence, the efforts

amount to preparing additional masks and introducing a new process step which

does not exist for Trojan-free circuits. This effort can be considered substantial and

is visible at many levels within the foundry, yet technically the insertion is feasible.

3.3.2 TrojanArea: Dopant Area Manipulation

The transistor’s strength can be altered by manipulating the doped area under the

active area of a transistor. This concept was exploited in [9] for introducing a hidden

side-channel inside an AES implementation. The MAPLE Trojan TrojanArea utilizes

36

p+ implant 	

n+ implant 	

polysilicon	

Oxide layer	

Metal-1	

n-well (original) 	

n-well (Trojan) 	

p-substrate 	

(a)	

 (b)	

VSS	

 VDD	

 VSS	

 VDD	

Figure 3.3. Cross-sectional view of (a) original inverter and (b) Trojan inverter
using doping concentration manipulation

dopant area manipulation to create spots where transient faults are injected into a

circuit. By reducing the dopant area within the active area, a Trojan inverter with

a VTC shown in Fig 3.5 is created. The layouts of the normal and Trojan inverters

are shown in Fig 3.4. The fundamental principle is the VTC drift towards the weak

transistor.

Since process variations are increasingly dominant in sub-45nm design space, the

effect of inserting TrojanArea must exceed the effect of variability. Based on simula-

tions using 45 nm CMOS inverter from the standard cell library with Wp = 540 nm

and Wn = 360 nm, it was estimated that a reduction of 30% in dopant area of the

nMOS transistor pushes the switching threshold Vm by around 0.2 V. The results of a

comparative analysis of this drift with changes due to process variations are shown in

Fig 3.6. For process variation simulations, threshold voltage distribution with 3σ =

150 mV was assumed as in ITRS specifications [1]. Consequently, the vast majority of

transient faults will be induced by the Trojan gates in their specific locations selected

to benefit fault-based cryptanalysis, and not by random variability which manifests

itself everywhere in the circuit.

37

Insertion effort

The dopant-area manipulation can be done both at the layout level (by a malicious

designer in charge of the low-level optimization of the circuit) and by a malicious

foundry. If the manipulation is carried out by the designer and the foundry in charge

of producing the circuit is trusted, it may validate the layout before manufacturing

it. However, the transistors in standard cells are often upsized for lower propagation

delays, and a reduction in strength of one or two transistors making up the circuit

will likely go unnoticed, as long as the design meets the DRC and LVS specifications.

If the circuit layout has no Trojans and the adversary is within the foundry, he

just manually modifies the specification of the mask used to define the manipulated

area. Masks are routinely modified compared with the original layout data for the

sake of optimal proximity correction and other yield-enhancing post-processing steps.

As a consequence, even if a deviation is discovered, it is improbable to raise concerns.

In contrast to TrojanConc which requires major modifications of the whole manufac-

turing process, only small changes in the mask definitions are needed for the insertion

of TrojanArea. Therefore, their insertion effort is considerably lower.

3.3.3 Trojan Activation

In order to activate the Trojans such that transient faults can be injected, the input

voltage has to be close to the switching threshold Vm. This can be done by slightly

reducing the supply voltage Vdd. If the supply voltage is slightly reduced and is noisy

enough, the Trojan inverter will flip its output, when the supply voltage crosses Vm. In

order to ensure that only the Trojan inverter flips its output, Vm of the Trojan inverter

must be pushed far away from the nominal Vm. As the activation of MAPLE Trojans

is based on noisy supply voltage, the switching behaviour is completely probabilistic.

We define the term trigger factor, which denotes the probability of Trojan activation.

To measure the trigger factor, the supply voltage was modeled using a Gaussian

38

n-well	

p-well	

polysilicon	

Diffusion contact	

Metal-1	

P implant	

N implant	

	

Active area	

	

VDD	

 VDD	

VSS	

 VSS	

(a)	

 (b)	

Figure 3.4. Layout of (a) original inverter and (b) Trojan inverter using dopant area
manipulation

 0

 0.5

 1

 0 0.2
 0.4

 0.6
 0.8

 1

V
o

u
t

V
in

∆V
m

No Trojan
TrojanConc
TrojanArea

Figure 3.5. Electrical characteristics of the unmodified and Trojan inverters

distribution with 3σ deviation of ±10% of the mean Vdd, that is typically observed

in power grids. The Trojan inverters (TrojanConc and TrojanArea) were designed

with the VTC’s shown in Fig 3.5 and were analysed under noisy Vdd. The trigger

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2
 0.4

 0.6
 0.8

 1

V
o

u
t

V
in

Maximum bound
Trojan

Nominal VTC
Minimum Bound

Figure 3.6. Impact of process variations on Nominal VTC and the Trojan VTC

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
ri

g
g
er

 f
a
ct

o
r

(%
)

Vdd

TrojanConc
TrojanArea

Figure 3.7. Triggering factor of the Trojan inverters

factor of the Trojan inverters are shown in Fig 3.7. The trigger factor is sufficiently

low (< 10−6) for 10% reduction in Vdd and increases with decreasing Vdd.

The activation of MAPLE Trojans is fundamentally different from Dopant-level

Trojans proposed in [9]. The dopant-level manipulation from [9] manifests itself as

a “stuck-at” fault and based on the manipulated dopant polarities, they can exhibit

40

a stuck-at-0 or stuck-at-1. In contrast, MAPLE Trojans are activated stochastically,

with very low probability determined by the amount of manipulation (dopant-area or

concentration). Such a stochastic nature renders MAPLE Trojans nearly undetectable

while still allowing precise fault injections.

3.3.4 Threat Model

Like other hardware Trojans, MAPLE Trojans are exploited by two adversaries:

the foundry-side attacker who manipulates the manufacturing process and the operation-

time attacker who uses the maliciously manufactured circuits in field. These adver-

saries will usually not be the same persons. The foundry-side attacker could sell the

information about Trojans to a potential attacker, who then can extract the secret

key from the cryptographic circuit. MAPLE Trojans can also be used for introducing

“back-doors” by criminal organizations or authorities.

The complexity of inserting Trojans TrojanConc and TrojanArea by the foundry-

side attacker has already been discussed in the end of the respective Sections 3.3.1

and 3.3.2. Once the Trojan-affected circuit is fabricated, mounting the attack re-

quires minimal effort. The Trojans are activated by reducing Vdd as explained in

Section 3.3.3. Exploitable faults are injected with low probability which depends on

the supply voltage level. Therefore, the attacker must be able to control Vdd of the

circuit and to invoke multiple runs of the same encryption. Both capabilities do not

require sophisticated equipment.

As is usual in cryptanalysis, the considerations in this article assume Kerckhoff’s

principle “the enemy knows the system”: the foundry-side attacker knows the lo-

cation of circuit structures where injected faults are exploitable. This implies that

the foundry can track locations in the layout and mask data to registers and logic

gates of the behavioural and/or gate-level circuit description. If the foundry does not

have this information, reverse-engineering is required to obtain it before performing

41

the manipulation. While the designer may complicate reverse-engineering, he cannot

prevent it if the attacker devotes to it sufficient time and resources.

3.3.5 Countermeasures and Detection

Countermeasures against various types of fault injection have already been sum-

marized in Table 3.1. Light sensors and shielding do not identify MAPLE Trojans

because the circuit is not depackaged. Voltage sensors are ineffective because, as

discussed above, Vdd reduction is limited and cannot be reliable distinguished from

power-supply noise. However, preventing the attacker from setting the desired Vdd

would render the fault-injection efforts very high. Concurrent error-detection is, in

general, effective against injected faults but it does not guarantee detection with cer-

tainty and is rather expensive. Regenerating the secret key with rate that exceeds

trigger factor will effectively thwart the attack, even though the attack will not be

identified. Note, however, that even if the system designer anticipates the possibility

of such attacks and would like to counteract by enforcing frequent key exchange, he

does not know the Trojan trigger factor and cannot select an adequate regeneration

rate.

Since MAPLE Trojans modify the manufactured circuit, they can be, in princi-

ple, detected during post-manufacturing testing. As already has been indicated in

Table 3.2, all known methods for such testing are ineffective against MAPLE Trojans,

as detailed below:

3.3.5.1 Functional testing

When testing under nominal Vdd, MAPLE Trojans have extremely low or even

negligible triggering factor (< 10−7) and hence are not activated and cannot be de-

tected. It is possible to apply the test at reduced voltage [20]. If Vdd is reduced

slightly, MAPLE Trojans can be invoked, but still with a low trigger factor (e. g.,

10−6 for voltage reduction of 10%). Recall that this is adequate for the operation-

42

time attacker who knows about the inserted Trojan and can repeat the encryption

100,000 times or more until the desired fault has been injected. In contrast, the test

engineer does not know with certainty whether a Trojan is present at all, where it

is located, how it is activated, and what triggering factor it has. Repeating all the

tests 100,000 times or more does not appear economically feasible. Moreover, if no

deviation is observed, the Trojan may still be inserted but have a higher triggering

factor than the test engineer anticipated. Finally, a detected fault is transient and

not repeatable and may be easily confused with a failure of the test equipment or an

effect of radiation or electrical noise.

One way to significantly increase the triggering factor is to reduce Vdd by a large

amount (e. g., by 30-40%). However, this will result in timing errors and failures

observed at the circuit outputs which cannot be distinguished from the effect of a

MAPLE Trojan. Under significantly reduced Vdd, the Trojan induced faults are highly

masked by the faults due to timing errors, although the trigger factor of Trojans is

significantly high at such voltage levels.

3.3.5.2 Side-channel analysis

As the manipulated gates have different electrical characteristics, their power con-

sumption profiles will be different from regular gate versions. This implies that they

can be, in principle, detected by power side-channel analysis such as IDDQ testing.

If the manipulated gate is considered in isolation, its measured current-consumption

profile will clearly show the difference to the Trojan-free gate. However, in a real

circuit, the number of manipulated gates is very low. For example, our attack on

PRINCE involves manipulating six inverters out of ∼8,000 gates within the PRINCE

block, which in turn will be embedded in an even larger circuit. The currents drawn

elsewhere on the chip will effectively mask the contribution of the manipulated gates

in presence of process variations.

43

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 2 4 6 8 10 12

i(
V

D
D

)
 A

Time (ns)

Figure 3.8. Supply drawn current for PRINCE

To illustrate the low detectability of MAPLE Trojans by IDDQ testing, the current

drawn from the supply during ten random encryptions by the PRINCE circuit from

Section 3.4.2.2 is shown in Fig 3.8. The peak in the current profile shows the latching

of key and plaintext into registers. The Trojans inserted into PRINCE are activated

between the time duration 8.7 and 8.75 ns. This duration is magnified and shown in

Fig 3.9. From ten encryptions, four different patterns were chosen that corresponds

to the transitions possible for the normal and manipulated inverters (0→1 and 1→0).

The relative difference between the current profiles for the corresponding transitions

is minimal and will likely be masked by IDDQ drawn by other circuit structures.

3.3.5.3 Optical Inspection

The manipulations performed during MAPLE Trojan injection keep all metal,

polysilicon and active-area structures, which are recognizable during optical inspec-

tion, unaltered. The modified structures require high-effort analysis methods which

will are difficult to apply in all suspicious locations of the circuit. As a consequence,

MAPLE Trojans are nearly immune to optical reverse-engineering [33]. A very recent

44

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 8700 8710 8720 8730 8740 8750

i(
V

D
D

)
 A

Time (ps)

Normal(0->1)
Trojan(0->1)

Normal(1->0)
Trojan(1->0)

Figure 3.9. Supply drawn currents for the original and Trojan inverters

work has demonstrated optical detection of Dopant-level Trojans [85]. This technique

can work for TrojanArea, as it is similar to Dopant-level Trojans, albeit at an enor-

mous as demonstrated in [85]. However, TrojanConc will still be immune to optical

detection, as all the structures including dopants remain intact.

3.4 Results

Both fault-injection techniques, the V/T manipulation and the Trojan-assisted

approach, have been applied to recent attacks on two state-of-the-art lightweight

block ciphers: LED-64 (for which one fault-injection is sufficient in most cases) and

PRINCE (for which the attack consists of two stages and both stages typically require

2-3 fault injections). In the following, the algorithms, their circuit implementations

used for fault-injections and the execution of the attack are presented for both ciphers.

The usage of V/T and Trojan-assisted fault injection for executing the attacks and

the results of the cryptanalysis are discussed afterwards.

45

3.4.1 LED-64

3.4.1.1 General Layout

LED-644 [26] bears parallels to the well-known AES block cipher, but has been

optimized for a resource-efficient hardware implementation and the layout is shown

in Fig 3.10. The state S of the cipher consists of 64 bits organized in 4-bit nibbles

s0, . . . , s15, which can be written as a 4 × 4 matrix. Each si is identified with an

element of F16
∼= F2[x]/〈x4 + x+ 1〉.

P

4 rounds 4 rounds 4 rounds

C

k k k k k

AddConstants SubCells ShiftRows MixColumnsSerial

4 cells

4 cells element of F16

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Figure 3.10. Layout of LED-64

The encryption consists in applying 32 rounds to the 64-bit plaintext P . Each

round consists of four operations:

• AddConstants (AC): perform an XOR operation of the state with a round-

specific constant. All constant entries in the two rightmost columns of the

matrix are equal to 0.

• SubCells (SC): apply a non-linear mapping SBox to each nibble of the state: si

is mapped to SBox[si].

4The LED-128 version, which uses two independent 64-bit keys instead of one and has 48 instead
of 32 rounds, is not considered in this article.

46

• ShiftRows (SR): leave the first row of the state matrix untouched and shift the

second, the third and the fourth row by one, two and three positions circularly

to the left.

• MixColumnsSerial (MCS): multiply the state (over F16) by a MDS matrix M .

The constant of the individual rounds, the SBox mapping and the matrix M can be

found in the LED specification [26]. The LED-64 secret key k consists of 64 bits,

which are also organized in 4-bit nibbles and arranged in a 4× 4 matrix. After every

four rounds, the key is XORed with the state. The ciphertext is the circuit state after

round 32 and the last XOR operation with k.

3.4.1.2 Circuit implementation

For fault injection attacks, the LED-64 cipher was implemented in 45nm CMOS

technology using the Nangate open cell library. The cipher produces an output in 32

clock cycles, where each cycle corresponds to one round of encryption. The gate count

detail is presented in Table 3.5. The performance numbers are highly competitive with

the original circuit reported in [26].

3.4.1.3 Fault-based cryptanalysis

The cryptanalysis of LED-64 assumes that a fault has been injected in the be-

ginning of round 30, such that three full rounds and one XOR operation with the

secret key k are performed (Fig 3.11, before the ciphertext is output. The fault must

involve an arbitrary number of bits within one four-bit nibble but not across multiple

nibbles. Recall that such a fault is called exploitable (EX) while faults not satisfying

this condition are not exploitable (NE). For illustration, we will consider faults in

the first nibble s0 but very similar procedures apply for faults in other 15 nibbles

s1, . . . , s15. If the affected nibble is not known, cryptanalysis is repeated up to 16

times assuming different nibbles. The attacker uses the ciphertext C ′ observed at

47

AC

AC

AC

SC

SC

SC

SR

SR

SR

MCS

MCS

MCS AK

round 30

f f f’ f’ 4f’

8f’

Bf’

2f’

round 31

4f’

8f’

Bf’

2f’

4f’

8f’

Bf’

2f’

a

b

c

d

a

b

c

d

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

round 32

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

q0

q4

q8

q12

q1

q5

q9

q13

q2

q6

q10

q14

q3

q7

q11

q15

q0

q5

q10

q15

q1

q6

q11

q12

q2

q7

q8

q13

q3

q4

q9

q14

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

Figure 3.11. Propagation of the injected fault

4a 2d 2c 1b

8a 6d 5c 6b

Ba 9d Ac Eb

2a Bd Fc 2b

= SC−1(SR−1(MCS−1(C ′ ⊕ k)))⊕ SC−1(SR−1(MCS−1(C ⊕ k)))

. . . AC SC SR MCS . . . AC SC SR MCS C

. . . AC SC SR MCS . . . AC SC SR MCS C ′
round 30 round 32fault

(∗)

(∗)

k

Figure 3.12. Equation construction for the attack on LED-64

48

the output of the fault-affected cipher and the fault-free ciphertext C for analysis. C

must be obtained using the same secret key k as C ′, otherwise, if the key has been

exchanged between the observation of C and C ′, the analysis will fail. The plaintext

P may or may not be known to the attacker but is not used for cryptanalysis.

While the states S of the fault-free and S ′ of the fault-affected cipher at the end of

round 29 (before the fault injection) are not known, they must be identical: S⊕S ′ = 0.

If the fault injected in the beginning of round 30 is exploitable, S and S ′ must differ

in the top-left entry by an (unknown) value f , as shown in Fig 3.11. The subsequent

mathematical analysis reasons about the difference S ⊕ S ′ after the fault injection.

Adding identical constants to both S and S ′ (AC) does change S ⊕ S ′. Applying

non-linear SBoxes (SC) to unknown state nibbles will change the difference of nibbles

s0 and s′0 from f to f ′ := SBox[s0] ⊕ SBox[s′0], which depends on specific values of

s0 and s′0, and therefore cannot be predicted. However, all other nibble pairs with

si = s′i remain identical after the application of the SBox to each of them. The SR

operation does not change the first row of the matrix which contains the difference.

The matrix multiplication (MCS) is a linear operation which spreads the difference

f ′ over the leftmost column of the state matrix as shown in Fig 3.11.

Similar reasoning can be applied to round 31: AC does not change the difference;

SC replaces the differences in the leftmost column by unknown values a, b, c and d;

SR moves the differences horizontally and MCS spreads them over the whole matrix.

The AC operation of round 32 does not modify these differences.

The matrix obtained after the AC operation of round 32 is used for construction

of fault equations with the secret key and a, b, c and d as unknown variables. To

construct these equations, we notice that the state of the fault-affected cipher before

the final XOR operation with the secret key k is C ′⊕k. Consequently, the state of the

fault-affected cipher after AC of round 32 is SC−1(SR−1(MCS−1(C ′⊕ k))). Similarly,

the state of the fault-free cipher after AC of round 32 is SC−1(SR−1(MCS−1(C⊕k))).

49

The XOR of these two expressions must equal the state difference matrix calculated in

Fig 3.11. This is illustrated in Fig 3.12. While we are not describing the equations here

in detail, they are used to obtain filtering rules which restrict the set of key candidates

(keyspace) from 264 down to values for which brute-force search is practical. Details

are found in [34].

3.4.1.4 Parametric fault injection

Fault injection

Fault−free execution

C = C’
C’

C

FF yes

no

unsuccessfulNE

EX successful search

Brute−force

secret key

keyspaceRestricted

analyze(C, C’)

Figure 3.13. Overview of attack on LED-64 using fault injection

The theoretical attack framework from [34] assumed that the injected fault is

exploitable. This assumption does not always hold when using parametric fault in-

jections: some fault injection attempts may not result in a faulty output at all (FF),

and some may result in NE faults. Fig 3.13 shows how the attack is performed using

parametric fault injection. After the fault injection, the obtained C ′ is compared

with the fault-free C to identify the FF case. After that, the cryptanalysis procedure

outlined in the last section and called analyze(C,C ′) is attempted. If it is successful,

the restricted keyspace is calculated and brute-force search, i. e., simulation of each

key candidate from the keyspace is performed until one candidate leads to ciphertext

C. Otherwise, the system of fault equations will be inconsistent and have no solution;

the keyspace will be empty. In this case, the fault was NE and the fault injection

must be repeated.

50

If the restricted keyspace is too large for brute-force search, it is possible to use an

additional EX fault to obtain further fault equations, which together with the original

equations define a much smaller keyspace. In our experiments, we use a second EX

fault injection when the restricted keyspace had more than 223 elements after the first

EX injection.

3.4.1.5 V/T fault injection results

Based on the V/T fault injection mechanism explained in Section 3.2, the ex-

ploitable faults were injected into the circuit after the characterization phase, where

Vdd and T intervals for single nibble fault injection are determined. Similar to the

experiment for PRINCE described in Fig 3.2, the intervals for LED-64 were deter-

mined where single-nibble faults were injected. These intervals were 865 – 890 mV for

Vdd and 25 – 40 ◦C for T . The probability of single nibble fault injection decreases

for temperatures higher than 40 ◦C, as the faults start spreading to multiple nibbles.

Based on simulations over 10,000 random datasets (P and k), the percentage of ex-

ploitable faults was estimated to be around 0.4%. The impact of process variations

on the supply voltage interval was also analysed over 40 different instances of LED-

64 circuit. Monte Carlo simulations were performed to obtain different instances of

the circuit. Although offsets in the mean Vdd for single-nibble fault injection were

observed, the Vdd interval was similar for all the instances. The best percentages of

exploitable faults for eight different instances along with the mean Vdd of the supply

voltage interval are shown in Table 3.3. Average statistics are shown in Table 3.5 for

comparison with Trojan-based fault injection and with PRINCE.

3.4.1.6 Trojan fault injection results

In order to inject faults into round 30, as required by the cryptanalysis, the round

constants of that round, implemented by inverters, were targeted for MAPLE Trojan

insertion. The round constant for round 30 is 2E, and the inverters corresponding

51

to E were replaced with Trojan inverters. The average trigger factor of the Trojan

inverters over 40 instances of LED-64 circuit is shown in Fig 3.18. For this analysis,

TrojanArea with 30% reduction in dopant area was used. Note that the trigger

factor is proportional to ∆Vm and TrojanConc with similar ∆Vm can be synthesized.

Reducing Vdd increases the trigger factor but not necessarily the percentage of EX

faults. This percentage will decrease beyond a certain Vdd, as timing induced faults

start to dominate the influence of Trojans, as shown in Fig 3.19. The best-case

percentages of EX faults for Trojan induced fault injection are shown in Table 3.5.

Table 3.3. Best-case V/T Fault Injection percentages for eight random instances of
LED-64

Instance

1 2 3 4 5 6 7 8

Vdd 0.872 0.87 0.874 0.87 0.868 0.874 0.876 0.87

T 40 40 40 40 40 40 40 40

FF 82.44 82.45 82.32 82.6 82.52 82.36 82.73 82.82

EX 0.36 0.35 0.38 0.4 0.38 0.34 0.37 0.38

NE 17.2 17.2 17.3 17 17.1 17.3 16.9 16.8

3.4.1.7 Cryptanalysis results

To validate our methods, we generated a data set of 50, 000 instances, each consist-

ing of 25 tuples (P,C,C ′), with P , C and C ′ denoting plaintext, fault-free ciphertext

and fault-affected ciphertext, respectively. All tuples of a particular instance were

encrypted with the same key. The faulty ciphertexts C ′ were obtained through the

fault injection methods introduced earlier. We applied our cryptanalysis method from

Section 3.4.1.3 on the above tuples. We used the threshold τ = 223 for the following

optimization. If the keyspace restricted after one EX fault injection was smaller than

τ , we applied brute-force search directly. Otherwise, we injected a second fault to

further restrict the keyspace. Note that increasing τ would reduce the number of

required fault injections but increase the run-time of the analysis procedure.

52

For each of the 50, 000 instances we were able to successfully reconstruct the secret

key using an average of 1.62 tuples (out of 25 available). This corresponds to the

need for 1.62 EX fault injections on average. The combined time required to run the

analysis on the pairs (C,C ′) of a particular instance, followed by an exhaustive search

over the reduced key space was 10.21 seconds on average. The sizes of the keyspaces

after one and two fault injections were 223.34 and 22.27 on average. Fig 3.14 shows the

distribution of keyspace sizes after 1 and 2 fault injections, respectively. Note that

the largest size was approximately 229, which is still easy to manage with a bruteforce

search on modern hardware, and thus would allow to execute the attack with a single

fault injection. However, as already mentioned above, the overall run-time for the

analysis of one instance would be a lot higher than 10.21 seconds, unless advanced

tricks like parallelization are used, and the analysis of 50, 000 instances would have

required a lot more time. This was the main reason why we chose a threshold of

τ = 223, and traded a little increase in the amount of fault injections for a highly

reduced run-time.

0 5 10 15 20 25 30 35

log2 (#keys)

0

2000

4000

6000

8000

10000

ra
te

1 Fault
2 Faults

Figure 3.14. LED-64 analysis results

53

3.4.2 PRINCE

3.4.2.1 General Layout

PRINCE [13] is a 64-bit block cipher with a 128-bit secret key. As in LED, the

64-bit cipher state is organized in 4-bit nibbles. Before an encryption (or decryption)

is executed, the secret key K = k0 ‖ k1 is extended to 192 bit k0 ‖ k1 ‖ k2 with

k2 = (k0 ≫ 1)⊕ (k0 � 63). The subkeys k0 and k2 are used for input- and output-

whitening. The key k1 is solely used in the core of PRINCE, which is a 12-round

block cipher. Fig 3.15 gives an overview.

P

k0 k1

RC0

R1

k1

RC1

. . . R5

k1

RC5

S M’ S-1 R-1
6

k1

RC6

. . . R-1
10

k1

RC10RC11

k1 k2

C

MS

RCi k1

M-1 S-1

RCjk1

Figure 3.15. Layout of PRINCE

Each round Ri and R−1
i+5 with i ∈ {1, . . . , 5} consists of a key addition (XOR with

k1), an S-layer (application of a 4-bit non-linear SBox to each nibble of the state), a

linear layer (multiplication of the state represented by a 64-bit row vector by a 64×64

matrix M , and the addition (XOR) of a round constant RCj, with j ∈ {0, . . . , 11}.

