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Abstract

Traffic and Resource Management in Robust Cloud Data Center Networks

Sara Ayoubi, Ph.D.
Concordia University, 2016

Cloud Computing is becoming the mainstream paradigm, as organizations, both large and
small, begin to harness its benefits. Cloud computing gained its success for giving IT ex-
actly what it needed: The ability to grow and shrink computing resources, on the go, in a
cost-effective manner, without the anguish of infrastructure design and setup. The ability
to adapt computing demands to market fluctuations is just one of the many benefits that
cloud computing has to offer, this is why this new paradigm is rising rapidly. According
to a Gartner report, the total sales of the various cloud services will be worth 204 billion
dollars worldwide in 2016. With this massive growth, the performance of the underlying
infrastructure is crucial to its success and sustainability. Currently, cloud computing heavily
depends on data centers for its daily business needs. In fact, it is through the virtualization
of data centers that the concept of "computing as a utility" emerged. However, data cen-
ter virtualization is still in its infancy; and there exists a plethora of open research issues
and challenges related to data center virtualization, including but not limited to, optimized
topologies and protocols, embedding design methods and online algorithms, resource provi-
sioning and allocation, data center energy efficiency, fault tolerance issues and fault tolerant
design, improving service availability under failure conditions, enabling network programma-
bility, etc.
This dissertation will attempt to elaborate and address key research challenges and prob-
lems related to the design and operation of efficient virtualized data centers and data center
infrastructure for cloud services. In particular, we investigate the problem of scalable traffic
management and traffic engineering methods in data center networks and present a decom-
position method to exactly solve the problem with considerable runtime improvement over
mathematical-based formulations. To maximize the network’s admissibility and increase its
revenue, cloud providers must make efficient use of their’s network resources. This goal is
highly correlated with the employed resource allocation/placement schemes; formally known
as the virtual network embedding problem. This thesis looks at multi-facets of this latter
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problem; in particular, we study the embedding problem for services with one-to-many com-
munication mode; or what we denote as the multicast virtual network embedding problem.
Then, we tackle the survivable virtual network embedding problem by proposing a fault-
tolerance design that provides guaranteed service continuity in the event of server failure.
Furthermore, we consider the embedding problem for elastic services in the event of het-
erogeneous node failures. Finally, in the effort to enable and support data center network
programmability, we study the placement problem of softwarized network functions (e.g.,
load balancers, firewalls, etc.), formally known as the virtual network function assignment
problem. Owing to its combinatorial complexity, we propose a novel decomposition method,
and we numerically show that it is hundred times faster than mathematical formulations
from recent existing literature.
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Chapter 1

Introduction

1.1 Thesis Statement

In the last decade, Cloud Computing has gained momentum for enabling the dream of com-
puting as a "utility" [1]. Very much like every day utilities (e.g., water, electricity, gas,
telephony, etc.), the details are abstracted to the users [2]. Clients are unaware of where the
service is located and how it is delivered to them; they simply use as much as they need and
are billed according to their usage. Indeed, this pay-as-you-go business model offers many
salient features. It greatly reduces Capital Expenditures (Cap-ex), by providing the illusion
of infinite network resources. Today, companies no longer need to invest upfront in dedicated
networks, or over-provision in hardware resources for peak loads, but rather resources can
now be leased and released on-demand to match the user’s actual needs over time. This cost-
associativity feature is particularly interesting for companies with large batch-oriented tasks;
since now the cost of using 1000 servers for 1 hour is equivalent to the cost of using 1 server
for 1000 hours [1]. Further, it also provides savings in terms of Operational Expenditures
(Op-ex) by delegating the responsibility of hardware provisioning/configuration and other
Information Technology (IT) related operations to a dedicated entity. In this regard, many
companies are embracing cloud computing services to improve the scale, cost-effectiveness,
and reliability of their operations. This includes organizations in the commercial, private,
governmental, and defense sectors. Now, as this transition unfolds, various cloud deployment
models have emerged to support different client applications, i.e., Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), see [3]. In addition
numerous cloud standardization efforts are also taking shape within the Open Grid Forum
(OGF) [4], [5], Internet Engineering Task Force (IETF) [6], and Institute of Electrical and
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Electronic Engineers (IEEE) [7]. Finally, the broader IT sector is also seeing the emer-
gence of many cloud service provider organizations [1]. For example, Amazon is offering its
Elastic Compute Cloud (EC2) service to build resizable computing facilities for web-scale
applications. Meanwhile Google’s App Engine (GAE) also provides on-line application de-
velopment/hosting environments and Microsoft’s Azure platform service supports scalable
application development. Other cloud offerings include SmartCloud by IBM and the open-
source Nimbus framework [3].
The notion of cloud computing is not a new one; John McCarthy has envisioned it in 1960s [8].
However, it is only until 2006 that the term "cloud computing" really gained popularity when
coined by Google’s CEO. Despite being used in the title of many conferences (e.g., Cloud-
Net, CloudCom, CLOUD, etc.), and having dedicated journals (International Journal of
Cloud Computing, IEEE Transactions on Cloud Computing, etc.), there has been signifi-
cant ambiguities around the definition of "cloud computing" [8]. This is mainly due to the
fact that cloud computing is not a new technology, but rather a new business model that
combines and leverages existing technologies. With the goal of alleviating confusions and
offering a standard definition, the National Institute of Standards and Technology (NIST)
published the following definition [9] of Cloud Computing: Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider inter-
action. Despite not being a novel notion, the promise of computing-as-a-utility has only been
made possible due to the recent advancements in processing, storage, and high-bandwidth
networking technologies, which have rendered computing resources more powerful and ubiq-
uitously available. This has led to the emergence of mega-data centers constructed at low-
cost locations, thereby allowing cloud providers to offer services below the cost of ownership,
while also making a profit. Further, the emergence of network virtualization enabled the
mutli-tenancy concept, and allowed cloud provider to make efficient use of their network
resources via consolidation; as opposed to running tenant services on dedicated machines.
The latter is particularly attractive, given the low average server utilization [10] (typically
less than 20%).

With the rapid rise and adoption of cloud computing, data centers are growing at un-
precedented scale. Data collected in 2011 on Google’s energy consumption suggests that
it probably uses 900,000 servers [11], Amazon has at least 30 data centers, each housing
between 50 to 80 thousand servers [12]. In 2013, Microsoft’s CEO reported the scale of
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Figure 1.1: Effects of Cloud Computing on Data Center Networks

Microsoft’s data centers at 1 million servers [13]. Along with the emergence of mega cloud
data centers, many challenges also surfaced in enabling its basic functionalities [14]. For in-
stance, the traditional hierarchical data center network topologies [15] were mainly designed
with North-South (N/S) traffic patterns in mind to support client/server applications. How-
ever, with virtualization, the applications environment has shifted towards service-delivery
with a lot of Virtual Machine-to-Virtual Machine (VM-to-VM) communication [16]; i.e.,
East-West (E/W) traffic. This shift in traffic patterns has attracted the attention of the re-
search community and industry alike towards developing novel traffic management schemes
and proposing alternative network architectures [17–24]. Traffic management in cloud data
center networks is one of the problems that this thesis addresses. Further, the freedom to
collocate multiple tenants over the same physical infrastructure raises the question of how
to efficiently allocate network resources among the various tenants [14]; formally known as
the Virtual Network Embedding (VNE) problem. This thesis undertakes a variation of the
VNE problem. Moreover, in a virtualized infrastructure where multiple virtual networks
(or tenants) are running atop the same physical network (e.g., a data center network, as
shown in Figure 1.1), a single failure can bring down multiple services, leading to millions of
dollars in penalty cost. It is estimated that a single minute of downtime can cost an average
of 7,900$ [25], not to mention jeopardizing the reputation of the infrastructure provider.
Indeed, business continuity/service availability is listed among the top 10 obstacles [1] that
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inhibit many organizations from transitionning to the cloud. This fear is completely justifi-
able given the failure-prone nature of cloud data center networks [26, 27]. Hence, attention
converged towards solving the Survivable Virtual Network Embedding (SVNE) problem, and
this thesis joins these efforts.
In summary, this thesis addresses the problems of traffic management and resource alloca-
tion in cloud data centers, as illustrated in Figure 1.1. The traffic management problem is
considered in the case of policy-aware and policy-oblivious network flows. Further while ad-
dressing the resource allocation problem, this thesis takes a practical outlook by considering
the different communications modes that cloud services may exhibit, as well as the elastic
nature of these services (scale up/down over time), while accounting for the failure-prone
nature of cloud data center networks. In the following section, we motivate each of these
problems that outline the main contributions of this dissertation.

1.2 Problem Motivation

1.2.1 Traffic Management in Cloud Data Center Networks:

Data Center networks are a vital element of the cloud computing paradigm; they represent
the infrastructure layer that supports and sustains the various cloud-based applications. A
Data Center (DC) is a large, dark, and cold facility housing hundreds of thousands of servers
interconnected together; and the DC Network (DCN) represents the network architecture
and protocols governing a DC [28]. The conventional data center network topology [15]
consists of a 3-layered architecture (as illustrated in Figure 1.2): the lower layer contains
the server racks with a top-of-rack switch to allow intra-rack communication. The second
layer consists of aggregate switches that enable data exchange between servers in different
racks. The aggregation switches are then connected to the top layer core routers that carry
traffic from the data center to the Internet. This architecture is known to present a multi-
tude of limitations and drawbacks: namely, due to the use of expensive routing hardware,
the current topology adopts a scale-up strategy; hence, as traffic moves towards the top
layers switches/routers, the level of oversubscription increases. This problem is particularly
aggravated with the emergence of network virtualization that shifted the dominant traffic
pattern from north-south to east-west flows. Indeed, a study led by Microsoft research [17]
has shown that the level of oversubscription in canonical data centers can reach a factor of
1:240. Further, the core layer, also known as Layer-3 network, imposes the use of hierarchi-
cal Internet Protocol (IP) addresses which hinders services mobility (with the exception of

4



Figure 1.2: Canonical DCN Topology

mobile IP) in the data center, since it requires re-adjusting the IP addresses after migration.
Such a procedure can be cumbersome and usually requires human intervention to reconfig-
ure the routers. Moreover, the scale-up structure of the canonical DCN topology renders
lower-layer network components vulnerable to any failure at the higher-layers; e.g., failure
of a top-of-rack switch will disconnect the entire server rack from the rest of the network.
In light of the above, DCN topologies have received significant attention from research and
academia alike [17, 19, 23, 29, 30], due to the impact the former has on the agility and re-
configurability of DC networks [31]. A take away from these approaches is the unanimous
appraisal for a layer-2 network topology, particularly Ethernet-based data center networks.
Layer-2 data center networks offer better manageability and application mobility. Ether-
net is attractive for being ubiquitous, inexpensive, and off-the shelf commodity; it therefore
enables scale-out network designs to eliminate network oversubscription and support the
east-west traffic pattern of the next-generation DCN. Further, it allows the hosted services
to move around in the network seamlessly without any service disruption. This capability
plays a fundamental part in enabling better load balancing and fault tolerance. For instance,
if one part of the network is overloaded, services can migrate to a less congested part of the
network. Services migration also allows overcoming hardware or link failures, by migrating
the applications hosted on the affected node to other stable nodes.
One limitation of Layer-2 DCN is the inherent forwarding protocol in Ethernet switches. The
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conventional traffic splitting technique in Ethernet switches is the Spanning Tree Protocol
(STP). STP consists of finding a loop-free path that spans all the nodes in the network;
thereby concentrating all the traffic in the network through a limited subset of substrate
links, rendering the rest of the physical links in the network unutilized. This inconvenience
is particularly noticeable in multi-layered network topologies that exhibit multiple equal cost
paths between every pair of nodes (e.g., FatTree DCN topology [28]). A promising alterna-
tive is the use of Virtual Local Area Networks (VLANs); where each VLAN will have its
own STP mapped to different paths for better traffic distributions/balance. However, finding
the optimal traffic split between VLANs is the well-known NP-Complete VLAN assignment
problem [19]. The size of the search space of the VLAN assignment problem is huge, even
for small size networks. To this extent, Chapter 2 of this dissertation is dedicated to study
the VLAN assignment problem in Layer-2 DCN.

1.2.2 The Virtual Network Embedding Problem

Conventionally, hosting applications in data centers was performed in a dogmatic approach,
where each application would run on a dedicated set of servers. This approach leads to poor
resource utilization, particularly since most of the servers might be highly under-utilized,
and mostly provisioned to handle sudden load surges. In fact, it has been shown [32] that
the average server utilization in a typical data center is 10-15% of its full capacity. Server
virtualization techniques (e.g. Hypervisors) circumvent these limitations by allowing mul-
tiple tenant applications to co-exist on the same physical server. This approach greatly
enhances the underlying network utilization and allows resource consolidation. In addition
to server virtualization, tenants in a cloud data center usually demand bandwidth guarantees
to achieve performance predictability of their application. Here, each tenant’s application is
abstracted as a Virtual Network (VN), comprising of the VMs running the tenant’s service
and virtual links representing the communication pattern between these VMs. The challenge
therefore becomes to find the optimal strategy to map these virtual networks to the sub-
strate network, such that the utilization of the underlying infrastructure is maximized. This
problem is the well-known Virtual VNE problem, and has been proven [33] to be NP-Hard
owing to the bundle of factors and constraints that emerge with it.

1.2.2.1 Problem Definition

The VNE problem is the main resource allocation problem in network virtualization that
indicates the optimal placement of VNs onto the substrate network, such that desired design
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Figure 1.3: Virtual Network Embedding Problem

objectives are achieved (minimize VNs blocking rate, maximize substrate network’s accep-
tance ratio, maximize long-term profit, etc.). Below, we formally define the VNE problem:

1. The Substrate Network: A substrate network represents the physical infrastructure
(e.g., DCN) that hosts multi-tenant applications. In the VNE problem, the network is
represented as an undirected graph, denoted by Gs = (N ,L); where N represents the
set of substrate nodes, and L is the set of substrate links. Here, we distinguish between
two types of physical nodes (as shown in Figure 1.3); facility nodes (server racks) that
host virtual machines, and network nodes that assume the role of routing/forwarding
traffic in the substrate network. We denote N̄ as the set of facility nodes, and N̂ as
the set of network nodes; where N = N̄ ∪ N̂ . Each facility node n ∈ N̄ is associated
with R resource types (Central Processing Unit (CPU), memory, etc.), each with a
finite capacity denoted by crn. Similarly, a substrate link l ∈ L has bandwidth capacity,
denoted by bl.
Figure 1.3 illustrates a substrate network, where the capacity of the facility nodes and
physical links is represented by the number next to each node and link, respectively.
For the sake of clarity, we only show a single resource type for the facility nodes.

2. The VN Request: A virtual network represents a client’s request to deploy an appli-
cation in a cloud data center. There exists several abstraction models for VNs, the pipe
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model, hose (and hierarchical) model, and tenant application graph are the three most
widely used representations [34]. In this dissertation, we adopt the pipe model with
bandwidth guarantees to provide an assurance on the requested bandwidth between
every pair of VMs. A VN consists of a set of virtual nodes connected through virtual
links, denoted by Gv = (V ,E). Virtual links are used to describe the communication
pattern among the virtual nodes, and each virtual link requires a specific amount of
bandwidth, denoted by b′e. In addition, each virtual node is usually associated with
resource demand of c′rv for each resource type r ∈ R (CPU, memory, etc).
We illustrate an example of a VN request in Figure 1.3. This VN request consists
of 3 virtual nodes connected by 3 virtual links. Note that the resource demands are
represented by the numbers above the virtual nodes and links. For the sake of clarity,
we only show a single resource type for the virtual nodes.

3. The VNE Problem: When a VN request arrives, the network operator needs to
decide whether to accept the VN request or not, and if accepted where to place that
VN, such that enough network resources are allocated to satisfy its demands, without
violating the capacity constraints of the substrate network. The VNE problem can
be logically divided into two subproblems: Virtual Node Mapping (VNM) and Virtual
Link Mapping (VLM). Figure 1.3 illustrates the VNM and VLM subproblems. The
VNM solution indicates the physical substrate nodes onto which the virtual nodes will
be embedded. Each physical node must be able to assume the resource demands of the
embedded virtual node(s). The mapping of virtual links onto the substrate network is
translated into a path, or a set of paths, that traverse one or more physical links. The
VNE problem can be formulated as follows:

Problem Definition 1.1. Given a substrate network Gs = (N,L) and a VN request
Gv = (V,E), Find an optimal mapping M = (MN ,ML) of the VN request onto the
substrate network, such that the demands of the virtual nodes and virtual links are
satisfied, without violating the capacity of the substrate network.

Note that a mapping M holds the solution for the two subproblems:

(1) Virtual Node Mapping (VNM): MN : V −→ N

(2) Virtual Link Mapping (VLM): ML: E −→ P ; where P represents a path, (or a set
of paths) in the substrate network.
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1.2.2.2 Literature Review

The VNE problem has attracted a lot of attention from the research community 1, as a result,
a handful of optimization- and heuristic-based embedding strategies have been proposed.
Here, most optimization schemes try to minimize substrate usages or maximize revenues
(minimize blocking) for a-priori demands. Some also aimed to reduce energy usage through
resource consolidation [36], [37]. However, since many of these formulations are very complex
even for moderate network sizes, various relaxations have also been proposed [38–46]. In gen-
eral, these heuristics can be classified into two types: separate node/link mapping (two-stage)
and joint node/link mapping (single-stage) strategies. Two-stage algorithms first compute a
subset of storage/computing nodes to satisfy the resource requirements of the VN (greedy
approach) and then route loop-free virtual link connections to meet the link and/or delay
constraints, e.g., via shortest path [40], k-shortest paths (k-SP) [43], or multi-commodity
flow (MCF) routing [43]. Note that MCF schemes assume path-splitting at the network sub-
strate nodes/ switches and may lead to packet stream reordering. Nevertheless, the separate
mapping of VN nodes and links generally lacks resource coordination (across the VN topolo-
gies) and can lead to high resource inefficiencies [44]. Unified single-stage heuristics have
been developed to jointly map VN nodes/links and improve resource efficiency or lower the
blocking rates [45], [44]. Furthermore, some researchers have also looked at VN migration
to re-optimize allocations under time-varying dynamic demands [43], [46].
A main weakness in these suggested approaches, in addition to the lack of a guarantee on
the quality of the obtained solution, is that most of the existing work does not characterize
the mode of communication in the VN requests, assuming that they all exhibit unicast or
one-to-one communication only. When in fact, depending on the type of service running in
these VNs, communication among the participating VMs can be either unicast, multicast
(one-to-many) or broadcast (all-to-all). Characterizing the type of communication in VNs
is crucial for achieving optimal network operation. In unicast communication, the sender
transmits data to a single receiver; thus, handling multicast communication as unicast re-
quires transmitting multiple copies of the same data to each receiver. On the other hand,
multicast routing transmits a single copy of the same data to all the receivers in a single
multicast communication group. Hence, routing multicast and broadcast flows as unicast
creates redundant traffic which decreases the network’s throughput and leads to bottlenecks,
particularly if the network contains many conflicting paths.

1A cohesive survey on the VNE problem with a thorough taxonomy of the various contributions in the
literature can be found in [35].
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In light of the above, Chapter 3 of this dissertation considers the VNE problem for services
with one-to-many communication modes; or what we refer to as Multicast VNE (MVNE)
problem. Here, we list the various cloud applications and services that benefit from multicast
to disseminate their traffic, and we highlight their unique properties and distinct Quality
of Service (QoS) requirements, most notably the end-delay and delay-variation constraints.
Further, we showcase the limitations of handling a multicast VN as unicast. This therefore
motivates the need for a dedicated study, and a tailored multicast VNE scheme that responds
to these unique properties.

1.2.3 The Survivable Virtual Network Embedding Problem

Another limitation of the existing literature for the VNE problem is that they all assume
that the substrate network is available at all times. When in fact, failure in the physical
infrastructure is common due to a multitude of reasons [47] that can affect one or many
network components. Figure 1.4 illustrates the different types of failures that can occur in
a data center network. We observe 3 types of failures :

1. Facility Node Failure: A facility node failure brings down the physical node itself,
as well as, all hosted VMs. Hence, a single facility node failure can potentially lead
to multiple virtual machines failure. Figure 1.4 shows an example of a facility node
failure that leads to the failure of virtual node v1.
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2. Physical Link Failure: A physical link failure disconnects its respective edge nodes,
as well as, all the virtual links whose corresponding physical paths are routed through
it. Thus, a single link failure can potentially lead to multiple virtual links failure.
Figure 1.4 shows that the failure of a single physical link disconnects the virtual link
connecting v5 and v6, since it is mapped onto a physical path that traverses the failed
link.

3. Network Node Failure: A network Node failure brings down the network node that
handles the switching/routing of traffic in the substrate network. Network node failure
is coupled with both facility node and physical node failures as illustrated in Figure
1.4. We observe that the failure of a single network node disconnects its incident
facility node from the rest of the network (which would disconnect any VM mapped
onto that facility node). Subsequently, the physical links that are connected to this
failed network node can no longer route the traffic through it.

