243 research outputs found

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Multicast protection and energy efficient traffic grooming in optical wavelength routing networks.

    Get PDF
    Zhang, Shuqiang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (p. 74-80).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.ivAcknowledgements --- p.vTable of Contents --- p.viChapter Chapter 1 --- Background --- p.1Chapter 1.1 --- Routing and Wavelength Assignment --- p.1Chapter 1.2 --- Survivability in Optical Networks --- p.3Chapter 1.3 --- Optical Multicasting --- p.4Chapter 1.3.1 --- Routing and Wavelength Assignment of Optical Multicast --- p.5Chapter 1.3.2 --- Current Research Topics about Optical Multicast --- p.8Chapter 1.4 --- Traffic Grooming --- p.10Chapter 1.4.1 --- Static Traffic Grooming --- p.11Chapter 1.4.2 --- Dynamic Traffic Grooming --- p.13Chapter 1.5 --- Contributions --- p.15Chapter 1.5.1 --- Multicast Protection with Scheduled Traffic Model --- p.15Chapter 1.5.2 --- Energy Efficient Time-Aware Traffic Grooming --- p.16Chapter 1.6 --- Organization of Thesis --- p.18Chapter Chapter 2 --- Multicast Protection in WDM Optical Network with Scheduled Traffic --- p.19Chapter 2.1 --- Introduction --- p.19Chapter 2.2 --- Multicast Protection under FSTM --- p.22Chapter 2.3 --- Illustrative Examples --- p.28Chapter 2.4 --- Two-Step Optimization under SSTM --- p.37Chapter 2.5 --- Summary --- p.40Chapter Chapter 3 --- Energy Efficient Time-Aware Traffic Grooming in Wavelength Routing Networks --- p.41Chapter 3.1 --- Introduction --- p.41Chapter 3.2 --- Energy consumption model --- p.43Chapter 3.3 --- Static Traffic Grooming with Time awareness --- p.44Chapter 3.3.1 --- Scheduled Traffic Model for Traffic Grooming --- p.44Chapter 3.3.2 --- ILP Formulation --- p.44Chapter 3.3.3 --- Illustrative Numerical Example --- p.48Chapter 3.4 --- Dynamic Traffic Grooming with Time Awareness --- p.49Chapter 3.4.1 --- Time-Aware Traffic Grooming (TATG) --- p.51Chapter 3.5 --- Simulation Results of Dynamic Traffic Grooming --- p.54Chapter 3.5.1 --- 24-node USNET: --- p.55Chapter 3.5.2 --- 15-node Pacific Bell Network: --- p.59Chapter 3.5.3 --- 14-node NSFNET: --- p.63Chapter 3.5.4 --- Alternative Configuration of Simulation Parameters: --- p.67Chapter 3.6 --- Summary --- p.71Chapter Chapter 4 --- Conclusions and Future Work --- p.72Chapter 4.1 --- Conclusions --- p.72Chapter 4.2 --- Future Work --- p.73Bibliography --- p.74Publications during M.Phil Study --- p.8

    Survivable multicasting in WDM optical networks

    Get PDF
    Opportunities abound in the global content delivery service market and it is here that multicasting is proving to be a powerful feature. In WDM networks, optical splitting is widely used to achieve multicasting. It removes the complications of optical-electronic-optical conversions [1]. Several multicasting algorithms have been proposed in the literature for building light trees. As the amount of fiber deployment increases in networks, the risk of losing large volumes of data traffic due to a fiber span cut or due to node failure also increases. In this thesis we propose heuristic schemes to make the primary multicast trees resilient to network impairments. We consider single link failures only, as they are the most common cause of service disruptions. Thus our heuristics make the primary multicast session survivable against single link failures by offering alternate multicast trees. We propose three algorithms for recovering from the failures with proactive methodologies and two algorithms for recovering from failures by reactive methodologies. We introduce the new and novel concept of critical subtree. Through our new approach the proactive and reactive approaches can be amalgamated together using a criticality threshold to provide recovery to the primary multicast tree. By varying the criticality threshold we can control the amount of protection and reaction that will be used for recovery. The performance of these five algorithms is studied in combinations and in standalone modes. The input multicast trees to all of these recovery heuristics come from a previous work on designing power efficient multicast algorithms for WDM optical networks [1]. Measurement of the power levels at receiving nodes is indeed indicative of the power efficiency of these recovery algorithms. Other parameters that are considered for the evaluation of the algorithms are network usage efficiency, (number of links used by the backup paths) and the computation time for calculating these backup paths. This work is the first to propose metrics for evaluating recovery algorithms for multicasting in WDM optical networks. It is also the first to introduce the concept of hybrid proactive and reactive approach and to propose a simple technique for achieving the proper mix