Rounds Ri and R−1
i+5 are separated by a middle layer, which consists of two S-layers,

where SBoxes S and S−1 are applied, interleaved with the multiplication of a matrix

M ′. The particular operations can be found in the specification of PRINCE [13].

However, we quote the round constants in Table 3.4 because their values are important

for Trojan-assisted fault injection.

54

Table 3.4. The PRINCE round constants

i RCi i RCi

0 0000000000000000 1 13198a2e03707344

2 a4093822299f31d0 3 082efa98ec4e6c89

4 452821e638d01377 5 be5466cf34e90c6c

6 7ef84f78fd955cb1 7 85840851f1ac43aa

8 c882d32f25323c54 9 64a51195e0e3610d

10 d3b5a399ca0c2399 11 c0ac29b7c97c50dd

3.4.2.2 Circuit implementation

Similar to LED-64, the PRINCE cipher was implemented using Nangate open

cell library (45 nm). We implemented both combinational and sequential versions of

PRINCE, as the fault injection statistics depend highly on the type of implementa-

tion. The combinational version produces a ciphertext in one clock cycle, whereas

the sequential version produces a ciphertext in 10 clock cycles. However, the clock

frequency of sequential version is substantially higher than the combinatorial version.

The area numbers for the implementations can be found in Table 3.5.

3.4.2.3 Fault-based cryptanalysis

The attack on PRINCE [35] is done in two stages, where each stage is conceptually

similar to the attack on LED from Section 3.4.1.3. We omit the mathematical details

of the attack and only briefly sketch the properties that are relevant for fault injection.

Again, C denotes the fault-free and C ′ the fault-affected ciphertext observed by the

attacker. In stage 0, the faults are injected into round 9 and the constructed fault

equations are used to restrict the number of candidates for the expression (k1⊕k2). In

general, the restriction yielded by one fault injection is insufficient and multiple EX

fault injections are required. Similar to LED, a fault injection is EX if it only affects

one 4-bit nibble of the cipher state in round 9. We employ an adaptive approach:

define a threshold τ0 and continue injecting faults until the size of the restricted

keyspace for (k1 ⊕ k2) falls below τ0.

55

(k
1

k
2
) (k

1
k
2
)

(k
1

k
2
) (k

1
k
2
)(k

1
k
2
)

(round 9)

Fault injection 1

FF, NE
C’

(round 9)

Fault injection 2
no

C’
FF, NE

EX

2 key27

for

candidates

2 < 2 ?
27 12

2 < 2 ?
12

EX

for

8

82 key candidates

yes

(round 8)

untried

for
1k

2 < 2 ?

un
su

cc
es

sf
ul

no

yes

2 key cand.

(round 8)

untried

for
1k

16
2 < 2 ?

un
su

cc
es

sf
ul

no

yes

Fault injection 3

(round 8)

untried

for
1k

30

1630
2 < 2 ?

un
su

cc
es

sf
ul

no

yes

2 key cand.

Fault injection 4 Fault injection 5

18

1618

9
2 key cand.

9

Brute−force search

st
ag

e
0

st
ag

e
1

analyze(C, C’)analyze(C, C’)

analyze* analyze* analyze*

Figure 3.16. Overview of attack on PRINCE using 2 EX fault injections in stage 0
and 3 EX injections in stage 1 with τ0 = 212 and τ1 = 216.

In stage 1 of the attack, the faults are injected into round 8 and the objective is

to restrict the number of candidates for k1. Assuming that the fault was EX (again,

this means only one 4-bit nibble of the state was involved), the following procedure

is applied. For each (k1 ⊕ k2) candidate from the keyspace calculated in stage 0, the

states of the fault-affected and the fault-free ciphers after round R−1
10 are calculated

as C ′⊕ (k1⊕k2)⊕RC11 and C⊕ (k1⊕k2)⊕RC11, respectively. These values are used

instead of C ′ and C for the same cryptanalysis as in stage 0. Since only one (k1⊕ k2)

candidate from stage 0 is correct, the cryptanalysis in stage 1 has to be repeated up

to τ0 times before a keyspace restriction is obtained. Like in stage 0, the achieved

restriction may not allow brute-force search. For this reason, another threshold τ1 is

defined and fault injection are repeated until the number of candidates for k1 is less

than τ1. Once the keyspace has been restricted, the complete key is reconstructed

from k1 and (k1 ⊕ k2) for each candidate and a brute-force search is applied.

56

3.4.2.4 Parametric fault injection

Like in LED analysis, not all injected faults are exploitable; some (in practice,

the majority) of fault injections result in FF and NE outcomes. Fig 3.16 shows how

one particular two-stage attack scenario is conducted. In stage 0, faults are injected

in round 9 until one of them is EX (the calculation of the fault-free ciphertext C

and its comparison with C ′ are omitted from the figure). Assume that the resulting

keyspace has 227 candidates for (k1⊕k2), which exceeds the stage-0 threshold τ0 = 212;

consequently, a second fault injection is required. It is repeated until cryptanalysis

analyze(C,C ′) is successful. Assume that the improved restriction is 28, which is

below τ0; then, stage 0 is finished. Note that it used two EX faults but possibly many

more fault-injection attempts which resulted in FF and NE faults.

Stage 1 starts with fault injection in round 8. In order to check whether the

fault was exploitable, the cryptanalysis has to deliver a consistent system of fault

equations. This in turn necessitates trying (k1⊕ k2) candidates from stage 0 in order

to invoke analyze(C⊕(k1⊕k2)⊕RC11, C
′⊕(k1⊕k2)⊕RC11). If none of 28 candidates

for (k1 ⊕ k2) leads to a consistent cryptanalysis, the fault must have been NE and

the fault injection must be repeated. Assume that the first successful cryptanalysis

yielded 230 > τ2 candidates for k1. The same procedure is repeated for the fourth

fault injection (second in stage 1) in order to further restrict the keyspace. Assume

that 218 candidates are obtained, which is still above τ1. The fifth EX fault injection

is then needed, which results in 29 candidates. Since this value is now below the

threshold, they can be simulated. Note that (k1 ⊕ k2) is known at this point.

3.4.2.5 V/T fault injection results

The supply voltage and temperature intervals for single nibble fault injection in

PRINCE are shown in Fig 3.2. Like in LED-64, the fault injection statistics were

observed over 40 instances of PRINCE circuit. The percentage of exploitable faults

57

over the voltage and temperature intervals are shown in Table 3.5. The percentage

of exploitable faults in sequential version of PRINCE is almost 10× higher than the

combinatorial version. This is because of the fact that the sequential version has

a time reference for fault injection (8th and 9th clock cycles) as required by the

cryptanalysis framework, whereas the combinational version does not have a time

reference. As in LED-64, we report the best-case percentages of exploitable faults in

Table 3.5.

3.4.2.6 Trojan fault injection results

The MAPLE Trojans were inserted into the round constants in the rounds 8 and

9, which are depicted in Table 3.4. Both of these rounds include a nibble of value d,

which has been picked for Trojan manipulation because it is implemented using three

inverters and thus maximizes the probability of a fault. TrojanArea insertion into

this nibble is shown in Fig 3.17. Three inverters, shown in black, are manipulated by

changing the dopant area, whereas all other inverters remain regular. If any of these

three inverters, any pair of these inverters or all three inverters flip, the resulting fault

is confined to one nibble and therefore exploitable.

Note that the faults in round 9 are used for stage 0 of the cryptanalysis. For

stage 1 of the cryptanalysis, faults must be injected into round 8. In the sequential

version of the circuit, the three inverters are manipulated and the fault injection is

controlled by reducing Vdd during cycle 9 (for stage 0 of the attack) or cycle 8 (for

stage 1 of the attack) while nominal voltage is applied during other cycles. In the

combinational version, three inverters from round 9 and another three inverters from

round 8 are manipulated. Unfortunately (from the attacker’s point of view) this gives

raise to simultaneous excitation of faults in rounds 8 and 9. These faults violate the

assumptions of the cryptanalysis procedure and are not exploitable.

58

RC8 M−1 S−1

k1 c882d32f25323c54

. . .

. . .

nibble 6

nibble 5

nibble 5

nibble 4

T

T

T

regular

Trojans

Figure 3.17. Schematics of PRINCE MAPLE Trojans

The average trigger factor of the Trojans inserted into 40 instances of PRINCE

is shown in Fig 3.18. The trigger factor of the Trojans in PRINCE is lower than in

LED-64, as the Trojans inserted into rounds 8 and 9 are vulnerable to simultaneous

triggering and result in NE faults. Such triggering actions were discarded from crypt-

analysis. As in LED-64, the trigger factor does not directly correspond to exploitable

faults and the percentage of EX starts decreasing beyond a certain Vdd. The behavior

is shown in Fig 3.19 and the best case percentages for EX is shown in Table 3.5.

3.4.2.7 Cryptanalysis results

In this part we report on the experimental results of the differential fault analysis

of PRINCE. We analysed 10, 000 instances, each consisting of a data set of 50 triples

(C,C ′, C ′′) where C denotes the correct and C ′ and C ′′ the faulty ciphertexts of stage

0 and 1, respectively. The ciphertexts were generated from plaintexts and keys chosen

uniformly at random, but the key remained fixed for each set of 50 triples. Table 3.6

summarizes the results of the attack and shows that on average between 4 and 5

faults are necessary to successfully reconstruct the 128-bit key.

59

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
ri

g
g
er

 f
a
ct

o
r

(%
)

Vdd

PRINCE Combinat.
PRINCE Sequential

LED-64

Figure 3.18. Trigger factor of the Trojan inverters inserted into LED-64 and
PRINCE

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.7 0.75 0.8 0.85 0.9 0.95 1

E
F

 (
%

)

Vdd

PRINCE Combinat.
PRINCE Sequential

LED-64

Figure 3.19. Percentage of Trojan induced exploitable faults in LED-64 and
PRINCE

We set the thresholds for the multi-stage fault attack to rather low values: 212 for

stage 0 and 216 for stage 1. In general, higher thresholds lead to less required fault

injections but increase the complexity of subsequent post-processing. In our case,

fault injections using Trojans or V/T manipulation are relatively easy to perform;

therefore we opted for lower values and observed approximately one more required

60

Table 3.5. Summary of Fault-injection Attacks

Algorithm LED-64 PRINCE

C
ir

cu
it

Type Sequential Combinational Sequential

Gate Equivalent 2256 8,320 8,540

Clock frequency 100MHz 150 MHz 1.7 GHz

Cycles/encryption 32 1 10

Exploitable faults Single nibble, Single nibble,

round 30 round 8/9

F
a
u

lt
eff

ec
t

d
is

tr
ib

.

V
/
T

Fault-free 82.6% 49.8% 84.8%

Exploitable 0.4% 0.03% 0.2%

Not exploitable 17.0% 50.17% 15.0%

T
ro

ja
n Fault-free 72.86% 31.0% 73.9%

Exploitable 9.6% 0.2% 1.1%

Not exploitable 17.54% 68.8% 25.0%

Table 3.6. Overview on the number of required faults

Stage Min Max Avg Median

0 2 3 2.06 2.0

1 2 11 2.84 3.0

fault on average, compared to [35]. The run time of the cryptanalysis was around 13

seconds.

0 5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

1200

1400

ra
te

1 Fault
2 Faults

0 5 10 15 20 25 30 35 40 45

log2 (#keys)

0

200

400

600

800

1000

1200

1400

ra
te

1 Fault
2 Faults

Figure 3.20. PRINCE analysis results for stages 0 (upper) and 1 (lower)

61

We also analysed the distributions of the number of remaining keys after one and

two fault injections and compared them to the theoretical results. The distributions

are shown in Fig 3.20. The upper graph shows the results for stage 0 and the lower

graph for stage 1. The x-axis denotes the base-2 logarithms of the number of key

candidates and the y-axis shows the (rounded) rate how often a particular number

of key candidates occurred. There are cases where much more faults (up to 11) are

required, but 2 faults were the minimum for every instance. As every exploitable

fault requires a reasonable number (104 − 106) of fault injections, a complete attack

using 4 – 5 exploitable faults is feasible.

62

CHAPTER 4

MODELING ATTACKS ON PHYSICALLY
UNCLONABLE FUNCTIONS

In the previous chapter, we presented techniques for precise fault-injections into

cryptographic blocks for extracting secret keys from the faulty ciphertexts using dif-

ferential cryptanalysis. One of the major concerns surrounding cryptographic blocks

is that the key is digitally stored and processed within the chip. Apart from fault

injection attacks, the secret key can also be extracted by employing side-channel

attacks. For example, by exploiting the data-dependent power information or elec-

tromagnetic radiation emanating from the device under attack, the secret key can

be extracted. Moreover, the digital secrets are often stored in a non-volatile mem-

ory and they can be extremely expensive for resource constrained platforms such as

RFID, FPGA etc. [86]. These constraints have served as one of the main motivations

towards the development of Physically Unclonable Functions (PUFs), which offer an

inexpensive way to generate unique signatures in runtime. Although initially assumed

to be tolerant to various attacks, recent works have suggested otherwise.

Numerous attacks on PUFs have been reported in the literature. Most of the

attacks are specific to the PUF architecture being targeted, while some of them are

generic. Some of the popular attacks include modeling, side-channel, fault attacks,etc.

Among this group, the most prominent one is the modeling attack with the help of

a Machine Learning (ML) algorithm. ML attacks are more specific to strong PUFs,

as the weak PUFs have very few CRPs and hence the CRPs won’t be available for

external access. The collection of various modeling attacks on some of the popular

63

implementations of strong PUFs can be found in [78, 79]. Attacks on generalized

Arbiter, Feed-Forward, XOR Arbiter PUF constructions were first reported in [78].

Recently, attacks on PUFs using unreliable response bits have been demonstrated

[17,18]. The attacks use the inherent instability in PUF responses due to device noise

in [18] and the instabilities arising from voltage and temperature fluctuations in [17].

A similar work on breaking controlled Arbiter PUFs using fault- and power-side chan-

nels was reported in [8]. As the output of the Arbiter PUF is not directly available in

controlled Arbiter PUFs (outputs are hashed), statistical methods employing corre-

lation were used in [8]. Rührmair et al. have proposed a combined machine learning

and side-channel attack for XOR Arbiter PUFs in [59].

In this chapter, we explore the vulnerabilities of some of the popular “strong” PUF

architectures. In particular, the delay-based PUF designs are chosen as the target, as

they are extremely popular because of their simplistic implementation complexities.

Majority of the delay-based PUF designs can be implemented using simple logic

gates and are ideal for integration into modern day embedded systems. For analyzing

the vulnerabilities, the attacks are performed over the data collected from post-silicon

measurements of the test chip sugarloaf using the methodology described in chapter 7.

The vulnerabilities of delay-based PUFs are analyzed using simple or standalone

machine learning algorithms (ML) using stable CRPs. However, the performance of

standalone ML algorithms degrade under the presence of error-inflicted CRPs in the

training set. To that extent, we propose a technique that exploits the unreliable or

unstable CRPs in the training set and extracts some data-dependent information in

the form of side-channels. The side-channel information is used in conjunction with

a machine learning algorithm in order to improve the prediction accuracies of ML

attacks. As the side-channel information is used along with a ML algorithm, they

are also referred to as hybrid attacks further in the document. First, we describe

64

the architectures of the PUF targets followed by a brief description of the employed

machine learning algorithms.

4.1 PUF Targets

As explained above, the delay-based PUFs were chosen as the attack target.

Two popular delay-based PUF constructions, namely arbiter and feed-forward ar-

biter PUFs were analyzed for their vulnerabilities to standalone and hybrid attacks.

The delay-based PUFs exploit the impact of process variations on the propagation

delays of logic gates to generate unique signatures. The architectures of arbiter and

feed-forward arbiter PUFs are explained in the next subsections.

4.1.1 Arbiter PUFs

The concept of arbiter PUFs was introduced in [51, 52, 86]. An arbiter PUF

architecture is shown in Figure 4.1. Arbiter PUFs are based on delay variations in

logic gates arising from process manufacturing variations in integrated circuits. The

general idea is to trigger a race condition in two identically laid out paths and decide

the winner among the paths using an arbiter. From an implementation point of view,

the identical paths are built using switches or multiplexers, that accept an external

challenge bit (Ci). The challenge bit decides whether the switch passes the input

to output or switches it, as shown in Figure 4.1(a). The switches/multiplexers are

connected in series to form a digital delay path. A switch/MUX implementation in

terms of logic gates is shown in Figure 4.1(b). When a signal (say a rising pulse) is

applied to the delay path, the signal undergoes different delays through every switch.

At the end of the delay paths, the arbiter decides which of the paths is faster based on

the instantaneous arrival times of the racing signals. If we denote the delay difference

between the arrival time of racing signals at outputs (A & B) and the input trigger

time as TA and TB respectively, then the response computation is given by equation

65

4.1. A common practice is to use a set-reset (SR) latch as an arbiter by connecting

one of the racing paths to set and the other path to reset. It is important to note

that the number of CRP pairs is exponential to the number of challenge bits. So,

arbiter PUFs fall under the category of strong PUFs.

C1=0 C2=1 Cn-1=0 Cn=1

Arbiter

A

B

TA

TB

0/1

(a)

topi

boti

topi+1

boti+1

Ci Cib

Ci

Ci

Cib

Cib

(b)

Figure 4.1. (a)Arbiter PUF architecture with n stages; (b) NAND gate based
implementation of a single MUX/switch stage. The path of propagation of two signals
topi and boti is determined by the challenge bit Ci. If Ci = 1, then topi+1 = topi and
boti+1 = boti. Else, topi+1 = boti and boti+1 = topi.

r =


0 if TA > TB

1 else

(4.1)

To increase the sensitivity of arbiter PUFs to process variations, it is better to use

minimum sized transistors in the delay stage circuits. However, the arbiter should be

66

designed using up-sized transistors to tolerate process variations. The arbiter should

fairly evaluate the response based on the delay difference between the racing signals

(which can be positive or negative) and must not introduce any bias. To evaluate the

fairness in response computation, arbiters built using D-type flip-flop and SR NAND

latch were compared. D-type flip-flop arbiter in 45nm technology node has a setup

time of around 20-35 ps, that introduces a bias in response computation. However, SR

NAND latch arbiter has a bias of less than 3 ps because of its cross-coupled structure

and it enables fair arbitration. The comparison results are shown in Figure 4.2.

4.1.2 Feed-Forward Arbiter PUFs

As the arbiter PUFs were shown to be vulnerable to modeling attacks because

of its linear challenge-response behavior, non-linear PUF structures have been pro-

posed in order to improve the PUF’s resilience [51]. One such architecture is the

feed-forward PUF. A feed-forward arbiter PUF exploits delay variations in CMOS

gates and interconnects to extract unique signatures like an arbiter PUF [51]. How-

ever, some of the challenge bits in a feed-forward PUF are determined as a result

of racing conditions at intermediate stages with the help of arbiters. The construc-

tion of a feed-forward arbiter PUF is shown in Figure 4.3. The intermediate arbiters

a1..am generates the additional challenge bits apart from the user specified challenge

C1..Cn. The challenge bits C1..Cn decide the path of propagation through the delay

paths whose gate-level implementation is shown in Figure 4.1(b). The path of signal

propagation is determined in the same as in an arbiter PUF. The rising pulse applied

at the input undergoes different delays as it gets propagated through the delay paths

and the total delay difference (∆tn = TA − TB) generated is sampled at the output

with the help of an arbiter to generate the response bit r. The condition for response

generation is similar to an arbiter PUF as demonstrated in equation 4.1.

67

A A
b

B

A

A
b

A
b

A
r

r
b

(a)

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

fr
e
q

u
e
n

c
y
 c

o
u

n
t

∆(t) ps

one

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

fr
e
q

u
e
n

c
y
 c

o
u

n
t

zero

(b)

B

A

r

r
b r

r
b

(c)

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

fr
eq

u
en

cy
 c

o
u

n
t

∆(t) ps

one

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

fr
eq

u
en

cy
 c

o
u

n
t

zero

(d)

Figure 4.2. Fairness evaluation of arbiters based on bias point for choosing 0/1
output. The bias point is given by ∆(t) = TA − TB (a) A simple D-Type flip-flop
arbiter; (b) Plot showing the bias point of d-type flip-flop arbiter for choosing 0/1
around 30 ps; (c) A simple SR-NAND latch arbiter; (d) Plot showing the bias point
of SR NAND arbiter for choosing 0/1 approximately at 0 ps

4.2 PUF Target’s Performance Analysis

It is important to analyze the performance metrics of the PUF circuits before

mounting an attack, as they play a vital role in determining the optimal prediction

accuracies. For example, if the prediction accuracy obtained from a modeling attack is

below the reliability of a PUF circuit, the attack is deemed unsuccessful. So, the per-

68

a1 am	

Arbiter

CnCn-1

r

TA

TB

Figure 4.3. Feed-forward arbiter PUF

Table 4.1. Summary of arbiter PUF’s performance metrics from statistical circuit
simulations and post-silicon measurements

Type of

analysis
Stages

PUF

instances

Inter-class

HD

Intra-class

HD
Uniformity

Bit aliasing

HD

Statistical

circuit

simulations

64

200

0.47 0.05 0.48 0.48

80 0.475 0.048 0.49 0.48

128 0.47 0.05 0.485 0.475

Post-silicon

measurements

64

200

0.39 0.058 0.41 0.42

80 0.38 0.059 0.43 0.41

128 0.375 0.059 0.43 0.42

formance metrics of arbiter and feed-forward arbiter PUFs were analyzed as per the

framework described in chapter 2. The performance metrics were obtained through

statistical circuit simulations and cross-validated with post-silicon measurements. For

all the analysis, 64, 80 and 128 stage PUF circuits were used.

For performing statistical circuit simulations, HSPICE was used. Different PUF

instances were obtained through Monte carlo simulations as per the methodology

shown in Figure 4.6. For better accuracies, the netlist of the PUF circuit was ob-

tained using the parasitic extractor tool available in Calibre suite. Threshold voltage

variations were assigned from a Gaussian distribution with 3σ deviation of 90mV (for

32nm technology). The performance metrics, namely uniqueness, reliability, unifor-

mity and bit aliasing probability of the circuit were analyzed from circuit simulations

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

dinter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
ro
b
a
b
il
it
y

dintra

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

Uniformity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
il

it
y

Bit alias HD

Figure 4.4. Arbiter PUF’s performance metrics distribution from statistical circuit
simulations

using the IBM 32nm SOI models and the results are shown in Figure 4.4. Around

100,000 CRPs were collected from 200 PUF instances for analyzing uniqueness, uni-

formity and bit aliasing probability. To compute reliability, the experiments were

conducted at nominal and extreme operating conditions as described in chapter 2.

The results are tabulated in Table 4.1. It can be observed that the arbiter PUF

circuit shows excellent properties upon statistical circuit simulations and the values

obtained were close to ideal values. Similar methodology was adopted to compute

the performance metrics from post-silicon measurements and the results are shown

in Figure 4.5. Around 200 PUF instances were analyzed over 100,000 CRPs for post-

silicon validation. The post-silicon validation results agree well with statistical circuit

simulation results and can be clearly seen from Table 4.1.

Similar analyses were carried out for feed-forward arbiter PUFs. However, there

are different configurations possible to implement feed-forward PUFs. Some of the

variable design parameters include the number of feed-forward loops, number of

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

dinter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
ro
b
a
b
il
it
y

dintra

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

Uniformity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
il

it
y

Bit alias HD

Figure 4.5. Arbiter PUF’s performance metrics distribution from post-silicon mea-
surements

stages/loop, dependency between loops, etc. Assuming the loops are symmetric,

if the external challenge is k bits wide and the number of loops is l, then the total

number of delay stages is k+ l and the number of stages/loop is k/l. As the variable

design parameters impact the performance of a PUF, they were analyzed through

statistical circuit simulations and post-silicon measurements. The feed-forward PUF

was implemented in such a way that the number of loops and number of stages/loop

can be altered using the configuration bits. The different configurations were analyzed

for the different performance metrics, as per the framework described in chapter 2.

Around 100,000 CRPs were collected from 200 different PUF instances for the analy-

ses. For measuring the PUF’s reliability, the experiments were conducted at nominal

and extreme operating conditions and the number of bit-flips were observed. The

results are shown in Figures 4.7 and 4.8 and also tabulated in Table 4.2. It can

be observed that the design strategy has a significantly higher impact on reliability

than uniqueness. As expected, reliability decreases with the number of loops. So, it

71

Table 4.2. Summary of Feed-forward arbiter PUF’s performance metrics from sta-
tistical circuit simulations and post-silicon measurements

Type of

analysis

Bits in

challenge (k)

Loops

(l)

PUF

instances

Inter-class

HD

Intra-class

HD
Uniformity

Bit aliasing

HD

Statistical

circuit

simulations

64 6

200

0.48 0.05 0.48 0.49

7 0.485 0.052 0.485 0.48

8 0.47 0.055 0.47 0.485

80 6 0.485 0.055 0.49 0.49

7 0.48 0.0575 0.48 0.475

8 0.47 0.059 0.49 0.48

128 6 0.475 0.052 0.48 0.47

7 0.48 0.056 0.47 0.48

8 0.48 0.06 0.49 0.49

Post-silicon

measurements

64 6

200

0.42 0.074 0.42 0.41

7 0.425 0.076 0.41 0.415

8 0.415 0.08 0.415 0.42

80 6 0.41 0.077 0.42 0.42

7 0.42 0.079 0.42 0.415

8 0.415 0.0881 0.425 0.42

128 6 0.43 0.076 0.43 0.42

7 0.425 0.079 0.435 0.43

8 0.415 0.0882 0.42 0.425

is highly necessary to choose the number of loops and number of stages/loop such

that an optimal design is achieved in terms of reliability and unpredictability. For the

PUF circuits being considered in this work (64, 80 and 128 stage PUFs), the number

of loops was set to 8 (l = 8).