Given the failure-prone nature of DCN, attention converged towards solving the survivable
VNE [48–55] to achieve reliability and fault-tolerance, and reduce the incurred penalties
caused by failures. The SVNE problem consists of mapping virtual network requests, while
providing protection or recovery mechanisms against failures in the substrate network. Sur-
vivability features can either be integrated at the VN side, or at the substrate network level:
at the VN side, survivability is achieved by redesigning the VN request into a Survivable
Virtual Network (SVN), this can be done by augmenting the VN with backup nodes and
then mapping the resultant SVN to the physical network. At the physical level, survivability
can be embedded as VN requests arrives, where the VN request is first embedded, and then
backup nodes/links are explored in a reactive/proactive manner. The reactive approach
consists of finding backups once a failure occurs, to assume the failed resource(s). While
the proactive approach, pre-computes the backups for critical resources in a VN, upon ar-
rival (on-demand). Another approach to incorporate survivability at the physical level is
known as "pre-configured", and consists of setting up the substrate network with backups
beforehand, prior to receiving any VN request (pre-allocated). The difficulty of the SVNE
problem resides in finding the optimal tradeoff between the level of protection provided for
each VN request, and the utilization efficiency of the substrate network. Given its complex
nature, most of the relevant literature focused on designing heuristic-based algorithms, and
restricting the problem space to a single type of failure; most of them further simplify the
problem by considering that only a single network component would fail at any given point
in time.
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1.2.3.1 The Survivable Virtual Network Redesign Problem

When a facility node fails, the hosted virtual node(s) needs to migrate to a backup facility
node, as well as its associated connections to other virtual nodes belonging to the same VN.
As we have previously mentioned, one way of achieving this failure recovery is by redesigning
the VN request into a SVN, and then mapping the resultant SVN onto the physical network.
This redesign consists of augmenting the original VN with backup nodes. Each backup node
is in charge of protecting one or many primary nodes. Hence, backup virtual links must be
established between each backup node and the neighbors of the primary nodes it protects.
Further, given that a single failure might occur at any point in time, backup-sharing [53]
can be employed to alleviate some of the backup footprint. This is particularly useful given
that the provisioned backup resources remain idle until failure occurs.
The survivable redesign technique encloses multiple challenges. Among these challenges is
deciding how many backup nodes to use and how to allocate these backup nodes to the
primary nodes in each VN, such that we minimize the amount of reserved resources in
the substrate network. This problem is of paramount importance since these provisioned
resources will remain idle until failures occur. Hence, over-provisioning can greatly impact
the network’s ability to admit future requests. However, in most of the existing work,
designing an SVN is limited to a fixed number of backup nodes; further backup-sharing
is only explored and optimized during the embedding phase. This renders the existing
redesign techniques agnostic to the backup resource sharing in the substrate network, and
highly dependent on the efficiency of the adopted mapping approach. In Chapter 4 of this
dissertation, we diverge from this dogmatic approach by looking at the problem of finding the
minimal number of redundant nodes that promotes backup sharing in the substrate network.

1.2.3.2 Restoration Methods for Cloud Multicast Virtual Networks

As mentioned before, many applications and services hosted in cloud data center networks
today rely on multicast communication to disseminate traffic. Hence, the existing survivable
embedding schemes fail to cater to the distinctive properties and QoS requirements that
multicast services entail. In this regard, we devote Chapter 5 of this thesis to investigate the
impact of failure on multicast services residing in data center networks.
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1.2.3.3 A Reliable Embedding Framework for Elastic Virtualized Services in

the Cloud

While survivability analysis makes an implicit assumption that a failure will occur, avail-
ability assumes that failures are somewhat random and it is the role of the infrastructure
provider to ensure that each service is supported by robust hardware components [56]. These
two metrics are highly complementary, since survivability guarantees failure recovery in the
event of any failure, and is particularly useful for mission critical services that do not toler-
ate failures (e.g., banking systems), or to avoid single points of failure (e.g., a middle node
in a hub and spoke network). Whereas availability-aware embedding guarantees a ratio of
service uptime over the total elapsed time for the tenant’s service, typically negotiated in the
form of a Service Level Agreement (SLA). If the service’s availability drops below a certain
threshold, the infrastructure provider will incur a monetary penalty that will be disbursed
to the affected tenants. E.g., AmazonEC2 [57] provides a 10% service credit for any service
whose monthly availability drops below 99.95%, and a 30% credit if it goes under 99%.
In this thesis, we look at the problem of availability-aware VNE. Existing availability-aware
embedding schemes [58, 59] overlooked the "availability overprovisioning" problem; that is
providing a service with more availability than requested. As this manuscript will show,
such approach greatly impacts the network’s admissibility. Further, earlier work assumed
tenants’s requests to be static; as-in the tenants’s resource demands do not change through-
out the lease period. When in fact, it has been shown that 90% of IT services exhibit
periodic resource demands [60]. As tenants scale their services, the cloud provider not only
needs to adapt the allocated resources to meet the requested changes, but also tune the
initially devised failure mitigation plan for each scaling tenant. To this extent, in Chapter
6 of this dissertation, we study the problem of VNE with "just-enough" availability, as well
as the problem of maintaining the availability guarantee as these services scale during their
residency. To the best of our knowledge, this work is the first to address the problem of
managing reliable elastic VNs in the cloud.

1.2.4 Towards Enabling the Support of Network Programmability:

Enabling DCN programmability is a recent trend that emerged to manage the network pro-
grammatically. This goal is driven by the need to avoid box-to-box configuration, gain better
end-to-end traffic control, and overall enhance and facilitate the management of mega data
centers. Recently, Software Defined Networks (SDNs) has been receiving lots of attention
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both in academia and more in the industry. This is mainly due to its ability to enable
network control to become completely programmable by decoupling it from the data plane,
thereby removing the intelligence from the hardware performing the routing/switching that
typically use proprietary firmware. Another trend along these efforts is the emergence of
softwarized network functions, also known as Network Function Virtualization (NFV) [61].
NFV emerged to tackle the inconvenience of hardware middleboxes (beyond routing/switch-
ing). Middleboxes (e.g., load balancers, firewalls, Intrusion Detection Systems (IDS)) have
gained popularity due to the significant value-added services these network elements pro-
vide to traffic flows, in terms of enhanced performance and security. Policy-aware traffic
flows usually need to traverse multiple middleboxes in a predefined order to satisfy their
associated policies, also known as Service Function Chaining. Typically, Middleboxes run
on specialized hardware, which make them highly inflexible to handle the unpredictable and
fluctuating-nature of traffic, and contribute to significant Cap-ex and Op-ex to provision, ac-
commodate, and maintain them. NFV is a promising technology with the potential to tackle
the aforementioned limitations of hardware middleboxes. Yet, NFV is still in its infancy, and
there exists several technical challenges that need to be addressed, among which, the Virtual
Network Function (VNF) assignment problem tops the list. The VNF assignment problem
stems from the newly gained flexibility in instantiating VNFs (on-demand) anywhere in the
network. Subsequently, network providers must decide on the optimal placement of VNF
instances which maximizes the number of admitted policy-aware traffic flows across their
network. Existing work consists of Integer Linear Program (ILP) models, which are fairly
unscalable, or heuristic-based approaches with no guarantee on the quality of the obtained
solutions. Hence, the need for an approach that is more scalable than ILP-based formula-
tions while also providing exact solution to this difficult problem. To this extent, we dedicate
Chapter 7 of this dissertation to propose such an approach.

1.3 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• We introduce a novel decomposition approach to solve the VLAN mapping problem in
cloud data centers through column generation. Column generation is an effective tech-
nique that is proven to reach optimality by exploring only a small subset of the search
space. We introduce both an exact and a semi-heuristic decomposition with the objec-
tive to achieve load balancing by minimizing the maximum link load in the network.
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Our numerical results show that our approach explores less than 1% of the available
search space, with an optimality gap of at most 4%. We also compare and assess the
performance of our decomposition model and state of the art protocols in traffic en-
gineering. This comparative analysis shows that our model attains encouraging gain
over its peers.

• We formally define the VNE problem for Multicast VNs (MVNs) and prove its NP-
Hard nature. We propose a novel 3-Step approach for solving the MVNE problem, and
introduce the receivers embedding problem over multicast trees. We mathematically
formulate the receivers embedding problem, and propose a Dynamic Programming
(DP) approach for MVNs with homogeneous resource demands, that is solvable in
polynomial-time over multicast trees with constant nodal degree. For tree-like data
center network topologies, we prove that our 3-Step MVNE with the DP for receivers
embedding provides optimal solution in polynomial-time for MVNs with homogeneous
resource demands. Finally, we propose a Tabu-based search for solving the MVNE
problem for multicast services with heterogeneous resource demands over arbitrary
network topologies. We compare our Tabu approach against the 3-Step MVNE and
other embedding heuristics, using multiple metrics and over various substrate net-
works. Our numerical results show that our Tabu-based search yields high network
admissibility in considerably fast runtime.

• We study the SVN design problem, and we argue that the existing literature’s proposi-
tion of fixing the number of backup nodes could yield infeasible or even costly mapping
solutions, and we provide several motivational examples to support this claim. Sub-
sequently, we introduce ProRed, a novel prognostic redesign technique that promotes
the backup resource sharing at the virtual network level, prior to the embedding phase.
We compare our proposed method against existing redesign techniques, and we show
that our approach achieves lower-cost mapping solutions and greatly enhances the
achievable backup sharing, boosting the overall network admissibility.

• We study the impact of failure on multicast services residing in data center networks.
Through motivational examples, we draw the observation that mending failures of
multicast services not only requires failure restoration, but also maintenance to preserve
the QoS requirements of the distribution tree. We focus the scope of this work on the
case of facility node failure, and we mathematically formulate the problem and prove its
NP-Complete nature. Further, we prove that the problem of restoring multicast VNs
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against facility node failure can be solved in polynomial-time when applied to multi-
rooted tree-like data center network topologies. We evaluate our proposed restoration
schemes for typical DCN topologies against a Greedy and a Steiner-based restoration
schemes, and we show that our suggested method outperforms its peers in terms of
restoration ratio and total achievable revenue.

• We consider the problem of managing scaling requests for services with strict avail-
ability, and we propose RELIEF: a novel reliable embedding framework for elastic ser-
vices in data center networks. RELIEF consists of two main modules: a cost-efficient
availability-aware resource allocation (embedding) module for incoming tenants, and a
reliable reconfiguration module to adapt the embedding of hosted services as they scale.
We compare our proposed framework against peer and benchmark algorithms, and we
show that our proposed framework enhances network’s admissibility, and in return
increases the cloud provider’s long term revenue, compared to peer and benchmark
algorithms.

• Finally, we propose a novel Cut-and-Solve based approach to solve the VNF assign-
ment problem for policy-aware traffic steering. Our cut-and-solve approach jointly
addresses the problem of VNF placement and policy-aware traffic steering to maximize
the number of flows routed across the network. We compare our approach against
an ILP-based formulation and a heuristic method, and we show that our approach
achieves the optimal solution (as opposed to heuristic-based methods) 700 times faster
than the ILP.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 addresses the VLAN assignment
problem in Layer-2 DCN. In Chapter 3, we discuss the multicast virtual network embedding
problem and present our first contribution in this area. Chapters 4-6 are dedicated for
tackling the reliable resource allocation problem; where Chapters 4 addresses the problem
from a survivability point of view, Chapter 5 is concerned with the restoration of multicast
services, and Chapter 6 focuses on the availability-aware VNE problem for elastic services.
Finally in the efforts to support network programmability, Chapter 7 is dedicated to propose
a novel cut-and-solve based approach to solve the VNF assignment problem. We conclude
this manuscript in Chapter 8 and provide future directions for this research. It is important
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to note that throughout this dissertation, figures are enumerated relatively to each chapter.
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Chapter 2

Towards Scalable Traffic Management in

Cloud Data Centers

2.1 Problem Statement

In the last decade, significant attention has been devoted towards rethinking the data center
network architecture and topologies [17–19,23,29,30]; this was in no small portion due to the
vital role data centers play in supporting the multi-million dollar industry of Cloud Com-
puting. While many praised Ethernet for being the ideal technology for intra-data center
networks, this technology is difficult to scale as data centers grow in size and load. Indeed,
Ethernet is attractive for being ubiquitous, inexpensive, and off-the shelf commodity. Its
ease of use, self-learning, and independent forwarding capability makes it ideal for data cen-
ter network environment. The inherent traffic splitting technique in Ethernet switches is the
Spanning Tree Protocol (STP). STP consists of finding a loop-free path that spans all nodes
in the network. Links that violate the loop-free constraint are excluded by blocking the cor-
responding switch ports. To achieve all these features, Ethernet relies on broadcast-based
communication and packet flooding to learn host location, which makes it highly unscalable.
Moreover, the STP protocol suffers from poor resource utilization [18] as it fails to exploit
the path redundancy in the physical topology, rendering many links in the network under-
utilized.
A promising alternative is the use of Virtual Local Area Networks (VLANs). VLANs par-
tition nodes in the network into communities of interest. Servers within one community
can only communicate with servers that belong to the same community (or VLAN). Such
practice allows both performance isolation and network scalability, since packets exchanged
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within a VLAN do not stretch to the entire network. Additionally, to exploit path redun-
dancy in the network, the Multiple Spanning Tree Protocol (MSTP), an extension of STP,
allows different VLANs to use different spanning trees traversing diverse physical links and
switches. A traffic engineering framework for MSTP in large data centers is presented in [24]
where the authors focused on the mapping of each VLAN into a spanning tree to improve the
overall network utilization. Smart Path Assignment In Networks (SPAIN) is presented in [18]
to provide multipath forwarding by exploiting commodity off the shelf Ethernet switches;
SPAIN exploits the redundancy in an arbitrary network topology and pre-computes paths
that are merged into trees which later are mapped into VLANs to achieve higher bisection
throughput. Multipath routing in data center networks is also addressed through ensemble
routing [21]; the framework aggregates individual flows into routing classes which are then
mapped into VLANs to load balance the traffic across the network links. Traffic engineer-
ing in data centers with ensemble routing is studied in [20] where the authors leverage the
multi-path routing to enable traffic load balancing and quality of service provisioning. The
authors noted that a key challenge for intra-data center traffic engineering is the optimal flow
mapping into VLANs (known as the VLAN assignment problem) to achieve load balancing.
The VLAN assignment problem is NP -complete with a large search space [19]. For instance,
for a network with v VLANs and c flows, there are |v|c possible mappings [20]. Finding the
best mapping is therefore a complex combinatorial problem. Several prior works have at-
tempted to address this or simpler variation of this problem. For instance, SPAIN [18]
proposed a greedy heuristic for packing flows or paths into a minimal set of VLANs and the
subgraphs containing these VLANs are dynamically constructed. A constraint based local
search based on Constraint Programming (CP) is presented in [24] for mapping flows into
VLANs, assuming the set of VLANs is given. The authors of [20] used Markov Approxima-
tion techniques to solve the mapping problem and designed approximation algorithms with
close to optimal performance guarantees. The authors assume the VLANs or the spanning
trees are pre-constructed and their method assigns routing classes to these VLANs with the
objective of minimizing link congestion.
In this chapter, we consider the problem of traffic engineering in data center networks;
namely, we address the problem of mapping traffic flows into VLANs; similar to [20], a
separate spanning tree is constructed per each VLAN. As the number of spanning trees in
a network could be very large (e.g., in a fully connected graph with n nodes, there are as
many as nn−2 spanning trees), selecting the most promising spanning trees to map the traf-
fic flows onto is a very challenging and complex combinatorial problem. This dissertation
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jointly addresses the problem of tree construction and flow mapping, a seemingly very large
combinatorial problem. To keep track of the problem, we follow a primal-dual decomposition
approach using Column Generation [62]; here, the problem is divided into two subproblems:
a master and a pricing. The latter builds sub mappings (a single spanning tree with mapped
flows), and the former selects among the sub mappings, the global mapping of the problem.
Our method proves to be highly scalable in addressing the joint VLAN mapping and tree
construction problem.

2.2 Related Work

Today’s data center networks are expected to provide high network utilization to the large
number of distinct services they support. These networks are also expected to provide
guaranteed performance for the various hosted tenants sharing the same networking infras-
tructure. Therefore, Intelligent traffic engineering mechanisms inside a data center become
therefore of utmost importance to achieve better load balancing and guarantees on the qual-
ity of service. Recently, the problem of traffic management in data center networks has been
receiving numerous attention with the goal of providing predictable performance. The issue
of performance predictability becomes of particular interest given the nature of data center
topologies, which tend to be oversubscribed [17].
Hedera [63] is a dynamic flow scheduling system for data center networks based on multistage
switch topologies. Hedera depends on a central scheduler that measures link utilization in
the network and moves flows from highly utilized links to less utilized ones. When the sched-
uler detects a flow with augmenting bandwidth demand that exceeds a certain threshold,
it computes a non-conflicting path to route this flow in order to improve the bandwidth-
bisection in the network. Hedera uses simulated annealing and the global first fit heuristics
for path computation. When compared to the Equal Cost Multiple Paths (ECMP) protocol,
Hedera was found to yield substantial throughput performance gains. MicroTE [22] is a fine
grained traffic engineering approach that consists of exploiting the short-term predictability
in data center traffic. A central controller is used to collect and analyze traffic in data centers
for traces of similarities. Then, traffic is segregated between predictable and unpredictable,
where predictable traffic demands are routed optimally using a Linear Programming (LP)
model, while the remaining traffic is routed using the weighted ECMP protocol. However,
it is noted in [64] that such centralized solutions face scalability and fault tolerance chal-
lenges. Accordingly, the authors of [64] proposed a method for load-aware flow routing in

20



data center networks which does not require centralized control. Their approach achieves a
maximal multi-commodity flow while tolerating failures. The multi-commodity flow problem
is decomposed into two subproblems, a slave dual which can be solved at the end hosts and
a master dual solved locally at each switch.
Now to achieve high bisection bandwidth in data center networks, the authors of [18] pro-
posed SPAIN, which provides multipath forwarding using Layer-2 Ethernet switches over
arbitrary topologies. Here, SPAIN aims at finding multiple paths between every pair of
nodes, and then grouping these paths into a set of trees, each tree is mapped as a separate
VLAN onto the physical network. The path assignment into VLANs uses a greedy packing
heuristic with the objective of using the minimum number of VLANs. SPAIN’s performance
was validated through both simulations and experiments and has shown to achieve superior
goodput over STP. Traffic engineering in data center networks has been a topic of surging in-
terests recently; particularly, exploiting path redundancy in the network and mapping paths
into VLANs to achieve higher utilization and better load balancing is addressed in [24]. The
authors leverage the MSTP protocol in large data centers and presented a heuristic, based
on local search algorithm, to select good spanning trees to map the traffic demand matrices
while achieving minimum overall link utilization. Similar to [24], the authors of [20], [65] have
addressed the problem of traffic engineering in data center network by managing aggregate
(ensemble) flows rather than individual flows. Essentially, the problem considered is that of
mapping routing classes to VLANs to achieve load balancing. In [65], a VLAN placement
algorithm is presented for growing spanning trees to reach all switches in the network and
subsequently traffic splitting onto those VLANs is presented (through linear programming)
to achieve load balancing. However, the heuristic construction of spanning trees does not
provide any guarantees on the quality of the generated solution. More recently, the au-
thors of [20] considered the problem of traffic engineering with ensemble routing and noted
the combinatorial challenge of optimizing the assignment of routing classes into VLANs.
They used the Markov approximation framework for approaching the mapping problem and
developed approximation algorithms with close to optimal performance.

2.3 The VLAN Assignment Problem

In this section, we present a formal definition of the VLAN assignment problem, and we
also show through an illustrative example the exponential search space that the VLAN
assignment problem poses.
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2.3.1 Problem Definition

We consider a data center network whose underlying physical topology is represented by a
graph Gs = (N,L), N is the set of substrate nodes and L is the set of physical links. Each
link connects a pair of substrate nodes (i, j) and has a capacity bi,j. We assume a set of
incoming flows, and similar to [20], we focus on the problem of mapping traffic flows into
VLANs. We assume each flow has a bandwidth demand of δc and let C be the set of all
flows and V be the set of VLANs. We acknowledge that the maximum number of VLANs a
switched Ethernet network supports is 4096, however, the number of spanning trees in the
network could substantially exceed that. Given the traffic matrix, finding the most useful
spanning trees to these VLANs is a combinatorially complex and challenging problem. Thus,
the VLAN assignment problem can be formulated as follows:

Problem Definition 2.1. Given a network Gs = (N,L), the set of VLANs V , and a set of
flows C, each with bandwidth requirement of δc; find the optimal mapping of flows to VLANs
that balances the load across the network.

In this work, we attempt to balance the load across the network to minimize congestion,
therefore minimizing the maximal link load becomes our objective. Solving the VLAN
assignment problem under this objective has been shown [20] to be NP-Complete via a
reduction from the minimum-weight Steiner tree problem. In addition, the VLAN assignment
problem also suffers from an exponential search space, both in the number of VLANs present
in a given network, as well as in the number of different possibilities in which connection
demands can be mapped to the VLANs. These two elements render the problem heavy, for
the following reasons:

• First, enumerating all spanning trees in a given network can be problematic and te-
dious, particularly as there are no efficient algorithms to perform this enumeration,
not to mention the large number of spanning trees present in a medium-sized network.
For instance, for a clique topology, there are n(n−2) spanning trees, by the well-known
Cayley’s formula [19].

• Second, since the Ethernet standards can only support 4096 VLANs, a large number
of the enumerated trees will never be used, and the challenge becomes to find a subset
that can lead to optimal traffic split.

• Third, the number of different possibilities in which flows (or paths) can be mapped to
available VLANs is exponential. This is similar to the various ways n distinct objects
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can be distributed into m different bins with k1 objects in the first bin, k2 in the second,
etc. and k1 + k2 + ....km = n. This indeed is obtained by applying the multinomial
theorem where

∑
k1+k2+...+km=n

(
n

k1+k2+...+km

)
= mn. Therefore, for C flows and V

VLANs, there are |V |C different mapping possibilities.