    Survivability and performance optimization in communication networks using network coding

    Get PDF
    The benefits of network coding are investigated in two types of communication networks: optical backbone networks and wireless networks. In backbone networks, network coding is used to improve survivability of the network against failures. In particular, network coding-based protection schemes are presented for unicast and multicast traffic models. In the unicast case, network coding was previously shown to offer near-instantaneous failure recovery at the bandwidth cost of shared backup path protection. Here, cost-effective polynomial-time heuristic algorithms are proposed for online provisioning and protection of unicast traffic. In the multicast case, network coding is used to extend the traditional live backup (1+1) unicast protection to multicast protection; hence called multicast 1+1 protection. It provides instantaneous recovery for single failures in any bi-connected network with the minimum bandwidth cost. Optimal formulation and efficient heuristic algorithms are proposed and experimentally evaluated. In wireless networks, performance benefits of network coding in multicast transmission are studied. Joint scheduling and performance optimization formulations are presented for rate, energy, and delay under routing and network coding assumptions. The scheduling component of the problem is simplified by timesharing over randomly-selected sets of non-interfering wireless links. Selecting only a linear number of such sets is shown to be rate and energy effective. While routing performs very close to network coding in terms of rate, the solution convergence time is around 1000-fold compared to network coding. It is shown that energy benefit of network coding increases as the multicast rate demand is increased. Investigation of energy-rate and delay-rate relationships shows both parameters increase non-linearly as the multicast rate is increased

    Low Cost Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Many of the services envisaged for high speed networks, such as B-ISDN/ATM, will support real-time applications with large numbers of users. Examples of these types of application range from those used by closed groups, such as private video meetings or conferences, where all participants must be known to the sender, to applications used by open groups, such as video lectures, where partcipants need not be known by the sender. These types of application will require high volumes of network resources in addition to the real-time delay constraints on data delivery. For these reasons, several multicast routing heuristics have been proposed to support both interactive and distribution multimedia services, in high speed networks. The objective of such heuristics is to minimise the multicast tree cost while maintaining a real-time bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient, although some perform better for small multicast groups and others perform better for larger groups. Firstly, we present a detailed analysis and evaluation of some of these heuristics which illustrates that in some situations their average performance is reversed; a heuristic that in general produces efficient solutions for small multicasts may sometimes produce a more efficient solution for a particular large multicast, in a specific network. Also, in a limited number of cases using Dijkstra's algorithm produces the best result. We conclude that the efficiency of a heuristic solution depends on the topology of both the network and the multicast, and that it is difficult to predict. Because of this unpredictability we propose the integration of two heuristics with Dijkstra's shortest path tree algorithm to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. These heuristics are based on Dijkstra's algorithm which maintains acceptable time complexity for the hybrid, and they rarely produce inefficient solutions for the same network/multicast. The resulting performance attained is generally good and in the rare worst cases is that of the shortest path tree. The performance of our hybrid is supported by our evaluation results. Secondly, we examine the stability of multicast trees where multicast group membership is dynamic. We conclude that, in general, the more efficient the solution of a heuristic is, the less stable the multicast tree will be as multicast group membership changes. For this reason, while the hybrid solution we propose might be suitable for use with closed user group multicasts, which are likely to be stable, we need a different approach for open user group multicasting, where group membership may be highly volatile. We propose an extension to an existing heuristic that ensures multicast tree stability where multicast group membership is dynamic. Although this extension decreases the efficiency of the heuristics solutions, its performance is significantly better than that of the worst case, a shortest path tree. Finally, we consider how we might apply the hybrid and the extended heuristic in current and future multicast routing protocols for the Internet and for ATM Networks.