4.3 Employed Modeling Attacks

We investigated the vulnerability of the PUF circuits to three attacks namely,

Logistic Regression (LR), Support Vector Machines (SVM) and Evolution Strategies

(ES). Although each one of them performed well, we describe the SVM and ES

attacks for the sake of brevity. Unless mentioned otherwise, all the experiments were

conducted on a 32-node cluster of Intel Xeon processors.

72

PUF circuit
specification

Layout and
netlist extraction

Statistical circuit
simulation

Process
variations

Random
challenges

Uniqueness Reliability Uniformity Bit aliasing
probability Unpredictability

Figure 4.6. Methodology for analyzing the performance metrics of PUF circuits

4.3.1 Support Vector Machines

SVMs are well investigated learning algorithms for data classification preferably

in binary form. Linear or Non-linear separating surfaces can be used for data classi-

fication depending on the input-output relationship. Some of the popular non-linear

kernels include high-order polynomials, radial-basis functions, etc.

As majority of the PUF circuits have linear challenge-response relationship, we

describe the linear SVMs. The main objective of a linear SVM is to find the hyperplane

that helps to classify the datasets into a binary set as shown in Figure 4.9 [27]. The

hyperplane H is given by

The hyperplane H is given by

w.x− b = ±1

where w is the normal vector to hyperplane H and b
||w|| is the offset of the hyper-

plane from the origin along w.

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

dinter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
ro
b
a
b
il
it
y

dintra

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

Uniformity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
il

it
y

Bit alias HD

Figure 4.7. Feed-forward arbiter PUF’s performance metrics distribution from sta-
tistical circuit simulations

The classification and prediction accuracy increases as the distance between the

planes increases. The distance between the planes also impact the amount of mis-

predictions. Theoretically, the maximum distance between the hyperplanes for best

classification accuracy is given by 2
||w|| [27]. One of the other factors impacting the

mispredictions is the non-linearity at the boundaries, that arise from the PUF cir-

cuits. Minimizing ||w|| is not trivial and it is a constrained optimization problem

better solved by Lagrangian multipliers [64]. For this purpose, we use the linear

kernel of Lagrangian SVMs to find the best hyperplanes [65].

4.3.2 Evolution Strategies

Evolution Strategies are algorithms that are used for black-box optimization prob-

lems and are generally successful for PUF attacks [8,78]. They are based on creating

random models in several iterations also known as generations from a parent. The

sample models are also known as off-springs. Only the off-springs that are deemed

74

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

dinter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
ro
b
a
b
il
it
y

dintra

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

Uniformity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
il

it
y

Bit alias HD

Figure 4.8. Feed-forward arbiter PUF’s performance metrics distribution from post-
silicon measurements

to be fit based on some fitness tests are selected and are used as parents for the next

generation. The process is repeated until the convergence point (usually set by the

user) is reached. The prediction accuracies for PUF attacks increase with the number

of generations. The major advantage of ES is that it is completely randomized and

can be parameterized [78]. ES also helps better to tackle the non-linearity from device

leakage currents because of parametric nature. For example, if a weak PUF model

is deemed to be fit in a generation, the convergence point will degrade in the next

generation and can be discarded.

For our experiments based on ES, we set (µ, λ) = (6,36) and the mutation param-

eter τ = 1√
n

as in [78]. However, we evaluated the performance of attacks with and

without recombination. The performance improvement with recombination (ρ < 6)

was very marginal with respect to the attack without recombination. So, we report

the attack results without recombination in this chapter.

75

Figure 4.9. Data classification in Support Vector Machines

4.4 Modeling Delay-based PUFs

As described earlier in this chapter, the delay-based PUF designs are vulnerable to

modeling attacks. We base our attack as per the framework described by Daihyun Lim

in [51]. An arbiter PUF’s challenge-response relationship can be expressed through

an additive delay model. The top and bottom paths of an arbiter PUF shown in

Figure 4.1(a) can be expressed as the sum of delays of individual stages. A direct

measurement of stage delays is extremely difficult. However, they can be estimated

with the help of a machine learning algorithm by observing a subset of CRPs. Each

stage of an arbiter PUF can be expressed through two delay difference parameters as

shown in Figure 4.10, that encode the four individual delay paths of a stage shown in

Figure 4.11. The notations of individual delay components are consistent with [51].

Now, the delay parameter for Ci=1 in terms of individual delay components is shown

in the following equations.

76

Δti	

 -Δti +δti
0	

Ci = 0	

(a)

Δti	

 Δti +δti
1	

Ci = 1	

(b)

Figure 4.10. Delay difference parameters for (a) Ci = 0 and (b) Ci = 1

Ci 	

pi	

ri	

si	

qi	

δtopi 	

δboti 	

Figure 4.11. Individual delay components of a single stage of an arbiter PUF

δtop(i) = pi + δtop(i− 1), δbot(i) = qi + δbot(i− 1) (4.2)

∆ti = δbot(i)− δtop(i)

= (qi − pi) + (δbot(i− 1)− δtop(i− 1))

= δt1i + ∆ti−1 (4.3)

Similarly, the delay difference parameter for Ci=0 can be expressed.

δtop(i) = si + δbot(i− 1), δbot(i) = ri + δtop(i− 1) (4.4)

77

∆ti = δbot(i)− δtop(i)

= (ri − si) + (δtop(i− 1)− δbot(i− 1))

= δt0i −∆ti−1 (4.5)

In equations 4.3 and 4.5, δti refers to the delay difference introduced by the unit

stage. The delay difference parameter indicates that the delay differences (δti) are all

that are needed to model the PUF rather than the absolute delay values (pi, qi, ri, si).

The total delay difference at the input of the arbiter denoted by ∆tn is given by

equation 4.6.

∆tn = p0∆t0 +
n∑

i=1

piδti (4.6)

In equation 4.6, (p0, p1...pn) represents the parity vector computed using equa-

tion 4.7 with pn=1.

pi =
n∏

j=i+1

Cj (4.7)

For computing the parity vector, the challenge bits are mapped from (0,1) to

(-1,1). The CRP relationship can be expressed as follows:

∆tn ≶ 0 (4.8)

The above described model serves as the basis for the modeling attacks. The

results from modeling attacks are presented in the next subsection.

4.5 Modeling Attack Results for Delay-based PUFs

We evaluated the delay-based PUF targets implemented in 32nm SOI for the

various ML attacks described in section 4.3. Different lengths of the PUF circuit (64,

80 and 128 stages) were analyzed in the attacks. The experiments under nominal

78

conditions were repeated 5 times and the stable CRPs across the iterations were

separated and used for the attacks.

SVM based attacks were performed over 20 different PUF instances implemented

in the test chip, For SVM based attacks, we trained the classifier with a random

set of CRPs collected from the global set of CRPs (3 Million). The challenges were

mapped from (0,1) to (-1,1) as in [51] and the parity vector was constructed as

described in section 4.3 A subset of CRPs were picked in random for training the

classifier and the rest were used to evaluating the performance of the classifier. The

prediction errors as a function of the size of training CRPs for different lengths of

arbiter and feed-forward arbiter PUFs are shown in Figures 4.12 and 4.13. We can

observe that SVM based predictor can reach an accuracy of 99% when trained with

10000 CRPs approximately for arbiter PUFs. As SVMs are not ideal for non-linear

data classification, the maximum prediction accuracy reached for feed-forward arbiter

PUFs is around 85%. Better prediction accuracies for feed-forward arbiter PUFs were

achieved with evolution strategies, as described in the following paragraphs.

We adopted a similar strategy as in SVM attacks for the ES attacks by picking

a random set of CRPs from the global pool. In the evaluation phase, the random

offsprings (count of 6) obtained from each parent were evaluated for strength based

on the number of correct response bits predicted by the model. The best-fit offspring

from the evaluation phase (the offspring with maximum response prediction rate for

the training CRP space) was then used as a parent for the next generation and the

others were discarded. The process was repeated across many generations until the

prediction accuracy got saturated. The prediction errors as a function of the number

of training CRPs are shown in Figures 4.14 and 4.15. From Figure 4.14, we can

observe that ES attacks yield a prediction accuracy of 99% for a CRP size of 7000

approximately for arbiter PUFs. In case of feed-forward arbiter PUFs, prediction

accuracies of around 98% were achieved with around 75,000 CRPs. The results of

79

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 10 100 1000 10000

P
r
e
d

ic
ti

o
n

 e
r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 4.12. Prediction errors from SVM attacks on 64, 80 and 128 stage arbiter
PUFs

 0.125

 0.25

 0.5

 1

 100 1000 10000 100000

P
r
e
d

ic
ti

o
n

 e
r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 4.13. Prediction errors from SVM attacks on 64, 80 and 128 stage feed-
forward arbiter PUFs

modeling attacks on arbiter and feed-forward arbiter PUFs are summarized in Ta-

bles 4.3 and 4.4, respectively. Similar to SVM based attacks, only stable CRPs were

80

used in the attacks. However, in real time data collection, it is highly likely that some

of the CRPs are unstable. The impacts of error-inflicted CRPs on the prediction rates

for arbiter and feed-forward arbiter PUFs are demonstrated in the next subsection.

Table 4.3. Summary of modeling attacks on arbiter PUFs using silicon data

Type of PUF ML algorithm # Stages # Loops
Training

CRPs
Prediction

accuracy (%)
Attack
time

Arbiter PUF
in 32nm tech.

SVM
64

-

10,000
98.8 1.2s

80 98.5 1.2s
128 98.2 1.2s

ES
64

7,000
98.9 4.5s

80 98.7 4.5s
128 98.4 4.5s

4.5.1 Impact of Error-inflicted CRPs

The error-inflicted CRPs in the training set degrade the prediction accuracies

achieved by modeling attack algorithms. The bit-flips happen when the polarity of the

delay difference sampled by the arbiter is reversed. The bit-flips impact the training

and prediction accuracies of the modeling algorithm. The bit-flips can happen due to

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 100 1000 10000

P
r
e
d

ic
ti

o
n

 e
r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 4.14. Prediction errors from ES attacks on 64, 80 and 128 stage arbiter PUFs

81

Table 4.4. Summary of modeling attacks on Feed-forward arbiter PUFs using silicon
data

Type of PUF ML algorithm # Stages # Loops
Training

CRPs
Prediction

accuracy (%)
Attack
time

Feed-forward PUF
in 32nm tech.

SVM
64

8

70,000
84.5 7:20min

80 85.2 7:20min
128 85.8 7:20min

ES
64

100,000
99.1 55:20min

80 98.8 1:20hrs
128 98.4 2:45hrs

internal and external noise sources. The internal noise often includes the substrate

and thermal noise and are intrinsic to the ICs. On the other hand, the external noise

includes the voltage and temperature fluctuations from the surrounding environment

to the test setup. The amount of bit-flips from internal and external noise sources

in delay-based PUF circuits are tabulated in Table 4.5. For observing the impact

of internal noise, the measurements were conducted at optimal conditions (0.9V and

25◦ C) for 5 times and the amount of bit-flips for the same challenges were collected.

We can observe that around 2.6% of the 3 Million CRPs are unreliable and have

 0.01

 0.1

 1

 100 1000 10000 100000

P
r
e
d

ic
ti

o
n

 e
r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 4.15. Prediction errors from ES attacks on 64, 80 and 128 stage feed-forward
arbiter PUFs

82

higher chance to get flipped under the same measurement conditions. For observing

the impact of external noise, the measurements were conducted at extreme operating

conditions (1.1V and 75◦ C) and the bit-flips were collected. From table 4.5, we can

observe that around 5.8% of the total responses from arbiter PUFs are susceptible to

fluctuations in voltage and temperature conditions. In case of feed-forward arbiter

PUFs, around 8.2% of the CRPs were unstable. The amount of bit-flips are shown

for feed-forward PUF constructions with l = 8.

Table 4.5. Summary of the bit-flips measurements for delay-based PUF designs in
32nm technology

Type of PUF # Stages Measurement
Measured

CRPs
Unreliable

CRPs
% Bit-flips

Arbiter PUF

64
Intrinsic

3*10ˆ6

78,300 2.61
80 78,500 2.62
128 79,120 2.63
64

Extrinsic
175,200 5.85

80 178,100 5.93
128 179,200 5.97

Feed-forward
Arbiter PUF

64
Intrinsic

81,200 2.7
80 81,650 2.72
128 80,800 2.69
64

Extrinsic
263,900 8.8

80 264,200 8.81
128 264,500 8.82

The impact of the error-inflicted CRPs on the prediction accuracies for SVM and

ES based attacks for arbiter PUFs are shown in Figures 4.16 and 4.17, respectively.

Evolution strategies were able to handle the error-inflicted CRPs better than SVM,

because of their parametric nature as observed from Fig 4.17. The degradation in

prediction accuracy for 6% error-inflicted CRPs is around 4% for ES and around 11%

for SVM. The impact of the error-inflicted CRPs on SVM and ES attacks for arbiter

PUFs are summarized in Table 4.6.

Similar to arbiter PUFs, the impact of the error-inflicted CRPs on prediction rates

for feed-forward arbiter PUFs were analyzed. The results are shown in Figures 4.18

and 4.19. Although ES based attacks are highly tolerant to errors in CRPs, there is

83

a slight drop in prediction accuracy (around 3%). In case of SVM based attacks, the

drop in prediction accuracy is around 13%.As the error-inflicted CRPs have a reversed

polarity in delay difference, the learning phase of the modeling attack is impacted.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5 6 7

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 4.16. Impact of the error-inflicted CRPs on the prediction rates of SVM
attacks for arbiter PUFs

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1 2 3 4 5 6 7

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 4.17. Impact of the error-inflicted CRPs on the prediction rates of ES attacks
for arbiter PUFs

84

Table 4.6. Summary of the impacts of error-inflicted CRPs on prediction rates for
arbiter PUFs

Type of
PUF

ML algorithm # Stages % Error-inflicted CRPs

0 2 4 6

Arbiter PUF

SVM
64 98.8 95.1 92.2 89
80 98.5 94.8 91.7 87.5
128 98.2 93.7 91.2 86

ES
64 98.9 97.2 95.3 94.5
80 98.7 96.8 95 94.2
128 98.4 96.5 94.5 93.9

However, not all the CRPs suffer from polarity reversal. Only the challenges for

which the delay difference is lower than a threshold are susceptible. This threshold

delay difference can leak some information and can be used along with the training

set CRPs to improve the prediction accuracies. The details are described in the next

section.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 4.18. Impact of the error-inflicted CRPs on the prediction rates of SVM
attacks for Feed-forward arbiter PUFs

85

Table 4.7. Summary of the impacts of error-inflicted CRPs on prediction rates for
Feed-forward arbiter PUFs

Type of
PUF

ML algorithm # Stages # Loops % Error-inflicted CRPs

0 2 4 6

Feed-forward
arbiter PUF

SVM
64

8

84.5 81.2 77.5 73.1
80 85.2 78.1 73.4 70.4
128 85.8 77.4 72.3 69.2

ES
64 99.6 97.1 96.6 95.8
80 98.8 96.5 95.9 95.6
128 98.4 96.4 95.7 95.5

4.6 Hybrid attacks on delay-based PUFs

As described earlier, the unreliable or unstable CRPs can leak some information in

order to improve the prediction accuracies of standalone modeling attacks. In case of

delay-based PUF designs, the vulnerable delay-difference data is used to improve the

accuracy of PUF models and also filter out the weak PUF models. Evolution strategies

based attacks work better with the fault-injection data because of its parametric

nature. As ES based attacks performed better with vulnerable delay-difference data

than SVM, the hybrid attacks are based on ES framework.

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 1 2 3 4 5 6 7

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 4.19. Impact of the error-inflicted CRPs on the prediction rates of ES attacks
for Feed-forward arbiter PUFs

86

4.6.1 Scope of Fault Injection

Among the techniques to inject faults, voltage and temperature manipulation

(V/T) is one of the most popular techniques. Altering the environmental conditions

will make the circuit to deviate from the nominal operating conditions, thereby caus-

ing a malfunction. As explained in the previous sections, PUF circuits suffer from

both intrinsic and extrinsic noises. The delay-based PUFs when operated at extreme

operating conditions (1.1V and 75◦ C) produce more unreliable CRPs than the un-

reliable CRPs induced by intrinsic noise. Although this is detrimental to the PUF’s

operation, some data dependent information can be extracted. One such information

is the amount of delay-difference that is sensitive to V/T variations.

To estimate the amount of threshold delay-difference (∆tmin), Monte carlo simu-

lations were performed over the arbiter and feed-forward arbiter PUF circuits using

the 32nm SOI transistor models. Threshold voltage variations were assigned from

a Gaussian distribution with 3σ deviation of 90mV. Around 1 Million CRPs along

with the corresponding delay-difference (∆tn) values were collected from spice simu-

lations. For injecting faults, experiments were conducted by changing the operating

conditions (0.8 to 1V in steps of 0.05V and 25 to 75◦ C in steps of 25◦ C) and the

above mentioned data were collected. The error-prone response bits under different

operating conditions when compared to the nominal conditions (0.9V and 25◦ C) were

mapped to the corresponding delay-difference values. The CRPs for which the delay-

difference was close to 0s were highly vulnerable to changes in operating conditions

and the behavior can be clearly observed from Figures 4.20 and 4.21. The Figures 4.20

and 4.21 show the error-free and error-prone CRPs for arbiter and feed-forward ar-

biter PUFs respectively. As similar characteristics were observed for different PUF

sizes, the distributions for 128 stage PUF circuits are shown. It can be observed that

the error-prone CRPs have ∆tn around 5ps and 6ps for arbiter and feed-forward ar-

87

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
0

500

1000

1500

Delay difference (ps)

N
o.

 O
cc

ur
re

nc
es

Stable CRPs
Unreliable CRPs

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Figure 4.20. Delay-difference distributions of error-free and error-inflicted CRPs
from arbiter PUFs

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
0

500

1000

1500

Delay difference (ps)

N
o.

 O
cc

ur
re

nc
es

Stable CRPs
Unreliable CRPs

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Figure 4.21. Delay-difference distributions of error-free and error-inflicted CRPs
from feed-forward arbiter PUFs

biter PUFs respectively. These values (5ps and 6ps) were taken as ∆tmin for arbiter

and feed-forward arbiter PUFs.

In delay-based PUF designs, not all the error-prone CRPs are caused by fluctuat-

ing operating conditions. Some of the error-prone CRPs are caused by irregularities

in the arbiter itself. So, the error-prone CRPs with ∆tn < ∆tmin induced by the

impact of operating conditions on delay stages were seperated. The plot showing the

amount of flipped bits with ∆tn < ∆tmin observed under different operating condi-

tions for arbiter and feed-forward arbiter PUFs are shown in Figures 4.22 and 4.23,

respectively. It can be observed that the error-prone CRPs satisfying ∆tmin condition

are slightly lower than intra-class HD shown in Table 4.5. The amount of instable

88

25
50

75 0
1
2
3
4
5
6

0.8 0.85 0.9 0.95 1

%
 B

it
fli

ps

Voltage (V)

Figure 4.22. Amount of bit-flips with ∆tn < ∆tmin for arbiter PUFs

CRPs can be increased further by considering the CRPs with delay-difference higher

than ∆tmin by altering the operating conditions even further (> 1.1V). However, we

set the limits to around 10% of nominal Vdd, as they correspond to the typical power

supply noise observed in an IC. Moreover, some of the security ICs may be equipped

with on-chip voltage detector to avoid over- and under-powering attacks. From the

analysis shown above, it is clear that if a response bit flips, then it is most likely to

have a delay-difference less than ∆tmin. This information is used as a catalyst for

aiding modeling attacks.

4.6.2 Fault-injection assisted ES attacks

In hybrid attacks, the ES algorithm with the same parameters described in sec-

tion 4.3 was used. But, the threshold ∆tmin data was used to filter out the bad PUF

models. In a simple ES attack, the filtering process is done based on the number of

correct response bits predicted by the model. However, in hybrid attacks, the filter-

ing process is done based on the number of correct response bits and the extent to

which the PUF model adheres to the threshold model. This is done by evaluating the

correlation coefficient between a hypothesis vector and the golden model constructed

89

25
50

75 0

2

4

6

8

10

0.8 0.85 0.9 0.95 1

%
 B

it
fli

ps

Voltage (V)

Figure 4.23. Amount of bit-flips with ∆tn < ∆tmin for feed-forward arbiter PUFs

from the observed CRPs. The hypothesis vector (FH) is obtained from the ES model

by evaluating the delay differences (∆tH) for the training CRPs, especially for the

error-prone ones. It is given by,

FH =


1, if|∆tH | < ∆tmin

0, if|∆tH | > ∆tmin

(4.9)

The same process is repeated to obtain the golden vector F over the measured

CRPs from the test chip. If the response bit ri got flipped under extreme conditions,

then Fi is assigned to 1, else Fi is assigned to 0. By evaluating the correlation-

coefficient between F and FH , the strength of the hypothesis vector is obtained.

The models which yield the best fit in terms of the number of correct response bits

predicted and correlation co-efficient are passed onto the next generation. Better

models were obtained by increasing the number of unstable CRPs in the training set

as shown in Figure 4.24.

Hybrid attack experiments were performed over 20 PUF instances from the test

chip. The attacks were performed using 100 sets of random CRPs picked from the

global pool (3 million) and the results were averaged. In the training set, around 7% of

90

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 1000 10000

C
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

No. of error-prone CRPs

Figure 4.24. Impact of the number of error-inflicted CRPs on the strength of PUF
models

the CRPs were error-inflicted which were obtained from fault-injection attacks. The

performance of hybrid attacks over arbiter and feed-forward arbiter PUFs are shown

in Figure 4.25 and 4.26 respectively. The best-case prediction accuracy achieved from

hybrid attacks is over 99% for the delay-based PUF designs. This represents a 4%

improvement in performance over the simple ES attack with error-inflicted CRPs for

arbiter and feed-forward arbiter PUFs. The major advantage with hybrid attacks is

that better prediction accuracies are achieved with almost the same number of CRPs

as in simple ES attacks. The best-case prediction accuracies from hybrid attacks

along with attack time overheads are shown in Table 4.8.

Some of the major results from modeling and hybrid attacks are summarized in

Table 4.9. In this chapter, the vulnerabilities of delay-based PUFs to modeling attacks

were clearly demonstrated. The impacts of error-inflicted CRPs on prediction rates

of machine learning algorithms were also presented. To that extent, we presented a

technique to exploit error-prone CRPs for improving the prediction accuracies of ma-

chine learning attacks under the presence of error-inflicted CRPs.The vulnerabilities

91

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 4.25. Performance of hybrid attacks on arbiter PUFs under the presence of
6% error-inflicted CRPs

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000 1e+06

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 4.26. Performance of hybrid attacks on feed-forward arbiter PUFs under the
presence of 7% error-inflicted CRPs

of existing delay-based PUF circuits impose a strong pressing need on the design of

new secure PUF architectures. To that end, we propose a secure PUF architecture

92

Table 4.8. Summary of hybrid attack’s performance on arbiter and feed-forward
arbiter PUFs using silicon data

Type of PUF # Stages # Loops
Training

CRPs
Prediction

accuracy (%)
Attack
time

Arbiter PUF
64

- 9,000
99.5 7.5s

80 99.25 7.5s
128 99 7.5s

Feed-forward
Arbiter PUF

64
8 100,000

99.4 65:10min
80 98.9 1:30hrs
128 98.8 3:10hrs

that is tolerant to modeling attacks. The PUF architecture along with post-silicon

validation results are presented in the next chapter.

93

T
a
b

le
4
.9

.
S
u
m

m
ar

y
of

so
m

e
m

a
jo

r
re

su
lt

s
fr

om
m

o
d
el

in
g

an
d

h
y
b
ri

d
at

ta
ck

s
on

d
el

ay
-b

as
ed

P
U

F
s

T
y
p

e
o
f

P
U

F
T

y
p

e
o
f

a
tt

a
ck

#
L

o
o
p

s
#

T
ra

in
in

g
C

R
P

s
P

re
d

ic
ti

o
n

a
cc

u
ra

cy
(%

)

A
rb

it
er

P
U

F

S
V

M
-

10
,0

00
98

.2
E

S
w

it
h

st
ab

le
C

R
P

s
7,

00
0

98
.4

E
S

w
it

h
6%

er
ro

r-
in

fl
ic

te
d

C
R

P
s

7,
00

0
93

.9

H
y
b

ri
d

9,
00

0
99

F
ee

d
-f

or
w

ar
d

A
rb

it
er

P
U

F

S
V

M
70

,0
00

85
.8

E
S

w
it

h
st

ab
le

C
R

P
s

8

10
0,

00
0

98
.5

E
S

w
it

h
7%

er
ro

r-
in

fl
ic

te
d

C
R

P
s

10
0,

00
0

95
.5

H
y
b

ri
d

10
0,

00
0

98
.8

94

CHAPTER 5

MODELING ATTACK RESISTANT PUF DESIGN BASED
ON NON-LINEAR ELEMENTS

In the previous chapter, the vulnerabilities of delay-based PUFs to modeling and

hybrid attacks were presented. Since PUF based systems offer tremedous potential

to replace traditional cryptography, they should be designed in such a way that they

are resistant to well-known attacks. To that extent, we propose a novel modeling

attack resistant PUF architecture based on non-linear computing elements 1. As the

proposed PUF is based on current mirrors, the performance of the proposed PUF is

compared against a popular current-based PUF architecture. So, we take a closer look

at the vulnerabilities posed by current-based PUFs [61] using the data from sugarloaf

2. Modeling and hybrid attacks are used to evaluate the security of current-based

PUF circuit.