Figure 2.1: Traffic Flows to VLAN mapping

To further convey the complexity of the problem, we consider 3 traffic flows in a complete
graph K4; in such a 4-nodes topology, there are 16 different spanning trees. Mapping the
traffic flows to these spanning trees involves a large number of possibilities as shown in Figure
2.1. For instance, one possible solution would be to assign all demands to a single VLAN.
Another feasible solution would be to map each flow to a different VLAN. Or, map two
flows to the same VLAN, and place the remaining one in a different VLAN. In fact, with 16
different spanning trees to choose from, there are 163 (4096) different mapping possibilities.
This number gets more dramatic as the network grows in size. For instance, in a K5 complete
graph with 3 connections, the number of mapping possibilities is approximately 2 millions!
Clearly, while exhaustive enumeration of the spanning trees as well as the mappings will
yield to the optimal solution, such enumeration is prohibitively computationally expensive.
We explore in a subsequent section the possibility of only generating a small subset of
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such configurations or mappings. Our approach uses a column generation framework where
only configurations/mappings that are deemed good are constructed through a reduced cost
function (more details are presented in the sequel).

2.3.2 Problem Formulation

In this formulation, we assume the set of VLANs is predetermined (through offline enumera-
tion). Given a traffic demand matrix, we aim at balancing the traffic load across the network
through minimizing the maximum link utilization.

Below we present the mathematical model of the VLAN assignment problem:

• Parameters:

Gs = (N,L): the physical network with N nodes and L links.
bij: capacity of link (i, j)∈ L.
C: set of flows, each with an origin o(c), a destination d(c), and a bandwidth demand of

δc.
V : set of VLANs.

σv
ij =

⎧⎨
⎩1, if VLAN v traverses link (i, j),

0, otherwise.

• Decision Variables:

xv
c =

⎧⎨
⎩1, if flow c is mapped to VLAN v,

0, otherwise.

yc,vij =

⎧⎨
⎩1, if flow c is mapped on v and routed through link (i, j),

0, otherwise.
tvij: total traffic contributed by VLAN v on link (i, j).
uij: utilization of link (i, j).
The VLAN assignment problem is formulated next:

Min Max(i,j)∈L uij

Subject to

∑
j:(i,j)∈L

yc,vij −
∑

j:(j,i)∈L
yc,vji ≤ 1 ∀c ∈ C, i = o(c) (2.1)
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∑
j:(i,j)∈L

yc,vij −
∑

j:(j,i)∈L
yc,vji = 0 ∀c ∈ C, i ∈ N\{o(c), d(c)} (2.2)

∑
j:(i,j)∈L

yc,vij −
∑

j:(j,i)∈L
yc,vji ≥ −1 ∀c ∈ C, i = d(c) (2.3)

∑
v∈V

xv
c ≤ 1 ∀c ∈ C (2.4)

yc,vij ≤ xv
c ∀v ∈ V, c ∈ C, (i, j) ∈ L (2.5)

tvij =
∑
c∈C

yc,vij .δc ∀v ∈ V, (i, j) ∈ L (2.6)

∑
v∈V

tvij ≤ bij ∀(i, j) ∈ L (2.7)

yc,vij ≤ σv
ij ∀v ∈ V, c ∈ C, (i, j) ∈ L (2.8)

uij =

∑
v∈V tvij
bij

∀v ∈ V, (i, j) ∈ L (2.9)

Constraints (2.1-2.3) are the flow conservation constraints. Constraint (2.4) indicates
that one flow can be mapped on at most a single VLAN only. Constraint (2.5) indicates
that every flow will only be routed through the links that form the VLAN onto which that
former is mapped. This constraint allows to establish a strict connection between where a
given flow is routed, and how. Constraint (2.6) calculates the amount of traffic contributed
by each VLAN v on a link (i, j). Constraint (2.7) ensures that the amount of traffic routed
on a given link, does not exceed the capacity of the link. Constraint (2.8) ensures that a
connection cannot use a link in a VLAN, if that link does not belong to the spanning tree
of that VLAN. Finally, Constraint (2.9) calculates the utilization of every link in the network.

2.4 Decomposition Model

In the following section, we present our column generation model, as well as, the intuition by
which we decomposed the original VLAN assignment problem into two subproblems towards
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a scalable solution to the aforementioned hurdle.

Figure 2.2: Flow Chart of CG1 Model

2.4.1 Column Generation

Column Generation is an efficient method for solving large LP problems [62]. Normally, given
an LP, the algorithm begins with an initial subset of configurations (columns) (M0) that
satisfies all the constraints. At each iteration, a new configuration (m ∈M, where M is the
set of all possible configurations or columns), that ameliorates the objective function, is added
to the initial set (M0 =M0∪m). Thus, unlike the Simplex method, column generation only
explores a subset of the variables, instead of enumerating all of them. In every iteration of
the Simplex method, the goal is to find the next non-basic variable to enter the set (basis),
which is the one with the minimum reduced cost coefficient. The Simplex method resorts to
calculating the reduced cost coefficient of all non-basic variables whereas column generation
alleviates this by only finding this next-entering variable. Column generation decomposes
the initial problem into two sub-problems, a master (LP model) and a pricing (ILP). The
master is in charge of determining if the explored configurations satisfy all the constraints.
The pricing model is in charge of finding a new configuration to be passed on to the master.
If the newly found configuration was deemed feasible (and will improve the objective) by
the master, it will be added as a new column, hence the name of the method. The pricing’s
objective function is in fact the reduced cost coefficient of the master. Thus, the master
model can be referred to as the primal, while the pricing as the dual. The master and the
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pricing problems alternate until no new configurations are found with a negative reduced
cost coefficient (in the case of a minimization problem) which indicates that optimality is
reached.

2.4.2 The Intuition Behind our Decomposition Approach

Decomposing the VLAN assignment problem to be solved using the column generation
method is not straightforward. To achieve a concise and vigorous decomposition, we at-
tempted to reformulate the problem in a way that resembles the famous cutting-stock prob-
lem [62]. In the cutting stock problem, the difficulty resides in the very large number of
cuts available to choose from. This indeed resembles the VLAN assignment problem where
a very large number of mapping possibilities between flows and VLANs exists.
Similar to the cutting stock problem, we envision a cut in the VLAN assignment problem
as a unique mapping of a subset of flows to a particular VLAN. Finding the optimal set of
cuts is nothing but finding the optimal way various flows can be mapped to a subset of the
available VLANs. Following the above, we can divide our problem into two subproblems:
the pricing will be in charge of finding a new configuration, while the master will ensure that
these configurations do not violate the capacity constraints. In the following section, we will
present our decomposition model.

2.4.3 The Column Generation Model for the VLAN Assignment

Problem (CG1)

We will now introduce our column generation model for the VLAN assignment problem.
We have modified the problem definition to include not only finding the optimal mapping
of flows to VLANs, but also finding the optimal set of VLANs (spanning trees) onto which
these flows will be mapped. In fact, as the number of possible spanning trees in a network
can be very large, limiting the search space to those VLANs that offer a good quality solution
will greatly improve the runtime of the model. We introduce a new variable m that denotes
a configuration. A configuration is defined as a VLAN v onto which flows are mapped.
Thus, the problem definition of the column generation model can now be stated as follows:

Problem Definition 2.2. Given a network Gs = (N,L), and a set of flows C, each with
bandwidth demand δc, find the optimal set of configurations, such that the maximum link
utilization is minimized.
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At every iteration, the pricing model will generate a new configuration that enhances
the objective function. These generated configurations will be sent to the master to ensure
that they do not violate the link capacity constraints, as well as the constraint of mapping
a connection onto only one VLAN. To generate a new configuration, the pricing requires
building a spanning tree and mapping flows onto the generated trees. Each new configuration
has to improve the master’s objective function and the reduced cost coefficient. The pricing
will keep running until its objective function becomes greater than or equal to 0 (in the case
of a minimization problem) which indicates that optimality is reached. The master problem
can be formulated as follows:

The Master Problem:

• Parameters:

Gs = (N,L): the network with N nodes and L links.
C: set of flows, each with an bandwidth demand δc.
bl: capacity of link l ∈ L.
M: set of all configurations, each indexed by m.
M0: set of explored configurations.

acm =

⎧⎨
⎩1, if flow c is mapped to configuration m,

0, otherwise.
tlm represents the traffic flow contributed by configuration m on link l.

• Decision Variables:

zm =

⎧⎨
⎩1, if configuration m is selected,

0, otherwise.
α: represents the maximum link utilization.

Minimize α

Subject to

∑
m∈M0

acmzm = 1 ∀c ∈ C (2.10)

∑
m∈M0

tlmzm

bl
≤ α ∀l ∈ L (2.11)
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zm ∈ {0, 1} ∀m ∈M0 (2.12)

α ≤ 1 (2.13)

The objective of the master problem is to achieve load balancing by minimizing the maximum
link utilization. However, we reformulate the min-max constraint by defining a new variable
α that represents the highest link utilization, and we aim to find the optimal value α such
that none of the links in the network have a utilization that exceeds this value. Constraint
(2.10) ensures that each flow, if mapped, can only be running on one configuration or one
VLAN. Constraint (2.11) ensures that the physical capacity of the links in the network is not
violated. Constraint (2.12) is the integrality condition that indicates if a configuration m is
selected or not. However, for solving the master, we relax this constraint and allow zm to
take any value in the range between 0 and 1. This becomes an LP relaxation of the original
problem and when solved yields a lower bound solution to the original problem. Finally,
constraint (2.13) ensures that α could be at most equal 1, which indicates that at least one
link in the network is fully saturated.

The Pricing Problem:

Note that acm and tlm are both parameters in the master problem which are obtained after
solving the pricing subproblem. During every iteration, when the master problem is solved,
we need to verify the optimality of the solution. If it is optimal we conclude our search, or
else the pricing attempts to find a new column to join the current basis which may improve
the master’s objective. This can be achieved by examining whether any new configuration
which has not been added to the basis has a negative reduced cost. We denote the dual
variables corresponding to (2.10) and (2.11) by Θ1 and Θ2 respectively. The Reduced Cost
(RC) for an off basis column is expressed as:

RC =
∑
c∈C

acΘ1 −
∑
l∈L

tlΘ2 (2.14)

When the master’s objective is a minimization function, the standard pivoting rule of the
simplex method is to choose a new column (configuration) such that

∑C
c=1 acΘ1−

∑L
l=1 blΘ2

is maximum; the column (configuration) that is found is added to the basis of the master
model. The master model is solved, again, with the new basis to obtain a new solution, and
the dual variable is passed to the pricing which is again solved. The two subproblems are
solved iteratively until there is no off-basis column with a positive reduced cost found and
therefore the solution is optimal. Indeed, this requires that the last Simplex iteration of the
pricing model be solved to optimality to ensure that there is no off-basis column with positive

29



reduced cost remains unexplored. Figure 2.2 presents an illustration of how the master and
the pricing models work iteratively and jointly until the optimal solution is found (RC ≤
0). Before we present the pricing model, we introduce a new set of decision variables for the
pricing problem that are needed for spanning tree construction. These decision variables are
listed below:

• Decision Variables:

ri =

⎧⎨
⎩1, if node i is the root node of the tree T ,

0, otherwise.

yji =

⎧⎨
⎩1, if node j is the parent node of i in T ,

0, otherwise.

xc
ij =

⎧⎨
⎩1, if flow c is routed on link (i, j),

0, otherwise.

ac =

⎧⎨
⎩1, if flow c is routed,

0, otherwise.
Vi : set of adjacent nodes for node i ∈ N .
tl represents the traffic flow on link l.

Thus, the mathematical model of the pricing problem can be stated as follows:

Maximize RC

Subject to ∑
i∈N

ri = 1 (2.15)

∑
j∈Vi

yji + ri = 1 ∀i ∈ N (2.16)

yji + yij ≤ 1 ∀(i, j) ∈ L (2.17)

∑
i,j∈V

yji + yij ≤ |V | − 1 V � N, i, j ∈ V (2.18)
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∑
j:(i,j)∈L

xc
ij −

∑
j:(j,i)∈L

xc
ji ≤ 1 ∀c ∈ C, i = o(c) (2.19)

∑
j:(i,j)∈L

xc
ij −

∑
j:(j,i)∈L

xc
ji = 0 ∀c ∈ C, i ∈ N\{o(c), d(c)} (2.20)

∑
j:(i,j)∈L

xc
ij −

∑
j:(j,i)∈L

xc
ji ≥ −1 ∀c ∈ C, i = d(c) (2.21)

∑
c∈C

xc
ij ≤ 1 ∀(i, j) ∈ L (2.22)

tl =
∑
c∈C

xc
ijδc ∀(i, j) ∈ L, sl = i, dl = j (2.23)

xc
ij ≤ yji + yij ∀(i, j) ∈ L, c ∈ C (2.24)

ac = xc
ij ∀c ∈ C, i = o(c) (2.25)

Constraint (2.15) ensures that a tree has a single root. Constraints (2.16-2.18) model the
spanning tree construction. Constraint (2.16) ensures that each node, except the root node,
will have a parent node. Constraint (2.17) prevents cycling parent-son relationship. Con-
straint (2.18) represents the sub-tour elimination constraint. Constraints (2.19-2.21) are the
flow conservation constraints. Constraint (2.22) ensures that a link can only accommodate
a single flow in this particular configuration. This constraint, on one hand, can limit the
number of generated configurations that violates the link capacity constraint in the master,
and on the other hand, allows us to further decompose the pricing problem at each iteration.
Constraint (2.23) calculates the amount of traffic routed on each link l. Constraint (2.24)
ensures that a link cannot be used if it does not belong to the spanning tree. Finally, Con-
straint (2.25) indicates whether a flow c is routed or not.
Note that, once the relaxed (fractional) VLAN mapping problem is solved, as mentioned ear-
lier, the obtained solution is a lower bound to the optimal solution of the original problem.
To obtain the ILP solution, we solve the master program one last time with zm assuming
integer values and this allows us to obtain a solution to the integral mapping problem. We
acknowledge however that the obtained solution is only an approximation of the optimal one
and better quality solutions may be obtained by employing branch and bound methods.
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2.4.4 The modified Column Generation Model (CG2)

While the CG decomposition substantially overcomes the computational complexity of the
original mapping problem by avoiding the complete enumeration of the flows-to-VLAN map-
pings, it is to be noted that the pricing still exhibits some scalability issues given its ILP
nature. In this section, we try to further enhance the running time of the proposed CG.
Namely, we modify our pricing model by relaxing the tree construction constraints. In fact,
finding a tree requires the model to first choose a single root among the available nodes.
Upon the selection of a root, each node has to select one of its eligible neighbours as a par-
ent. With a choice of V adjacent nodes for each node out of N , this results in |N |V possible
combinations. As the size of the network grows, the number of tree construction constraints
increases substantially. Instead of searching for a new tree at every master-pricing iteration,
we opt to enumerate spanning trees offline (using Dijkstra’s algorithm) and let the pricing
select suitable ones which improve the value of the objective of the master’s subproblem,
until no further improvements (no spanning tree will yield positive reduced cost) are ob-
tained. In the worst case, the pricing will navigate through the whole set of pre-determined
spanning trees. To guarantee a well diversified set, every time the algorithm returns a tree,
we increase the weight of the links in the generated tree. This ensures that our algorithm
will try to avoid these links during the next tree construction.

The SpanningTreeGeneration function is illustrated in Algorithm 2.1. The algorithm
takes as input the number of the spanning trees that need to be generated, denoted by k, and
a constant number denoted by increment, that represents the value to be used to increment
the link weights at the end of every tree construction iteration. This constant is set to a
large value in order to ensure that a link will only be included in multiple spanning trees
if there are no other detours. At the end, the algorithm returns the set all spanning trees
found, denoted by ST . The algorithm begins by setting the link weights of all edges in the
network to 1. Next, the algorithm will loop k times until k spanning trees are constructed.
If at a given iteration, a redundant spanning tree st is found (meaning it already belongs to
the set ST ), the algorithm terminates, as it can no longer find unique spanning trees. At
the beginning of every tree construction iteration, the algorithm will pick a random source
from the set of nodes in the network to become the root node (denoted by s). Next, the
model will run the Dijkstra algorithm to find the shortest path from the root node s to all
other nodes in the network. At every iteration, the set of shortest paths are aggregated to
form a spanning tree st. This guarantees that the tree will not contain any cycles. If the
constructed tree is unique, the algorithm will increment the weight of every edge in that
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Algorithm 2.1 GenerateSpanningTrees Algorithm
1: Given:
2: Gs = (N,L) : an arbitrary topology
3: k : number of Spanning Trees to be generated
4: increment : edge weights increment value
5:
6: ST = { };
7:
8: for (l ∈ L) do /* Initialize the weight of all edges*/
9: w(l) = 1;

10: end for
11:
12: while (|ST | ≤ k) do
13: st = { };
14:
15: /* Select a random node to become the root node*/
16: s = Random(N);
17: N ′ = N - { s };
18:
19: for (d ∈ N ′) do
20: p = Dijkstra(s, d, L);
21: st = st ∪ p;
22: end for
23:
24: if (ST .contains(st)) then
25: Break;
26: end if
27:
28: if (containsCycle(st)) then
29: continue;
30: else
31: for (l ∈ st) do
32: w(l) += increment;
33: end for
34: ST = ST ∪ st;
35: end if
36:
37: end while;
38: return ST ;
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tree, and then will add that tree to the set ST .

Algorithm 2.2 Modified Column Generation Approach
1: Given Gs=(N , L) /*an arbitrary topology*/
2: ST = GenerateSpanningTrees;
3: RC = -K /*K is a very large positive number*/
4: M0 = { };
5: while (!Terminate) do
6: st = ST.next();
7: /*Initialize Set of Configurations for spanning tree st*/
8: Mst = { };
9: while ((RC ≤ 0)) do

10: RC = Run Master;
11: /*m is a new Configuration*/
12: m = Run Pricing(RC,st);
13: RC = m.RC;
14: Mst = Mst ∪ m;
15: end while
16: if (Mst.length ≤ 1) then
17: Terminate = TRUE ;
18: end if
19: M0 =M0 ∪ Mst;
20: end while

Algorithm 2.2 illustrates the methodology of our heuristic model: Given the topology
of the substrate network, represented by Gs = (N,L), the model starts by calling the
GenerateSpanningTree function to enumerate multiple spanning trees that will be stored in
a dedicated set ST . As we have previously mentioned, the GenerateSpanningTree function
adopts the Dijkstra algorithm [66] with link weights increment. Next, at the beginning of
every iteration of the pricing model, we provide the pricing with a new spanning tree st from
the set ST , and for every tree, we initialize a set Mst that represents the list of configurations
for that given tree. The master and the pricing iterate over the same given tree, as long
as it produces feasible configurations (a configuration with positive reduced cost). At the
end of every iteration, the explored configuration m is added to the set Mst. Once the tree
becomes non-bearing (no feasible configurations can be found), a new tree from the initial
set is selected. This procedure persists until one tree returns an infeasible configuration in
the first trial, meaning that its Mst remains empty at the end of the first master/pricing
iteration, in that case, the program terminates. Our numerical results have shown that our
heuristic model achieves a great improvement in runtime and scalability over our initial exact
decomposition model without sacrificing the quality of the final solution.
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2.5 Performance Evaluation

In this section, we numerically evaluate the proposed VLAN mapping methods. In particular,
we present comparisons between the ILP and its two decomposition variations. We refer to
the column generation models presented in sections 2.4.3 and 2.4.4 as CG1 and CG2. The
objective of our comparisons is to study the effectiveness of the designed methods in terms of
quality of the obtained solutions and runtime. We also present comparisons with state of the
art traffic engineering methods in data centre networks; namely, we compare the performance
of our proposed decomposition methods against the STP, SPAIN, and ECMP. The purpose
of this study is to see how well these protocols compare to the optimal obtained results.
All our numerical evaluations are conducted using CPLEX version 12.4 on a pentium IV
machine at 3.4 GHz with 8 GB RAM.