    Traffic and Resource Management in Robust Cloud Data Center Networks

    Get PDF
    Cloud Computing is becoming the mainstream paradigm, as organizations, both large and small, begin to harness its benefits. Cloud computing gained its success for giving IT exactly what it needed: The ability to grow and shrink computing resources, on the go, in a cost-effective manner, without the anguish of infrastructure design and setup. The ability to adapt computing demands to market fluctuations is just one of the many benefits that cloud computing has to offer, this is why this new paradigm is rising rapidly. According to a Gartner report, the total sales of the various cloud services will be worth 204 billion dollars worldwide in 2016. With this massive growth, the performance of the underlying infrastructure is crucial to its success and sustainability. Currently, cloud computing heavily depends on data centers for its daily business needs. In fact, it is through the virtualization of data centers that the concept of "computing as a utility" emerged. However, data center virtualization is still in its infancy; and there exists a plethora of open research issues and challenges related to data center virtualization, including but not limited to, optimized topologies and protocols, embedding design methods and online algorithms, resource provisioning and allocation, data center energy efficiency, fault tolerance issues and fault tolerant design, improving service availability under failure conditions, enabling network programmability, etc. This dissertation will attempt to elaborate and address key research challenges and problems related to the design and operation of efficient virtualized data centers and data center infrastructure for cloud services. In particular, we investigate the problem of scalable traffic management and traffic engineering methods in data center networks and present a decomposition method to exactly solve the problem with considerable runtime improvement over mathematical-based formulations. To maximize the network's admissibility and increase its revenue, cloud providers must make efficient use of their's network resources. This goal is highly correlated with the employed resource allocation/placement schemes; formally known as the virtual network embedding problem. This thesis looks at multi-facets of this latter problem; in particular, we study the embedding problem for services with one-to-many communication mode; or what we denote as the multicast virtual network embedding problem. Then, we tackle the survivable virtual network embedding problem by proposing a fault-tolerance design that provides guaranteed service continuity in the event of server failure. Furthermore, we consider the embedding problem for elastic services in the event of heterogeneous node failures. Finally, in the effort to enable and support data center network programmability, we study the placement problem of softwarized network functions (e.g., load balancers, firewalls, etc.), formally known as the virtual network function assignment problem. Owing to its combinatorial complexity, we propose a novel decomposition method, and we numerically show that it is hundred times faster than mathematical formulations from recent existing literature

    Performance Analysis and Design of Mobile Ad-Hoc Networks

    Get PDF
    We focus on the performance analysis and design of a wireless ad-hoc network using a virtual-circuit or reservation based medium access layer. In a reservation based MAC network, source nodes reserve a session's link capacity end-to-end over the entire path before sending traffic over the established path. An example of a generic reservation based MAC protocol is Unifying Slot Assignment Protocol (USAP). Any reservation based medium access protocol (including USAP) uses a simple set of rules to determine the cells or timeslots available at a node to reserve link capacity along the path to the next node. Given inputs of node locations, traffic pattern between nodes and link propagation matrices, we develop models to estimate blocking probability and throughput for reservation based wireless ad-hoc networks. These models are based on extending reduced load loss network models for a wireless network. For generic USAP with multiple frequency channels, the key effect of multiuser interference on a link is modeled via reduced available link capacity where the effects of transmissions and receptions in the link neighborhood are modeled using USAP reservation rules. We compare our results with simulation and obtain good results using our extended reduced load loss network models but with reduced available link capacity distribution obtained by simulation. For the case of generic USAP using a single frequency channel, we develop models for unicast traffic using reduced load loss network models but with the sharing of the wireless medium between a node and its neighbors modeled by considering cliques of neighboring interfering links around a particular link. We compare results of this model with simulation and show good match. We also develop models to calculate source-destination throughput for the reservation MAC as used in the Joint Tactical Radio System to support both unicast and multicast traffic. These models are based on extending reduced load loss network models for wireless multicast traffic with the sharing of the wireless medium between a node and its (upto 2 hop) neighbors modeled by considering cliques of interfering nodes around a particular node. We compare results of this model with simulation and show good match with simulation. Once we have developed models to estimate throughput and blocking probabilities, we use these models to optimize total network throughput. In order to optimize total throughput, we compute throughput sensitivities of the reduced load loss network model using an implied cost formulation and use these sensitivities to choose the routing probabilities among multiple paths so that total network throughput is maximized. In any network scenario, MANETs can get disconnected into clusters. As part of the MANET design problem, we look at the problem of establishing network connectivity and satisfying required traffic capacity between disconnected clusters by placing a minimum number of advantaged high flying Aerial Platforms (APs) as relay nodes at appropriate places. We also extend the connectivity solution in order to make the network single AP survivable. The problem of providing both connectivity and required capacity between disconnected ground clusters (which contain nodes that can communicate directly with each other) is formulated as a summation-form clustering problem of the ground clusters with the APs along with inter-AP distance constraints that make the AP network connected and with complexity costs that take care of ground cluster to AP capacity constraints. The resultant clustering problem is solved using Deterministic Annealing to find (near) globally optimal solutions for the minimum number and locations of the APs to establish connectivity and provide required traffic capacity between disconnected clusters. The basic connectivity constraints are extended to include conditions that make the resultant network survivable to a single AP failure. In order to make the network single AP survivable, we extend the basic connectivity solution by adding another summation form constraint so that the AP network forms a biconnected network and also by making sure that each ground cluster is connected to atleast two APs. We establish the validity of our algorithms by comparing them with optimal exhaustive search algorithms and show that our algorithms are near-optimal for the problem of establishing connectivity between disconnected clusters
    corecore