Motivated by the vulnerabilities of existing current-based PUF circuits, we pro-

pose a secure PUF based on non-linear current mirrors, which is termed as “nlcPUF”

further in the document. A current mirror is a basic block in analog circuits, whose

function is to copy the input current in the read-node to its output node. The amount

of copied current is highly dependent on the amount of device mismatch, if minimum

sized transistors are used. The basic principle in nlcPUF design is to use a non-

linear current mirror, that shifts the input current by some amount depending on

the strength of the input current. A non-linear current mirror can be designed by

1This work was published in [44]

2This work using simulated data was published in [43]

95

utilizing a constant current source along with a simple current mirror, in order to

introduce a threshold to the input current. The nlcPUF architecture consists of two

identical non-linear current mirror chains connected at the input to a common current

source. The currents through the unit blocks are then propagated through a current

switching element, which accepts an external challenge bit. The construction is simi-

lar to an arbiter PUF architecture. However, in an arbiter PUF, the amount of delay

introduced by a stage remains fixed for a challenge bit. In nlcPUF construction, the

amount of current introduced by a stage is dependent on the input current, which is

due to the non-linearity in the current mirror’s transfer characteristic. Post-silicon

validation of nlcPUF using 32nm CMOS SOI shows that the PUF has excellent sta-

tistical properties in terms of inter- and intra-die distances. One of the most striking

features is the low information leakage demonstrated in terms of its modeling attack

resistance. The attacks mounted on nlcPUF using SVM and ES show a significant

increase in attack resistance almost 50x higher than other strong PUF architectures.

The same holds good for hybrid attacks as well, where the error-inflicted CRPs are

exploited for improving the prediction accuracy. Before describing the architecture

and performance evaluation of nlcPUFs, we present the vulnerabilities of a popular

current-based PUF architecture against which nlcPUFs are compared.

5.1 Current-based PUFs

In this section, we provide an overview of Current-based PUFs. Current-based

PUFs were first introduced by Majzoobi et al. in 2012 [61]. The architecture of

Current-based PUF is shown in Fig 5.1. Current-based PUFs are based on the addi-

tion of process variation sensitive currents. As shown in Fig 5.1, the process variation

sensitive currents are generated by the current generation (CG) transistors. The tran-

sistors are of minimum size in order to maximize the impact of process variations. The

gate voltage of the CG transistors are controlled by a bias voltage Vg. The external

96

challenge decides the set of currents to be selected and combined through the select

and combine transistors (SC). A CG transistor together with the SC transistors serve

as the building block of the PUF circuit as highlighted in Fig 5.1. When the challenge

bits controlling the SC transistors of a unit stage (Ca[i], Cb[i]) are at logic high, the

generated current is split in half when the transistors are matched. However, under

the presence of process variations, the current split ratio deviates from 0.5. If only

one of the challenge bits of a unit stage are at logic high, then the generated current

directly flows through the SC whose gate voltage is at logic high. Finally, if none

of the challenge bits of a unit stage are at logic high, only device leakage currents

flow through the SC transistors. If we assume the current split ratio between the SC

transistors of a unit stage as αi, βi and the leakage current as I[i]L and ’don’t care’

as X, the currents flowing through the SC transistors can be expressed in terms of

the following equation.

Ia[i] =



I[i], if Ca[i] = 1 and Cb[i] = 0;

αiI[i], if Ca[i] = 1 and Cb[i] = 1;

I[i]L, if Ca[i] = 1 and Cb[i] = X;

(5.1)

Ib[i] =



I[i], if Ca[i] = 0 and Cb[i] = 1;

βiI[i], if Ca[i] = 1 and Cb[i] = 1;

I[i]L, if Ca[i] = X and Cb[i] = 0;

(5.2)

The currents from all the stages are then combined and the total currents are

denoted as Ia and Ib as shown in Fig 5.1. These currents are then compared using

a sense amplifier to generate a single response bit output. The trigger signal trig is

asserted low before the challenges are spplied such that the output nodes output and

outputb are precharged to Vdd. Once the trigger signal is asserted high, the challenges

97

C
a
[1] C

b
[1] C

a
[2] C

b
[2]C

a
[3] C

b
[3] C

a
[n] C

b
[n]

Select-and-

combine

Current-

generation
Vgate

Sense

Amplifier

Trigger

Output Outputb

Ia Ib

Figure 5.1. Current-based PUF architecture [61]. Ca[i] and Cb[i] represents the
challenge bits of a single stage. The inputs to the sense amplifier are the currents Ia
and Ib. outputb refers to the complimentary form of the output bit.

are appled and the currents start flowing through the sense amplifier. Based on the

relative strengths of the currents Ia and Ib, one of the nodes starts discharging faster

and establishes a positive feedback to settle the metastability.

The current-based PUFs were evaluated against the modeling attacks presented

in section 4.3. The parametric model for current-based PUFs are presented in the

next section.

5.2 Attacks on Existing Current-based PUFs

In this section, we present the attack model and results obtained for the Current-

based PUFs described in section 5.1. The CRPs were collected from the 32 nm test

chip as discussed in chapter 7.

98

5.2.1 Attack Model

The Current-based PUF shown in Figure 5.1 is based on the linear combination

of process-sensitive currents, where the combining function is decided by an external

challenge C = [(Ca[1], Cb[1]), (Ca[2], Cb[2]),, (Ca[N], Cb[N])], where N represents

the length of the Current-based PUF. So, for a N stage PUF, the challenge is 2N

bits wide. Moreover, the challenges are chosen such that the number of ones in the

left and right input challenges are equal. If not, the responses become biased because

of the fact that the number of currents that are combined are not balanced and the

response can be predicted before the current difference is sampled. This is achieved

if the following condition is met:

N∑
i=1

Ca[i] =
N∑
i=1

Cb[i]. (5.3)

Every unit stage of the Current-based PUF can be represented using four param-

eters, as shown in Figure 5.2. The parameters are nothing but the difference of the

currents flowing through the SC transistors of a unit stage. Based on the attacks,

we observed that the parameter where both the challenge bits of a unit stage are ’0’

(∆I[i]{0,0}) does not impact the prediction accuracy very much. This is mainly due

to the fact that whenever both the challenge bits are ’0’, only device leakage currents

flow through the SC transistors and hence the difference becomes highly negligible.

Similar to attacks on arbiter PUFs as described in [51], it is necessary to express

the current difference (∆I[i]) as a function of the challenge bits and the total current

generated by the CG transistor. Please note that the sign of the current difference

(+ or −) is all that is required to break the PUF rather than the absolute value.

It is highly difficult to measure the amount of current split and the device leakage

current through physical measurements. However, they can be learned through ML

algorithms by collecting a subset of CRPs.

99

I
a
[i] I

b
[i]

I[i]

1 1

ΔI[i]
{1,1}

1 0

ΔI[i]
{1,0}

I
a
[i] I

b
[i] = I[i]

L

I[i]

I
a
[i] = I[i]

L
I

b
[i]

ΔI[i]
{0,1}

ΔI[i]
{0,0}

I
a
[i] = I[i]

L
I

b
[i] = I[i]

L

0 1 0 0

I[i] I[i]

Figure 5.2. Current difference modeling parameters for Current-based PUFs

Before expressing the current difference of a unit stage formally, let us fix the

notations. The current difference for a unit stage is denoted by ∆I[i]{C
a[i],Cb[i]},

where Ca[i], Cb[i] are the gate inputs of the SC transistors (challenge bits). The

device leakage current flowing through the SC transistor whose gate input is at logic

low is denoted as I[i]L. Let αi, βi represent the current split ratio of a unit stage such

that αi + βi = 1. The formal expressions for the current difference parameters are as

follows:

100

∆I[i] = Ia[i]− Ib[i]

∆I[i]{1,1} = (αiC
a[i]− βiCb[i])I[i]

∆I[i]{0,1}||{1,0} = (I[i]− I[i]L)(Ca[i]− Cb[i])+

I[i]L(−Ca[i] + Cb[i])

= (I[i]− 2I[i]L)(Ca[i]− Cb[i])

∆I[i]{0,0} ≈ 0

In the equations, the corresponding challenge bits can be substituted to get the

current difference. For example ∆I[i] = (αi−βi)I[i] when Ca[i], Cb[i] = {1, 1}. Given

the current difference parameters of the unit stage, it is possible to express the total

current difference (∆I = Ia − Ib) as follows:

∆I =
N∑
i=1

∆I[i]{C
a[i],Cb[i]} (5.4)

So, the CRP relationship of the Current-based PUF can be expressed as,

∆I ≶ 0. (5.5)

To be more precise, the response computation is given by

r =


1 if ∆I > 0

0 else.

(5.6)

The above described model is used in the ML attacks and the results are demon-

strated in the following subsection.

5.2.2 Attack Results

We evaluated the Current-based PUF implemented in 32nm SOI for the various

ML attacks described in section 4.3. Different lengths of the PUF circuit (64, 80 and

128 stages) were analyzed in the attacks. The experiments under nominal conditions

101

 0.01

 0.1

 1

 10 100 1000 10000 100000

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 5.3. Prediction errors from SVM attacks for 64, 80 and 128 stage Current-
based PUFs

were repeated 5 times and the stable CRPs across the iterations were separated and

used for the attacks.

For SVM based attacks, we trained the classifier with a random set of CRPs

collected from the global set of CRPs (3 Million). The challenges were mapped from

(0,1) to (-1,1) as in [51] and used as a feature vector in SVM attacks. The prediction

errors as a function of the size of training CRPs for different lengths of Current-based

PUFs are shown in Fig 5.3. We can observe that SVM based predictor can reach an

accuracy of 98% when trained with 20,000 CRPs approximately.

We adopted a similar strategy for the ES attacks by picking a random set of

CRPs from the global pool. In the evaluation phase, the random offsprings (count of

6) obtained from each parent were evaluated for their strength based on the number

of correct response bits predicted by the model. The best-fit offspring from evaluation

phase was then used as a parent for the next generation and the others were discarded.

The process was repeated across many generations until the prediction accuracy got

saturated. The prediction errors as a function of the number of training CRPs are

102

 0.01

 0.1

 1

 100 1000 10000 100000

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 5.4. Prediction errors from ES attacks for 64, 80 and 128 stage Current-based
PUFs

shown in Figure 5.4. The results are shown for a generation count of 100. For

some chips, optimal prediction rates (∼99%) were obtained for a lower generation

count and the maximum generation count obtained from 20 chips was around 95.

So, a generation count of 100 was used for ES attacks. From Figure 5.4, we can

observe that ES attacks yield a prediction accuracy of 98% for a CRP size of 70,000

approximately. Similar to SVM attacks, only the stable responses observed over 5

different measurements under the nominal conditions were used for the attack.

The results from SVM and ES based attacks are tabulated and shown in Table 5.1.

The different attack parameters and the attack time overheads are also tabulated.

As mentioned in the paragraphs above, the attacks employed only stable responses.

However, if unreliable responses are used in attacks, the prediction accuracies degrade.

The impacts of error-inflicted CRPs on modeling attacks for Current-based PUFs are

demonstrated in the next section.

103

Table 5.1. Standalone ML attack results on current-based PUFs using stable CRPs
from 32nm test chip

ML
algorithm

Stages # CRPs
Training

CRPs
Prediction

accuracy (%)

SVM
64

3*106 100,000
98.8

80 98.4
128 98

ES
64

3*106 80,000
98

80 97.7
128 97.3

5.2.3 Impact of Error-inflicted CRPs

The error-inflicted CRPs in the training set degrades the prediction accuracies

achieved by modeling attack algorithms. The bit-flips happen when the polarity of the

current difference sampled by the sense amplifier is reversed. So, the bit-flips impact

the training and prediction accuracy of the modeling algorithm. As explained in the

previous chapter, the bit-flips can happen due to internal and external noise sources.

The amount of bit-flips from internal and external noise sources in the Current-based

PUF circuits are tabulated in Table 5.2. For observing the impact of internal noise,

the measurements were conducted at optimal conditions (0.9V and 25◦ C) for 5 times

and the amount of bit-flips for the same challenges were collected. We can observe

that around 2% of the 3 Million CRPs are unreliable and have higher chance to get

flipped under the same measurement conditions. For observing the impact of external

noise, the measurements were conducted at extreme operating conditions (1.1V and

75◦ C) and the bit-flips were collected. From table 5.2, we can observe that around

7% of the total responses are susceptible to fluctuations in voltage and temperature

conditions.

The impact of the error-inflicted CRPs on the prediction accuracies for SVM

and ES based attacks are shown in Figures 5.5 and 5.6, respectively. Evolution

strategies were able to handle the error-inflicted CRPs better than SVM, because

104

Table 5.2. Bit flip measurements from 32nm Current-based PUFs. Intrinsic bit
flips were observed from repeated measurements under optimal conditions, whereas
extrinsic bit flips were observed by changing the operating conditions.

Measurement
Measured

CRPs
Unreliable

responses
% Bit-flips

Intrinsic
3*106 59,550 1.98

Extrinsic 210,010 7

of their parametric nature as observed from Fig 5.6. The degradation in prediction

accuracy for a 6% error-inflicted CRPs is around 7% for ES and around 11% for

SVM. The impact of the error-inflicted CRPs on SVM and ES attacks are tabulated

in Table 5.3. As the error-inflicted CRPs have a reversed polarity in current difference

when compared to the original response, the learning phase of the modeling attack

is impacted. However, not all the CRPs suffer from the polarity reversal. Only the

challenges for which the current difference is lower than a threshold are susceptible.

This threshold current difference can leak some information and can be used along

with the training set CRPs to improve the prediction accuracies. The details are

described in the next subsection.

Table 5.3. Impact of error-inflicted CRPs on ML prediction rates for current-based
PUFs

ML
algorithm

Stages
% Error-inflicted CRPs
0 2 5 7

SVM
64 98.8 95.8 93.3 90.7
80 98.4 95.3 92.8 90.1
128 98 94.6 91.9 89.1

ES
64 98 96.3 94.1 92.8
80 97.7 96 93.8 92.6
128 98.3 95.6 93.5 92.4

105

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 1 2 3 4 5 6 7

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 5.5. Performance of SVM attacks on Current-based PUFs with error-inflicted
CRPs

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1 2 3 4 5 6 7

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 5.6. Performance of ES attacks on Current-based PUFs with error-inflicted
CRPs

5.2.4 Hybrid attacks on Current-based PUFs

Similar to delay-based PUFs, the current-based PUFs were analyzed for their vul-

nerabilities to fault-assisted ES attacks, also termed as hybrid attacks. The Current-

106

based PUFs when operated at extreme operating conditions (1.1V and 75◦ C) produce

more unreliable CRPs. Although this is detrimental to the PUF’s operation, some

data dependent information can be extracted. One such information is the amount

of current difference that is sensitive to V/T variations.

To estimate the amount of threshold current difference, Monte carlo simulations

were performed over the Current-based PUF circuit using the 32nm SOI transistor

models. Threshold voltage variations were assigned from a Gaussian distribution with

3σ deviation of 90mV. Around 1 Million CRPs along with the corresponding current

difference values were collected from spice simulations. For injecting faults, exper-

iments were conducted by changing the operating conditions (0.8 to 1V in steps of

0.05V and 25 to 75◦ C in steps of 25◦ C) and the above mentioned data were collected.

The error-prone response bits that flipped under different operating conditions when

compared to the nominal conditions (0.9V and 25◦ C) were mapped to the correspond-

ing current-difference values. The CRPs for which the current-difference was close

to 0A were highly vulnerable to changes in operating conditions and the behavior

can be clearly observed from Figure 5.7. The plot in Figure 5.7 shows the error-free

and error-prone CRPs for both the supply voltage and temperature variations. As

similar characteristics were observed for different PUF sizes, the distribution for 128

stage PUF circuit is shown in Figure 5.7. The plot showing the amount of flipped

bits whose current-difference is less than 5 nA observed under different conditions

is shown in Figure 5.8. The amount of instable CRPs can be increased further by

considering the CRPs with current difference higher than 5 nA that may flip under

highly extreme conditions (> 1.1V). However, we set the limits to around 10% of

nominal Vdd, as they correspond to the typical power supply noise level. Moreover,

some of the security ICs may be equipped with on-chip voltage detector to avoid over-

and under-powering attacks. Hence, the limits of Vdd were set to conservative values

while mounting fault attacks. Moreover, the unreliable CRPs with current difference

107

-40 -30 -20 -10 0 10 20 30 40
0

500

1000

1500

2000

Current difference (nA)

N
o.

 O
cc

ur
re

nc
es

Stable CRPs
Unreliable CRPs

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Figure 5.7. Current-difference distributions of error-free and error-prone CRPs

0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

7

25
50

75

Voltage (V)

Temp (oC)

%
 B

it
 f

li
p

s

Figure 5.8. Percentage of unstable CRPs from circuit simulations whose current
difference is lower than 5 nA

less than 5 nA yielded optimum results with respect to the number of generations

required to reach the optimal prediction accuracy. If a response bit flips, then it

is most likely to have a current difference less than 5 nA. This current difference is

denoted by ∆Imin.

5.2.4.1 Performance of Hybrid attacks

The ES algorithm with the same parameters described in section 4.3 was used in

hybrid attacks. The current-difference data (∆Imin) was used to filter out the bad

PUF models. As described in section 4.6, the PUF models were tested for their fitness

108

by evaluating the correlation-coefficient between a hypothesis vector and the golden

vector obtained from measured CRPs. The hypothesis vector is obtained from the

PUF model by computing the current difference for a given challenge (∆IH). The

hypothesis vector FH is given by,

FH =


1, if|∆IH | < ∆Imin

0, if|∆IH | > ∆Imin

(5.7)

The golden vector F is obtained using the same equation for the measured CRPs,

i.e if the response bit ri got flipped then Fi is assigned to 1, else Fi is assigned to

0. By evaluating the correlation-coefficient between F and FH , the strength of the

hypothesis vector is obtained. Higher correlation is observed for a PUF model which

is closer to the ideal PUF model (PUF circuit). The correlation-coefficient is lesser

than 1, as some of the flipped response bits are induced by instabilities in the sense

amplifier rather than the current-difference. In such cases, the hypothesis shown

in equation 5.7 is not valid and will impact the prediction accuracy. The correlation

coefficient increases with the number of unstable CRPs obtained from the PUF circuit

as shown in Figure 5.9. We show the data for 128-stage PUF and similar results were

obtained for 64- and 80 stage PUFs as well.

Hybrid attack experiments were conducted on 20 different PUF instances on the

test chips and the results were averaged over 100 random sets of training CRPs. In the

global CRP training set (3 Million), around 210,000 error-inflicted CRPs were present

as demonstrated by Table 5.2. The prediction accuracies obtained from hybrid attacks

for the PUF circuits are shown in Figure 5.10. The best-case prediction accuracy

obtained from the hybrid attack is close to 99.5%. This represents a significant

improvement in prediction rate when compared to 94% prediction accuracy obtained

from a standalone ES attack with error-inflicted CRPs. The hybrid attacks achieve

significantly higher prediction rates for almost the same number of training CRPs

109

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000

C
o

r
r
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

No. of unreliable CRPs

Figure 5.9. Correlation coefficient versus the number of unstable CRPs used in
hybrid attacks

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000 1e+06

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 5.10. Performance of hybrid attacks with 7% error-inflicted CRPs

and a generation count. The averaged results from 20 PUF instances are summarized

in Table 5.4.

110

Table 5.4. Performance of hybrid attacks on current-based PUFs. The results were
averaged over 20 different PUF instances on test chip. Around, 7% of unreliable
CRPs were present in the training set used in hybrid attacks.

ML
algorithm

Stages
Training

CRPs
Unreliable

CRPs
Prediction rate (%)

Hybrid
attacks

64
500,000 34,550

99.5
80 99.1
128 98.8

In the above sections, the vulnerabilities of existing Current-based PUFs to mod-

eling and hybrid attacks were clearly demonstrated. In the next section, we present

the secure PUF architecture that is tolerant to modeling attacks.

5.3 Non-linear Current Mirror based PUF Architecture

In this section, we describe in detail the proposed secure PUF architecture using

non-linear current mirrors (nlcPUF). First, we explain the source of non-linearity

in section 5.3.1 followed by the PUF architecture in section 5.3.3. The post-silicon

validation of the performance metrics of nlcPUF are presented in section 5.3.5.

5.3.1 Source of Non-linearity in nlcPUF

The proposed PUF uses non-linear current mirrors [91] as building blocks. Cur-

rent mirrors act as diodes, as the output current(Iout) flows only for positive input

currents (Iin). A current mirror exhibits non-linear transfer characteristics when a

constant current source is used along with the current mirror. The threshold input

current is decided by the amount of the constant current source. A simple circuit

implementation of a non-linear current mirror is shown in Figure 5.11. As described

in [91], current mirrors can be constructed in NMOS-only, PMOS-only and NMOS-

PMOS combinations. However, NMOS-only current mirror is used in our PUF con-

struction due to its simplicity. The non-linear transfer characteristic of the current

mirror shown in Figure 5.11 was evaluated using circuit simulations using the IBM

32nm transistor models by setting the constant current source at 100µA. The trans-

111

M3 M4

Vout
Iout

I2I1

Iin

M1 M2

Figure 5.11. Non-linear current mirror [91]

fer characteristic of the non-linear current mirror is shown in Figure 5.12. It can be

observed that the current mirror exhibits a breakpoint around 100µA, beyond which

a linear behavior in Iin-Iout characteristic is observed. The slope of the linear region

in Iin-Iout characteristic is determined by the relative strengths of the transistors M1

and M2. However, due to mismatches in the transistor sizes arising from process vari-

ations, the transfer characteristics deviate from its nominal behavior. This behavior

is exploited in the proposed PUF circuit.

5.3.2 Effect of Process Variations

As described in the previous subsection, the presence of device mismatches in the

transistors M1 and M2 impacts the transfer characteristics of the current mirror. To

estimate the impact of process variations, Monte carlo simulations were performed

over the current mirror shown in Figure 5.11 using the IBM 32nm SOI transistor

models. Threshold voltage variations were assigned from a Gaussian distribution

with 3σ ≈90mV. The impact of process variations on the transfer characteristics is

shown in Figure 5.13. Although constant current sources were assumed in this analysis

(I1=I2=100µA), there might be some mismatches in a silicon implementation. These

112

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0.00022

 0.00024

 0.00026

 0.00028

 1e-05 0.0001 0.001

I o
u

t
(A

)

Iin (A)

(W2/W1)

Figure 5.12. Non-linear transfer characteristic of the current mirror

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0.00022

 0.00024

 0.00026

 0.00028

 0.0003

 1e-05 0.0001 0.001

I o
u

t
(A

)

Iin (A)

Figure 5.13. Impact of process variations on the transfer characteristic of Non-linear
current mirror

uncertainties in transfer characteristics arising from process variations are exploited

in nlcPUF construction. The details are described in the next subsection.

113

5.3.3 nlcPUF Architecture

The proposed nlcPUF is based on current propagation through two identical chains

of non-linear current mirrors and is analogous in operation to an arbiter PUF [86].

Figure 5.14 shows the architecture of nlcPUF. The circuit has a multiple bit challenge

C and produces a single bit response. The challenge bits determine the current

propagation paths through a switch. The switch either passes or switches the input

currents to the outputs, whose implementation is shown in Figure 5.15(a). In our

construction, Ci = 0 switches the currents and Ci = 1 passes the currents directly to

outputs. In this way, a unique propagation path is created for each challenge C. For

evaluating the response bit, the inputs of the circuit are tied to a common current

source whose amplitude is equal to twice the breakpoint of non-linear current mirrors.

The input current is split in half and flows through the identical paths. Due to process

variations in the current mirrors, the output current of a single stage can fall in one

of the two regions of the transfer characteristics shown in Figure 5.13. The current

shift ratio of a single stage is given by,

Current shift ratioi =
Output currenti
input currenti

. (5.8)

The output current from a stage is fed as an input to the subsequent stage, which

shifts the current based on its current shift ratio. The process is repeated over all the

stages and the current difference at the output (∆I = Ia−Ib as shown in Figure 5.14)

is sampled to get a single bit response.

In an arbiter PUF, the amount of delay introduced by a unit stage is fixed for

a given challenge bit, i.e, the delay contribution from stage i is dependent only on

the challenge bit Ci. However, in nlcPUF, the amount of current shift introduced

by a single stage is dependent on the input current itself. So, the current shift ratio

introduced by stage i is dependent on the challenge bit Ci, as well as the challenge

bits C1...Ci−1. This property enhances the unpredictability and modeling attack

114

Current

Mirror

Current

switch

C1 C2 Cn

Sense

Amplifier

Output

Figure 5.14. Proposed PUF Architecture. Ia and Ib are the output currents that
are compared to generate the response bit.

resistance of the PUF circuit. The currents at the output Ia and Ib are compared

to generate a single bit response. For comparing the currents, a latch-based sense

amplifier shown in Figure 5.15(b) is used that generates the output bit based on the

relative strengths of the currents. Before response generation, the trigger signal in

the sense amplifier is pulled low which pre-charges the out and outb (not shown in

figure) nodes to Vdd. Once the trigger signal goes high, the challenge bits are applied.

Based on the strengths of the flowing currents, one of the output nodes discharges

quickly than the other node. This results in a positive feedback which settles the

output nodes. The process is repeated again for generating further response bits.