2.5.1 Numerical Results

Table 2.1: Runtime and Optimality Gap Comparative Analysis (500 Flows)

Topology ILP Model CG 1 CG 2
#Config Runtime(s) #Config Runtime(s) Gap #Config Runtime(s) Gap

K3 3500 5 452 230 1% 548 120 0%
K4 16500 24 579 318 2% 760 266 2%
K5 125500 452 660 654 2% 866 455 3%
K6 1296500 > 81823 1111 1020 2% 1322 546 4%

We start by evaluating how our model performs when compared to the ILP model of
section 2.3.2. We consider a clique topology as it allows to determine the number of all
possible spanning trees and configurations, which would provide a solid benchmark for com-
parison. We suppose each node in the clique represents a switch, and that each switch is
connected to one host with an immediate link. We consider a traffic demand matrix of 500
sessions/flows, each pair of communicating nodes is randomly chosen and each demand is of
one unit (normalized demand). As our focus is to map flows onto VLANs while balancing
the traffic across the network (traffic engineering problem), we assume links with enough
capacity to route all the demands. Table 2.1 summarizes our findings. Here, we present the
average of 10 executions for each topology. The results show that the number of configu-
rations explored by our decomposition models are substantially smaller when compared to
the search space of the ILP model. In fact, for a K3, the ILP model navigates through 3500

configurations, while CG1 and CG2 explore 452 and 548 configurations respectively (observe
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Figure 2.3: Towards Scalable Traffic Management - Runtime Analysis of CG1 and CG2

that the fraction of explored configurations by our decomposition models is less than 1% of
the search space of the pure ILP model and this fraction becomes negligible as we exper-
iment with larger clique topologies). Next, we look at the runtime of the models, and we
notice that, as opposed to CG1 and CG2, the runtime of the ILP increases exponentially
as the size of the network increases. This is attributed to the fact that both CG1 and CG2
examine much smaller number of configurations (only good configurations are enumerated
by the pricing subproblem) for solving the mapping problem. It is interesting to note that
for smaller size networks, the ILP exhibits faster runtime. Indeed, this is due to the fact that
with the ILP, the trees are always enumerated offline and the mathematical model solves the
mapping problem. However, both with CG1 and CG2, the trees are explored dynamically
as we seek to improve the quality of the solution. Notice that for a K6 network, the ILP
failed to obtain a solution after running the model for 22 hours. We also observe that CG2
consistently outperforms CG1 in terms of runtime; this is due to the fact that the pricing
model of CG2 is much smaller than that of CG1. Indeed, as mentioned in section 2.4.4, the
tree construction in CG2 is not done within the pricing model (as in CG1), but rather, trees
are enumerated offline and explored dynamically as we search for best configurations. The
size of the ILP pricing of CG1 is much bigger and thus less scalable in terms of runtime.
Figure 2.3 compares the runtime of both CG1 and CG2 over larger clique topologies of 3 to
15 nodes with all to all connection demands. The figure shows that the runtime of CG2 is
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much faster than CG1, in fact as we move towards cliques with more than 8 nodes, CG2
becomes at least three times faster.
Finally, we examine the quality of the obtained solutions. We show, in Table 2.1, the % gap
of the solution obtained by CG2 and CG1 to the one obtained by the ILP. In most cases, the
gap is less than 2% for CG1 and 4% for CG2. The gap between the solution of CG1 and that
of the ILP is attributed to the manner through which we obtained the ILP solution for CG1.
Namely, as we have solved the fractional mapping problem (lower bound), we resorted to a
straightforward approach for solving its ILP version. We believe this gap may be reduced
if we employ a more effective branch and bound method for obtaining the integral solution.
Now the gap of CG2 is attributed to the heuristic nature of the methodology followed for
solving the mapping problem. That is, the more spanning trees are explored, the better the
quality of the solution gets, but that comes at the cost of increased runtime of the model.

2.5.2 Comparative Analysis

In this section, we study the performance of different traffic engineering schemes; namely
SPAIN [18], STP, and ECMP [67], against the obtained solutions from our design method-
ology. We used CG2 (owed to its better scalability) for obtaining benchmark solutions.
We use STP as a base for comparison, since it is widely used in Ethernet networks. Our
objective is to study how well the traffic is balanced in the network and to measure the
overall network goodput. For each experiment, We executed multiple test cases for different
number of sessions in the range [10,50,80,100,150,200]. In each session, we consider random
traffic demands between random pair of hosts. In all test cases, the results are averaged over
multiple runs.
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2.5.2.1 Load Balancing
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(b) FatTree k=8
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(d) Random Topology R1 - 14 switches, 19
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Figure 2.4: Max Link Load Comparison between CG2, ECMP, SPAIN, and STP
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We begin by studying the load balancing capability of our model. For this purpose, we use
the FatTree network, since it is a well-adopted topology for cloud data centers [17]. A FatTree
network consists of 3 layers of interconnected ethernet switches. The links connecting the
switches are of 10 Gbps, while those connecting the server racks to the second layer aggregate
switches are of 1 Gbps, hence the name of this topology.
We compare the performance of the legacy STP protocol, ECMP and SPAIN, against results
obtained from the CG2 model using a FatTree network (k=4 and k=8); the results are
illustrated in Figures 4(a) and 4(b) respectively. It is clear that the STP protocol has inferior
performance, achieving very high link load. This is indeed expected, since STP concentrates
the load on a particular set of links in the network and does not benefit from the existence
of multipaths, thus quickly congesting the selected links. On the other hand, both ECMP
and SPAIN spread equally the load across the network, achieving very close performance to
those results obtained by CG2.
Next, we further study the quality of the solutions obtained by ECMP and SPAIN and
compare their solutions to those obtained by CG2-LP (lower bound) and CG2-ILP (CG2)
(as shown in Figures 4(a) and 4(b)). We observe that for a FatTree network (k=4, k=8),
both ECMP and SPAIN perform quite well; namely, we see that the CG2 solution has a
gap of 11% to the lower bound while ECMP and SPAIN both have a gap of 16%. For a
FatTree with k=8 (Figure 4(b)), the CG2 model provides an overall 16% gap from lower
bound, while ECMP and SPAIN both show a 30% gap. It is to be noted that as the number
of sessions increases, the gap decreases. For instance, for FatTree with k=4 and 200 sessions
(Figure 4(a)), ECMP’s gap to the lower bound reaches 2%, while CG2 and SPAIN’s gap
are at 5%. This indeed shows that ECMP and SPAIN yield outstanding performance in
a FatTree network and this is due to their capabilities in exploiting the existence of multi
(redundant) paths in the network. It is important to note however that, although ECMP
achieves good load balancing in the FatTree topology, it has been found to be unsuitable for
Ethernet data center networks, particularly since ECMP requires IP addressing to determine
the location of the destination host. This is indeed problematic in the case where the physical
topology differs from the logical topology, such as the case of VLANs. Moreover, ECMP
incurs latencies due to the need to determine the next-best-hop at every switch along the path
to the destination host, as opposed to pre-configured paths, where the optimal trajectory
from source to destination is predetermined. In addition, its memory requirement is high,
since every switch needs to keep multiple paths for every pair of nodes, which can lead to
oversized routing tables. Finally, ECMP was also found to be congestion-prone, since it relies

39



on hashing functions to determine the path to the destination host. Hashing collisions, [63]
particularly between elephant flows, cause hot spots that can ultimately lead to failure in the
network. Moreover, ECMP is only capable of exploring equal cost paths. Such a limitation
inhibits ECMP from achieving optimal load balancing in topologies where the nodes are
interconnected by multiple distinct paths of unequal cost. The interconnection of switches
in the FatTree topology does not portray this limitation, which makes ECMP very well
suitable for such a topology.
To confirm our observation, we study how well both ECMP and SPAIN perform in other
network topologies. Namely, we consider a clique and two random topologies and the results
are shown in Figures 4(c)-4(e). The figures show results obtained from ECMP, SPAIN, and
CG2 as well as the LP relaxation of the CG mapping problem. We observe that, unlike in
the FatTree network, the performance of both ECMP and SPAIN is far from optimal. For
example, while the gap between CG2 and the lower bound optimal solution is 13% (Figure
4(c)), the gap between ECMP stands at around 40% from the lower bound. Similar findings
are shown as well for random networks (Figures 4(d) and 4(e)). The rationale behind this
is the fact that the clique topology, as well as the random networks, dispose more than 6
redundant paths between every pair of nodes, while ECMP was only capable of finding 1
equal cost path between every pair of nodes. This gain in the number of explored redundant
paths is reflected in the better results obtained by CG2.
With respect to SPAIN, we notice inferior performance (as the figures show) in terms of
achieving minimum link load for the three networks we studied. The reason is that SPAIN
relies on a randomized approach when mapping flows to VLANs. This randomized approach
leads to poor load balancing capabilities, especially when SPAIN exploits the existence of
multiple paths with varying number of hops. Hence, a path with larger number of hops is
equally likely to be utilized as a path with smaller number of hops. This leads to consuming
more bandwidth from the network and yields to links with larger number of flows routed
through them. Our CG2 strikes a balance between SPAIN and ECMP. It exploits the
existence of multiple redundant paths by only using those paths that improve the quality
of the solution and thereby achieves better load balancing. It is important to note that
the authors of SPAIN mention the possibility of including a centralized control to enhance
the traffic engineering capabilities of their flows to VLANs mapping algorithm. Further, to
observe how the traffic is balanced throughout the network, we plot the probability density
function of the link loads for R1 (as shown in Figure 2.5). Clearly, as we have explained
above, STP has the worst load distribution with CG2 showing the best link load distribution.
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Figure 2.5: Comparison of link load between CG2, ECMP, STP and SPAIN

2.5.2.2 Goodput

In order to evaluate the network goodput, we have replaced the master’s objective function by
Max

∑
v

∑
c x

v
c δc, and assigned a link capacity of 10Gbps and random flow demands of 1 to 3

Gbps. We aim to measure the amount of goodput provided by the CG2 model in comparison
with ECMP, STP and SPAIN over a FatTree, clique and random topology. The results are
shown in Figures 6(a)-6(c); the upper bound results are obtained by solving a relaxed version
of the maximization problem in CG2. Clearly, for a FatTree network (Figure 6(a)), both
ECMP and SPAIN achieve outstanding performance, for the same results mentioned in our
previous discussions, while STP exhibits the lowest goodput. We also observe that for a
clique topology (Figure 6(b)), our CG2 model outperforms ECMP and SPAIN with a 5%
gap from the upper bound solution, while ECMP and SPAIN present a 7% and 13% gap
respectively. Finally, in a random topology of 14 nodes and 19 links (Figure 6(c)), our CG2
model achieves a 7% overall gap, while ECMP and SPAIN provide a 22% and 25% gap,
respectively.

2.6 Conclusion

In this chapter, we introduced a novel column generation approach for solving the VLAN
assignment problem in cloud data centers. We presented two decomposition approaches:
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Figure 2.6: Comparison of Goodput (Mb/s) between CG2, ECMP, SPAIN, and STP

an exact, as well as a semi-heuristic model to attain better runtime and scalability. We
compared both models against the pure ILP model of the VLAN assignment problem, and
proved that our approach yields a substantial decrease in the size of the explored search space
with encouraging optimality gap. We also compared our decomposition approach against
state of the art protocols in traffic engineering, our comparative analysis has shown that our
model outperforms its peers in most network topologies in terms of link load, attainable gap
from lower bound LP solution, as well as in goodput.
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Chapter 3

Multicast Virtual Network Embedding

3.1 Problem Motivation

Embedded virtual link 
connections

Substrate Network

Multicast
Cloud Applications

Service A Service B

Embedded MVNs

Figure 3.1: The Multicast Virtual Network Embedding Problem

Network Virtualization has been receiving significant attention for being the ideal an-
tidote against Internet ossification [14]. Virtualization enables more freedom as heteroge-
neous network architectures and technologies can cohabit a shared substrate network. With
server virtualization, the entire network components may be virtualized (e.g. links, router-
s/switches), resulting in a modular and fully isolated entity known as a virtual network. This
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technology is tightly correlated with the new "philosophy" of computing as a service, in the
sense that tenants applications will be hosted on large computing farms, as VNs, accessible
via the Internet in a pay-per-use model.
Within this multi-tenancy environment, several challenges emerge; among these challenges
is the important issue of how these VNs will coexist, also referred to as "embedded", on
the same physical infrastructure. This resource allocation problem is commonly known as
the NP-Hard Virtual Network Embedding (VNE) problem [33]. Hence, various efforts have
been dedicated towards finding effective algorithms for solving it [14]. However, most of the
existing work does not characterize the mode of communication of VN requests, assuming
that they all exhibit unicast or one-to-one communication. In fact, depending on the type
of service these VNs provide, communication among the participating VMs can be either
unicast, multicast (one-to-many) or broadcast (all-to-all). Characterizing the type of com-
munication in VNs is crucial for achieving optimal network operation and utilization. For
instance, in unicast communication, the sender transmits data to a single receiver; thus, han-
dling multicast communication as unicast requires transmitting multiple copies of the same
data to reach each receiver. On the other hand, by handling a one-to-many communication
as multicast, these multiple unicast messages can be replaced by a single multicast message,
thereby incurring great benefits in terms of reducing the computation effort at the source
node, reducing bandwidth consumption in the network, and subsequently ameliorating the
application’s throughput, and its response time [68]. Hence, for cloud providers that host
multicast services with heavy traffic, it is imperative to have efficient multicast support in
their data centers.
To this extent, multicast in data center networks has become a prominent research topic [69–
74], with particular attention to the resource allocation problem of multicast VNs (MVNs)
[69, 70]. This resource allocation problem consists of allocating physical resources to the
VMs running a tenant’s service, and routing the traffic flow between them via substrate
paths. While this problem has been widely discussed for unicast VNs, embedding MVNs
differs greatly from that of unicast for several reasons: mainly a multicast VN comprises two
types of virtual nodes (machines): the multicast source node and a set of multicast recipi-
ent nodes. The traffic flow routing problem now consists of building a multicast distribution
tree between the multicast source and recipients in order to avoid redundant traffic. Further,
multicast services that involve real-time communication entail stringent QoS requirements,
such as end-delay and delay-variation constraints. For instance, for a user-facing web-search
service, if the indexing servers do not receive the search-query in a timely fashion, this
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will subsequently delay the service’s makespan, and hence risk violating the SLA-specified
response time [75]. In addition, without a delay-variation bound, some workers (indexing
servers) can lag behind waiting to receive input data, thereby slowing the pace of the en-
tire application. This also applies to other partition-aggregate services (e.g. Map-Reduce
like services for data processing) where tasks are partitioned between several machines to
achieve a horizontal scalability [75]. Moreover, consider the case of a distributed database
system that is consistently updated with new information. A large delay-variation between
the recipient nodes that host the databases will lead to unfairness, inconsistencies, and pos-
sibly lead to incorrect computations [76], particularly for multicast-services that deal with
distribution of time-critical information, such as financial service providers [68].
In light of the above, this chapter is devoted towards investigating the multicast VNE
(MVNE) problem in cloud data center networks; as opposed to existing work [69, 70], here
we assume that the location of the source and destination nodes in the MVN is unknown,
and the communication between the source and all recipient nodes is subject to delay and
delay-variation bounds. We target the case where a cloud provider wishes to host a tenant’s
multicast service in a data center network1 as illustrated in Figure 3.1. Figure 3.1 illustrates
an example of two multicast VNs, one running Service A, and the other running Service B,
both mapped onto the same substrate network. Our main contributions can be summarized
as follows:

1. We present a formal definition of the MVNE problem and state its Integer Linear
Programming (ILP) formulation.

2. We provide a formal proof of the NP-Hard nature of the MVNE problem.

3. We propose a novel 3-Step approach for solving the MVNE problem, and introduce
the receivers embedding problem over multicast trees.

4. We mathematically formulate the receivers embedding problem, and propose a Dy-
namic Programming (DP) approach for MVNs with homogeneous resource demands,
that is solvable in polynomial-time over multicast trees with constant nodal degree.

5. For tree-like data center network topologies, we prove that our 3-Step MVNE with the
DP for receivers embedding provides optimal solution in polynomial-time for MVNs
with homogeneous resource demands.

1Although we consider the problem of multicast virtual networks in data centers, our work is equally
applicable to a wide-area network with arbitrary substrate topologies.
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6. Finally, we propose a Tabu-based search for solving the MVNE problem for multicast
services with heterogeneous resource demands over arbitrary network topologies. We
compare our Tabu approach against the 3-Step MVNE and other embedding heuristics,
using multiple metrics and over various substrate networks. Our numerical results
prove that our Tabu-based search yields high network admissibility in considerably
fast runtime.

3.2 Background & Related Work

3.2.1 Multicast in Data Center Networks

Multicast in data center networks has recently become a prominent research topic [69–74,77].
The key enabling factors for efficient multicast are related to the topological properties of data
center networks and its controlled environment [78, 79], as well as the recent technological
advancements pertaining to SDNs [71].
Most data center networks today adopt a multi-rooted tree topology [72,78], which consists
of several layers of commodity switches used to interconnect a large number of servers via
multiple equal-cost paths. The goal of this design is to provide a high bisection bandwidth,
and eliminate any network oversubscription [78]. Examples of such data centers include
(among others) the Clos topology [28], and BCube [80]; some of which have already been
deployed in production [15, 17]. This multi-rooted tree structure allows to overcome the
scalability concerns of IP-Multicast [78,79] in data centers. For instance, the authors in [78]
developed a multicast address distribution approach that leverages the topological structure
of data centers in order to circumvent the memory limitations of commodity switches, and
thus expand the number of supported multicast groups. Further, the authors in [79] harness
the controlled environment of data centers [17, 19] to construct reliable multicast trees that
minimize packet losses in multicast communications.
Existing IP multicast routing schemes are not suited for data center networks because they
do not exploit path-diversity [71], thus leading to poor resource utilization and network
throughput. This is particularly true since typical data center network topologies exhibit an
abundance of equal cost paths [71,72]. Indeed, the work in [72] shows that the conventional
receiver-driven multicast routing protocols yield far-from-optimal distribution trees when
employed in such data center networks. Hence, they proposed an efficient and scalable
source-driven multicast routing protocol that saves more than 40% network traffic compared
to conventional receiver-driven routing techniques. Further, the authors in [71] leverage
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SDN’s global network visibility, and propose an SDN-based routing protocol for data center
networks that exploits path-diversity.
SDN provides a vantage point to network and applications information, allowing the detect
and handle of diverse service classes with distinct QoS requirements (e.g. delay-sensitive
multicast services). By leveraging this gained knowledge about the network topology, it
becomes possible to exploit path-diversity, thereby distributing the load across the network,
and achieving better network throughput. In addition, the centralized control plane in SDN
allows the enforcement of policies for admission control, hence it diminishes concerns of
security. Further, it enables the support of multicast in commodity-switches that lack built-in
support. Finally, SDN enables accurate network monitoring [81–83], thereby fostering fine-
grained traffic engineering, and allowing the fulfilment of QoS requirements for delay-sensitive
applications [84]. As opposed to passive network monitoring techniques that require a large
hardware investment (e.g. NetFlow [85], sFlow [86]), SDN has also proved its worth [81,84,87]
in performing active monitoring with high accuracy, and significantly less network overhead2.

3.2.2 Multicast Data Center Applications

Many applications and services [72, 73, 88–90] can benefit from an efficient multicast sup-
port in data centers. For instance, High Performance Computing (HPC) applications often
need to distribute a large amount of data from storage to all compute nodes [90]. HPCs
are conventionally employed in distributed parallel computers such as supercomputers and
grid-computing [91]. However, the emergence of cloud computing has triggered significant
attention around the possibilities of migrating HPCs to the cloud [92–94]. The general con-
sensus is that the benefits of migrating HPCs to the cloud are highly dependent on the type
of workload the latter exhibits [91], [95]. Some further advocate for the benefits of a hy-
brid cloud/supercomputers deployment [92], [96]. Hence, in the framework of clouds, these
workload-adequate HPCs can highly benefit from multicast operations to distribute the data
between storage and compute nodes, while greatly alleviating redundant traffic. Similarly
for web-search services, multicasting can significantly decrease the service’s response time
by redirecting incoming search-queries to a set of indexing servers [97]. Further, bandwidth-
hungry Distributed File-Systems (DFS) are common data center applications [73], [98], [99].
DFS divides files into fixed-size chunks to be replicated and stored in different servers for

2The work in [84] has shown that SDN achieves 99% latency measurement accuracy with 81% less band-
width consumption than conventional active monitoring tools.
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reliability. Such type of applications can also benefit from multicasting to improve the net-
work’s throughput [72], [73]. Moreover, multicasting can greatly speed-up the distribution
of executable binaries among participating servers in map-reduce [100] like cooperative com-
putation systems [72], [88].

3.2.3 Multicast Virtual Network Embedding (MVNE)

The MVNE problem consists of allocating physical resources to multicast services with one-
to-many communication mode. This problem differs from the multicast routing problem; in
this latter, the location of the source and recipient nodes is known and the problem consists
of finding the lowest-cost tree to interconnect them. However, in the MVNE problem the
routing element interplays with the placement of virtual nodes. This reciprocal relationship
between the multicast virtual node embedding and multicast routing demands separate at-
tention, particularly when dealing with delay-sensitive multicast applications. This is true
since an arbitrary node embedding solution can yield an infeasible link mapping solution,
for failure to find a multicast tree that interconnects the source and the receivers with the
requested QoS. One possible solution would be to try-out all feasible node mapping solutions
until we find the one that renders a lowest cost distribution tree. However, for a substrate
network with N nodes, and a VN request with V virtual nodes (where each virtual node
has a unique resource demand), and taking the worst case where all substrate nodes have
enough capacity to host any virtual node v ∈ V , there are D = N !

(N−V )!
possible node mapping

solutions. Clearly enumerating all node mapping solution is an injudicious approach.
Thus, the MVNE problem has recently surfaced in the literature [69], [70]. In [70], the
authors present an algorithm that maps multicast Service-Oriented Virtual Networks. In
this work, the authors assume that the location of both the source and destination nodes
is pre-determined, and their approach consists of finding a set of k-shortest paths between
the source and each destination node that satisfy the node and link capacity constraints,
while ensuring that the length of these paths respects the end-delay constraint. In [69], the
authors study the problem of embedding multiple description coding-based video applica-
tions. The objective is to find various intermediate nodes between the source and multiple
destinations that will perform video encoding for a given video application. It is important
to note however that this work does not consider delay-sensitive applications.
Our work is different since we target the case where a tenant wishes to deploy a delay-
sensitive multicast application in a cloud data center. In this case, the location of the virtual
nodes (both source and receivers) in the given VN request is unknown. It is up to the cloud
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provider to decide where to place the VN request, such that it optimizes his/her desired ob-
jective. The key element in this problem is identifying the placement of multicast source and
receivers such that a lowest-cost distribution tree can be constructed within the requested
delay-constraints.