As it is highly difficult to express the transfer characteristic of the entire PUF

circuit in a closed from, the non-linearity injected by a single stage is shown in terms of

the current shift. The current shift introduced by stages {20,40,60,80} in an 80 stage

nlcPUF circuit is shown in Figure 5.16. The current shift distribution was obtained

by simulating the 80 stage nlcPUF circuit using the IBM 32nm transistor models over

20,000 CRPs. The impact of process variations can be observed from the uniformly

distributed current shift values. The varying means of the current shift distributions

for the different stages show the presence of non-linearity (i.e. stage 80 has a lower

mean than stage 40). Similar non-linear effects were observed for other stages as well.

115

Ibotin

I topin I topout

Ibotout

Ci

Cib

(a)

trigger

out

Ia Ib

(b)

Figure 5.15. (a) Current switch, (b) Sense amplifier. The input currents to the
current switch are I topin , Ibotin and the output currents are I topout and Ibotout. Cib is the
inverted challenge bit (Cib = ∼ Ci).

 1.1

 1.15

 1.2

 1.25

 1.3

 10 20 30 40 50 60 70 80

 1.038

 1.042

 1.046

 1.05

 1.054

µ
(s

h
if

t
ra

ti
o

)

σ
(s

h
if

t
ra

ti
o

)

Stage index

Mean

Std. dev

Figure 5.16. Mean and standard deviation of current shift ratios in an 80-stage
nlcPUF circuit

Please note that the delay introduced by a single stage in an arbiter PUF will be a

fixed value irrespective of the challenge bit, unlike the uniformly distributed current

shift introduced by a single stage in nlcPUF. The impact of non-linearity introduced

by individual stages on the unpredictability of responses is presented in section 5.3.6.

116

5.3.4 Implementation Details

The nlcPUF circuits of different lengths were designed as an array containing 32

instances. Every unit stage of the nlcPUF has around 22 transistors. The entire array

containing 64-stage nlcPUFs was laid out in an area of 0.025mm2, with each PUF

instance occupying an area of ∼790µm2. The areas of the nlcPUF implementations

are shown in Table 5.5.

Table 5.5. Area details of a single instance of various nlcPUF circuits

Stages Area (µm2)
64 790
80 986
128 1579

5.3.5 Post-silicon Validation of nlcPUF

The proposed nlcPUF circuit was fabricated using the IBM 32nm SOI process as

shown in chapter 7. Around 200 instances of the nlcPUF circuit (10 instance x 20 dies)

were evaluated across 3 Million CRPs. The validation was performed under nominal

conditions (0.9V and 25◦C) and extreme conditions (Vdd±0.1V and 75◦C) for 5 times

and the results were averaged. For evaluating the performance metrics, the framework

described in chapter 2 was used. The various performance metrics analyzed include

uniqueness, reliability, uniformity and bit aliasing probability. The results of the post-

silicon validation are shown in Figure 5.17 and summarized in Table 5.6. It can be

observed that the nlcPUF architecture exhibits excellent statistical properties upon

post-silicon validation. The analysis of security vulnerabilities of nlcPUF architecture

is presented in the next subsection.

5.3.6 Security Evaluation of nlcPUF architecture

In this section, we present the security evaluation results of nlcPUF architecture

presented in the previous section.

117

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

dinter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

P
ro
b
a
b
il
it
y

dintra

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y

Uniformity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
P

ro
b

a
b

il
it

y

Bit alias HD

Figure 5.17. PUF Performance metrics distributions. (a) Inter-class HD (b) Intra-
class HD (c) Uniformity and (d) Bit-aliasing probability

5.3.6.1 Modeling attacks validation of nlcPUF

The fabricated nlcPUFs were tested for vulnerabilities using the different modeling

attacks presented in section 4.3. Like in Current-based PUFs, around 3 Million

CRPs were collected through post-silicon measurements under nominal and extreme

operating conditions. For simple modeling attacks using SVM and ES, the stable

CRPs collected under nominal operating contions were used in modeling attacks. For

this purpose, the experiments under nominal conditions were repeated 5 times and

the stable CRPs across all the iterations were separated.

Similar to attacks on Current-based PUFs, the SVM and ES classifiers were

trained using a random set of CRPs from the global pool. The challenges were

mapped from (0,1) to (-1,1) for modeling purposes. The feature vector for the at-

tacks were obtained using the equation:

118

Table 5.6. Performance validation of nlcPUF and comparison to other strong PUF
architectures

Type of
PUF

Tech
node

Stages
PUF

instances
dinter

dintra
(intrinsic/extrinsic)

Uniformity
Bit-alias

HD

Arbiter [54] 45 nm
64 80 0.38 -/0.08 - -
80 - - - - -
128 - - - - -

Current
based

32 nm
64 0.39 0.08 0.42 0.43
80 0.4 0.075 0.415 0.415
128 0.39 0.072 0.42 0.42

nlcPUF 32 nm
64 0.41 0.02/0.062 0.41 0.43
80 0.405 0.019/0.065 0.42 0.42
128 0.42 0.017/0.068 0.42 0.415

pi =
n∏

j=i+1

Cj (5.9)

where (p0, p1..pn) represents the parity vector with pn = 1 and Cj refers to the jth

challenge bit. The prediction errors as a function of the training CRP size for nlcPUFs

against SVM and ES attacks are shown in Figures 5.18 and 5.19 respectively. It can

be observed that nlcPUF has almost 20% higher modeling attack resistance when

compared to Current-based PUFs. For a training set size of 200,000 nlcPUF exhibits

around 80% learnability, whereas the Current-based PUF exhibits 98% learnability.

The error-inflicted CRPs degrade the prediction accuracies obtained for nlcPUF

circuits as in Current-based PUFs. The impacts of intrinsic and extrinsic noise on

nlcPUF circuits can be found in Table 5.6. From intrinsic noise measurements, i.e.

measurements repeated under nominal operating conditions, around 2.1% bit-flips

were observed. On the other hand, around 6.5% bit-flips were observed under extreme

operating conditions. The ML attacks were repeated with a new random set of data

that include error-inflicted CRPs along with the stable CRPs. The impact of error-

inflicted CRPs on the prediction accuracies of SVM and ES attacks on nlcPUF circuits

are shown in Figures 5.20 and 5.21. It can be observed that the prediction accuracies

degrade by 25% for 6% error-inflicted CRPs.

119

 0.125

 0.25

 0.5

 1

 10 100 1000 10000 100000 1e+06

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 5.18. Prediction errors from SVM attacks for 64, 80 and 128 stage nlcPUF

 0.125

 0.25

 0.5

 1

 10 100 1000 10000 100000 1e+06

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 5.19. Prediction errors from ES attacks for 64, 80 and 128 stage nlcPUF

5.3.7 Hybrid Attacks on nlcPUF

The nlcPUF circuits were also evaluated for vulnerabilities using the hybrid attack

methodology described in section 4.6. As the hybrid attacks require a vulnerable

threshold value, the current-difference ∆Imin was evaluated using Spice simulations.

120

From 32nm statistical circuit simulations on 128 stage nlcPUF, ∆Imin was found to be

around 8nA. The value was more or less the same for 64, and 80 stage PUF circuits as

well. The threshold value was used to construct the hypothesis vector FH as described

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5 6

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 5.20. Impact of error-inflicted CRPs on SVM prediction rates for 64, 80 and
128 stage nlcPUF

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6

P
re

d
ic

ti
o

n
 e

rr
o

r

Percentage of error-inflicted CRPs

64-stage
80-stage

128-stage

Figure 5.21. Impact of error-inflicted CRPs on ES prediction rates for 64, 80 and
128 stage nlcPUF

121

Table 5.7. Security Validation of nlcPUF and comparison to other strong PUFs

Type of
PUF

Tech.
node

Type of
Attack

Stages
Training

CRPs
Prediction

accuracy(%)
Training

time

Arbiter [78] 45nm
Logistic

Regression
64 18,050 99.9 0.6s

Current
based

32nm

ES with
stable CRPs

64
75K

98 12:40min
80 97.7 16:20min
128 97.3 21:10min

Hybrid
64

500K
99.5 74:10min

80 99.1 83:12min
128 98.8 112:40min

nlcPUF 32nm

ES with
stable CRPs

64
200K

82 22:20min
80 79.2 29:10min
128 77.5 43:20min

Hybrid
64

500K
86.1 78:20min

80 82.4 88:10min
128 80.1 119:10min

 0.125

 0.25

 0.5

 1

 10 100 1000 10000 100000 1e+06

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

64-stage
80-stage

128-stage

Figure 5.22. Prediction errors from hybrid attacks for 64, 80 and 128 stage Current-
based PUFs

in section 4.6. Experiments were conducted on 20 different PUF instances for 100

random sets of CRPs and the results were averaged. The performance of hybrid

attacks on nlcPUF circuits are shown in Figure 5.22. The nlcPUF circuit exhibits

around 15x higher resistance over Current-based PUFs. As ES achieves only moderate

prediction accuracies even under the presence of highly stable CRPs (∼80%), only

122

a marginal improvement in prediction accuracy was observed from hybrid attack

framework which builds upon the ES attack.

Table 5.7 summarizes the attack results on nlcPUFs. The comparison results with

Arbiter and Current-based PUFs are also shown in Table 5.7. In general, nlcPUF

architecture exhibits excellent security properties measured in terms of information

leakage. Please note that the nlcPUF architecture can also be modified to incorpo-

rate Feed-forward [51] and XOR operations, which can further improve the security

properties.

123

CHAPTER 6

DESIGN STRATEGIES FOR PUF CIRCUITS AND
SYSTEMS

In the previous chapter, the design and post-silicon validation results of a modeling

attack resistant PUF were presented. The techniques presented were used to improve

the unpredictability of PUF responses. Apart from unpredictability, uniqueness and

reliability are also some of the significant metrics to be considered in commercial appli-

cations involving PUF circuits. In this chapter, techniques to improve the uniqueness

of PUF based circuits are presented. In order to improve the uniqueness, fabrica-

tion/lithography aware techniques are presented1. Delay- and current-based circuits

are used as the PUF targets to demonstrate the impacts of lithography aware design

techniques. Finally, a PUF based authentication system is also presented2.

6.1 Lithography Aware Design of Physically Unclonable Func-

tions

In sub-wavelength lithography, the polygons/structures in the mask are printed

onto a wafer using an imaging system [57]. Process variations are omnipresent during

the fabrication process. These variations can be classified into “systematic” and

“random” variations. It is often desirable for a PUF circuit to have random variations

dominant over systematic variations. In order to make a PUF circuit more “unique”,

systematic variations should be suppressed.

1This work was published in [42,46]

2This work was published in [41]

124

In this section, we present a generalized lithographic simulation framework adopted

for improving PUF design. The main objective of the lithographic simulation frame-

work is to enhance the sensitivity of the PUF circuit to process variations and im-

prove uniqueness when viewed across dies and wafers. It is well known that forbidden

pitches are more prominent in sub-wavelength lithography [50]. Forbidden pitches

are often undesirable, as the polygons/structures at these pitches will not be printed

to their maximum resolution. However, the sensitivity of critical dimension (CD) is

very high to the pitch variations near the forbidden zone. This is used constructively

to enhance the impact of process variations on PUF design. This is done by placing

gate structures of the transistors at pitches closer to forbidden zone. Such a technique

allows the circuit designers to amplify and effectively utilize various sources of litho-

graphic variations including dose, resist thickness, lens imperfections, defocus, etc.

in PUF designs. Arbiter- and Current-based PUFs were chosen as the PUF targets

to demonstrate the impacts of lithography aware design technique. The PUFs were

also designed using a conventional approach and compared with lithography aware

designs.

We will address variations due to dose and defocus in this work. Dose variations

arise from fluctuations in the intensity and the duration of light source. Focus varia-

tions or defocus arise due to changes in the relative distance between the lens and the

resist. This can be due to misalignment (change in focus, wafer tilt, etc.) or changes

in resist thickness due to CMP. In this paper, the former is referred to as defocus

and the latter as resist variations. So, we will study the effect of dose, defocus and

resist variations on the structures and hence the circuit parameters across the dice

and wafers. Though all the structures suffer variations, gate or polysilicon structures

suffer the most as they represent the critical dimension of a technology node. Fur-

thermore, the variations in gate structures translate to larger variations in electrical

parameters more than other structures. The focus of this work is to do physical de-

125

sign of a PUF circuit in such a way that the impact of manufacturing variations on

the circuit is enhanced.

6.1.1 Related work

In [84], novel PUF circuits known as litho-PUFs were proposed that consider prox-

imity effects, density effects and formation of non-rectangular gates printed during the

lithography process. Though the proposed scheme in [84] also uses forbidden pitches

to improve the uniqueness of PUFs, the evidence of improving inter-wafer uniqueness

was not presented. Also, the impacts of different lithographic variations on polygons

placed near the forbidden pitch were not evaluated in [84]. Traditionally, Optical

Proximity Correction (OPC) tries to reduce variations, both systematic & random

by using the geometric error between the simulated contour and the target as a cost

function. In [24], a PUF-aware OPC scheme was described, that tries to reduce the

systematic variations and increase random variations in the regions of the mask that

contain the PUF circuit. The scheme continues to work as a traditional OPC in non-

PUF regions of the mask. The proposed scheme in [24] tries to maximize the variance

of the mean edge-placement error (EPE). An improvement in uniqueness of 5% and

reliability of 70% compared to conventional OPC was reported in [24]. Similar work

on enhancing random variations and suppressing systematic variations was presented

in [23]. In order to suppress systematic variations, several layout techniques have

been used. However, all the existing works in the literature focus only on improving

inter-die variations. Wafer-to-wafer variations are known to be more correlated [38].

This affects the uniqueness of PUFs and has not been extensively explored in the

literature.

6.1.2 Exploiting Forbidden Pitches for Improving Uniqueness

In this section, we describe the proposed scheme on improving the uniqueness

of delay-based PUFs by amplifying the effect of inherent manufacturing variations

126

during the fabrication process. We use the arbiter and current-based PUFs shown in

Figures 4.1 and 5.1 respectively for validating the proposed scheme.

In sub-wavelength lithography, the wavelength of the light source used is larger

than the widths of printed structures (lines) leading to variations in printed structures.

Further, the destructive interference of light waves from slits near closely placed lines

leads to very small line widths, even zero line widths [84]. So, the spacing between

lines and hence the pitch has an impact on the printed line width. The pitches at

which the printed line width goes to zero are the so-called “forbidden pitches” [50].

The sensitivity of the critical dimension to the pitch variations is very high for the

pitches closer to the forbidden pitch zone.

The occurrence of forbidden pitches in 45nm and 32nm nodes is shown in Fig-

ure 6.1. The forbidden pitches have been determined for the polysilicon structures, as

they represent the critical dimension of a technology node. In order to compute for-

bidden pitches, the experimental methodology discussed in section 6.1.3.1 is adopted.

The forbidden pitch is found to be 190nm (155nm) in 45nm (32nm) node. The change

in printed line width (∆CD) when a change in line spacing (∆s) occurs as a result

of lithographic variations is given by,

∆CD =
dCD

ds
∆s (6.1)

Where, dCD
ds

is the sensitivity of line width (CD) to line spacing (s). It can

be clearly seen that the critical dimension is highly sensitive to pitches around the

forbidden pitch zone from Figure 6.1 and even a small distortion due to lithography

variations can lead to higher variations in critical dimension.

Given the above discussions, we propose our scheme of enhancing the manufac-

turing variations by placing the gate structures at pitches that are ”sensitive”. In

this scheme, the transistors are broken to multiple fingers such that the pitch be-

tween adjacent fingers is a ”sensitive pitch” near the forbidden pitch zone. This helps

127

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600

cr
it

ic
a

l
d

im
en

si
o

n
 (

n
m

)

gate spacing (nm)

45nm

32nm

Figure 6.1. Forbidden pitches in 45nm and 32nm nodes

in improving the extent of inter-die and inter-wafer variations by leveraging various

sources of lithographic variations such as dose, defocus and resist thickness. This

leads to an increased variation in electrical parameters and further translates to an

improvement in uniqueness of a PUF as shown in the rest of this document. It is

essential to note that the proposed scheme helps to improve the uniqueness of PUFs

and does not contribute much towards security/unpredictability of PUF responses.

Security of a PUF circuit arises from the PUF construction itself and not from the

way it is designed. To improve security, the PUF construction has to be modified such

that the challenge-response behavior cannot be learned using modeling attacks [78].

Some of the examples for improving the modeling attack resistance include feed-

forward arbiter PUFs, XOR arbiter PUFs, etc. The techniques to improve the security

of a PUF are not an aspect of this work and we focus only on improving the uniqueness

of PUFs. However, our scheme can be used to improve the uniqueness of the modified

PUF constructions as well.

128

6.1.2.1 Outline of the Proposed Scheme

Upon performing lithographic simulations on the fingered gate structures in the

presence of variations such as dose, defocus, resist thickness, etc., the changes in

the line width are computed and fitted within a distribution. Now this serves as a

Process Variation (PV) model for the channel length of the transistors in the circuit

simulations. So, the various steps in our scheme are:

• Enhance manufacturing variations by exploiting the high sensitivity of critical

dimension to pitches near forbidden zone.

• Map the lithographic variations to circuit parameters (PV model) and use in

circuit simulations.

• Validate the proposed scheme for inter-die and inter-wafer uniqueness.

6.1.3 Lithographic Simulation Results

In this section, we describe the lithographic simulations performed to obtain the

process variation model. We also describe in detail the PUF validation techniques

and results.

6.1.3.1 Manufacturing Aware Physical Design Framework

Lithographic simulations were performed by changing the pattern density to com-

pute the changes in the critical dimension. Both 45nm and 32nm nodes were consid-

ered in this work. In order to obtain the image of the printed contour, a commercial

simulator (Calibre c©WorkbenchTM) was used. A dipole light source (193 nm) having

a radius of 0.35µm and sigma-center of 0.1µm was used for all the experiments as

shown in Figure 6.2. The numerical aperture (NA) of the imaging system is 1.35

(1.56) for 45nm (32 nm) node [75]. The critical dimension was obtained from the

coordinates of the printed contour using gate-slicing approach [83].

129

Figure 6.2. Dipole light source

The overall experimental methodology to compute uniqueness is shown in Fig-

ure 6.3 and is explained below. For all the experiments, the models from the IBM

32nm SOI library were used.

1. Manufacturing Process (MP) models: These describe the extent of litho-

graphic variations such as dose, defocus and resist thickness in the manufac-

turing process. The MP models have different extents of variations at fine

granularities.

2. Litho Simulation: The MP models were fed as an input to the litho-simulator

along with the layout. The lithographic simulations produce print-image con-

tours which take into account the impact of neighboring cells (proximity effects)

along with the inherent variations in the cell itself.

3. Process Variation (PV) models: CD values were extracted from the print-

image contours after an extensive set of lithographic simulations using the fine-

grained MP models. The CD values were then fitted within a Gaussian distribu-

tion to form a PV model. The mean (µCD) and standard deviation (σCD) of the

CD distribution are used to describe a PV model. We obtain separate inter-die

and inter-wafer PV models as the corresponding MP models are different.

4. SPICE simulation: The obtained PV models, along with a netlist of a PUF

circuit, were then simulated using a circuit simulator (HSPICE). An extensive

130

Litho	

Simulation	

	

Layout	

Contours	

	

SPICE	

Circuit	

Analysis	

	

Optical,
resist &

etch
model	

Process
Variation

model	

PUF
Netlist	

Figure 6.3. Simulation methodology to compute uniqueness

set of challenges were simulated and responses were collected from different PUF

instances.

5. Performance metrics computation: The performance metrics of the litho-

aware and conventional PUF designs were computed as per the framework de-

scribed in chapter 2.

As explained earlier, the transistors in the PUF circuit were fractured into fingers

and the spacing between fingers is chosen near the forbidden pitch zone. Furthermore,

the pitch between the fingers in different stages was slightly varied to improve the

unpredictability of responses. However, the transistors in a particular stage of a PUF

circuit were replicas (designed with the same set of pitches) such that no bias is

introduced into the circuit. Now the PV models are generated as follows.

131

6.1.3.2 Intra-die PV model

Lens aberrations are an important source of intra-die variations and are modeled

using Zernike’s coefficients [22]. This forms the intra-die MP model. The intra-die PV

model, obtained by litho-simulation (using the intra-die MP model) and extraction

of the statistics of CD distribution, is shown in Table 6.1.

Table 6.1. Intra-die PV model

32nm 45nm
Mean (µintra

CD) 34.2nm 49.34nm
Std. Deviation (σintra

CD) 1.35nm 2.4nm

6.1.3.3 Inter-die PV model

Table 6.2 gives the bounds for the Inter-die MP models. Litho-simulations were

performed at various values of dose, defocus and resist thickness within the bounds

specified in Table 6.2. After litho-simulations, extraction of statistics of CD distri-

bution yields the inter-die PV model. However, we need to determine a ”sensitive

pitch” before the design process. Figure 6.4 shows the mean and standard deviation

of CD for both 45 nm and 32 nm nodes at different gate spacing values. From Fig-

ure 6.4 , we can observe that CD is very sensitive to variations around a gate spacing

value of 110 nm (95 nm) for the 45 nm (32 nm) node. Choosing these values as the

gate spacing between transistor fingers, litho-simulations were performed using the

inter-die MP model. Statistics of CD distribution are shown in Table 6.3 and these

form the inter-die PV model.

Table 6.2. Inter-die MP model

Dose ± 5%
Defocus ± 5nm

Resist thickness ± 5%

132

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600

 0

 2

 4

 6

 8

 10

 12

 14

M
ea

n
 C

D
 (

n
m

)

st
a

n
d

a
rd

 d
ev

ia
ti

o
n

 o
f

C
D

 v
a

ri
a

ti
o

n
s

(n
m

)

gate spacing (nm)

mean

std. deviation

(a) 45nm node

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600

 0

 2

 4

 6

 8

 10

 12

M
ea

n
 C

D
 (

n
m

)

st
a

n
d

a
rd

 d
ev

ia
ti

o
n

 o
f

C
D

 v
a

ri
a

ti
o

n
s

(n
m

)

gate spacing (nm)

mean

std. deviation

(b) 32nm node

Figure 6.4. Sensitivity of CD to gate spacing

6.1.3.4 Inter-wafer PV model

The inter-wafer MP model has the following bounds: dose (±2%), defocus (±2%)

and resist thickness (±2nm). In addition, wafer-tilt of (±5nm) was also considered.

These values were assigned based on an observation that the amount of inter-wafer

133

Table 6.3. Inter-die and Inter-wafer PV models

32nm 45nm
Mean (µdie

CD) 30.2nm 44.5nm
Std. Deviation (σdie

CD) 8.4nm 10.1nm

Mean (µwafer
CD) 31.2nm 44.8nm

Std. Deviation (σwafer
CD) 6.4nm 8.5nm

variations is typically one-third of inter-die variations [38]. The CD distribution at

the sensitive gate spacing of 110 nm (95 nm) is obtained for 45 nm (32 nm) node

through litho-simulations and the statistics are shown in Table 6.3. This constitutes

the inter-wafer PV model.

6.1.3.5 Performance metrics computation

The models obtained from lithographic simulations (die- and wafer models) were

used along with the PUF netlists and statistical circuit simulations were performed.

For all the experiments, 128 stage PUF circuits were used. The parameters obtained

from lithographic simulations (critical dimension variations) correspond to the tran-

sistor length variations. Apart from gate-length variations, threshold voltage varia-

tions were also assigned from a Gaussian distribution with 3σ deviations of 150mV

and 90mV for 45nm and 32nm technology nodes, respectively. As the main objec-

tive of the proposed framework is to improve the uniqueness of PUF circuits, the

inter-class HD was analyzed through circuit simulations and post-silicon measure-

ments from sugarloaf. Around 100,000 CRPs were collected from 200 different PUF

instances for inter-class HD computation. The results from circuit simulations and

post-silicon measurements are shown in Table 6.4 and 6.5. It can be observed that the

litho-aware design techniques have improved the inter-die and inter-wafer distances

by almost 6% and 16% respectively for 45nm node. For 32nm, the improvements in

inter-die and inter-wafer uniqueness are around 6% and 15% respectively. Post-silicon

measurements also agree well with simulation results. For post-silicon measurements,

134

only inter-die distances are shown, as the fabricated dies were from the same wafer.

Similar results were obtained for the current-based PUF circuits as well. Thus, by

careful physical design, more unique signatures can be generated without making any

additional changes to the PUF layout.

Table 6.4. Uniqueness validation results for litho-aware and conventional arbiter
PUFs

Type of experiment
Type of

variations

Technology

node
Type of PUF

Inter-class

HD

Statistical

circuit

simulations

inter-die

32nm
Reference PUF 0.46

Litho-aware design 0.485

45nm
Reference PUF 0.46

Litho-aware design 0.49

inter-wafer

32nm
Reference PUF 0.31

Litho-aware design 0.37

45nm
Reference PUF 0.33

Litho-aware design 0.39

Post-silicon

measurements

inter-die 32nm
Reference PUF 0.38

Litho-aware design 0.43

inter-wafer -

Apart from uniqueness analysis, the impacts of litho-aware techniques on the

other performance metrics such as reliability, uniformity and bit-aliasing were ob-

served. The results are summarized in Tables 6.6 and 6.7. The reliability of the

litho-aware circuits were almost identical to the conventional designs. Only marginal

improvements were observed. The marginal improvements can be attributed to the

increased transistor sizes due to fracturing, which slightly minimizes the impacts of

noise and environmental condition fluctuations. In case of uniformity, the litho-aware

design fared better than conventional designs by as much as 7%. In case of bit-aliasing

probability, improvements of around 8% were observed. These results indicate that

litho-aware design helps to extract maximum process variations for better PUF de-

signs without adding any additional structures to the layout.

135

Table 6.5. Uniqueness validation results for litho-aware and conventional current-
based PUFs

Type of experiment
Type of

variations

Technology

node
Type of PUF

Inter-class

HD

Statistical

circuit

simulations

inter-die

32nm
Reference PUF 0.45

Litho-aware design 0.48

45nm
Reference PUF 0.46

Litho-aware design 0.485

inter-wafer

32nm
Reference PUF 0.32

Litho-aware design 0.37

45nm
Reference PUF 0.34

Litho-aware design 0.39

Post-silicon

measurements

inter-die 32nm
Reference PUF 0.39

Litho-aware design 0.445

inter-wafer -

As explained in the earlier sections, security of a PUF circuit is determined by

the architecture rather than design strategies. In ideal scenario, no differences in

modeling attack resistance will be observed for litho-aware designs. Modeling at-

tacks using support vector machines were performed over the 128-stage arbiter and

current-based PUF circuits using the methodology described in earlier chapters. The

prediction errors for arbiter and current-based PUF circuits are shown in Figures 6.5

and 6.6 respectively. It can be observed that the litho-aware design technique does

not improve the modeling attack resistance of PUF circuits. The litho-aware PUFs

Table 6.6. Impact of litho-aware design on other performance metrics for arbiter
PUFs

Type of experiment
Technology

node
Type of PUF

Intra-class

HD
Uniformity

Bit-aliasing

HD

Statistical

circuit

simulations

32nm
Reference PUF 0.05 0.48 0.47

Litho-aware design 0.048 0.49 0.485

45nm
Reference PUF 0.055 0.47 0.46

Litho-aware design 0.052 0.49 0.49

Post-silicon

measurements

32nm
Reference PUF 0.059 0.43 0.42

Litho-aware design 0.055 0.46 0.455

45nm -

136

Table 6.7. Impact of litho-aware design on other performance metrics for current-
based PUFs

Type of experiment
Technology

node
Type of PUF

Intra-class

HD
Uniformity

Bit-aliasing

HD

Statistical

circuit

simulations

32nm
Reference PUF 0.06 0.47 0.46

Litho-aware design 0.057 0.485 0.48

45nm
Reference PUF 0.063 0.48 0.45

Litho-aware design 0.06 0.49 0.48

Post-silicon

measurements

32nm
Reference PUF 0.072 0.42 0.42

Litho-aware design 0.068 0.46 0.45

45nm -

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 10 100 1000 10000

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

Reference PUF
Litho PUF

Figure 6.5. Prediction errors from SVM attacks on Litho-aware arbiter PUFs

can be broken using almost the same number of training CRPs as conventional PUF

designs.

6.2 PHAP: Password based Authentication System using PUFs

In the previous section, we presented circuit design strategies for improving the

performance metrics of PUFs. In this section, we present an authentication sys-

tem/protocol employing PUF based circuits. One of the most promising applications

of PUFs is the verification of identity of hardware devices. This is generally done by

137

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 100 1000 10000 100000 1e+06

P
r
e

d
ic

ti
o

n
 e

r
r
o

r

No. of CRPs

Reference PUF
Litho PUF

Figure 6.6. Prediction errors from SVM attacks on Litho-aware current-based PUFs

a Trusted Authority (TA), which has a database of CRPs of various PUF instances.

The database will be created during the enrollment process by applying challenges to

a PUF and storing the corresponding response(s). During the authentication process,

TA sends a particular challenge from its database to the hardware and compares the

obtained response with the one in the database [86]. If the responses match, the

device will be authenticated. However, one of the setbacks in the protocol is that TA

will not be able to distinguish whether the hardware is with a trusted party or an

adversary.

In this section, we present Password based Hardware Authentication using PUFs

(PHAP), a system in which TA will be able to determine the possession of the trusted

hardware using a simple user password. A separate one-time shared key (also called

as session password further in the document) between TA and the user will be mixed

with the initial PUF response corresponding to the challenge sent by TA and be used

as a seed for a pseudo-random number generator such as a Linear Feedback Shift

Register (LFSR). The output of LFSR then serves as a new challenge for the PUF

block. This challenge will be completely different from the initial challenge and ex-

138

tremely difficult for an adversary to predict by random guessing, thereby providing

an additional layer of security. We also leverage the time difference between real time

execution by a trusted party and simulation time of the system (by an adversary) for

authentication purposes. In this work, we show that the time difference for an adver-

sary can be amplified using the one-time session password, as only the trusted party

can obtain the correct response within the stipulated time (tmax). This is a crucial

property used in Simulation Possible but Laborious (SIMPL) systems [77]. However,

an adversary can predict the one-time session password using a brute-force attack

only to end up providing the correct response well beyond the stipulated time. Also,

the usage of one-time session password helps to alleviate the need of an enrollment

process, as TA will be able to compute the response after the authentication process

is initiated.

6.2.1 Background and Related Work for PHAP

A very common problem in computing is secure authentication [28,36,70,71], and

the existing protocols have certain flaws associated with them. The problems of stor-

ing secret keys for performing cryptographic operations were discussed in the earlier

chapters. To counterattack the problems involved in key storage, PUFs have been in-

troduced in the literature in which the hardware decides the mapping of challenge Ci

to response Ri. Various protocols for authentication using PUFs have been proposed

in the literature [25, 72, 86]. The authentication protocol proposed in [86] focuses on

comparing the response obtained from a device with the response generated during

enrollment process. However, the protocol proposed in [86] fails to determine the

possession of the trusted hardware. An adversary possessing the trusted hardware

will be able to authenticate himself along with the hardware. A lightweight challenge

response protocol proposed in [72] utilizes noisy PUFs for authentication. Various

robust authentication protocol schemes have been proposed in [25], where PUFs have

139

been used to improve the resilience of authentication protocols. Some of the schemes

employ user’s password for authentication and they tend to be more resilient towards

security attacks such as modeling. However, hardware level implementation and the

associated issues have not been analyzed. In this work, we tend to improve the au-

thentication protocol proposed in [25] for hardware employing a PUF as a source of

security by tightly integrating an one-time session password into the authentication

protocol. A closer version to the proposed work is PEAR [36], where PUFs have been

used for user password maintenance. However, the scheme requires initial enrollment

process, where the CRPs of PUFs are stored in a database for future authentication

purposes. We tend to alleviate this problem by publishing a public description of the

system and a public simulation algorithm such that the TA can compute the response

once an authentication request is initiated similar to SIMPL systems.

6.2.2 SIMPL Systems

SIMPL system [77] is a public key version of Physically Unclonable Functions.

They possess a certain binary description to facilitate public simulation and prediction

in a slower fashion than real time execution by the hardware. Since CRPs have to be

stored prior to authentication, they must be maintained secretly over the entire course

of time (multiple authentication processes). SIMPL tends to overcome this problem

by publishing a public algorithm Sim along with a publicly available description D(S)

of the hardware system S, that allows public emulation of the system. However, the

public emulation takes sufficiently longer duration beyond the stipulated time (tmax),

within which the response must arrive for authentication. The parameter tmax is

predefined before the authentication process. According to [77], a system S can be

called as a SIMPL system, if it meets the following requirements:

140

Table 6.8. Description of Notations

Signal Description Length (bits)
Cuser Challenge from TA 64

Rinter Intermediate response from PUF block 32

Rpadded Intermediate response padded with shared secret key 64

CLFSR LFSR Output - New challenge to the PUF Block 64

Ruser Response sent to TA for authentication 32

1. A partially disordered system S upon excitement with a challenge Ci, produces

a response Ri. The mapping function FS is decided by the disorder present in

the system.

2. It is possible to obtain the response Ri for a particular challenge Ci by simulating

a public simulation algorithm Sim using description D(S) of the system.

3. Any possible emulation or algorithm that simulates the response of S should be

considerably slower than the real time behavior of system S.

4. The system S must be physically unclonable.

There exists a subtle difference between a SIMPL and PHAP system. In SIMPL,

anyone with the public description D(S) and Sim can simulate the system, but

considerably slower than S. However, in PHAP, only an adversary simulates the

system S considerably slower than the real time execution of S by a trusted party.

Hence, the difficulty in simulation of PHAP is due to one-time session password

prediction rather than the nature of hardware as in SIMPL systems. Moreover, the

terms S, Sim and D(S) have been used in the paper to maintain consistency.

6.2.3 PHAP Architecture

The architecture of the proposed authentication system is shown in Figure 6.7.

Before describing the components, the notations used in the system are shown in

Table 6.8.

141

Decoder

LCD (Logic
Completion

Detector)

MUX PUF Block

LFSR interweave

CLOCK

Cuser

CLFSR

Si S0

shared secret
key

Ruser

Rinter

Rpadded

64 bit bus

32 bit bus

Figure 6.7. PHAP Architecture

1. MUX:The MUX chooses the challenge to be applied to the PUF block (Si= 0

applies the user challenge Cuser and Si = 1 applies the LFSR output as a new

challenge to the PUF block or vice versa).

2. PUF Block: PUF block can be a delay based PUF (Arbiter or Ring oscillator

PUF) and the block contains 32 individual PUF units so as to produce a 32 bit

response for a given 64 bit challenge. Other lengths can also be used. Feed-

forward arbiter PUF architecture has been used in order to increase the attack

resistance to modeling attacks (95 % predictability after 50000 rounds [88]). In

a feed-forward arbiter PUF, some of the challenge bits are determined internally

as a result of a race.

3. DECODER/DEMUX: This is used in order to forward the response either

as an output (Ruser) or as an input to the LFSR. The decision is based on the

state of the select bit (So).

142

4. LFSR:Linear Feedback Shift Register is used in order to shift the seed by certain

number of clock cycles (few ten thousands) so as to produce a new challenge

for the PUF block. The seed is obtained after interleaving the response with

the shared secret key (session password). Here, the interleaving positions can

be made public and included in the description of the system S to allow public

simulation.

5. Logic Completion Detector (LCD) - LCD is used to generate the select

bit signals for MUX and DECODER. Once the LFSR computation is complete,

LCD output will go to logic high, which will set Si and So such that CLFSR is

applied to the PUF block and Ruser is generated respectively.

6.2.4 Authentication protocol

In this section, the details of the operation of the system is presented. This, in

turn represents the authentication protocol being used. Let hash(.) represents one-

way collision resistant hash function and ID represents the unique identifier for a

PHAP system. We also make an assumption that the description of PHAP system

D(S) and a simulation algorithm Sim to simulate the system S are made public.

Moreover, user password refers to the password being used for user authentication

and session password refers to the shared secret key used for LFSR computation.

1. Enrollment: Even though we call the initial process as enrollment, it does not

involve the collection of CRP pairs as in traditional enrollment process. Here,

TA is responsible for generating IDs (identifier) unique for multiple instances

of the system S and a set of one-time user and session passwords in the form

of a password card. A sample one-time password card is shown in Table 6.9.

The size of this card can be changed in accordance with user discretion. The

user can opt to use a password apart from the passwords given by the trusted

143

Table 6.9. Password Card (either session or user password)

Pointer / Password 1 2 .. n

1 11 / Password11 12 / Password12 1.. / Password1.. 1n / Password1n

2 21 / Password21 22 / Password22 2.. / Password2.. 2n / Password2n

.. ..1 / Password..1 ..2 / Password..2 / Password.... ..n / Password..n

n n1 / Passwordn1 n2 / Passwordn2 n.. / Passwordn.. nn / Passwordnn

authority after first authentication. In case of usage in embedded systems, the

password can be entered through a keypad, so as to allow external interface.

2. Authentication

• Once the user/device raises an authentication initiation to TA, a pointer

is sent to the user, which corresponds to the location of the one-time user

and session passwords in the password card shown in Table 6.9. User

sends back the tuple <ID,hash(user password)>, with which the user can

be authenticated as TA has a copy of the user password. The collision

resistant hash(.) ensures that no other user password has the same hash

value as that of the required password. The ID is needed by TA to surf

through the database, if it has to maintain a large number of devices in

the database. A sample database of trusted authority is shown in Table

6.10.

• The user is then presented with a challenge Cuser, whom upon evaluation

of the system sends back the response Ruser to TA. Internally, the one-

time session password is interleaved with Rinter to obtain Rpadded, which

will be used as a seed for LFSR computation. Here, it is necessary to note

that the session password is not transmitted over the network to TA.

• In the mean time, TA also computes the response RTA for the challenge

Cuser using the algorithm Sim and the one-time session password.

144

CLK

C_user

R_inte

R_padded

C_LFSR

LCD_Output

R_user

64

32

64

64

32

Figure 6.8. Timing diagram for PHAP

Table 6.10. Trusted Authority’s Database

Challenge Response
<(ID1, hash(user password1..user passwordk)> C1......Ck R1.....Rk

<(ID2, hash(user password1..user passwordk)> C1......Ck R1.....Rk

...
<(IDn, hash(user password1..user passwordk)> C1......Ck R1.....Rk

• The user is authenticated if

(a) The response Ruser matches RTA.

(b) The time taken for the user to compute and send the response Ruser

is at most tmax, where tmax is pre-defined and is the maximum time

within which the user must send the response to be authenticated.

A timing diagram to illustrate the operation of PHAP system is shown in Figure

6.8. Here logic ’high’ represents the action being undertaken at that particular time

instance. A formal definition of the authentication protocol being used is defined in

Table 6.11.

It is known from previous chapters that delay-based PUFs can be modeled using

machine learning algorithms to very high accuracies. Hence, there is a strong pressing

need for better design of delay-based PUFs that are inherently resistant to modeling

145

Table 6.11. Authentication Protocol

Authenticate - User and Device S authentication to trusted authority

- S initiates the authentication request to TA
- TA sends back the pointer to the user
- User sends back the tuple <(ID,hash(user password))> to TA
- TA sends back user authentication acknowledgment if user password is corrrect along with Cuser

- User sends back Ruser after computation
- TA computes RTA using D(S) and Sim
- Hardware is authenticated if RTA = Ruser and time taken for Ruser computation is ≤ tmax

attacks. PHAP helps to overcome this issue by using an easy-to-model delay-based

PUF and adding an external password that partly determines the final challenge.

Here, some or all of the bits in challenge will be unknown to the adversary. This makes

the modeling attack extremely difficult, as some of the challenge bits are masked from

an adversary. Also, PHAP helps to mask the session password from being transmitted

directly through the network. This property can be useful in applications in which a

password (typically hash(password)) is solely used for authentication purposes.

6.2.5 Simulation Results

In this section, we present some simulation results of the proposed system. To

simulate the PUF block, statistical circuit simulations have been used as shown in

Figure 4.6 and threshold voltage variations were assigned from a normal distribution

with a 3σ deviation of 90mV, to be consistent with ITRS specifications [1]. The other

tools used in the work include Synopsys DC Compiler, Perl and Matlab.

6.2.5.1 PUF Block

Some of the significant performance metrics of a PUF include uniqueness and

reliability. Since uniqueness directly affects the security of the system, it was analyzed

by computing the hamming distance distribution. In order to compute the hamming

distance distribution, 64 challenges were applied over 32 PUF instances (32 bit output

considered) and Monte Carlo simulations were run. The distribution is shown in

146

 0

 100

 200

 300

 400

 500

 600

-5 0 5 10 15 20 25 30 35

F
re

q
u
en

cy
 o

f
O

cc
u
re

n
ce

Hamming Distance

simulated data

curve fitted

Figure 6.9. Hamming Distance distribution of the PUF block

Figure 6.9. It can be observed that the mean of the distribution is around 16, which

corresponds to a uniqueness of 50%.

6.2.5.2 PHAP System

LFSR is one of the integral components in PHAP system. Fibonacci LFSR imple-

mentation was used and 50,000 cycles was set as the rounds by which the seed will be

shifted. However, the number of rounds can be changed during runtime. The ham-

ming distance distribution of the LFSR output after 50,000 shifts for around 10,000

seeds is shown in Figure 6.10. The distribution shows that the successive LFSR out-

puts typically have a significant hamming distance, thereby providing higher degree

of randomness to the whole system.

In order to observe the uniqueness of Ruser which corresponds to the final response

used in authentication, several experiments were performed to capture various pos-

sible scenarios and hamming distance distributions were obtained. In experiment 1,

around 50 random session passwords were chosen and interleaved with 40 different

initial PUF responses Rinter corresponding to Cuser. The corresponding hamming

147

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50 60

Fr
eq

ue
nc

y
of

 O
cc

ur
en

ce

Hamming Distance

Figure 6.10. Hamming distance distribution of the LFSR output

distance distribution is shown in Figure 6.11. It can be inferred that PHAP has a

uniqueness of about 41 %.

In experiment 2, the scenario in which the seed to LFSR (Rpadded) varying from 1

to 40 bits in succession was analyzed. This was done by carefully picking Cuser and

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

-5 0 5 10 15 20 25 30 35

F
re

q
u
en

cy
 o

f
O

cc
u
re

n
ce

Hamming Distance

simulated data

curve fitted

Figure 6.11. Hamming distance distribution for various session passwords experi-
ment

148

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

H
am

m
in

g
 D

is
ta

n
ce

Number of bits change in Challenges

Average Hamming Distance

Figure 6.12. Hamming distance vs Rpadded varying from 1 to 40 bits

session password, such that Rpadded varied from 1 to 40 bits in succession. The plot

showing the variation in hamming distance with respect to various seeds to LFSR

(Rpadded) is shown in Figure 6.12. It can be inferred that the system responds to

Rpadded varying by 1 bit in succession by producing a hamming distance of 12 bits in

average over the responses (Ruser).

In experiment 3, the scenario in which the LFSR seed Rpadded varying by 1 bit

was analysed. 32 different Rpadded varying by 1 bit were created by manipulating

Cuser and session passwords.The hamming distance was computed for various Ruser

corresponding to CLFSR and is shown in Figure 6.13. It can be inferred that for a

single bit change in Rpadded, the system responds by producing a response with a

hamming distance of 13.5 in average.

These experiments provide an insight that PHAP is unique in its responses under

varying conditions. The presence of LFSR helps to mask the session password by

shifting it through a certain number of clock cycles, which helps in maintaining the

uniqueness as well as security of the system.

149

6.2.6 Security Analysis of PHAP

In this section, we present a formal description and analysis of the security of

PHAP system. Several lemmas are presented along with proofs by considering threats

from an adversary A. The security of PHAP is compromised, if A is able to obtain or

predict the user and session passwords and simulate the system within tmax to obtain

a correct response. Some of the possible threats that PHAP faces are identical to

that of PEAR [36], given the similarity in the authentication protocol used.

Lemma 1

An adversary A can attack PHAP by random session password prediction with negli-

gible probability.

Proof: Since the session password is not transmitted over the network, an adversary

A can attack the system by random session password prediction. If an attacker can

predict the session password correctly, the system can be simulated using Sim and

D(S) to compute the response within tmax. However, the session password is 32 bits

long and it is sufficiently difficult enough to predict the correct session password,

 0

 5

 10

 15

 20

 25

C
hallenge1

C
hallenge2

C
hallenge3

C
hallenge4

C
hallenge5

C
hallenge6

C
hallenge7

C
hallenge8

C
hallenge9

C
hallenge10

C
hallenge11

C
hallenge12

C
hallenge13

C
hallenge14

C
hallenge15

C
hallenge16

C
hallenge17

C
hallenge18

C
hallenge19

C
hallenge20

C
hallenge21

C
hallenge22

C
hallenge23

C
hallenge24

C
hallenge25

C
hallenge26

C
hallenge27

C
hallenge28

C
hallenge29

C
hallenge30

C
hallenge31

C
hallenge32

H
am

m
in

g
 D

is
ta

n
ce

Challenges varying by 1 bit

Average Hamming Distance

Figure 6.13. Hamming distance vs Rpadded varying by 1 bit

150

due to the size of password space (232). The attacker can continue to predict the

session password randomly by omitting the previously tried wrong password until the

correct session password is attained. However, the simulation time corresponding to

this action will be extremely high and authentication will be interrupted once tmax is

elapsed. Hence, the adversary A will never be able to realize the instant at which the

correct session password is predicted. The simulation time (tsim) is computed using

tsim = time to compute initial PUF response(Rinter)

+ time for LFSR computation + time to compute Ruser

The plot showing the probability of correct password prediction by an attacker

in the nth round with the corresponding simulation time tsim is shown in Figure

6.14. The Figure 6.14 also shows the variation in simulation time for various LFSR

operation frequencies (50 MHz and 1 GHz) and different LFSR shift cycles (10,000

and 50,000 cycles) by which the seed will be shifted.

It can be inferred that the prediction probability is very low for a given tmax =

10 ms and that the attacker can predict the correct session password only with a

probability of ≤ 10−6%. Hence, PHAP can leverage the time difference between real

time execution of S and simulation time by an adversary for authentication, even

though the description of system S and a public simulation algorithm Sim is made

public.

Lemma 2

An adversary A cannot obtain any useful information from the data transmitted be-

tween the hardware and trusted authority.

Proof: In case of passive eavesdropping, the attacker cannot recover any useful data

communicated between the hardware device and TA. The only data transmitted by

the device to TA for authentication is the tuple <ID,hash(user password)>. Even if

151

 1e-08

 1e-07

 1e-06

 1e-05

 0 50 100 150 200 250
 0.1

 1

 10

 100

 1000

 10000

P
ro

b
ab

il
it

y
 (

%
)

S
im

u
la

ti
o
n
 t

im
e

(m
s)

Number of Rounds

Probability (%)
50 MHz,10k cycles
50 MHz, 50k cycles

1 GHz 10k cycles
1 GHz 50k cycles

Figure 6.14. Simulation time and Probability plot

A has extensive computational and storage capabilities such that the hash values of

all the user passwords are stored (typically takes about 80 GB, if SHA-0 is used), the

usage of one-time user password makes user authentication by A extremely difficult.

This is mainly due to the absence of user password ordering based on the pointer

generated by TA during enrollment process.

Lemma 3

An adversary A cannot recover any useful data from the information transmitted be-

tween TA and hardware.

Proof: The only data transmitted from TA to the hardware is the tuple <pointer,

Cuser>, once an authentication request is initiated by the user. Since A has no clue

about the order of user passwords in the password card, the pointer is of no use for A.

Moreover, the presence of shared key (session password) makes the correct simulation

152

of responses for Cuser by A extremely difficult.

Lemma 4

Given physical access to the device,an adversary A can impersonate a truster user to

the trusted authority with a lower probability.

Proof: Since PHAP helps to determine the possession of the trusted hardware using

one-time user password, A would be required to predict the correct user password

based on the pointer. Even if we assume that A succeeds in predicting the user

password,the attacker would have to undergo extensive execution of S by random

session password prediction explained in Lemma 1 for hardware authentication. It is

important to note that authentication will be interrupted once tmax elapses and the

instant at which correct session password is attained will be unknown to A.

Lemma 5

A trusted user can authenticate himself along with the hardware to the trusted author-

ity with higher probability.

Proof: Since a trusted user would have access to the password card issued by TA,

user and hardware authentication is guaranteed with high probability. However, au-

thentication can fail due to additional delays in the network, such that the response

Ruser reaches TA after tmax. In such cases, the user can initiate the authentication

again and continue until the user and hardware authentication process is complete.

From the trusted authority side, tmax can be increased a little higher if additional

delays in the network are noticed.

Lemma 6

Using the previously utilized ID and user password, A can authenticate himself to the

trusted authority with negligible probability.

153

Proof: In case of passive eavesdropping, an attacker can capture the tuple<ID,hash(user

password)> during trusted user’s authentication. During subsequent authentication,

TA will search for the incoming hash(user password) in the database to identify if

the user password has been used already. If a match is found, user authentication

will be interrupted. This prevents A from using the captured hash(user password) to

authenticate himself to the trusted authority.

Theorem 1

PHAP based authentication protocol provides a secure means of trusted user and hard-

ware authentication.

Proof: By Lemma 1, we can be sure that an attacker will be able to predict the

response with negligible probability. Lemmas 2 and 3 ensure that data transmitted

between the hardware and TA does not leak any information required to compute

the response within the stipulated time. Moreover, Lemma 4 helps to ensure that

an adversary A can impersonate the trusted user even while possessing the system

S with lower probability. Lemma 5 shows trusted user and hardware authentication.

Lemma 6 shows that the previously utilized information is of no use for an attacker

and also shows how the system can protect itself against an adversary authentica-

tion. Hence, we can conclude based on the lemmas that PHAP based authentication

protocol helps for secure hardware authentication by a trusted user.

154

CHAPTER 7

SILICON PROTOTYPING

The different PUF circuits described in the earlier chapters were fabricated in

a prototype chip, named sugarloaf using IBM 32nm SOI technology. The imple-

mented PUF circuits are shown in Table 7.1. Different circuits on chip include arbiter,

current-based PUFs, nlcPUFs and reliability monitor for delay-based PUFs. Arbiter,

feed-forward and current-based PUFs were implemented using conventional and litho-

aware techniques. The unpackaged and packaged dies are shown in Figure 7.1. The

packaged versions of the dies were used for post-silicon validation. Around 32 in-

stances of each circuit were implemented on chip and the total die count was 40. The

architecture of the test chip containing PUF circuits is shown in Figure 7.2. The

configuration bits are used to select a particular PUF instance from the available

PUF banks. The bits are loaded using a scan chain setup. The controller logic, apart

from selecting a particular PUF instance, also helps to clock gate the unused PUF

instances. The scan chain is 141 bits wide, which accepts the 1-bit serial data per

clock cycle. The description of the configuration bits is shown in Table 7.2. The

configuration bits b12..b10 selects a PUF bank from the available banks. The bits b9b8

and b7..b3 are used to select a particular PUF configuration (64, 80 or 128-stage) and

a particular PUF instance from the selected configuration in the PUF bank respec-

tively. The go signal acts as a scan-enable signal when asserted low. Once go is

asserted high, the PUF computation is initiated.