3.3 The MVNE Problem

3.3.1 Problem Definition

In this section, we present a formal definition of the MVNE problem by describing the vari-
ous components involved:

1. The Substrate Network: We represent the substrate network as an undirected graph,
denoted by Gs = (N ,L), where N is the set of substrate nodes, and L is the set of substrate
links. Each substrate node n ∈ N is associated with a finite computing capacity, denoted
by cn. Similarly, each substrate link l ∈ L has a finite bandwidth capacity, denoted by bl.

2. The Multicast VN (MVN) Request: A multicast VN represents a client’s request
to deploy an application with one-to-many communication mode in a cloud data center.
It consists of a single source node s, and a set of recipient nodes T . The source node is
connected to all recipient nodes via virtual links. The set of all virtual links is denoted
by E. Every virtual link e ∈ E requires a specific amount of bandwidth, denoted by b′.
For the sake of simplicity, we assume that the bandwidth demand between the source
and each recipient node is the same. In addition, each virtual node is usually associated
with computation demands, denoted by c′v. We note that one of the most important
properties for multicast VNs is delay; particularly for applications that involve real-time
communication. Here, it is important that the source node reaches all receivers within
an acceptable delay, denoted by γ. Moreover, we assume the delay variation between
all recipient nodes in a given VN must also respect a given threshold δ, in order to
ensure correctness and synchronization among all recipient nodes. A multicast VN is
thus denoted by Gv = (s, T , b′, γ, δ).

3. The MVNE problem: The MVNE problem consists of mapping the VN request onto
the substrate network, such that the virtual nodes and links’s resource demands are
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satisfied, while making sure that the delay between the source and all recipient nodes does
not violate the requested end-delay threshold. In addition, the differential delay between
all the recipient nodes must also respect the delay variation constraint of the given VN
request. When a multicast VN request arrives, a decision is first placed on whether to
accept or reject the VN request based on the residual capacity of the substrate network, or
any other admission policies dictated by the network provider. If admitted, the embedding
process is initiated and decisions are made on where to place the virtual nodes and how
to route the virtual links, such that the capacity constraints of the substrate network
are not violated, and the desired design objectives are achieved. Note that the MVNE
problem can be logically divided into two subproblems: Virtual Node Mapping (VNM)
(source and recipient nodes), and Virtual Link Mapping (VLM). That latter consists of
finding a MST m rooted at the source of the VN request and spans all the recipient nodes
within the requested delay constraints. Hence, the MVNE problem can be formulated as
follows:

Problem Definition 3.1. Given a substrate Gs = (N,L) and a multicast VN Gv =
(s, T , b′, γ, δ), find an optimal mapping M = (MN ,ML) of the VN request onto the
substrate, such that the demands of the virtual nodes and virtual links are satisfied, and
the end-to-end delay and the delay variation constraints are met, without violating the
capacity of the substrate network.

A mapping M holds the solution for the two subproblems:

(1) Virtual Node Mapping (VNM): MN : (s, T ) −→ N

(2) Virtual Link Mapping (VLM): ML: E −→ P ; P represents the set of paths that form
the multicast tree.

Theorem 3.1. The MVNE problem is NP-Hard.

Proof. The MVNE problem can be easily seen in the NP-class, since given a solution to
the MVNE problem it can be verified in polynomial-time. This can be done by first ver-
ifying the feasibility of the VNM sub-problem which takes O(|V|), where |V| = |T| + 1.
Similarly, the VLM subproblem can also be verified in polynomial-time by ensuring that
each path in the multicast tree respects the requested end-delay and bandwidth demands,
and that the difference between the smallest and the largest path to the root satisfies the
differential delay requirement.
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Now, we prove that the MVNE is NP-Hard through a reduction from the unrooted K-
Minimum Spanning Tree problem (K-MST) [101], which is a well-known NP-Hard prob-
lem. For the sake of completeness, we provide a formal definition of the unrooted K-MST
problem [102]:

Problem Definition 3.2. Given a substrate network Gs = (N,L), where each edge l ∈
L has a weight wl, and a positive integer K; Find a tree of minimum weight that spans
exactly K nodes.

Our reduction consists of demonstrating a polynomial-time conversion of any instance of
K-MST to an instance of MVNE, and an if-and-only-if proof that a yes instance of the
K-MST maps to a yes instance of MVNE, and vice-versa. Note here, that a yes instance
of K-MST represents a feasible solution where a minimum spanning tree with K receivers
can be found in G, and a yes instance of MVNE represents a feasible multicast tree that
spans T substrate nodes. Note here that we assume that K = |T |.
Consider a substrate network Gs and a virtual network Gv; without loss of generality, we
assume that all the virtual nodes in Gv have a uniform CPU demand, and the bandwidth
demand b′ is equal to 1. Further, we let the delay and delay-variation tolerance γ = ∞
and δ = ∞. Further, we assume for all nodes n ∈ N that cn ≥ c′v, ∀ v ∈ {s, T}.
Now, we will convert an instance of K-MST to an instance of MVNE as follows: Given a
substrate network Gs, we convert Gs to an auxiliary graph G̃s = (Ñ , L̃), that is obtained
by replacing each edge l ∈ L connecting nodes n1 and n2 ∈ N , by wl - 1 intermediate
vertices of capacity 0 interconnected via edges of cost 1. For instance, if nodes n1 and
n2 ∈ N are connected via an edge of cost 2, this former will be replaced by a path that
connects n1 to x, and x to n2, where x is an intermediate vertex of capacity 0, and the
edges connecting x to n1 and n2 respectively have a cost of 1. Thus, the obtained graph
G̃s is simply Gs with two sets of substrate nodes, those that can host the virtual nodes in
the given MVN request, and those that cannot (intermediate vertices of capacity 0), which
reduces to our MVNE problem. Clearly this transformation can be done in polynomial
time. Figure 3.2 shows the conversion of a Gs = (N,L) (illustrated in Figure 2(a)) to a
G̃s = (Ñ , L̃) (illustrated in Figure 2(b)), where the link connecting substrate nodes 1 and
2 of weight 3 in Gs is replaced in G̃s by three links of weight 1 interconnected via two
intermediate nodes x2 and x3 of capacity 0.
Now we need to show that a yes instance of K-MST maps to a yes instance of MVNE,

and vice-versa. If the K −MST problem has a yes instance in G, this means that there
exists a tree that spans K nodes with capacity ≥ c′v, thus the solution found for the
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(a) Gs = (N,E) (b) G̃s = (Ñ , Ẽ)

Figure 3.2: Instance of K-MST converted to an instance of the MVNE

K-MST in G forms a solution for the MVNE of Gv in G̃s. Conversely, if Gv has a feasible
embedding solution in G̃s, this implies that the solution contains no intermediate nodes,
since their capacity is smaller than c′v and cannot accommodate the virtual nodes in Gv.
Hence, the multicast tree that spans T receivers in G̃s forms a K-MST in Gs, where K

= |T |. Figure 3.2 shows how a K-MST of size 3 in Gs maps to a MVNE solution for a
MVN with 3 recipient nodes in G̃s.

3.3.2 The MVNE ILP Model (MVNE-ILP)

In this section, we mathematically formulate the MVNE problem, our objective function is
to find the optimal virtual nodes mapping with the lowest-cost multicast tree that satisfies
the end-delay and differential-delay constraints.

• Parameters:

Gs(N,L): represents the substrate network with N nodes and L links.
Gv = (s, T , b′, γ, δ): represents a multicast VN.
d̂i,j: represents the measured delay on link (i,j) ∈ L

• Decision Variables:

xv,n =

⎧⎨
⎩1, if virtual node v is mapped on substrate node n,

0, otherwise.

qvi,j =

⎧⎨
⎩1, if link (i, j) is chosen to reach virtual node v,

0, otherwise.

zi,j =

⎧⎨
⎩1, if link (i, j) is part of the multicast tree,

0, otherwise.
ti,j : represents the traffic flow on link (i, j).
θmin, θmax : represents the minimum and maximum delay.
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• Mathematical Model:

Min
∑

(i,j)∈L
ti,j

Subject to

∑
n∈N

xv,n = 1 ∀v ∈ {s, T} (3.1)

∑
v∈{s,T}

xv,n ≤ 1 ∀n ∈ N (3.2)

∑
v∈{s,T}

xv,n.c
′
v ≤ cn ∀n ∈ N (3.3)

∑
j:(i,j)∈L

qvi,j −
∑

j:(j,i)∈L
qvj,i = xv,i − xs,i ∀i ∈ N, v ∈ T (3.4)

∑
(i,j)∈L

qvi,j d̂i,j ≤ γ ∀v ∈ T (3.5)

θmin ≤
∑

(i,j)∈L
qvi,j d̂i,j ∀v ∈ T (3.6)

θmax ≥
∑

(i,j)∈L
qvi,j d̂i,j ∀v ∈ T (3.7)

θmax − θmin ≤ δ (3.8)

zi,j ≥ qvi,j ∀v ∈ T, (i, j) ∈ L. (3.9)

ti,j = zi,j.b
′ ∀(i, j) ∈ L. (3.10)

ti,j ≤ bi,j ∀(i, j) ∈ L. (3.11)

∑
i∈S

∑
j∈S

zi,j ≤ |S| − 1 ∀S ⊂ N, 2 ≤ |S| ≤ N (3.12)
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Constraint (3.1) indicates that each virtual node in the given MVN must be mapped to
a single substrate node, while Constraint (3.2) ensures that each virtual node is mapped
to a distinct substrate node. Constraint (3.3) represents the substrate nodes capacity con-
straint. Constraint (3.4) represents the flow conservation constraint, and Constraints (3.5)-
(3.8) ensure that the constructed multicast tree satisfies the end-delay and delay-variation
constraints. Constraint (3.9) indicates the distinct substrate links that form the constructed
multicast tree. Constraint (3.10) measures the traffic provisioned for each link in the con-
structed multicast tree, and Constraint (3.11) ensures that the provisioned traffic does not
violate the substrate links capacity. Finally, Constraint (3.12) represents the subtours elim-
ination constraint.
Note that here, d̂i,j represents the measured latency at every link (i, j) ∈ L, which is the sum
of the queueing delay, propagation delay, transmission delay, and processing delay. Hence,
the end-delay between the source s and any receiver t is equal to

∑
l∈P(s,t)

d̂i,j, where P(s,t)

represents the physical path between the host of s and t respectively. Throughout this work,
we assume that the delay experienced on each edge in the substrate network is an input,
which can be obtained via network monitoring tools3.
Clearly, the proposed MVNE-ILP model is hard to scale given that the MVNE problem is
NP-Hard. To this extent, we propose a novel 3-Step approach for solving it. Our 3-Step
MVNE approach tackles the MVNE problem disjointly, by first finding a set of feasible
multicast trees, and then attempts to map the recipient nodes onto these trees.

3.4 The MVNE Heuristic (MVNE-H)

3.4.1 The 3-Steps MVNE Heuristic with a Node Mapping Model

(MVNE-HNM)

Our approach comprises of 3 steps, as illustrated in Algorithm 3.1. It begins by first pruning
the substrate network in order to identify the set of eligible nodes that can become root
nodes in a multicast tree. This pruning results in a list of eligible root nodes. Next, from
each one of these root nodes, multicast trees are constructed and placed in a dedicated set
which will be fed to an ILP node mapping model in order to return the optimal mapping
solution within this given set.

3There are numerous network monitoring tools that can be used to perform active or passive data centers
traffic monitoring [82–84]. Further, SDN-enabled latency measurement tools have been proven to achieve
99% accurate measurement with significantly low network overhead [84,87]
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Algorithm 3.1 The MVNE Heuristic Algorithm
1: Given
2: Gs = (N,L) /*an arbitrary topology*/
3: Gv = (s, T , b′v, γ, δ)
4:
5: Step 1: Prune the Network
6: R = { }; /*Initialize the set of Eligible Root Nodes*/
7: for n ∈ N do
8: if (cn ≥ c′s) then
9: R = R ∪ n;

10: end if
11: end for
12:
13: Step 2: Build Multicast Trees
14: M = { }; /*Initialize the set of Multicast Trees*/
15: for r ∈ R do
16: m = DFS(r,γ);
17: if (CountEligibleNodes(m) ≥ T ) then
18: M = M ∪ m;
19: end if
20: m′ = BFS(r,γ);
21: if (CountEligibleNodes(m) ≥ T ) then
22: M = M ∪ m′;
23: end if
24: end for
25:
26: Step 3: Perform Node Mapping
27: Return NodeMappingModel(Gs, Gv, M);

55



1. Step 1 - Prune the Network

Given a VN request, the process begins by pruning the network to find a set of substrate
nodes that can become the root of a multicast tree. This is done by selecting the
substrate nodes which satisfy the resource demands of the given VN. At the end of
Step 1, the process returns a list of eligible root nodes. This pruning process takes
O(n) time.

2. Step 2 - Find Subgraphs with Potential Feasible Solution

The second step consists of building multicast trees, each rooted at one of the nodes in
the list of eligible roots provided by Step 1. Building a multicast tree involves multiple
parameters, particularly when it is used to support real-time communications that are
delay-sensitive. The first concern is cost, which is represented in the number of links
used in the resultant distribution tree (since it is proportional to the amount of traffic
to-be provisioned for this MVN). Given the list of potential root nodes, the process
selects a node from the list, and then expands it into a tree using the Depth First
Search (DFS) algorithm. The DFS allows us to maintain the depth of the tree within
the range of γ, that is ensure that the sum of the delays experienced along any path in
the constructed tree satisfies the end-delay constraint. Once the depth of any branch
(path) in the tree exceeds γ, this branch seize to grow. In order to avoid multicast
trees that will definitely lead to infeasible solutions, a basic check is performed on each
tree to count the number of eligible substrate nodes that can host the recipient nodes
of the given VN. If the number of eligible nodes is larger than the number of recipient
nodes in the VN request, the multicast tree is added to a dedicated set M. The same
process is performed for every node in the list of potential root nodes. Note that our
process expands the tree in a source-driven manner by building on the findings in [72],
where source-driven multicast trees were found to be more suitable for the topological
architecture of the new generation data center networks. In order to further diversify
the set of multicast trees, the process runs, again, using Breadth First Search (BFS)
in order to construct the shortest path multicast tree from every node in the list of
potential root nodes. Note that the depth of the BFS trees is also limited to γ, and
a basic check on the number of eligible nodes is also performed. At the end of Step
2, the process returns a set of potential subgraphs (multicast trees), which will be
used in Step 3 to perform the recipient nodes mapping. Step 2 has a complexity of
O(2N.(N + L)), since at worst, all the nodes in the substrate network might be in
the list of eligible root nodes, and at each eligible root node, 2 multicast trees will be
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constructed with a worst case complexity of O(N + L).

3. Step 3 - Perform Node Mapping Given a set of multicast trees, where each tree
exhibits a set of eligible substrate nodes, the question becomes: which tree to select,
and how to map the recipient nodes of the given VN request. We formulate an ILP
model with the objective to balance the load in the network. The model is performed
online upon the arrival of each VN request. It assumes as input the set of multicast
trees, the eligible substrate nodes in each multicast tree and the end-delay experienced
at every path from the root node to any eligible substrate node. The model returns
the optimal multicast tree with a recipient node mapping solution that respects the
delay-variation constraint of the given VN. The mapping of recipient nodes can be
formulated as follows :

The Node Mapping Model :

• Parameters:

λn,m =

⎧⎨
⎩1, if node n belongs to multicast tree m,

0, otherwise.
ϕ(n,m): delay of the path Pr,n, where r is the root of multicast tree m.

ωn,m
(i,j)=

⎧⎨
⎩1, if (i, j) is in the path from the root of m to n,

0, otherwise.
ρ: is an input parameter between 0 and 1 that allows to adjust the importance of load

balancing between the substrate nodes and links.

• Decision Variables:

α: represents the maximum node residual capacity.
β: represents the maximum link residual capacity.

xm
v,n =

⎧⎨
⎩1, if v is mapped onto node n in m,

0, otherwise.

ym =

⎧⎨
⎩1, if multicast tree m is chosen,

0, otherwise.
τn: represents the residual capacity of physical node n.
τ ′i,j: represents the residual capacity of physical link (i, j).
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• Mathematical Model:

Max [ρα + (1− ρ)β]

Subject to ∑
m∈M

∑
v∈{s,T}

xm
v,n ≤ 1 ∀n ∈ N (3.13)

∑
m∈M

∑
n∈N

xm
v,n = 1 ∀v ∈ T (3.14)

xm
v,n ≤ λn,m ∀v ∈ T, n ∈ N,m ∈M. (3.15)

∑
m∈M

ym = 1 (3.16)

xm
v,n ≤ ym ∀v ∈ T, n ∈ N,m ∈M. (3.17)

xm
s,r = ym ∀m ∈M. (3.18)

∑
m∈M

∑
v∈T

xm
v,nc

′
v ≤ cn ∀n ∈ N. (3.19)

τn = cn −
∑
m∈M

∑
v∈{s,T}

xm
v,ncv ∀n ∈ N. (3.20)

τn ≥ α ∀n ∈ N. (3.21)

θmin ≤
∑
m∈M

∑
n∈N

xm
v,nϕ(n,m) ∀v ∈ {T}. (3.22)

θmax ≥
∑
m∈M

∑
n∈N

xm
v,nϕ(n,m) ∀v ∈ {T}. (3.23)

ti,j =
∑
m∈M

∑
n∈N

∑
v∈T

xm
v,nω

n,m
(i,j) ∀(i, j) ∈ L. (3.24)

58



τ ′i,j = bl − zi,jb
′ ∀l : (i, j) ∈ L. (3.25)

τ ′i,j ≥ β ∀(i, j) ∈ L. (3.26)

The objective function is to balance the load in the substrate network in order to achieve
a better acceptance ratio on the long-run, hence by maximizing the residual capacity of
substrate nodes and links, we can achieve our load balancing objective. Constraint (3.13)
indicates that for a given MVN, at most one virtual node can be mapped onto one physical
node. Constraint (3.14) ensures that every virtual node, within a given MVN, must be
mapped onto a single physical node; in the case where at least one virtual node could not
be mapped (e.g. lack of resources), the model will return an infeasible solution. Constraint
(3.15) indicates that a virtual node v can be mapped on a substrate node n in a multicast tree
m, if and only if, node n belongs to the multicast tree m. Constraint (3.16) forces a single
multicast tree to be selected among the set of multicast trees M. Constraint (3.17) ensures
that a virtual node v cannot be mapped on a multicast tree m, if multicast tree m is not
chosen. Constraint (3.18) indicates that the source node s of the given VN must be mapped
onto the root node r of the chosen multicast tree. Constraint (3.19) represents the substrate
node capacity constraints. Constraint (3.20) measures the residual capacity of the substrate
nodes, and constraint (3.21) enforces the minimum residual node capacity to be larger than
α. Constraint (3.22) and (3.23), along with Constraint (3.8) enforce the differential delay
variation constraint. Constraint (3.24) measures the traffic flow on link (i, j). Constraint
(3.11), (3.25) and (3.26) are used to measure the residual capacity of substrate links, and
set the residual capacity of all substrate links to be larger than β.

3.4.2 A Dynamic-Programming approach for solving the recipient

node mapping problem over a multicast tree

Problem Definition 3.3. Given a VN request Gv = (s, T , b′, γ, δ) and a multicast tree m,
where s is mapped at the root r of m; find an optimal mapping of the recipient nodes T onto
the substrate nodes in m, such that we obtain the lowest cost tree that satisfies the resource
demands of all recipient nodes, and respects the delay-variation constraint.

Here, we assume that all recipient nodes have the same resource requirements (e.g. CPU
demands), and that all the substrate nodes in m have enough capacity to host any recipient
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node t ∈ T . Below we provide the procedural details of our DP approach, and then provide
a formal proof of its polynomial runtime for multicast trees with constant nodal degree. Our
DP approach works as follows: First, we start by dividing the tree into subtrees, where the
difference between the shortest and the longest end-delay experienced between any pair of
nodes satisfies the delay-variation constraint. Hence, given a tree m ∈ M of height γ (since
any branch in the multicast tree is bounded by the end-delay constraint), there will be at
most (γ - δ) partitions, each respecting the delay-variation constraint δ. We denote this set
of all partitions as P̂m.

Theorem 3.2. A feasible node mapping solution of T recipient nodes in a partition p̂ ∈ P̂m

is also a feasible node mapping solution for the multicast tree m.

Proof. The goal of partitioning the multicast tree m is to find all node mapping solutions
where all T receivers can be mapped within a single partition. Given that the differential-
delay experienced between any pair of nodes in a subtree respects the delay-variation con-
straint, then the resultant node mapping solution in each partition will never violate that
constraint. Further, since there exist a single path from the root(s) of each partition p̂ ∈
P̂m to the root of the multicast tree m, this implies that the differential-delay of any pair of
paths connecting a pair of host nodes to the root(s) of a partition p̂ remains the same when
measured towards the root of the multicast tree m.

Let Up̂ denote the set of substrate nodes in partition p̂. For each partition p̂, we define
C(k, u) to be the cost of mapping k recipient nodes (1≤k≤|T |) on the partition rooted at
substrate node u, ∀ u in Up̂. This consists of mapping a recipient node on substrate node u,
and finding the minimum cost of distributing the k− 1 remaining nodes on u’s children. We
denote the set of u’s children as Hu, and the number of nodes in the subtree rooted at u as
H. Also, let Ŝ be the set of all partitions of k − 1 receivers among all, or a subset, of Hu.
We define the following recurrence for C(k, u):

C(k, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, k = 1,

∞, k > H,

min{∑hi∈ŝ(w(u, hi) + C(ni, hi))}∀ŝ ∈ Ŝ,
∑

hi∈ŝ ni = k − 1, 1 < k ≤ |T |
.

(3.27)
Here, w(u, hi) represents the weight of the edge connecting u to its child hi in the subtree p̂.
The aim of the DP algorithm is to find the mapping that leads to the tree with the lowest
total edge weights.
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(a) Multicast Tree with Partitions (b) Optimal Solution
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(c) Matrix A for P̂1
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(d) Matrix A for P̂2

Figure 3.3: Illustration of the DP Approach

Now, for each subtree p̂ ∈ P̂ , we start by computing C(k, u) at the leaf-nodes and moving
upwards until reaching the highest level in the subtree. The computed cost values in each
subtree will be stored in a dedicated matrix A[T ][U ], which enables memoization as comput-
ing the cost at a particular node will make use of the cost values computed for its children,
hence the benefit of adopting a bottom-up computation.
Finally, the optimal solution consists of finding the lowest cost (C∗) of embedding T receivers
on any subtree p̂ ∈ P̂ . This can be obtained using the following equation:

min{
∑
u∈ŝ

(w(u, r) + C(ku, u))}, ∀ŝ ∈ Ŝp̂, ∀p̂ ∈ P̂ ,
∑
u∈ŝ

ku = |T | (3.28)

w(u, r) is the weight of the edge connecting any node u ∈ p̂ to the root r of the multicast
tree m. Note here that if the set of nodes u ∈ p̂ share common links to the root r, these
links will be counted only once. Hence, the optimal solution is about finding the subtree
p̂ of m that contains the partition ŝ with the lowest cost of embedding all T receivers.
Figure 3.3 illustrates through an example our DP approach. Consider the multicast tree
m shown in Figure 3(a), where the number next to each link represents the weight. Now,
consider that we are looking to embed a 3-receivers MVN atop this tree, with an end-delay
of 2 and a differential-delay of 1. For the sake of simplicity, in this illustrative example we
assume that all links exhibit a uniform delay measurement, hence γ = height of the tree
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= 3. Subsequently, we find that there are γ-δ = 2 partitions (as shown in Figure 3(a)),
that we denote as P̂1 and P̂2, respectively. Next, we apply our DP recurrence to compute
matrix A[T ][U ] for P̂1 and P̂2, as shown in Figures 3(c) and Figure 3(d), respectively. For
instance, the cost of placing two receivers on node 1 in partition P̂1 is equivalent to C(2,1)
= min{(w(1,3)+C(1,3)), (w(1,4)+C(1,4))} = min {(1),(3)} = 1. Finally, we return the
partition that yields the lowest cost distribution of T receivers in m (as shown in Figure
3(b)), which in this case is partition P̂1 with 2 receivers embedded on the sub-tree rooted at
1 (C(2, 1)), and 1 receiver placed on the subtree rooted at 2 (C(1, 2)), with a total cost C∗

= C(2, 1) + w(0, 1) + C(1, 2) + w(0, 2) = 3.

Theorem 3.3. For any multicast tree m with constant nodal degree d̃, the DP approach is
polynomial in the size of the multicast tree |U |.

Proof. Our DP consists of examining at each substrate node u ∈ Up̂ the lowest possible
cost of placing a single virtual node at u and the remaining T − 1 virtual nodes on u’s
children. Finding the lowest cost placement thus consists of finding the optimal partition of
T − 1 virtual nodes on u’s children. Enumerating the set of all partitions can be seen as the
problem of enumerating the different placements of K identical objects into n distinguishable
boxes. This former can be obtained using the following binomial coefficient

(
n+k−1

n

)
. Hence,

by considering the |T − 1| receivers to be the objects and the set of u’s children |Hu| to be
the boxes, at each node u the number of partition is equal to

(|Hu|+|T−1|−1
|Hu|

)
; given that such

examination must occur at each node u in the subtree p̂, then the complexity of running
the DP algorithm in each subtree p̂ is O(|Up̂|

(d̃+|T |−2
d̃

)
), where |Up̂| ≤ N . Thus, we can

deduce that the worst-case runtime of our DP algorithm is O((γ -δ).|N |.(d̃+|T |−2
d̃

)
), which is

equivalent to O((γ− δ).|N |.d̃T ). Hence, if the nodal degree in the multicast tree is constant,
then the number of partitions at each node is also constant, which renders a polynomial-time
DP approach in the size of the network.

3.4.3 Optimality Analysis

Recall that our 3-Step MVNE receives a subset of trees enumerated using BFS and DFS
methods, on top of which the receivers embedding model is employed to return the lowest
cost tree that can host all receivers within the differential delay constraint. This implies that
if our 3-Step MVNE was fed with the set of all multicast trees, it will return the optimal
solution. However, finding all multicast trees in an arbitrary graph can be a tedious task,
particularly when there are an exponential number of them. For instance, embedding a
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MVN with loose delay constraints in a complete graph consists of enumerating the set of all
spanning trees (since all substrate nodes can be reaches within this loose end-delay thresh-
old). In a clique topology, there are nn−2 spanning trees, which is definitely exponential.
However, it has been shown that multi-rooted tree like data center topologies [19], such as
the FatTree network, can be leveraged to construct Minimum Steiner Trees (MSTs) in poly-
nomial time [71]. This is achieved by fixing the designated switch at every layer, thereby
minimizing the number of intermediate (Steiner nodes) switches used to interconnect a set of
receiver points. For instance, using this approach, we can find at most K5

16
MSTs in a FatTree

topology, where K3

4
represent the number of all candidate source nodes (equivalent to the

number of server racks), and K2

4
is the number of distinct MSTs that can be found from a

particular source node to all other server racks. Clearly, finding a feasible receiver embed-
ding solution for a given MVN atop one of these MSTs will definitely be the optimal MVNE
solution for this MVN. This is true since any other embedding solution found outside this set
of MSTs will definitely have a higher cost. Now, if no feasible receiver embedding solution
can be found in this set, then it is possible that a feasible solution may exist outside this set.
This is because MSTs do not necessarily guarantee the satisfaction of the differential-delay
among the various receivers.
Thus, one needs to enumerate a larger subset of trees to guarantee finding a solution for
delay-sensitive MVNs. Note that, here we are not interested in trees that span all nodes in
the network, but only those that span the server racks where the receivers embedding will
take place. Enumerating these spanning trees represents the worst case where all server racks
have enough residual capacity; however, note that any branch(es) that violate the end-delay
constraint will be automatically pruned out. To this extent, we embarked on enumerating
the number of all spanning trees in a FatTree network. The combinatorial arguments of our
tree enumeration are provided in Appendix 9.1.
Subsequently, it is found that a FatTree (k=4) holds 128 spanning trees, whereas a FatTree(k=8)
contains roughly 17109 trees, which clearly indicates that the number of spanning trees grows
exponentially fast in the size of the network switches.
Let P ∗ represent the set of all MSTs, and P the set of all spanning trees, P ∗ ⊆ P . In addition
to the fact that P is exponentially large, many of the trees contained in P are too costly to
select as they exhibit a large number of Aggregation Switches (ASs) and Core Switches (CSs
) (see Figure 5.4). In fact, in a FatTree network, the more ASs and CSs are chosen, the more
up-links the distribution tree will include (see Figure 5.4). This number of up-links reflects
the amount of redundant traffic that will be endured by the underlying network, which will
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subsequently decrease the network’s throughput, and dash any advantage of multicasting.
Hence, it is important to place a limit on the number of ASs and CSs a source node can
use to reach other receivers, and reject any solution that surpasses this limit. Let c1 denote
the maximum number of ASs, and c2 be the maximum number of CSs (c1 and c2 are pre-
determined by a policy selected by the network operator). Hence, the number of spanning
trees that can be formed with at most c1 and c2 ASs and CSs, respectively, will drastically
decrease, and will thus become independent of the size of the network. We denote the set of
spanning trees under the above policy as P̃ (P ∗ ⊆ P̃ ⊆ P ).

Theorem 3.4. Any optimal solution returned by our 3-Step MVNE taking as input P̃ , is
also global optimal over P .

Proof. ∀ p̃ ∈ P̃ , p̃ has a lower cost than any tree ∈ (P -P̃ ). That is because any other
tree p ∈ (P -P̃ ) has more Steiner points, which directly implies a larger number of up-links.
Thus, if our 3-Step MVNE finds the optimal solution in the subset P̃ , then this solution is
definitely global optimal since it represents the lowest cost solution that hosts all receivers
while satisfying the end-delay and differential delay constraint. Indeed, any other solution
that will be found outside this subset may also satisfy the delay constraints, but it will
definitely be more costly to choose as it includes more Steiner points.

It is important to note that when no solution can be found within P̃ , then there could
have been a way to find a feasible solution by incurring more Steiner points. However, such
a solution (if found) is deemed as not cost-effective under the chosen policy by the network
operator as it incurs significant redundant traffic and decreases the network’s throughput.
Hence, the network provider may either opt to increase the size of c1 and/or c2, or refrain
from admitting these requests.

Preposition 3.1. In a FatTree network, the 3-Step MVNE with the DP for receivers em-
bedding returns optimal solution in polynomial time.

Given the set P̃ , which is independent of the size of the network, this set will be passed
on to our DP, that will run the receivers embedding over each tree in P̃ , and return the
one that satisfies the delay constraints. Given that the degree in the FatTree network is
always constant, indicated by the number of ports in the Ethernet switches K, then our DP
approach will run in polynomial-time for each tree. Here some slight modifications need to
be performed on our current DP recurrence, since for multicast trees built over the FatTree
network, the embedding can only be performed on leaf nodes. Here, we denote Hu to be
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the leaf nodes in the subtree rooted at u. Hence, our recurrence can now be formulated as
follows:

C(m,u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, m = 1 && |Hu| = 0

∞, m > |Hu|,
min{∑hi∈ŝ(w(u, hi) + C(ni, hi))}∀ŝ ∈ Ŝ,

∑
hi∈ŝ ni = k, 1 < k ≤ |T |

.

(3.29)
Recall that our DP has a complexity of O((γ − δ).|N |.(d̃T )), where d̃ = K in the FatTree
network.
Hence, we can conclude that in the FatTree Network4, our 3-Step MVNE with DP for
receivers embedding can return the optimal solution in polynomial-time of the size of the
network under the two following constraints: The set of multicast trees P̃ have a limit on
the number of up-links, otherwise they incur significant redundant traffic. The MVNs are
assumed to have uniform resource demands. Under these constraints, our proposed method
guarantees optimality in polynomial-time.

3.5 Tabu-based approach for solving the MVNE problem

(MVNE-Tabu)

3.5.1 Tabu Search Algorithm

Tabu search [103] is a widely adopted meta-heuristic algorithm, which was proven capable of
achieving optimal and near-optimal solutions for scheduling problems and various optimiza-
tion problems in the area of telecommunication. The most attractive feature of Tabu-based
search is the use of "adaptive memory" to direct the search towards solutions that best
service the desired objective function. Its success lies in its ability to allow solutions with
degraded performance, and hence escape local optimum. An efficient Tabu implementation
highly depends on 4 main ingredients: first, the neighborhood structure, which consists of
a set of moves within a neighborhood that are assessed based on a tailored cost function.
At each iteration of tabu, a new move is selected in order to explore the search space by
jumping from one solution to another. Second marking moves as Tabu prevents search loops;

4Note that, the same analysis is applicable to any other multi-rooted tree-like data center network topology
with constant nodal degree, e.g. Portland [19] and VL2 [17].
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i.e. picking a move that shifts back to a previously explored solution. Third, finding a good
initial solution paves the way towards finding a better final solution. And finally, aspiration
and diversification strategies, where an aspiration criteria allows tabu moves to be reconsid-
ered if these latter lead to the best known solution, whereas diversification strategies enable
the search of unexplored areas in the search space.

3.5.2 Intuition of the Tabu-Search Algorithm

We have tested our MVNE-HNM on a FatTree (k=8) (#Hosts = 128, #Links = 256) for
VNs with size varying between 3 to 12 recipient nodes. We assume that the VNs arrival
follows a poisson process with an arrival rate λ per time unit, and the departure follows a
negative exponential distribution with a service rate μ per time unit. Hence, λ

μ
represents

the load. We randomly generated a set of 100 VNs that follow a poisson distribution with a
normalized load of 4, and we found that our MVNE-HNM took almost 12 hours to embed
all 100 VNs. That is an average of 7 minutes to embed each incoming VN. For an online
algorithm with highly interleaving VNs, 7 minutes could be quite costly. The slow runtime
of the MVNE-HNM is mainly caused by the ILP nature of the node mapping mode. ILPs are
known to be hard to scale. In this regard, we propose two different node embedding heuristics
to replace the ILP model : A greedy node mapping approach, and a First Fit embedding,
that we denote as MVNE-HG and MVNE-HFF, respectively. The greedy node mapping
mainly consists of sorting the candidate substrate nodes in a given multicast tree based on
their CPU capacity, and then iteratively start to map the receiver with the highest CPU
requirement to the substrate with the highest CPU capacity. Similarly, First Fit follows the
same approach, but instead it sorts the candidate substrate nodes based on their proximity
to the root node, in an attempt to yield the lowest cost multicast tree. Throughout our
numerical results, we find that though these two heuristics yield outstanding performance in
terms of computational time, they fail to embed multicast VNs that are highly delay sensitive
due to the fact that they are completely oblivious to the differential-delay constraint. Hence
the need for a heuristic MVNE embedding technique that is both scalable and delay-aware.
This motivates us to propose a MVNE technique that adopts a Tabu-based search. In what
follows, we identify each one of these components towards introducing our MVNE Tabu-
based algorithm.
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3.5.3 Delay-Aware Tabu-based Algorithm for MVNE

Our Tabu-based approach is performed online upon the arrival of each new multicast VN
request. It consists first of building an initial node mapping solution in a greedy fashion. This
is done by sorting the substrate nodes in descending order of their resource capacity, and the
virtual nodes in descending order of their resource demands. Next, we try to map the virtual
node with the highest resource demands to the substrate node with the highest capacity;
while doing so, a preliminary test on the bandwidth capacity of the substrate node’s adjacent
links is performed. This helps eliminate node embedding that will yield an infeasible link
embedding. This greedy-embedding is performed iteratively until each virtual node in the
given VN request is mapped to a substrate node. Should the initial node embedding fail
to yield a feasible solution, then we can conclude that the given substrate network cannot
admit this multicast VN, and the process terminates.
Upon obtaining an initial node mapping solution, an initial link mapping solution is built by
running a shortest-path algorithm (e.g. Dijkstra) between the host of the multicast source
node to all hosts of the multicast recipient nodes. Subsequently, we obtain an initial mapping
solution (composed of an initial node mapping and link mapping solutions). Next, we define
a move to be a shift of a virtual node (either source or receiver) from the current host to a
new substrate node. This move is accompanied by redrawing the shortest-path from the new
host to the rest of the multicast tree. The neighborhood structure thus consists of finding,
for each virtual node v, the set of p candidate hosts (moves) Ĉv within k hops from its current
host, and which satisfies its CPU demands. The union of all candidate sets Ĉv, ∀ v ∈ V , is
denoted as Ĉ. Subsequently, the cost of each candidate move is evaluated using the following
equation: M̃ĉ = L+ P̃1+ P̃2; where L is the number of distinct links in the multicast tree, P̃1

is the penalty for violating the end-delay constraint, and P̃2 is the penalty for violating the
differential-delay constraint. Here, P̃1 and P̃2 consists of multiplying each unit of end-delay
violation by a constant c1, and each unit of differential-delay violation by another constant
c2, respectively. The penalties c1 and c2 must be set to some values high enough in order
to prevent Tabu from selecting moves with delay violations (in our experimental results, we
set c1 to 100 and c2 to 50). The move with the lowest cost is deemed as the best candidate
move, and the current solution is updated by shifting the mapping of virtual node v, of the
best candidate move, to its new host node. In addition, the paths from v’s new host to the
multicast tree is updated by running the short-path algorithm from the new host node to all
other substrate nodes hosting virtual nodes with whom v communicates. If v is a recipient
node, this means that only the path to the source node is updated, whereas in the case where
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v is the root, then the paths to all recipient nodes will be updated.
We maintain two Tabu lists, one for virtual nodes, and another for substrate nodes. Each
time a new move is made, the shifted virtual node v is marked as Tabu, as well as the
substrate node n that was hosting v. This prevents cycling back to an old solution by
placing v back on n. Our aspiration criteria is simple, should the best move chosen at a
given iteration yield a solution with a cost lower than the best known solution throughout
the Tabu search, then the virtual node and substrate node associated with that move will
be freed from their Tabu status. Finally, we present our intensification and diversification
strategies. We set two main diversification strategies : a "random restart" and "penalizing
moves with high frequency". The random restart is launched in two occasions. First, in the
case where the best candidate move was found to be a Tabu move that does not satisfy the
aspiration criteria. Second, in the case where a Tabu iteration cannot find any candidate
moves at k hops from the current node mapping solution. Here, any random move is eligible
as long as it is not in the Tabu list, it satisfies the resource demand of the associated virtual
node, and its move frequency is below a given threshold. This random restart allows to
escape cases of local optimum, and leap towards the unexplored search space. The second
diversification strategy consists of penalizing moves with a move frequency higher than a
predetermined threshold, by multiplying the unit of move frequency with a constant c3 (in
our numerical results we set c3 to 50) and adding it to the cost function. This also allows
the Tabu search to explore new solutions by moving virtual nodes to physical nodes with a
low move frequency.
The purpose of the intensification strategy is to intensify the search on a given solution that is
only penalized for violating the differential-delay constraint. This may lead to a solution that
eradicates this violation by finding longer paths to connect the source to the recipient nodes.
The intensification strategy launches a new Tabu search, where the node mapping solution
is fixed, and the move now consists of swapping the link mapping solution. A single move is
concerned with swapping a single path between the source and a recipient node by another
detour (possibly-longer) path. Here moves are evaluated using the same cost function, but
without considering penalty P̃1, and after each selected move, its associated recipient node
and chosen detour path are marked as Tabu for the next x number of iterations. It could
happen that the new detour path leads to a cycle in the tree. Here, a "cycle-breaker" link
is chosen among the links in the cycle, and the paths in the multicast tree are adjusted
accordingly. It is important to note that our Tabu-based search can be slightly modified to
also accommodate unicast VNs, by simply neglecting loops.
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For both our MVNE Tabu and the intensification Tabu search, the stopping condition is set
to a predetermined number numIter of consecutive iterations with no improvement. The
procedural details of our Tabu-based MVNE approach is illustrated in Algorithm 3.2.

Step 1 of the Tabu-search runs a greedy node embedding which mainly consists of sort-
ing the list of substrate nodes and virtual nodes, subsequently it requires O(|N |log|N |) and
O(|V |log|V |),respectively. Next, an initial link embedding solution is obtained by running Di-
jkstra to find the shortest path from the source to each recipient node, which is O(|T |.|N2|).
Step 2 consists of running I Tabu search iterations, where each iteration i ∈ I finds a
set of candidate moves for each virtual node using BFS, which takes O(|V |.(|N | + |L|)).
Further, I ′ iterations of the intensification strategy may be performed, where each itera-
tion i′ ∈ I ′ consists of running Dijkstra to find k shortest paths for each receiver t ∈ T ,
which takes O(k.|T |.|N2|). Hence, the worst-case runtime of the Tabu search algorithm is
O(I.I ′.k.|T |.|N |2), where I, I ′, and k are constants, hence it is O(c.|T |.|N |2).

3.6 Numerical Results

In this section, we assess how well our suggested heuristics perform compared to the MVNE-
ILP over various substrate network topologies. Here, we evaluate the MVNE-Tabu, and
the MVNE-H with its three different node embedding approaches; Namely, the MVNE-
HNM, MVNE-HFF, and MVNE-HG. As we have previously mentioned, we solve the MVNE
problem online upon the arrival of each VN request. Hence, we assume that the VN arrivals
and departures follow a Poisson distribution. Our numerical results are mainly divided
into two parts: performance evaluation and comparative analysis. For the performance
evaluation, we compare the optimality gap and runtime of the three aforementioned MVNE-
H variations and the MVNE-tabu against the MVNE-ILP. This allows us to evaluate the
efficiency of our proposed approach. As for the comparative analysis, we compare the three
MVNE-H variations and the MVNE-Tabu for various metrics and over multiple substrate
networks. All our numerical evaluations are conducted using CPLEX version 12.4 on a
pentium IV machine at 3.4GHz with 8 GB RAM.