The challenges for the PUF circuit are generated using a Linear Feedback Shift

Register (LFSR). Fibonacci type LFSR of different lengths (64, 80 and 128) were

155

Table 7.1. Available PUF circuits in sugarloaf

Type of PUF
No. of

instances
Available configurations

Arbiter PUF 32 64, 80 and 128 stages
Feed-forward
arbiter PUF

32 64, 80 and 128 stages

Current-based PUF 32 64, 80 and 128 stages
nlcPUF 32 64, 80 and 128 stages

Litho-aware arbiter
PUF

32 64, 80 and 128 stages

Litho-aware feed-forward
PUF

32 64, 80 and 128 stages

Litho-aware current PUF 32 64, 80 and 128 stages
Reliability monitor for

delay-based PUF
32 64 and 128 stages

implemented in order to generate random challenge bits for the available PUF config-

urations. The seeds are loaded into the LFSR registers using the scan chain. Apart

from LFSR challenge generation, user specified challenges can also be applied to the

PUF circuits through bypassing the LFSR logic. This is particularly useful for the

benchmarking work proposed in the dissertation. The architecture of challenge gen-

Figure 7.1. Unpackaged and Packaged sugarloaf die photos

156

out
en
clk
chal

out
en
clk
chal

out
en
clk
chal

out
en
clk
chal

Vdd

Vss

64/80/128

datain

out

clk

out
en
clk
chal

out
en
clk
chal

out
en
clk
chal

out
en
clk
chal

64/128

Arbiter PUF
(64/80/128

stages)

Feed-
forward PUF

(64/80/128
stages)

Current-
based PUF
(64/80/128

stages)

Non-linear
PUF

(64/80/128
stages)

Litho-aware
Arbiter PUF
(64/80/128

stages)

Litho-aware
Feed-

forward PUF
(64/80/128)

Litho-aware
current PUF
(64/80/128

stages)

Reliability
monitor for
delay PUFs

(64/128)

Controller logic
(Data and control

flow, challenge
generation and clock

gating logic)

141 1

data avail

b140 b139 b138
b2 b1 b0

Scan chain

go

Figure 7.2. Architecture of PUF portion in sugarloaf

eration logic, which is a part of the controller logic is shown in Figure 7.3. The

fabricated chip is 2mmx2mm in area. The area number of a single instance of differ-

ent PUF circuits are shown in Table 7.3. The area numbers are shown only for the

PUF circuits and the details of the controller logic are omitted. The layout snapshot

of the PUF banks with controller logic is shown in Figure 7.4.

157

Table 7.2. Configuration bits description

Bits Function
b140..b13 User specified challenge/LFSR feed
b12..b10 PUF bank selection
b9, b8 PUF configuration selection
b7..b3 PUF instance selection
b2 Enable computation
b1 Challenge selection
b0 Read output

datain

clk

b140 b139 b138
b2 b1 b0 go

clk

lfsr en

128

b 1
40

..b
13

b 1
2..

b 0

13

Scan chain

LFSR (64/80/128)
128 b140..b13

chal select (b1)

Figure 7.3. Challenge generation for PUF circuits in sugarloaf

7.1 Measurement setup

As explained above, the packaged versions of the dies were used for post-silicon

validation. To perform post-silicon validation, an FPGA based testing environment

was setup and synchronized with the test chip. The block diagram of the testing

setup is shown in Figure 7.5. A standard QFN56 test socket was used to mount the

158

Table 7.3. Area details of a single instance of various PUF circuits

Type of PUF # Stages Area (µm2)

Arbiter
64 1250
80 1560
128 2496

Feed-forward
64 1870
80 2340
128 3750

Current PUF
64 650
80 810
128 1290

nlcPUF
64 790
80 986
128 1579

1
.0

7
m

m

1.18mm

Feed-forward Arbiter PUF

Arbiter PUF

Current PUF

Controller Logic

nlcPUF

Scan chain

Arbiter PUF Reliability monitor

Figure 7.4. Layout snapshot of the PUF banks with controller logic

packaged die. Spartan-3E FPGA which operates at a voltage of 2.5V was used for

post-silicon validation setup. An off-chip bi-directional voltage converter (TXB0104)

159

Host
Computer

1.8V to 2.5V
converter
(TXB0104)

Spartan-3E
FPGA

1.8V to 2.5V
converter
(TXB0104)

ASIC
mounted on
test socket

UART Communication

0.9V supply
(TP3010D)

Configuration/input
2.5V

Configuration/input
1.8V

Status/Output
1.8V

Status/Output
2.5V

Figure 7.5. Post-silicon validation setup

between 2.5V and 1.8V was used for interfacing the FPGA and ASIC. I/O cells were

available on the test chip for bi-directional voltage level translation between 1.8V and

0.9V for the signals (clock, configuration bits and output). Tekpower TP3010D DC

power supply was used for generating 0.9V for the test chip. The FPGA helps in

loading the configuration bits into the chip and reading out the response bits from

the chip. The configuration bits are used to select the type of PUF among the other

PUF implementations and also to choose a particular instance of the selected PUF

circuit. Once the responses are available, the FPGA dumps the data into the host

computer via UART communication.

The post-silicon validation results of the performance metrics of PUF instances

can be found in the corresponding chapters.

160

CHAPTER 8

STATISTICAL BENCHMARKING FOR PUFS

8.1 Introduction

1In the earlier chapters, we presented the security vulnerabilities of cryptographic

hardware blocks. We also explored the vulnerabilities of PUF circuits to various

modeling and side-channel based attacks. To enhance the modeling attack resistance,

we presented a novel PUF circuit based on non-linear current mirrors. To enhance

the performance metrics of PUF circuits, we presented novel solutions from the per-

spectives of IC fabrication and protocol design. Although the PUFs are vulnerable to

modeling attacks, it takes an immense effort to completely understand the vulnerabil-

ity of the circuit and build a parametric model that can be scaled for various attacks.

The parametric modeling requires non-trivial level understanding of machine learning

algorithms. The “conceptualization phase” of a new PUF design involves substantial

effort and time from the PUF designer to build the parametric model and evaluate it

against possible modeling attacks. In such a scenario, the existence of a benchmark

suite for ”strong PUFs” may reduce the effort and time overheads involved in the se-

curity evaluation phase for new PUF designs. Such a benchmark suite can also help

in fine-tuning the PUF architecture to harness maximum randomness and security

from the PUF circuit. In this chapter, we present a statistical NIST based benchmark

suite for characterization of “strong PUFs”. In particular, we present an analysis of

the impacts of varying methods of challenge generation on the performance of PUF

1This is a joint collaborative work with Dr.-Ing.Ulrich Rührmair, Technische Universität
München.

161

designs. Such an analysis helps the users for choosing an optimum challenge genera-

tion method for improving the randomness of PUF designs. As the benchmark suite

is based on the existing NIST suite, the security analysis does not involve effort and

time-consuming parametric modeling involved in machine learning based attacks.

8.1.1 Need for Benchmarks

The enormous potential of modeling techniques makes the design of efficient

“strong PUFs” with improved ML-resilience an interesting research problem. How-

ever, it is non-trivial to judge the exact ML-resilience of PUFs. The question whether

a PUF can be broken efficiently by ML based attacks often depends on whether nu-

meric “models” with certain properties exist for this PUF 2. As described earlier in

this chapter, the identification of ML algorithms and suited models is time consuming

and requires a strong ML background. Furthermore, the practical failure to identify

suitable ML algorithms, or a model with certain properties, is no guarantee or “proof”

that such an algorithm or model indeed does not exist.

These constraints call for easily scalable and applicable benchmarks. The bench-

marks, in ideal scenario, should satisfy the following properties:

1. No in-depth knowledge of ML algorithms is required.

2. Easily scalable to various “strong” PUF architectures.

3. Simple parametric models without additional properties should be used.

2A “model” of a PUF is a function F that describes the mapping of challenges to their corre-
sponding responses. F usually takes as inputs the challenge C and the PUFs individual, random
internal parameters P (for example the runtime delays in an arbiter PUF), and outputs the corre-
sponding response R, i.e., R = F (C;P). This is often referred to as a parametric model of the PUF.
ML based attacks often require the parametric model to satisfy certain properties. For example, F
must be linearly separable in order to make support vector machines applicable, or differentiable
in order to allow the use of logistic regression, etc. For some PUF architectures, it might be really
difficult to construct such parametric models that satisfy the desired properties required by ML
algorithms.

162

4. Fine-grained security evaluation should be possible. For example, the suite

should be able to distinguish varying PUF bit-lengths and other architectural

parameters.

8.1.2 Contributions

Our major contributions include:

1. We present a statistical benchmark suite to evaluate the security levels of

“strong” PUFs.

2. We evaluate the impacts of varying challenge generation methods on the per-

formance of PUFs.

3. We present a brief analysis of response compressibility from “strong” PUFs and

their correlations to the benchmark suite.

8.2 Statistical Benchmarking

As described earlier, we base our benchmarks based on NIST suite. First, the

PUF target is chosen and a large sample of challenge-response pairs from the PUFs

is collected. The CRPs may be from a software PUF model, statistical circuit simu-

lations or post-silicon measurements. The PUF responses are then fed to the NIST

suite to obtain their scores for various tests.

Although we tested various PUF architectures, we will present the results from

XOR arbiter PUFs in this section for the sake of brevity. For the analysis, we collected

a large sample of responses (around 1 Million) from software PUF model of XOR

arbiter PUF structure. The PUF model is based on linear additive delay model for

arbiter PUFs and was obtained from TU Munich. The model generates n arbiter

PUFs and obtains the XOR value of the n bit response for each challenge. If n

is set to ’1’, the model generated is equivalent to a simple arbiter PUF structure.

163

 0.485

 0.49

 0.495

 0.5

 0.505

 0.51

 0.515

 2 4 6 8 10 12 14 16

B
in

a
ry

 p
ro

p
o
rt

io
n

XORs

64stage
128stage
256stage

Figure 8.1. Proportion of 0’s and 1’s in XOR arbiter PUFs for Mersenne Twister
based challenges

Varying PUF bit-lengths are used for security evaluation purposes. For this work, we

evaluate up to n = 16. We use 64, 128 and 256 stage XOR arbiter PUFs for security

evaluations using the benchmarks. For generating random challenges, we used a

pseudorandom number generator (PRNG) known as Mersenne Twister (MT). Unless

mentioned otherwise, the depicted results correspond to average results obtained from

5 random iterations.

One of the straightforward, albeit less effective way to evaluate randomness is

measuring the number of 0’s and 1’s in the response streams. We evaluated the

proportion of 0’s and 1’s in the XOR arbiter PUFs for MT based challenges and the

results are shown in Figure 8.1. It can be observed that the PUF structure produces

a fairly equal number of 0’s and 1’s across a large number of evaluations and varying

XOR lengths. So, the randomness metric based on binary proportions does not yield

any useful observation.

We therefore evaluated the responses for their NIST scores. NIST suite evaluates

the bitstream across different tests and interested readers are referred to [7] for details

on different tests. We collected the sum of different test scores and highly random

164

 10

 100

 1000

 2 4 6 8 10 12 14 16

S
u

m
 o

f
s
c
o
r
e
s

XORs

64stage
128stage
256stage

Figure 8.2. NIST scores for XOR arbiter PUFs for Mersenne Twister based chal-
lenges

stream produces the minimum score. The results from NIST suite based evaluation

of XOR arbiter PUFs for MT based challenges are shown in Figure 8.2. Again we

can infer that the results saturate beyond certain number of XORs and are not dis-

tinguishable for the given challenge generator. For example, 8- and 16-XOR arbiter

PUFs have almost the same scores and the fine-grain randomness is not noticed by the

NIST suite. One potential reason could be the randomness induced by the challenge

generation mechanism itself. In such cases, the randomness induced by the challenge

generator overrides the randomness in the PUF circuit. So, new methods of challenge

generation have to be identified to enable fine-grain security evaluation of “strong”

PUF circuits.

8.2.1 Impact of varying challenge generation methods

As the MT based challenges suppress the randomness of PUF circuits, it is essen-

tial to identify suitable challenge generation methods. The identification of suitable

challenge generators with reduced entropy, but statistically random enough is an in-

teresting research problem. Moreover, delay-based PUFs have an additional concern

165

that the maximum entropy is concentrated around the delay stages toward the arbiter.

In other words, a single bit change in challenge’s LSB bits have higher impact on the

output bit when compared to a single bit change in the MSB bits. So, it is important

to identify a suitable challenge generator with minimal change in LSB bits across the

challenges. Upon investigating various statistically random generators, quasi-random

(QR) sequences seemed to be promising enough. A quasi-random or low discrep-

ancy sequence is “less random” than a pseudorandom number sequence, but more

useful for tasks such as Monte Carlo applications and in global optimizations. This

is because low discrepancy sequences tend to sample space “more uniformly” than

random numbers. We used two popular QR sequences, namely Halton and Sobol.

The Matlab implementations of Halton and Sobol (haltonset and sobolset respec-

tively) support interesting options such as scramble, leap and skip. More details

can be found in [67].

Initially, we conducted experiments using the scramble setting turned on for gen-

erating QR sequences. Haltonset supports reverse-radix scrambling and sobolset

supports random linear scrambling. Similar to the experiments using MT generators,

the XOR arbiter PUFs up to n = 16 were evaluated for binary proportions. The

results for scrambled halton and sobol based challenge generators are shown in Fig-

ures 8.3(a) and 8.3(b) respectively. We can infer that the binary proportions do not

yield any useful observations for the PUF’s entropy similar to MT generators. So,

we carried out experiments to evaluate the NIST sum of scores for XOR arbiter PUF

responses obtained for QR sequences. The sum of scores against varying number of

XORs for Halton and Sobol sequences with scrambling are shown in Figures 8.4(a)

and 8.4(b) respectively. We can infer that the scores saturate beyond n = 6 and the

scrambled sequences suppress the entropy of the PUF circuit. Upon careful observa-

tion, we observed that the scrambled generators still have considerable amount of bit

flips towards LSB bits.

166

 0.485

 0.49

 0.495

 0.5

 0.505

 0.51

 0.515

 2 4 6 8 10 12 14 16

B
in

a
ry

 p
ro

p
o

rt
io

n

XORs

64stage
128stage
256stage

 0.485

 0.49

 0.495

 0.5

 0.505

 0.51

 2 4 6 8 10 12 14 16

B
in

a
ry

 p
ro

p
o

rt
io

n

XORs

64stage
128stage
256stage

Figure 8.3. Proportion of 0’s and 1’s in XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators with scrambling

 10

 100

 1000

 2 4 6 8 10 12 14 16

S
u

m
 o

f
s
c
o

r
e
s

XORs

64stage
128stage
256stage

 10

 100

 1000

 2 4 6 8 10 12 14 16

S
u

m
 o

f
s
c
o

r
e
s

XORs

64stage
128stage
256stage

Figure 8.4. NIST sum of scores for XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators with scrambling

This motivated us to explore the impacts of using QR sequences without any

scrambling applied during challenge generation. We set the scramble setting to

’off’ and generated the challenges. Similar to previous experiments, we collected the

binary proportions for the response streams and the results are shown in Figures 8.5(a)

and 8.5(b). Similar effects to MT and scrambled QR sequences were observed with

the binary proportions experiment.

As binary proportions experiment didn’t yield positive results even without scram-

bling, we evaluated the responses obtained from QR unscrambled sequences using the

NIST suite. The sum of scores against the varying number of XORs are shown in

167

 0.492

 0.494

 0.496

 0.498

 0.5

 0.502

 0.504

 2 4 6 8 10 12 14 16

B
in

a
ry

 p
ro

p
o

rt
io

n

XORs

64stage
128stage
256stage

 0.495

 0.5

 0.505

 0.51

 0.515

 0.52

 0.525

 2 4 6 8 10 12 14 16

B
in

a
ry

 p
ro

p
o

rt
io

n

XORs

64stage
128stage
256stage

Figure 8.5. Proportion of 0’s and 1’s in XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators without scrambling

Figures 8.6(a) and 8.6(b) respectively. We can infer from the figures that Sobol un-

scrambled generator performs similar to the other generators explained above with the

scores saturating beyond certain number of XORs. However, Halton based generator

has the minimal number of bit-flips towards LSB bits and yields expected results as

shown in Figure 8.6(a). The NIST based suite captures the entropy of the PUF circuit

as the entropy of Halton unscrambled generator is very less. Moreover, the different

versions of PUF circuits (64, 128 and 256 stages) and varying number of XORs can

be clearly identified as seen in Figure 8.6(a). For example, increasing the number of

XORs makes the response highly random as noted by decreasing sum of scores. The

results agree well with the modeling attack results trend usually observed in PUFs.

The modeling attack resistance increases exponentially with increasing number of

XORs similar to the trend shown in Figure 8.6(a). This analysis shows that Hal-

ton unscrambled generator could be highly useful for predicting the modeling attack

resistance of PUFs using simple NIST suite. The benchmark suite using Halton un-

scrambled generator also enables fine-grained security assessment such as the impacts

of varying XORs, bit-lengths, etc.

168

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

S
u

m
 o

f
s
c
o

r
e
s

XORs

64stage
128stage
256stage

 10

 100

 1000

 2 4 6 8 10 12 14 16

S
u

m
 o

f
s
c
o

r
e
s

XORs

64stage
128stage
256stage

Figure 8.6. NIST sum of scores for XOR arbiter PUFs for Halton(left) and
Sobol(right) based generators without scrambling

8.3 Response Compressibility Analysis

In addition to the benchmark suite analyses, we also evaluated the PUFs against

response compression algorithms. If the outputs are highly random, the compression

ratio should be lower and if the outputs are not random enough, the responses will be

highly compressible. We used two compression algorithms with very high compression

rations:

1. 7z [2]: Lempel-Ziv-Markov chain algorithm (LZMA2) method of 7-zip compres-

sion algorithm

2. AdvanceCOMP: Huffman based compression algorithm. We refer to it as “Adv-

comp” further in the document.

Both the compression algorithms support varying levels of compression ranging from

“nominal” to “extreme”. Although we achieved similar result trends using both the

settings, we present the results obtained using the “extreme” setting for the sake of

brevity.

Initially we evaluated the XOR arbiter PUFs for data compressibilities using the

response streams obtained from MT based challenge generator. The results are shown

in Figures 8.7(a) and 8.7(b). We can infer that the compression ratios are almost

169

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

Figure 8.7. Compression ratios for MT generator based XOR arbiter PUFs using
7z(left) and Advcomp(right) algorithms

identical for varying number of XORs. This is due to the fact that the challenge

generator’s entropy dominates the entropy of the PUF circuit. As the challenge set

is same for all the XOR PUF structures, the compression ratios are almost identical.

These results agree well with the benchmark suite results obtained for MT based

challenge generators.

As MT based challenge generators didn’t yield satisfactory results, we evaluated

the XOR arbiter PUFs for data compressibilities using QR sequences. We initially

used scrambled QR generators to generate response bitstreams. The compression

ratios of the response bitstreams from 7z and Advcomp algorithms are shown in Fig-

ure 8.8. We can infer that both the halton and sobol scrambled generators produce

identical compression ratios against the varying number of XORs, thereby not provid-

ing an opportunity to perform fine-grained security assessments. Again, the results

agree well with the benchmark suite results.

Similar to the benchmark suite experiments, a breakthrough was obtained using

the unscrambled versions of QR generators. We set the scramble setting to “off”

and generated the challenge streams. The response bitstreams obtained using the

challenge streams were then evaluated against 7z and Advcomp algorithms. The

compression ratios against varying number of XORs are shown in Figure 8.9. It can

170

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16
C

o
m

p
.

ra
ti

o

XORs

64stage
128stage
256stage

Figure 8.8. Compression ratios for scrambled halton(top) and sobol(bottom) gen-
erators based XOR arbiter PUFs using 7z(left) and Advcomp(right) algorithms

be inferred that the data compression algorithms were able to distinguish the varying

number of XORs upto certain extent(n = 5) for unscrambled QR based response

streams. The compression ratios were higher for lower number of XORs and starts

reducing with increasing number of XORs. This is obviously due to the fact that

increasing number of XORs also increases the entropy of PUF responses. Even bet-

ter results were observed for halton unscrambled generators as seen from Figure 8.9.

The data compression algorithms were able to distinguish varying number of XORs

and bitlengths to extents better than the unscrambled sobol generator. In particular,

Advcomp yields significantly better results for unscrambled Halton generator than

the sobol counterpart. The fine-grained security evaluations agree quite well with the

benchmark suite results. However, the fine-grained security assessments are still not

accurate enough when compared to the results obtained from benchmark suites. One

171

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
o

m
p

.
ra

ti
o

XORs

64stage
128stage
256stage

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16
C

o
m

p
.

ra
ti

o

XORs

64stage
128stage
256stage

Figure 8.9. Compression ratios for unscrambled halton(top) and sobol(bottom)
generators based XOR arbiter PUFs using 7z(left) and Advcomp(right) algorithms

potential reason could be the limited data compression resolutions of the compres-

sion algorithms employed. As part of our future work, we will be exploring several

other data compression algorithms that enable highly accurate fine-grained security

assessments.

In general, we were able to verify the authenticity of the NIST based benchmark

suite using our analysis on data compressibilities. The results from compressibility

analysis follow the same trend as the results from benchmark suite to certain extent.

We were able to verify that the unscrambled Halton generator yields the optimum

results to enable fine-grained security assessments of the XOR arbiter PUFs.

172

CHAPTER 9

CONCLUSION AND FUTURE WORK

Moore’s law has continuously driven the semiconductor industry over the past

few decades. The semiconductor technology has certainly had a major impact on

significant improvements in various things ranging from day-to-day human lives to

rocket-science. With the continuous improvements in wireless and mobile computing

thanks to semiconductor technology and in turn Moore’s law, people tend to rely

on pocket-size devices for executing a gamut of day-to-day activities. Some of these

activities often involve storage and processing of sensitive data, which puts security

and privacy protection at forefront position. As the data is often transmitted over

untrusted wireless medium, the devices are equipped with means to provide cryp-

tographic protection to the transmitted data. As the devices are getting smaller in

size and power with technology scaling, it has provided an excellent platform for

advancements of lightweight cryptographic algorithms. However, the advancements

in lightweight crypto- blocks face challenges from ever-increasing process variations

and various forms of hardware and software level threats. In this work, we have

demonstrated the vulnerabilities of lightweight cryptographic blocks to different forms

of fault-injection attacks. In particular, we have presented novel hardware Trojans

based techniques to inject transient faults into a cryptographic circuit. The Trojan

insertion techniques are based on altering the voltage transfer characteristic (VTC)

of the target gate through the manipulation of doping concentration and/or dopant

area of a transistor. We demonstrated that the proposed fault-injection methods

are suited for attacks on cryptographic circuits requiring high precision by mounting

173

attacks on state-of-art lightweight cryptographic block ciphers such as LED-64 and

PRINCE. This holds for the rather simple attack on LED-64, which needs one ex-

ploitable fault in most cases, as well as for a more sophisticated two-stage attack on

PRINCE where fault locations in both stages interfere with each other. Conventional

tamper-resistance techniques, such as shielding or voltage-drop sensors, are largely

ineffective against attacks presented in this work but may still be required to protect

the circuit against other threats. It appears that effective countermeasures against

parametric fault injection are on protocol level (frequent key regeneration) or infor-

mation level (concurrent error detection). The MAPLE Trojans can substantially

bias the fault injection towards the locations desired by the attacker, and they are

nearly undetectable by all known test methods. In summary, our results suggest

that the right mix of countermeasures on different abstraction levels is essential for

comprehensive protection.

Although process variations are detrimental to a circuit’s operation, PUFs have

been proposed as a viable solution to harness the unpredictable nature of process

variations for security applications. Initially, PUFs were assumed to be inherently

tolerant to various attacks and threats. To analyze the vulnerabilities of PUF circuits,

we designed and fabricated different PUF architectures such as arbiter, feed-forward

arbiter, current-based PUFs in 32nm SOI technology available from IBM. The vari-

ous modeling attacks mounted on these different PUF architectures suggest that the

existing PUFs are highly vulnerable to machine learning based modeling attacks. The

prediction accuracies for these PUF circuits reach more than 98% for a limited set of

training CRPs. However, the performance of modeling attacks are highly impacted

by the presence of error-prone CRPs in the learning and training set CRPs. To that

extent, we have proposed a technique that exploits data-dependent information from

the PUF target and use it in conjunction with a machine learning algorithm in order

to improve the performance of modeling attack. The data-dependent information is

174

extracted through the use of a fault-injection attack on the PUF target. We demon-

strated the effectiveness of the technique by mounting hybrid attacks on all the PUF

targets mentioned above. The vulnerabilities of existing PUF circuits impose a strong

pressing need on design of efficient and secure PUF designs. To that extent, we pre-

sented the design and analysis of a modeling attack resistant PUF design based on

non-linear circuit elements. The circuit relies on current switching using non-linear

current mirrors, where the amount of current switch is dependent on the challenge

bit and the input current itself. The post-silicon validation of the circuit using IBM

32nm SOI process indicates that the PUF circuit has excellent statistical and secu-

rity properties. The non-linear PUF exhibits around 10x and 20-25x improvements

in modeling and hybrid attack tolerances respectively. Moreover, the silicon area

numbers of the proposed PUF are at par with other strong PUF architectures.