3.6.1 Performance Evaluation

First, we evaluate the performance of the MVNE-Tabu, MVNE-HNM, MVNE-HFF, and the
MVNE-HG against the optimal solution obtained by the MVNE-ILP model. To do so, we run
the above methods over FatTree (k=4). We assume that the VNs arrival follows a Poisson
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Algorithm 3.2 TabuSearch Algo(Gs, Gv, k, p, numIter)
1: Step 1: Find an Initial Solution
2: MN = getInitial_NodeMappingSolution();
3: if (MN == null) then /*There are no feasible node mapping solutions for Gv

4: return NULL
5: else
6: ME = getInitial_LinkMappingSolution();
7: Mcurrent = M(MN ,ML);
8: Mcurrent.cost = computeCost();
9: Mbest = Mcurrent;

10: end if
11: Step 2: Begin Tabu-Search
12: while (counter < numIter) do
13: Ĉ = {}; /*Initialize set of candidate moves
14: for (v ∈ V ) do
15: Ĉv = getCandidateMoves(v,p,k);
16: Ĉ = Ĉ ∪ Ĉv

17: end for
18: if (isEmpty(Ĉ)) then bestMove = RndMove();
19: counter++;
20: else
21: bestMove = getLowestCostMove(Ĉ);
22: end if
23: UpdateMoveFrequency(bestMove);
24: if (bestMove.TabuStatus == True) then /*Check Aspiration Criteria
25: if (bestMove.cost < Mbest.cost) then counter = 0;
26: bestMove.TabuStatus = False;
27: Mcurrent = updateSol(Mcurrent, bestMove);
28: Mcurrent = runIntensification(Mcurrent);
29: Mbest = Mcurrent;
30: else
31: Mcurrent = updateSol(Mcurrent, RndMove());
32: counter++;
33: end if
34: else
35: Mcurrent = updateSol(Mcurrent,bestMove);
36: if (bestMove.cost < Mbest.Cost) then counter++;
37: else
38: Mcurrent = runIntensification(Mcurrent);
39: Mbest = Mcurrent;
40: bestMove.TabuStatus = True;
41: end if
42: end if
43: end while
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Figure 3.4: MVNE - Optimality Gap over FatTree (k = 4)

process distribution with a normalized load of 4, and the size of the VNs range between
[3-12] receivers. To compare against the MVNE-ILP, we change the objective function of the
MVNE-HNM to find the mapping solution with the lowest cost multicast tree, as depicted
in Equation (3.30). Also, we assume that the substrate network has enough capacity to
accommodate all the incoming VN requests.

Min
∑

(i,j)∈L
zi,j.b

′ (3.30)

Over time, we measure the optimality gap between the optimal solution obtained by the
MVNE-ILP, versus each one of the aforementioned heuristics. The results are illustrated in
Figure 3.4. We observe that both the MVNE-HNM, MVNE-Tabu achieve an optimality gap
of 0 when compared to the MVNE-ILP. Similarly, we observe that the obtained optimality
gap of the MVNE-HFF is also 0. This is expected, since the First Fit node mapping technique
aims to map the recipeint nodes within a given VN as close as possible to the root node;
(later we show that as we increase the load in the network, MVNE-HFF is not always
capable of finding feasible node mapping solutions that respect the end-delay and delay
variation constraints, and thus renders a low admission rate). Finally, we observe that the
MVNE-HG falls far from the optimal solution with an optimality gap that goes up to 40%.

Next, we look at the runtime (results are show in Table 3.1). We run each mapping al-
gorithm for a single VN, and at every run we increase the number of recipient nodes. First,
we observe that the runtime of the MVNE-ILP undergoes a steep increase as we augment
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Table 3.1: MVNE - Runtime (ms)& Cost Evaluation for 1 VN Embedding over FatTree (k
= 4)

# T
MVNE-ILP MVNE-HNM MVNE-HG MVNE-HFF MVNE-Tabu Unicast VNE
Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost

3 495 600 973 600 30 600 35 600 20 600 195 1000
4 595 1100 1393 1100 30 1100 39 1100 25 1100 314 2200
10 11613 2000 1901 2000 30 2000 35 2000 35 2000 440 5200
12 28592 2400 2616 2400 32 2400 35 2400 40 2400 525 6400

the size of the VN. On the other hand, the runtime of the MVNE-Tabu, MVNE-HG, and
MVNE-HFF remains in the order of milliseconds, and that of the MVNE-HNM remains in
the order of seconds. Clearly the MVNE-HG and the MVNE-HFF outperform the MVNE-
HNM in terms of runtime, and this is mainly due to the fact that the MVNE node mapping
model is an ILP.
To further convey the benefits of characterizing the type of communication in VNE, we mea-
sure the bandwidth cost of mapping the multicast VN as unicast versus multicast embedding.
We observe that all the multicast embedding heuristics achieve the same bandwidth cost as
the MVNE-ILP. However, the unicast embedding yields much more expensive embedding
solutions. For a multicast VN with 3 recipient nodes, the unicast embedding renders a 40%
more expensive embedding solution than any of the multicast embedding algorithms. This
highly affirms our motivation that unicast embedding of multicast VNs severely impacts the
network’s utilization efficiency due to bandwidth wastage caused by redundant traffic.
Moreover, we compare the runtime of our proposed heuristics (as shown in Table 3.2) over
three networks with varying number of hosts (server racks) : FatTree (k=4) (#Hosts = 16,
#Links = 32), a random network (#Hosts = 60, #Links = 90), and the FatTree (k = 8)
(#Hosts = 128, #Links = 256). Here we randomly generated a set of 100 VNs of varying
size [3-12] receivers over FatTree (k=4), and [3-30] receivers over FatTree (k=8) and the
random network. We measure the average runtime of embedding 100 VNs using each of
the aforementioned approaches. We observe again that the runtime of the MVNE-HFF and
MVNE-HG is negligible. We also conclude that MVNE-Tabu is far more scalable than the
MVNE-HNM, as it is capable of embedding VNs over the Fat Tree (k = 8) in less than a
second, when the MVNE-HNM requires 13 minutes. This is mainly attributed to the fact
that the MVNE-HNM adopts an ILP model to embed the nodes over multicast trees.
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Figure 3.5: MVNE - Comparative Analysis for Admission and Revenue
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Table 3.2: MVNE - Average Runtime (ms) of Embedding 100 VNs over various substrates

Heuristic
HFF HG Tabu HNM

Fat Tee K=4 3 2 164 4309.06
Random 4 2 831 257830

Fat Tree K=8 5 4 870 780450
Fat Tree K=16 43,109 1,029 1,160 > 18.105

3.6.2 Comparative Analysis

In this section, we compare the MVNE-Tabu, MVNE-HNM, MVNE-HFF, and the MVNE-
HG using various metrics; mainly we look at the blocking ratio and total revenue. Here,
we use the load balancing objective function for the MVNE-HNM (as presented in Section
3.4), and we set the ρ value of the MVNE-HNM to 0.5, thus equally balancing the load
on substrate nodes and links. We adopt three different substrate network topologies for our
numerical analysis : FatTree (k=4) and (k =8) [14], since it is a commonly adopted topology
for cloud data center. Further, we consider a random network with 60 substrate nodes and
90 substrate links. For all of the aforementioned substrates, we set the CPU node capacity
of the servers in the FatTree network to 64 GB, and the substrate links’s capacity to 10
Gbps. We use a randomly generated set of VN requests. Each VN request contains a source
node, and a set of recipient nodes. The generated set varies for each considered substrate
network, where we let the size of the VNs to be between [3-12] receivers when comparing
over the FatTree (k=4), and [3-30] when comparing over the random and the FatTree (k=8)
networks. However, in all the generated sets, we let the CPU demand of the virtual nodes
is in the range [3-12] GB, while the bandwidth demand can vary between 50 and 500 Mbps.
The end-delay threshold is a random number between [6-10] hops, while the differential-
delay variation constraint ranges between [0-10] hops. These varying delay values allow to
represent both delay-sensitive, and delay-agnostic multicast applications. We run each test
case multiple times, and we present the average of 5 executions.

3.6.3 Admission Rate Over Time

The first metric we evaluate is the admission rate over time. Clearly a low admission rate
indicates a poor quality mapping solution. We test this metric on the FatTree (k=4). We
assume that the VNs arrival follows a Poisson distribution of load 4, and we look at the
admission rate of each of the aforementioned embedding techniques over time. The results
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are illustrated in Figure 5(a). From this Figure, we notice that the MVNE-Tabu and MVNE-
HNM achieve the same admission rate attained by the MVNE-ILP. Whereas, the MVNE-
HG and MVNE-HFF exhibit a fairly low admission rate due to their conceptual design that
inhibits them from fully exploring the search space, particularly in the case of multicast
VNs, where end-delay and delay-variations constraints are enforced. In fact, over FatTree
(k=4), the MVNE-Tabu and MVNE-HNM achieve 12-33% higher admission rate than the
MVNE-HG and 28-60% over MVNE-HFF. Similarly, we compare the admission rate over
FatTree(k=8) and the random network. Here, we omit the MVNE-HNM from the test since
it was found to be hard to scale. Again, we observe that the MVNE-Tabu outperforms the
MVNE-HG and MVNE-HFF, within comparable embedding time (as shown in Table 3.2).

3.6.4 Revenue Over Time

The second metric we look at is revenue over time. Revenue is an important metric that
complements the admission. A high admissibility does not necessarily indicate a higher
revenue, since the algorithm could be admitting small VNs that do not generate much profit.
The revenue for a given VN request is calculated using Equation (3.31), which consists of
multiplying the sum of the CPU demands by a constant value that represents the profit
per unit of CPU, and the sum of the bandwidth demand by another constant value that
represents the profit per unit of bandwidth. Here, we put a higher weight on CPU, since
CPU is a more expensive commodity in real-life [104], hence admitting VNs that require a
higher amount of CPU demands are deemed to be more profitable. Throughout our test
results, we set the ratio between the weights to 10.

Revenue =
∏
cpu

∑
v∈{s,T}

c′v +
∏
bw

∑
e′∈E′

b′. (3.31)

First, we look at the case of FatTree (k=4), and we measure the revenue over time for a
poisson distribution with load factor 4. Again, we notice that the achievable revenue of
the MVNE-Tabu and MVNE-HNM is equivalent to the revenue achieved by the MVNE-ILP
over FatTree(k=4), and is significantly higher than its peers. Further, when comparing the
MVNE-Tabu over the FatTree (k=8) and the random network, we also observe that the
MVNE-Tabu outperforms the MVNE-HG and MVNE-HFF. This leads us to conclude that
MVNE-Tabu is capable of admitting profitable VNs.

75



3.7 Conclusion

In this dissertation, we presented the multicast virtual network embedding for services with
one-to-many communication. We aimed at solving this embedding problem in the frame of
cloud computing data centers. We presented an optimal ILP formulation for solving the
MVNE problem, which proved to be highly unscalable, due to its NP-Hard nature. In this
regard, we presented a 3-steps MVNE mapping heuristic that employs a heuristic with an
ILP model for solving the virtual node mapping subproblem. We evaluated our presented
heuristic over various substrate network topologies, and against two widely used mapping
heuristics: Greedy and First Fit. Our numerical results show that our MVNE model achieves
a lower blocking ratio and a higher revenue.
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Chapter 4

Towards Promoting Backup-Sharing in

Survivable Virtual Network Design

4.1 Problem Statement

Failures in the physical infrastructure are common due to a multitude of reasons [47]. In fact,
the year 2013 and 2014 have witnessed multiple cloud outages [105,106], some of which got
hold of major cloud providers (e.g., Amazon’s EC2 cloud and Dropbox) causing millions of
dollars in revenue loss. With millions of dollars at stake, attention converged towards solving
the Survivable Virtual Network Embedding problem (SVNE) [48–55]. In addition, several
studies [17,26,27] emerged to understand and characterize cloud computing hardware failure.
Subsequently, based on real data traces from Microsoft data center, it has been found [26]
that data center network hardware (routers, switches, and links) exhibit a high reliability
of more than four 9s, where low commodity switches (ToRs and ASs) have a failure rate
of less than 10%. Further, it was shown [26] that link failures tend to be isolated, with
only 41% of link failures containing more than one link, and 10% consisting of more than
4 correlated link failures. Another study [17] have also looked at the pattern of network
equipment failure, and have found that 50% of failures involved less than 4 devices, and
95% include less than 20 devices. This allows us to conclude that large correlated failures
in cloud data center networks are rare. As for servers/facility nodes, the authors in [27]
analyzed their failure characteristics using a real data center over the period of 14 months,
and found an annual failure rate of 8%; with hard-disks being the predominant reason behind
server failure. Further, the authors have also looked at successive failure rates, meaning the
probability that a failed server would fail again after repair, and it was found that successive
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failure rates are quite probable. For a 100 servers data center where 4 machines have failed
more than once in 14 months, it was found that 20% of all repeat failures happen within a
day of the first failure, while 50% happen within two weeks.
Given that isolated failures are more probable than correlated failures [26,27,58,107], most of
the relevant literature considers the SVNE problem for single network component failure. In
this chapter, we consider the case of single facility node failures. When a facility node fails,
the hosted virtual node(s) needs to migrate to a backup facility node, as well as its associated
connections to other virtual nodes belonging to the same tenant or virtual network. One
way of achieving this failure recovery is by redesigning the VN request into a Survivable
VN (SVN), and then mapping the resultant SVN onto the physical network. This redesign
consists of augmenting the original VN with backup nodes. Each backup node is in charge
of protecting one or many primary nodes. Hence, backup virtual links must be established
between each backup node and the neighbors of the primary nodes it protects. Upon the
failure of a facility node which hosts a virtual node v, v will migrate to its associated backup
node, which will then resume the communication with v’s neighbors. The augmented backup
virtual nodes and links need to be provisioned with sufficient computing and bandwidth
capacity to recover from any facility node failure. Given that a single facility node might
fail at any point in time, the provisioned backup resources can be shared among the various
backup nodes, since they will never be activated at the same time. Hence, backup resource
sharing can be employed to minimize the backup footprint of the SVN upon embedding.
Designing a SVN encloses multiple challenges; among these challenges is the problem of
deciding how many backup nodes to use and how to allocate these backup nodes to the
primary nodes or virtual machines (VMs) in each VN such that we minimize the backup
footprints in the substrate network. This problem is of paramount importance since these
provisioned resources will remain idle until failures occur. Hence, over-provisioning can
greatly impact the network’s ability to admit future requests. Indeed, the cost-efficient SVN
redesign problem has recurred multiple times in the literature [49,53–55]. However, in all of
the previous contributions, the number of backup nodes is fixed to either 1 or k (k being the
number of critical nodes, nodes that demand a backup). Moreover, we observe that all of
the existing redesign techniques are agnostic to the backup resource sharing in the substrate
network, where this responsibility is delegated to the adopted mapping algorithm.
In this dissertation, we argue that fixing the number of backup nodes to either 1 or k

could yield infeasible or even costly mapping solutions, and we provide several motivational
examples to support this claim. In this regard, we introduce ProRed; a novel PROgnostic
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REDesign approach that explores the space between 1 and k and promotes backup resource
sharing in the substrate network. ProRed adopts a unique approach for the redesign; not
only does it determine the augmented number of backup nodes and their connections to the
primary nodes, but also their actual placement in the VN such that it minimizes the backup
footprint at the substrate level. We provide solid theoretical foundations to prove that the
location of the backup node in the VN network can positively impact the backup link routing
in the substrate network, by increasing the achievable backup resource sharing. Hence, its
prognostic property lays in its ability to promote the backup resource sharing prior to the
embedding phase.
With the recent advances in cloud management tools and platforms (CMPs) (e.g. vRealize
Suite [108], OpenStack [109]), failure contingency plans have become an integral module of
CMPs, in order to facilitate disaster recovery and control in this heterogenous environment
of the Cloud [110]. Our suggested redesign technique can be integrated within these recovery
modules for a cost-efficient recovery against single facility node failure. Our numerical results
prove that our suggested approach yields significant gain in terms of increasing the substrate
network’s admission rate, decreasing the amount of idle bandwidth in the substrate network,
and boosting the overall revenue of the cloud provider.

4.2 Related Work

Survivability against facility node failure is of paramount importance, particularly in the
case of critical services that do not tolerate failure. Indeed, this problem has attracted sig-
nificant attention from the literature; here we can distinguish between single facility node
failure [49], [53], [54], [55], and multiple facility nodes failure [52], [111], [112]. In the case of
single facility node failure, the authors of [53] introduce a two-step approach to fully restore
a VN from any single facility node failure. Mainly, their approach consists of augmenting the
VN request with a 1-redundant or k-redundant backup nodes. The resultant SVN is then
mapped onto the substrate network by placing virtual nodes in a given VN on distinct sub-
strate nodes, while aiming to minimize the overall embedding cost. For this purpose, the au-
thors introduce two backup-sharing techniques to minimize the incurred backup-bandwidth
cost, namely cross-sharing and backup-sharing. The same problem is tackled in [49], here
the authors consider the SVN to be given, and their aim is to map the SVN onto the sub-
strate network while minimizing the amount of idle backup bandwidth. The virtual nodes
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in a given VN can be mapped on the same substrate nodes, as long as their correspond-
ing backup nodes are mapped on distinct nodes; this guarantees survivability against any
single facility node failure. To embed the SVN onto the substrate network, two embedding
heuristics are presented: A disjoint and a coordinated virtual node and virtual link mapping.
For the disjoint embedding approach, a set of feasible node mapping solutions is first enu-
merated, then this set is passed on to an ILP model that picks the node mapping solution
with the lowest reserved backup bandwidth, while the coordinated embedding adopts a link
packing approach. Further, in [54], the authors present a novel approach for redesigning
an SVN, denoted as Enhanced VN (EVN), and distinguish between failure-dependent and
failure-independent EVN. The failure-independent EVN is similar to the 1-redundant SVN,
while the failure-dependent EVN aims at minimizing the amount of idle backup resources
by relaxing the constraint that only failed nodes will migrate. Instead, for each different
failure-event, virtual nodes (primaries and backups) within a given VN will be re-arranged
(migrated) differently to resume a working VN. Note that such approach incurs a consider-
able amount of migration overhead that can potentially cause a longer down-time. Moreover,
in [55] the authors also adopt the 1-redundant SVN scheme to create an Auxiliary Protection
Graph (APG). The APG is next embedded onto the substrate network using a Tabu-search
meta-heuristic with cross-sharing and backup-sharing to minimize the backup footprints.
As for survivability against multiple facility node failure [52,111,112], the VN is augmented
with the minimum number of backup nodes needed to guarantee a reliability degree r under
a given probability of failure p. Further, in [52] and [112], the authors employ sharing across
VNs in order to circumvent the inconvenience of idle resources. As for [111], the authors
employ survivability at the inter-data center level, where a local protection approach is in-
troduced to eliminate backup bandwidth over wide-area network.
Equal efforts have been devoted towards inaugurating effective protection schemes against
substrate link failures [48], [113], [50], [114]. Here protection schemes can be mainly catego-
rized as link-based and path-based protection. Further, few work in the literature tackled the
case of correlated failure [51], [115], that is the case of single "regional" failure that brings
down multiple substrate nodes and links at the same time. Substrate nodes and links that
fail together are also referred to as a "shared risk group". Here risk groups are considered
to be given and protection schemes are tailored for the case of a single risk group (regional)
failure. A thorough taxonomy of the various failure scenarios and existing protection meth-
ods can be found in [116].
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Our work is different as it tackles the current limitations of existing SVN redesign tech-
niques, mainly the disadvantages associated with fixing the number of backup nodes, as well
as their oblivion of the incurred backup footprint. ProRed circumvents these limitations by
exploring the space between 1 and k, and adopting solid theoretical foundations to produce
SVNs with backup-sharing properties.

4.3 Problem Definition

(a) Substrate Network (b) Virtual Network (c) Survivable Virtual Net-
work

Figure 4.1: Substrate Network and Virtual Network Representation

1. The Substrate Network : We abstract the substrate (data center) network as an
undirected graph denoted by Gs = (N ,L), where N is the set of substrate facility nodes,
and L is the set of substrate links. Facility nodes are connected to the network via
network nodes (routers/switches). Each substrate facility node n ∈ N is associated with
a finite computing capacity, denoted by cn. Similarly, each substrate link l ∈ L has a
finite bandwidth capacity, denoted by dl. Figure 1(a) illustrates a substrate network
with 4 facility nodes, each with a CPU capacity of 10 units (represented by the number
in parenthesis above each facility node). Similarly, we observe that the substrate links
interconnecting the network nodes exhibit 10 units of bandwidth capacity (represented
by the number on each substrate link).

2. The Virtual Network (VN) : A virtual network represents a client’s request to de-
ploy an application in a cloud data center. It consists of a set of virtual nodes (virtual
machines), interconnected with virtual links. The virtual links correspond to the commu-
nication requirements between the virtual nodes in a given VN request. We denote a VN
as a virtual graph Gv = (V ,E), where V represents the set of virtual nodes, each with a
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CPU demand of c′v, and e is the set of virtual links, each with a bandwidth demand of
de. Every VN encompasses two type of VMs: critical and non-critical VMs; where critical
VMs refer to the vital nodes that are imperative for the service’s operability. Hence, such
critical VMs do not tolerate any failure, and require backups; whereas non-critical VMs
are tolerant to failures. All the VMs (critical or not) in a tenant’s VN are denoted as
primary VMs. Throughout this manuscript, we consider that all primary VMs in every
VN are critical.
Figure 1(b) shows an example of a VN request with 3 virtual nodes interconnected via 2
virtual links, in addition to their associated CPU and bandwidth demands, respectively.

3. Problem Definition : Given the VN request, the SVNE problem aims to map this
request onto the substrate network while providing survivability against single facility
node failures. This can be done by redesigning the VN request into an SVN, which
consists of augmenting the VN with backup nodes and provisioning enough bandwidth
and CPU resources to recover from any facility node failure. The problem of designing
survivable VNs encloses two major concerns: First, deciding how many backup nodes are
needed to protect a given VN, and second, determining which backup node will be in
charge of protecting which set of critical nodes. These two concerns highly depend on the
substrate network capacity. On one hand, provisioning a high number of backup nodes
and links greatly decreases the substrate network’s admission rate, since these resources
will remain idle until a failure occurs. On the other hand, limiting the number of backup
nodes to a pre-determined constant may yield infeasible mapping solutions. Hence, finding
the optimal design of reliable VNs consists of finding the tradeoff between the amount of
backup resources provisioned and the efficient utilization of the substrate network. The
SVN redesign problem can thus be formulated as follows:

Problem Definition 4.1. Given a substrate network Gs = (N,L), and a VN request
Gv = (V ,E), Find the optimal redesign D of the given VN request Gv into a survivable
VN, such that the amount of backup idle resources in the substrate network is minimized,
while guaranteeing survivability against single facility node failure.