Apart from security levels, there are other important performance metrics to be

satisfied for commercial deployments. This thesis explored techniques to improve the

performance of PUFs from various circuit and system level perspectives. Fabrication

aware design technique that exploits forbidden pitches in sub-wavelength lithography

has been proposed to improve the performance of PUF. The proposed design frame-

work is highly generic and can be applied with minimal effort to any silicon based

PUF implementation that relies on process variations. We also presented a system

level technique/protocol for enhancing the performance of PUF based systems by

extending the concept of trusted user and device authentication. Finally, we pre-

sented a statistical method to evaluate PUF circuits and also to predict the security

levels of strong PUF architecture during the conceptualization phase. As mounting

modeling attacks involve time and effort-consuming parametric modeling and deep

knowledge of machine learning algorithms, the process of conceptualizing new PUF

architectures is often cumbersome. However, the proposed benchmark suite builds

upon the existing NIST test suite and requires a basic parametric model without ad-

175

ditional properties to be satisfied unlike the parametric models involved in machine

learning based attacks. We also presented data compression analyses to validate the

performance of statistical benchmark suite against fine-grained security assessments.

In general, secure computation in nanometer CMOS regime is highly complicated

and the desire to build efficient cryptographic systems will be hard to quench. The

ever-increasing process variations provide both an excellent platform and also a stum-

ble block for varying levels of hardware security applications. Further, the evolving

styles of computation logic present an excellent opportunity to identify different types

of implementation strategies for hardware security blocks in order to address various

forms of possible threats. Overall, the field of hardware security in nanometer CMOS

promise an exciting future for commercial and research fields.

9.1 Future Work

This dissertation has touched the fields of hardware Trojans, fault-injection at-

tacks, modeling attacks and PUFs and the common observation is that the results can

be extended in the future. Some of the possible avenues for extension are provided

in this section.

• Hardware Trojans: This work touched upon manipulation of manufacturing

process parameters to insert hardware Trojans. As the Trojan gates are iden-

tical to normal gates in metal and polysilicon layers, it is extremely hard to

detect them through optical inspection. Recent work shows that dopant-area

manipulation can be detected through scanning electron microscopy, albeit at

an increased cost when compared to metal layer detection [85]. However, no

existing work shows that doping concentration based manipulation can be de-

tected through optical inspection. The identification of detection strategies and

possible countermeasures for manufacturing process Trojans is extremely im-

176

portant for secure computation logic. Design of cross-level protective schemes

which balance security against efficiency and cost is a challenge for the future.

• PUFs: The last decade or so has seen an enormous amount of work put forth

to make and break PUF circuits. Majority of the work are based on identifying

suitable parametric models for analysis and attack purposes. Due to cost and

effort constraints, majority of the work report results from simulations instead

of post-silicon measurements. In such cases, extreme care must be taken to

identify suitable process variation models to enable accurate characterization of

PUFs. Although process variations are random enough, the presence of spatial

correlations degrade the performance of PUFs. So, the process variation mod-

els should be built to incorporate the correlation component. This also paves

opportunity to exploit various lithographic sources of variations in order to sup-

press the correlation component in process variations. This work touched upon

the concept of forbidden pitches to suppress spatial correlations in process vari-

ations. However, there exist a wide-range of opportunities in sub-wavelength

lithography that can be exploited for improving the performance of PUF cir-

cuits. Moreover, the most common technique to improve the reliability of PUF

circuits is to employ error-correction codes (ECC). Depending on the amount

of unreliability in PUFs, the size of ECC may increase and pose additional con-

straints for commercial deployments. As reliability of a PUF is directly related

to security levels, novel techniques from circuit- and system-level perspectives

are needed to improve the reliability of PUFs in order to reduce the workload on

ECCs. The proposed hybrid attacks that exploit unreliable CRPs also indicate

that reliability issues in PUFs should be addressed in the near future. Finally,

various forms of attacks indicate that novel and efficient “strong” PUF archi-

tectures that are inherently tolerant to modeling attacks present a challenge to

the future.

177

• Benchmarking PUFs: This work presented a brief description and analysis of

extending NIST suite to develop benchmarks for early-stage analysis of PUF ar-

chitectures. While QR sequences seem appropriate for statistical benchmarks,

the results indicate that a comprehensive analysis of the impacts of various

statistically random sequences on NIST based benchmark suite are needed. Al-

though an architecture independent sequence would reduce the time and effort,

it is important to identify the different sensitivity levels of the PUF target to

varying random sequences. This would enable the designers to perform security

assessments at extreme fine-grained levels. The identification of suitable data

compression algorithms for performing fine-grained security assessments is also

an exciting venue for research in PUF benchmarking field.

178

BIBLIOGRAPHY

[1] International Technology Roadmap for Semiconductor (ITRS), 2006.

[2] 7-zip. 7z format. http://www.7-zip.org/7z.html.

[3] Antoni, L., Leveugle, R., and Feher, B. Using Run-time Reconfiguration for
Fault Injection in Hardware Prototypes. In IEEE Defect and Fault Tolerance in
VLSI Systems (2000), pp. 405–413.

[4] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and Whelan, C. The
Sorcerers Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94, 2
(2006), 370–382.

[5] Barenghi, A., Bertoni, G., Parrinello, E., and Pelosi, G. Low Voltage Fault
Attacks on the RSA Cryptosystem. In Fault Diagnosis and Tolerance in Cryp-
tography – FDTC 2009. 6th Workshop on (2009), pp. 23–31.

[6] Barenghi, A., Breveglieri, L., Koren, I., and Naccache, D. Fault Injection Attacks
on Cryptographic Devices: Theory, Practice and Countermeasures. Proceedings
of the IEEE 100, 11 (2012), 3056–3076.

[7] Bassham, III, Lawrence E., Rukhin, Andrew L., Soto, Juan, Nechvatal, James R.,
Smid, Miles E., Barker, Elaine B., Leigh, Stefan D., Levenson, Mark, Vangel,
Mark, Banks, David L., Heckert, Nathanael Alan, Dray, James F., and Vo, San.
Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom number
generators for cryptographic applications, 2010.

[8] Becker, G., and Kumar, R. Active and passive side-channel attacks on delay
based PUF designs. Cryptology ePrint Archive, Report 2014/287, 2014.

[9] Becker, G.T., Regazzoni, F., Paar, C., and Burleson, W. Stealthy Dopant-Level
Hardware Trojans. In Cryptographic Hardware and Embedded Systems - CHES
2013, vol. 8086 of LNCS. Springer Berlin Heidelberg, 2013, pp. 197–214.

[10] Biham, E., and Shamir, A. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Annual Int’l Cryptology Conf. (1997), vol. 1294 of LNCS, pp. 513–525.

[11] Blaauw, D., Chopra, K., Srivastava, A., and Scheffer, L. Statistical timing anal-
ysis: From basic principles to state of the art. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27, 4 (2008), 589–607.

179

[12] Boneh, D., DeMillo, R.A., and Lipton, R.J. On the Importance of Elimination
Errors in Cryptographic Computations. Journal of Cryptology (2001), pp. 101–
119.

[13] Borghoff, J., et al. PRINCE – A Low-Latency Block Cipher for Pervasive Com-
puting Applications. In Advances in Cryptology – ASIACRYPT 2012 (2012),
Xiaoyun Wang and Kazue Sako, Eds., vol. 7658 of LNCS, Springer Berlin Hei-
delberg, pp. 208–225.

[14] Bösch, C., Guajardo, J., Sadeghi, A-R., Shokrollahi, J., and Tuyls, P. Efficient
helper data key extractor on FPGAs. In Cryptographic Hardware and Embedded
Systems CHES 2008, vol. 5154 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008, pp. 181–197.

[15] Canivet, G., Maistri, P., Leveugle, R., Clediere, J., Valette, F., and Renaudin,
M. Glitch and Laser Fault Attacks onto a Secure AES Implementation on a
SRAM-Based FPGA. Journal of Cryptology 24, 2 (2011), 247–268.

[16] Cha, B., and Gupta, S.K. Trojan Detection Via Delay Measurements: A New
Approach to Select Paths and Vectors to Maximize Effectiveness and Minimize
Cost. In Design Automation and Test in Europe (2013), pp. 1265–1270.

[17] Delvaux, J., and Verbauwhede, I. Fault injection modeling attacks on 65nm ar-
biter and RO sum PUFs via environmental changes. Cryptology ePrint Archive,
Report 2013/619, 2013.

[18] Delvaux, J., and Verbauwhede, I. Side channel modeling attacks on 65nm arbiter
PUFs exploiting cmos device noise. In Hardware-Oriented Security and Trust
(HOST) (June 2013), pp. 137–142.

[19] Dodis, Y., Reyzin, L., and Smith, A. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Advances in Cryptology - EURO-
CRYPT 2004, vol. 3027 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 523–540.

[20] Engelke, P., Polian, I., Renovell, M., Kundu, S., Seshadri, B., and Becker, B. On
Detection of Resistive Bridging Defects by Low-Temperature and Low-Voltage
Testing. IEEE Trans. on CAD 27, 2 (February 2008), 327–338.

[21] et al., Shiyanovskii. Process Reliability Based Trojans Through NBTI and HCI
Effects. In NASA/ESA Conf. Adaptive Hardware and Systems (2010), pp. 215–
222.

[22] Farrar, N.R., Smith, A.H., Busath, D.R., and Taitano, D. In-situ measurement
of lens aberrations. Proc. of SPIE 4000 (2000), 18–29.

[23] Forte, D., and Srivastava, A. Manipulating manufacturing variations for better
silicon-based physically unclonable functions. In Proc. IEEE Computer Society
Annual Symposium on VLSI (Aug. 2012), pp. 171 –176.

180

[24] Forte, D., and Srivastava, A. On improving the uniqueness of silicon-based
physically unclonable functions via optical proximity correction. In IEEE/ACM
Design Automation Conference (june 2012), pp. 96 –105.

[25] Frikken, K.B., Blanton, M., and Atallah, M.J. Robust authentication using phys-
ically unclonable functions. In Proceedings of the 12th International Conference
on Information Security (Berlin, Heidelberg, 2009), ISC ’09, Springer-Verlag,
pp. 262–277.

[26] Guo, J., Peyrin, T., Poschmann, A., and Robshaw, M. The LED Block Cipher.
LNCS 6917 (2011), pp. 326–341.

[27] Hearst, M. Support vector machines. In IEEE Intelligent Systems (1998), pp. 18–
28.

[28] Heather, J., Lowe, G., and Schneider, S. How to prevent type flaw attacks on
security protocols. J. Comput. Secur. 11, 2 (Mar. 2003), 217–244.

[29] Hojsik, M., and Rudolf, B. Differential Fault Analysis of Trivium. In Int’l
Workshop on Fast Software Encryption (2008), vol. 5086 of LNCS, pp. 158–172.

[30] Holcomb, D.E., Burleson, W., and Fu, K. Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In Proceedings of the Conference
on RFID Security (2007).

[31] Holcomb, D.E., and Fu, K. Bitline PUF: Building native challenge-response PUF
capability into any SRAM. In Cryptographic Hardware and Embedded Systems
CHES 2014, Lejla Batina and Matthew Robshaw, Eds., vol. 8731 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 510–526.

[32] Hospodar, G., Maes, R., and Verbauwhede, I. Machine learning attacks on
65nm arbiter PUFs: Accurate modeling poses strict bounds on usability. In
IEEE International Workshop on Information Forensics and Security (2012).

[33] International, SypherMedia. Circuit Camouflage Technology - SMI IP Protection
and Anti-Tamper Technologies. White Paper Version 1.9.8j, 2012.

[34] Jovanovic, P., Kreuzer, M., and Polian, I. A Fault Attack on the LED Block
Cipher. In COSADE (2012), W. Schindler and S.A. Huss, Eds., vol. 7275 of
LNCS, Springer Berlin Heidelberg, pp. 120–134.

[35] Jovanovic, Philipp, Kreuzer, Martin, and Polian, Ilia. Multi-Stage Fault Attacks
on Block Ciphers. Cryptology ePrint Archive, Report 2013/778, 2013.

[36] Kerr, S., Kirkpatrick, M.S., and Bertino, E. PEAR: a hardware based protocol
authentication system. In Proceedings of the 3rd ACM SIGSPATIAL Interna-
tional Workshop on Security and Privacy in GIS and LBS (New York, NY, USA,
2010), SPRINGL ’10, ACM, pp. 18–25.

181

[37] Kim, C.H., and Quisquater, J.-J. Fault Attacks for CRT Based RSA: New
Attacks, New Results, and New Countermeasures. LNCS 4462 (2007), pp. 215–
228.

[38] Kim, D., Cho, Choongyeun, Kim, Jonghae, Plouchart, J.-O., Trzcinski, R., and
Ahlgren, D. CMOS mixed-signal circuit process variation sensitivity charac-
terization for yield improvement. In Proc. IEEE Custom Integrated Circuits
Conference (Sept. 2006), pp. 365 –368.

[39] Kim, I., Maiti, A., Nazhandali, L., Schaumont, P., Vivekraja, V., and Zhang, H.
From statistics to circuits: Foundations for future physical unclonable functions.
In Towards Hardware-Intrinsic Security, Ahmad-Reza Sadeghi and David Nac-
cache, Eds., Information Security and Cryptography. Springer Berlin Heidelberg,
2010, pp. 55–78.

[40] Kocher, P., Jaffe, J., and Jun, B. Differential Power Analysis. In Annual Int’l
Cryptology Conf. (1999), vol. 1666 of LNCS, pp. 388–397.

[41] Kumar, R., and Burleson, W. PHAP: Password based hardware authentica-
tion using pufs. In Microarchitecture Workshops (MICROW), 2012 45th Annual
IEEE/ACM International Symposium on (Dec 2012), pp. 24–31.

[42] Kumar, R., and Burleson, W. Litho-aware and low power design of a secure
current-based physically unclonable function. In Low Power Electronics and
Design (ISLPED), 2013 IEEE International Symposium on (Sept 2013), pp. 402–
407.

[43] Kumar, R., and Burleson, W. Hybrid modeling attacks on current-based PUFs.
In Computer Design (ICCD), 2014 32nd IEEE International Conference on (Oct
2014), pp. 493–496.

[44] Kumar, R., and Burleson, W. On design of a highly secure PUF based on non-
linear current mirrors. In Hardware-Oriented Security and Trust (HOST), 2014
IEEE International Symposium on (May 2014), pp. 38–43.

[45] Kumar, R., Chandrikakutty, H.K., and Kundu, S. On improving reliability of
delay based physically unclonable functions under temperature variations. In
Hardware-Oriented Security and Trust (June 2011), pp. 142–147.

[46] Kumar, R., Dhanuskodi, S.N., and Kundu, S. On manufacturing aware physical
design to improve the uniqueness of silicon-based physically unclonable functions.
In VLSI Design and 2014 13th International Conference on Embedded Systems,
2014 27th International Conference on (Jan 2014), pp. 381–386.

[47] Kumar, R., Jovanovic, P., Burleson, W., and Polian, I. Parametric trojans for
fault-injection attacks on cryptographic hardware. Cryptology ePrint Archive,
Report 2014/783, 2014.

182

[48] Kumar, R., Jovanovic, P., and Polian, I. Precise fault-injections using voltage
and temperature manipulation for differential cryptanalysis. In On-Line Testing
Symposium (IOLTS), 2014 IEEE 20th International (July 2014), pp. 43–48.

[49] Kumar, R., Patil, V.C., and Kundu, S. On design of temperature invariant
physically unclonable functions based on ring oscillators. In VLSI (ISVLSI),
2012 IEEE Computer Society Annual Symposium on (Aug 2012), pp. 165–170.

[50] Kundu, S., Sreedhar, A., and Sanyal, A. Forbidden pitches in sub-wavelength
lithography and their implications on design. Journal of Computer-Aided Mate-
rials Design 14 (Apr. 2007), 79–89.

[51] Lim, D. Extracting secret keys from integrated circuits. Master’s thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science, 2004.

[52] Lim, D., Lee, J.W., Gassend, B., Suh, E., van Dijk, M., and Devadas, S. Ex-
tracting secret keys from integrated circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 13, 10 (oct. 2005), 1200 –1205.

[53] Lin, L., Holcomb, D.E., Krishnappa, D.K., Shabadi, P., and Burleson, W.
Low-power sub-threshold design of secure physical unclonable functions. In
ACM/IEEE International Symposium on Low-Power Electronics and Design
(aug. 2010), pp. 43 –48.

[54] Lin, L., Srivathsa, S., Krishnappa, D.K., Shabadi, P., and Burleson, W. Design
and validation of arbiter-based PUFs for sub-45-nm low-power security appli-
cations. IEEE Transactions on Information Forensics and Security 7, 4 (aug.
2012), 1394 –1403.

[55] Lopez-Ongil, C., Garcia-Valderas, M., Portela-Garcia, M., and Entrena, L. Au-
tonomous Fault Emulation: A New FPGA-Based Acceleration System for Hard-
ness Evaluation. IEEE Transactions on Nuclear Science 54, 1 (2007), 252–261.

[56] M. Tunstall, D. Mukhopadhyay, and S. Ali. Differential Fault Analysis of the
Advanced Encryption Standard Using a Single Fault. In Information Security
Theory and Practice. Security and Privacy of Mobile Devices in Wireless Com-
munication (2011), vol. 6633 of LNCS, pp. 224–233.

[57] Mack, C. Fundamental Principles of Optical Lithography: The Science of Micro-
fabrication. Wiley-Interscience, 2007.

[58] Maes, R., and Verbauwhede, I. Physically unclonable functions: A study on the
state of the art and future research directions. In Towards Hardware-Intrinsic
Security, Ahmad-Reza Sadeghi and David Naccache, Eds., Information Security
and Cryptography. Springer Berlin Heidelberg, 2010, pp. 3–37.

183

[59] Mahmoud, A., Rührmair, U., Majzoobi, M., and Koushanfar, F. Combined
modeling and side channel attacks on strong PUFs. Cryptology ePrint Archive,
Report 2013/632, 2013.

[60] Maiti, A., Gunreddy, V., and Schaumont, P. A systematic method to evaluate
and compare the performance of physical unclonable functions. In Embedded
Systems Design with FPGAs. Springer New York, 2013, pp. 245–267.

[61] Majzoobi, M., Ghiaasi, Golsa, Koushanfar, F, and Nassif, S.R. Ultra-low power
current-based PUF. In Circuits and Systems (ISCAS), 2011 IEEE International
Symposium on (May 2011), pp. 2071–2074.

[62] Majzoobi, M., Koushanfar, F., and Potkonjak, M. Testing techniques for hard-
ware security. In IEEE International Test Conference (oct. 2008), pp. 1 –10.

[63] Mangard, S., Oswald, E., and Popp, T. Power Analysis Attacks Revealing the
Secrets of Smartcards. Springer, 2007.

[64] Mangasarian, O. L., and Musicant, David R. Lagrangian support vector ma-
chines. J. Machine Learning Research 1 (Sept. 2001), 161–177.

[65] Mangasarian, O.L., and Musicant, D. R. LSVM Software: active set support
vector machine classification software, 2000. www.cs.wisc.edu/∼musicant/lsvm/.

[66] Mathew, S.K., Satpathy, S.K., Anders, M.A., Kaul, H., Hsu, S.K., Agarwal, A.,
Chen, G.K., Parker, R.J., Krishnamurthy, R.K., and De, V. 16.2 a 0.19pj/b pvt-
variation-tolerant hybrid physically unclonable function circuit for 100% stable
secure key generation in 22nm CMOS. In Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2014 IEEE International (Feb 2014), pp. 278–279.

[67] Mathworks. Generating quasi-random numbers. http://www.mathworks.com/

help/stats/generating-quasi-random-numbers.html.

[68] Moore’s, Law. Wikipedia. http://en.wikipedia.org/wiki/Moore\%27s_law.

[69] Narasinham, S., and Bhunia, S. Hardware Trojan Detection. In Introduction
to Hardware Security and Trust, M. Tehranipoor and C. Wang, Eds. Springer,
2012, pp. 339–364.

[70] Needham, R.M., and Schroeder, M.D. Using encryption for authentication in
large networks of computers. Commun. ACM 21, 12 (Dec. 1978), 993–999.

[71] Otway, D., and Rees, O. Efficient and timely mutual authentication. SIGOPS
Oper. Syst. Rev. 21, 1 (Jan. 1987), 8–10.

[72] Öztürk, Erdinç, Hammouri, Ghaith, and Sunar, Berk. Towards robust low cost
authentication for pervasive devices. In Proceedings of the 2008 Sixth Annual
IEEE International Conference on Pervasive Computing and Communications
(Washington, DC, USA, 2008), PERCOM ’08, IEEE Computer Society, pp. 170–
178.

184

[73] Pappu, R.S. Physical one-way functions. PhD thesis, Massachusetts Institute of
Technology, March 2001.

[74] Polian, I. Power Supply Noise: Causes, Effects, and Testing. ASP Jour. Low-
Power Electronics 6, 2 (2010), 326–338.

[75] Ronse, K., Jansen, P., Gronheid, R., Hendrickx, E., Maenhoudt, M., Goethals,
M., and Vandenberghe, G. Lithography options for the 32nm half pitch node
and beyond. In Custom Integrated Circuits Conference, 2008. CICC 2008. IEEE
(sept. 2008), pp. 371 –378.

[76] Rührmair, U. Oblivious transfer based on physical unclonable functions. In
Trust and Trustworthy Computing, vol. 6101. Springer Berlin Heidelberg, 2010,
pp. 430–440.

[77] Rührmair, U. SIMPL systems, or: can we design cryptographic hardware without
secret key information? In Proceedings of the 37th international conference on
Current trends in theory and practice of computer science (Berlin, Heidelberg,
2011), SOFSEM’11, Springer-Verlag, pp. 26–45.

[78] Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., and Schmidhuber,
J. Modeling attacks on physical unclonable functions. In ACM conference on
Computer and communications security (New York, NY, USA, 2010), CCS ’10,
ACM, pp. 237–249.

[79] Rührmair, U., Sölter, J., Sehnke, F., Xu, Xiaolin, Mahmoud, A., Stoyanova,
V., Dror, G., Schmidhuber, J., Burleson, W., and Devadas, S. PUF modeling
attacks on simulated and silicon data. Information Forensics and Security, IEEE
Transactions on 8, 11 (Nov 2013), 1876–1891.

[80] Satpathy, S., Mathew, S., Li, Jiangtao, Koeberl, P., Anders, M., Kaul, H., Chen,
G., Agarwal, A., Hsu, S., and Krishnamurthy, R. 13fj/bit probing-resilient 250k
PUF array with soft darkbit masking for 1.94% bit-error in 22nm tri-gate CMOS.
In European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014 - 40th
(Sept 2014), pp. 239–242.

[81] Schmidt, J., and Herbst, C. A Practical Fault Attack on Square and Multiply.
In Fault Diagnosis and Tolerance in Cryptography – FDTC 2008. 5th Workshop
on (2008), pp. 53–58.

[82] Selmane, N., Guilley, S., and Danger, J.-L. Practical Setup Time Violation
Attacks on AES. In Dependable Computing Conference (2008), pp. 91–96.

[83] Sreedhar, A., and Kundu, S. On modeling impact of sub-wavelength lithography
on transistors. In Proc. International Conference on Computer Design (Oct.
2007), pp. 84 –90.

185

[84] Sreedhar, A., and Kundu, S. Physically unclonable functions for embeded se-
curity based on lithographic variation. In Design, Automation Test in Europe
Conference Exhibition (DATE) (March 2011), pp. 1 –6.

[85] Sugawara, T., Suzuki, D., Fujii, R., Tawa, S., Hori, R., Shiozaki, M., and Fujino,
T. Reversing stealthy dopant-level circuits. In Cryptographic Hardware and
Embedded Systems CHES 2014, Lejla Batina and Matthew Robshaw, Eds.,
vol. 8731 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2014, pp. 112–126.

[86] Suh, G.E., and Devadas, S. Physical unclonable functions for device authen-
tication and secret key generation. In Proceedings of the 44th annual Design
Automation Conference (New York, NY, USA, 2007), DAC ’07, ACM, pp. 9–14.

[87] Tehranipoor, M, and Koushanfar, F. A Survey of Hardware Trojan Taxonomy
and Detection. IEEE Design & Test of Computers 27, 1 (2010), 10–25.

[88] Verbauwhede, I., and Maes, R. Physically unclonable functions: manufacturing
variability as an unclonable device identifier. In ACM Great Lakes Symposium
on VLSI’11 (2011), pp. 455–460.

[89] Vivekraja, V., and Nazhandali, L. Feedback based supply voltage control for
temperature variation tolerant PUFs. In VLSI Design (Jan 2011), pp. 214–219.

[90] Wang, W., Reddy, V., Yang, B., Balakrishnan, V., Krishnan, S., and Cao, Y.
Statistical prediction of circuit aging under process variations. In IEEE Custom
Integrated Circuits Conference (2008), pp. 13–16.

[91] Wilamowski, B.M, Ferre-Pikal, E.S, and Kaynak, O. Low power, current mode
CMOS circuits for synthesis of arbitrary nonlinear functions. In Proc. NASA
Symposium on VLSI Design (2000).

[92] Yu, Meng-Day, and Devadas, S. Secure and robust error correction for physical
unclonable functions. IEEE Design Test of Computers 27, 1 (2010), 48–65.

[93] Zussa, L., et al. Efficiency of a Glitch Detector Against Electromagnetic Fault
Injection. In Design Automation and Test in Europe (2014).

186

	Threat Analysis, Countermeaures and Design Strategies for Secure Computation in Nanometer CMOS Regime
	Recommended Citation

	tmp.1438842337.pdf.mc3Uk