One way to solve the problem is by enumerating all possible designs d ∈ D, where each d can
contain between 1 to k backup nodes. For a given number of backup nodes i (2 ≤ i ≤ k),
there could exist multiple designs d. These designs are represented by the different ways the
V virtual nodes are divided into i clusters, where each cluster is protected by a single backup
node. This is similar to the various ways o distinct objects can be distributed into m different
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bins with k1 objects in the first bin, k2 in the second, etc. and k1+k2+....km = o. This indeed
is obtained by applying the multinomial theorem where

∑
k1+k2+...+km=o

(
o

k1+k2+...+km

)
= mo.

Therefore, for V virtual nodes and i backup nodes, there are |V |i different mapping designs.
Once the set of all possible designs d is enumerated, it can be fed to an Integer Linear
Programming (ILP) model to determine the optimal design d that achieves the lowest amount
of backup idle resources in the substrate network. It is important to note that in order for
the model to determine the optimal design, it requires to solve the SVNE for each design d;
this renders the problem NP-Hard.
In this regard, we reformulate the problem to seek a redesign approach that promotes backup
sharing in the substrate network, hence it is inheritably capable of minimizing the backup
footprints. In section 4.5, we introduce a heuristic-based redesign approach that renders
such prognostic SVNs.

4.4 The SVN Redesign Problem

4.4.1 Limitations of Conventional VN Redesign Techniques

One of the most commonly adopted redesign techniques for recovery against single node
failures are formally known as the 1-redundant and k-redundant schemes. In the case of the
1-redundant scheme, the VN request is augmented with a single backup node that needs
to be connected to the neighbors of each critical node via backup virtual links. Next, the
resultant SVN is embedded onto the substrate network while forcing the primary and backup
nodes in a given SVN to occupy distinct substrate nodes. This ensures that a single substrate
node failure will not affect more than one virtual node in the same VN request. Figure 1(c)
illustrates the case where the VN request presented in Figure 1(b) is augmented with a single
backup node b1, as per the 1-redundant scheme. The backup node must be provisioned with
the maximum CPU demand of all the critical nodes, so it can assume any single facility node
failure. Hence 8 units of CPU is reserved on backup node b1. Moreover, for each backup
virtual link connecting b1 to any critical node v, it is sufficient to reserve the maximum
bandwidth demand on v’s adjacent links, since backup link (b1,v) will only be activated
upon the failure of one of v’s neighbors. For example, the backup link (b1,v1) will only be
activated in the case where virtual node v2 or v3 fails. In the case where v2 fails, 1 unit
of bandwidth is required to resume the communication on backup link (b1,v1). Similarly,
in the case where v3 fails, it will also migrate to b1 and communicate with v1 with 2 units
of bandwidth. Given that at any point in time either v2 or v3 would fail, it is sufficient
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to reserve 2 (rather than 3) units of bandwidth on the link connecting b1 to v1. The set
of backup links that are activated simultaneously upon the failure of a virtual node v is
denoted as the Backup-Group of v (BG(v)) [53]. For instance, the BG(v1) contains backup
links (b1,v2) and (b1,v3). Similarly, the backup group of BG(v2) and BG(v3) is (b1,v1).
Now, for the k-redundant scheme, the VN is augmented with k backup nodes, where k

represents the number of critical virtual machines (or nodes). In this case, each backup
virtual node protects a single primary node, and hence it only connects to its neighbors
via backup virtual links. Each backup node along with its associated backup links will
be provisioned with the same amount of resources as the primary node it protects and
its adjacent links, respectively. When a facility node fails, only the affected node will be

Figure 4.2: Backup Resource Sharing

disconnected from the substrate network. However, its adjacent network node and substrate
links will remain active and capable of routing traffic. Thus, upon the failure of a facility
node that hosts a virtual node v, the bandwidth on the original working paths that connect
v to its neighbors in the substrate network will be released, and hence becomes available.
This released bandwidth can thus be reused by the corresponding backup paths of v’s backup
node. Such type of sharing is known as cross − sharing [53] between working and backup
paths. Each virtual node v is associated with a Working-Group (WG(v)) that contains the
set of v’s working paths. For instance, the WG(v1) contains (v1,v2) and (v1,v3). Hence,
the BG(v1) can reuse the bandwidth of the WG(v1) upon v1’s failure through cross-sharing.
Moreover, given that a single node might fail at any point in time, the backup paths belonging
to different backup groups can share their bandwidth in the substrate network. Such type
of sharing is referred to as backup− sharing [53]. Figure 4.2 shows a mapping solution for
the 1-redundant SVN presented in Figure 1(c) over the substrate network in Figure 1(a).
We observe that for backup link (b1,v3), 2 units of bandwidth need to be reserved, since
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the substrate links which route this backup path do not overlap with any other appropriate
backup or working paths. However, backup paths (b1,v1) and (b1,v2) overlap over substrate
link {n2,n4}; and given that these backup paths belong to distinct backup groups, only 2
units of bandwidth need to be reserved on substrate link {n2,n4}, rather than 3 due to
backup-sharing. Moreover, backup path (b1,v1) further overlaps with working path (v1,v2)
on substrate link {n1,n2}; hence 0 unit of bandwidth needs to be reserved on this substrate
link via cross-sharing.
The problem with the 1-redundant and k-redundant schemes is that by forcing the number of
backup nodes to be either 1 or k, we may end-up with infeasible or costly mapping solutions.
This is due to the fact that the substrate might not have enough bandwidth capacity to
route the traffic between 1 backup node to the neighbors of all critical nodes, in the case
of the 1-redundant scheme. Whereas, in the case of the k-redundant scheme, a substantial
amount of CPU resources remain idle until a failure occurs, since k-redundant requires as
many backup nodes as primary critical nodes, not to mention the large number of backup
virtual links needed to associate each backup node with its appropriate primary critical node.
This motivates the need for a cost-efficient redesign technique that is capable of exploring
the space between 1 and k, and finding the balance between the amount of provisioned CPU
and bandwidth to yield feasible and cost-efficient embedding solutions.

4.4.2 Illustrative Example

(a) 1-Redundant SVN (b) 2-Redundant SVN

Figure 4.3: Survivable Virtual Network Design Schemes

To further illustrate the inconvenience of the conventional redesign techniques, consider
the case of a 4 nodes VN, where each virtual node is considered to be critical. Using the
1-redundant scheme, we augment this VN with a single backup node, connected to the
neighbors of all critical nodes via backup virtual links, as illustrated in Figure 3(a). Now,
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(a) 1-Redundant SVN Embedding Solution (1)

(b) 2-Redundant SVN Embedding (c) 1-Redundant SVN Embedding Solution (2)

Figure 4.4: Designing and Embedding Reliable VNs

consider a substrate network with 6 facility nodes interconnected via substrate links, each
with a bandwidth capacity of 1 unit, as shown in Figure 4(a). Given the 1-redundant SVN,
there exists no feasible mapping solutions on the aforementioned substrate network. For
instance, consider embedding the SVN using the mapping solution illustrated in Figure 3(a).
When substrate node n1 fails, virtual node v1 migrates to b1 which needs to communicate
with virtual nodes v2 and v4. b1 is capable of reaching virtual node v2 through path {n3-n2}.
However, the substrate network’s capacity, with the current embedding solution inhibits b1

from reaching node v4, since the working path of {v3-v4} remains operational, occupying
the 1-unit of bandwidth on the substrate link {n4-n5}. This renders the embedding solution
illustrated in Figure 4(a) infeasible. By examining all possible mapping solutions of the 1-
redundant SVN on the given substrate network, we find that they are all infeasible. This is
because the 1-redundant scheme connects a single backup node to the neighbors of all critical
nodes. Hence b1’s bandwidth demand along with the given substrate network capacity,
inhibits b1 from protecting this VN against any single node failures.
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On the other hand, consider the case where the aforementioned VN is augmented with 2
backup nodes b1 and b2, as shown in Figure 3(b). b1 assumes the failure of critical nodes v1

and v2, and b2 replaces v3 and v4 in case any of them failed. Upon embedding the resultant
SVN, we notice that this survivable design does indeed yield a feasible solution and requires
0 unit of reserved bandwidth due to cross-sharing, as illustrated in Figure 4(b). For example,
consider the case where the facility node n1 fails; subsequently, v1 will migrate to b1, and
that latter needs to resume v1’s communication with v2 and v4. The failure of virtual node
v1 leads to the release of the active bandwidth on working paths {n1-n2-n3} and {n1-n4}
connecting virtual node v1 to v2 and v4, respectively. The released bandwidth will be reused
by b1 to reach v2 and v4 through cross-sharing. By employing cross-sharing for all other
virtual node failures in the given VN, we can conclude that indeed the 2-redundant SVN
requires 0 unit of reserved bandwidth.
Further, consider the same substrate network, where link {n2-n5} has a capacity of 2 units,
as illustrated in Figure 4(c). In this case, we can indeed find a feasible embedding solution for
the 1-redundant SVN with a provisioned bandwidth cost of 2 units, whereas the 2-redundant
scheme still requires 0 unit of provisioned bandwidth.
These motivational examples support our claim that by forcing the number of backup nodes
to be either 1 or k, we might end up with infeasible or costly mapping solutions. Whereas
when we augment the VN with i (1 ≤ i ≤ k) backup nodes (i = 2 in the above example),
we achieve a balance between the amount of backup bandwidth and CPU that needs to
be reserved. In fact, this balance yields a feasible solution, when the 1-redundant and k-
redundant fail to find one.
This motivates the need for a redesign approach that is capable of finding that balance,
rather than being fixed to either 1 or k backup nodes. By exploring the space in the range
between 1 and k, we can obtain lower-cost mapping solutions, and increase the network’s
admissibility. This is one of ProRed’s unique capabilities. Another advantage of ProRed is
that it redesigns the VN in a way to promote the backup bandwidth sharing at the substrate
network. In the next section we present ProRed’s theoretical foundation that enables it to
fulfil these two promises.
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Figure 4.5: Theoretical Foundation

4.5 Prognostic Redesign Approach (ProRed) :

4.5.1 Theoretical Foundation

In this section, we present the theoretical foundation on which ProRed’s redesign technique
is established. We begin our explanation with a motivational example: Consider a 2 nodes
VN illustrated in Figure 4.5(a). Augmenting the VN with a single backup node, using the
1-redundant scheme, requires 2 units of backup bandwidth (as shown in Figure 4.5(b)). By
employing an effective embedding approach, this estimated bandwidth cost could be mini-
mized at the substrate network level via cross-sharing and backup-sharing. Observe, however,
that by placing this backup node along the path connecting v1 and v2, the resulting SVN
will require the least amount of backup bandwidth to-be provisioned upon embedding. This
is due to the fact that by placing the backup node in between its associated primary nodes,
we encourage the backup path to be routed through the primary path connecting v1 and v2

in the substrate network. Subsequently, if either one of these primary nodes fail, the backup
node will cross-share (reuse) the released primary bandwidth. It should be noted here that
this redesign approach is indeed prognostic to backup resource sharing, as it is able to pre-
dict (promote) the cross-sharing (bandwidth reuse) at the VN level. Indeed, throughout our
numerical results, we show that ProRed achieves considerable gains in terms of reducing the
total bandwidth cost against the conventional redesign techniques, and greatly decreasing
the network’s blocking ratio.
We build on this motivational example to formulate a novel redesign technique that deter-
mines the location of backup nodes in the VN, such that cross-sharing and backup-sharing
can be fully promoted in the substrate network. Incrementing a backup node for every two
virtual nodes is definitely costly in terms of idle CPU resources. Hence, we resort to cluster-
ing a subset of virtual nodes into distinct sets, where nodes in a particular set are covered
by a single backup node. In each set, the backup node is positioned such that the maximum
amount of backup resource sharing can be achieved upon the embedding. This clustering
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technique can thus create a balance between the amount of provisioned backup nodes and
links.
To create a set, we begin by selecting the virtual node with the highest degree. This al-
lows a larger number of primary virtual nodes to be clustered within a single set, which
can substantially decrease the amount of reserved CPU resources. Once the starting node
is identified, we place the backup node on the adjacent link with the highest bandwidth
demand, which can yield the most backup resource sharing. To support this claim, consider

(a) Total Cost =
2a + b + c

(b) Total Cost =
2a + b + 2c

(c) Total Cost =
2a + 2b + c

(d) Total Cost = a
+ 2b + 2c

Figure 4.6: Designing Reliable VNs

the following example illustrated in Figure 4.6. Let v1 be the node with the highest nodal
degree 3. Its adjacent links have a bandwidth demand of a, b and c, respectively. We assume
(without loss of generality) :

a > b > c (4.1)

In order to protect v1, we need to place a backup node on one of its adjacent links. In this
case, we have 3 different links to choose from, we can either place the backup node on the
link with bandwidth demand a, b, or c. These three different options are illustrated in Figure
6(a), 6(b), and 6(c), respectively. Now, we distinguish between two scenarios:

• Case 1: a ≥ b+c
By placing the backup node on the link with the highest bandwidth demand a (shown
in Figure 6(a)), and given that a ≥ b+c, this implies that 0 unit of bandwidth is
required on this virtual backup link. This is due to the fact that the backup node is
able to reach all of v1’s neighbors by reusing the primary bandwidth through cross-
sharing. Whereas, by placing the backup node on the link with bandwidth demand
b (shown in Figure 6(b)) additional bandwidth needs to be reserved in order to reach
v1’s neighbors. In fact, since b < a, the backup node cannot reach v1’s neighbor at
link a without reserving an additional (a - b) units of bandwidth. The same applies
to reach v1’s neighbor at link c, hence an overall (a + c - b) units of bandwidth needs
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to be reserved. This renders a total cost of (2a + b + 2c), which is obviously more
expensive than the redesign solution presented in Figure 6(a).

• Case 2: a < b+c
Now in the case where a ≤ (b + c), placing the backup node on link a implies that a
total of (b + c - a) must be reserved on the link connecting the backup node and v1,
as illustrated in Figure 6(d). However, this solution still renders the lowest total cost
than that achieved by placing the backup on any other link.

Overall, we can conclude that in case 1 or case 2, placing the backup on the link with the
highest bandwidth will always yield the lowest total cost.

4.5.2 ProRed Algorithm :

Algorithm 4.1 ProRed: Prognostic Redesign Heuristic
1: Given Gv = (V,E) /*Virtual Network Topology*/
2: /*Set cover flag for nodes and links to false*/
3: for (v ∈ V ) do
4: v.covered = false;
5: end for
6: C = { }; /*Initialize the list of covered nodes*/
7: while (|C| < |V |) do
8: Ĉ = {V } - C;
9: Step 1: Find Starting Node

10: v1 = GetNodeWithMaxNodalDgr(Ĉ);
11: Ẽ = GetAdjacentLinks(v1,Ĉ);
12: Step 2: Find Starting Link
13: e = GetLinkWithMaxBW (Ẽ);
14: Step 3: Create a new Set
15: s = CreateSet(v1,e);
16: C = C ∪ s;
17: end while

In this section, we present the SVN redesign heuristic that is founded on the theories
and observations presented in Section 4.5.1. The objective of this algorithm is to assign a
backup node for each critical node in the given VN topology; we refer to a critical node that
is assigned to a backup node as covered (or protected). Algorithm 4.1 presents the 3 steps
approach of our ProRed algorithm. Initially, all the virtual nodes in the VN topology are
considered as uncovered; hence, we initialize the virtual nodes with a cover flag set to false.
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Next, we define two new sets C and Ĉ that are updated at the end of every iteration with the
list of covered and uncovered nodes, respectively. The process terminates when C contains
all the critical nodes in the VN request. At each iteration, the algorithm creates a single set.
We define a set as an ensemble of critical nodes protected by a single backup node. To create
a set, we first need to identify a starting point, from which a set will begin and grow. Based
on the previous observations presented in Section 4.5.1, the starting point is defined by node
v1 with the highest nodal degree in the list of uncovered nodes Ĉ (Line 10), where the nodal
degree count only considers v1’s neighbors in Ĉ. Next, we need to find v1’s adjacent link
with the highest bandwidth demand. To do so, we need to find the set Ẽ of v1’s adjacent
links with both nodes in Ĉ (Line 11), and then pick the link e with the highest bandwidth
(Line 13). Finally, the algorithm invokes the CreateSet function that returns a set s which
contains the critical nodes covered by the newly discovered set. The nodes covered by set s

will thus be added to set C (Line 16) in order to prevent selecting these nodes as starting
points for new sets in future iterations. In Algorithm 4.2, we highlight the procedural details
of the CreateSet function. It begins by creating a new backup node b to be placed between
the edge nodes v1 and v2 of link e. To exploit cross-sharing, virtual link e is replaced by two
backup virtual links ê1 and ê2 that position backup node b in between nodes v1 and v2. This
would encourage the backup virtual link to be routed through the primary path connecting
nodes v1 and v2, thereby promoting cross-sharing upon embedding.
Initially, both virtual links ê1 and ê2 will be provisioned with primary bandwidth demand
of link e, denoted as de, and the CPU demand of b is set to the maximum CPU demand of
critical nodes v1 and v2 (line 6). The backup bandwidth to be provisioned on link ê1, denoted
as dê1 , is set to be the sum of the bandwidth demands of v1’s adjacent links (excluding the
link connecting v1 to v2) minus the primary bandwidth demand de of primary virtual link e

(Line 8), only if the sum is greater than de, since this suggests that the released bandwidth
on e1 is not sufficient to recover the communication between v1 and its adjacent nodes upon
the failure of v1 (Line 7). It is important to note that all of v1’s adjacent links (both in C and
Ĉ) are considered in the computation of dê1 , since we need to provision enough bandwidth
on dê1 to allow b to reach all of v1’s neighbors upon failure. The same applies when assigning
the reserved bandwidth on link ê2, denoted as dê2 (Line 8). Subsequently, nodes v1 and v2 are
now protected (covered) by backup node b. Once this set is established, we need to grow it
in order to cover the highest number of adjacent nodes possible without incurring too much
additional backup bandwidth. First, we need to include all the adjacent leaf nodes in the set,
otherwise leaf nodes will be left uncovered, or would require a dedicated backup node, which
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Algorithm 4.2 CreateSet(virtual_node v1,virtual_link e)
1: s = {};
2: v2 = GetOtherNode(v1,e);
3: Step 4: Create a new backup node b
4: ê1 = new virtual_link(v1,b,de);
5: ê2 = new virtual_link(v2,b,de);
6: setCPU(b,max(v1,v2));
7: if (Sum(GetAdjacentLinksBandwidth(v1)) ≥ de) then
8: dê1 = Sum(GetAdjacentLinksBandwidth(v1)) - de;
9: end if

10: if (Sum(GetAdjacentLinksBandwidth(v2)) ≥ de) then
11: dê2 = Sum(GetAdjacentLinksBandwidth(v2)) - de;
12: end if
13: v1.covered = v2.covered = true;
14: s = s ∪ {v1,v2};
15: Step 5: Protect Adjacent Leaf Nodes
16: T = v1.getAdjacentLeafNodes();
17: while (T .hasNext()) do
18: t = T .next();
19: t.covered = true;
20: s = s ∪ {t};
21: setBW (ê1,max(dê1 ,d(v1,t)));
22: setCPU(b,max(b,t));
23: end while
24: Repeat Step 5 Lines (16-23) for v2
25: Step 6: Protect Adjacent non-leaf Nodes
26: R = v1.getAdjacentNonLeafNodes();
27: while (R.hasNext()) do
28: r = R.next();
29: if ((2d(v1,r) ≥ Sum(GetAdjacentLinksBW (r)))&&
30: (dê1 ≥ d(v1,r) && (r.hasAdjacentLeafNodes() = null)) then
31: r.covered = true;
32: s = s ∪ {r};
33: setCPU(b,max(b,t));
34: end if
35: end while
36: Repeat Step 6 (Lines 26-35) for v2
37: return s;
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is seemingly not cost efficient. To cover leaf nodes, we need to adjust the bandwidth demand
on links ê1 and ê2, appropriately, with enough bandwidth to assume the failure of any leaf
node, as well as the CPU demand of backup node b. Finally, the algorithm will also attempt
to cover non-leaf neighbor nodes of v1 and v2 using backup-sharing, meaning without assign-
ing any additional bandwidth on backup virtual links ê1 and ê2, thereby getting a "free-ride"
by joining the current set. Thus, adding non-leaf nodes to the current set can ultimately
reduce the amount of provisioned backup resources needed to protect the virtual network.
Given a non-leaf neighbor node v′ of v1, if the sum of the bandwidth demand on v′’s adjacent
links including link (v′,v1) is smaller than the reserved bandwidth on link ê1, and excluding
the bandwidth demand on link (v′,v1), smaller than the bandwidth demand on link (v′,v1);
further, if (v′,v1) is the link with the highest bandwidth demand among v′’s adjacent links,
then v′ could be included in v1’s set and subsequently protected by backup node b without
incurring any additional backup bandwidth via backup-sharing. Finally, the algorithm re-
turns the set of nodes that are covered by the newly created set s. The CreateSet function
has a complexity of O(|V |), which renders the complexity of ProRed’s redesign heuristic to
be O(|V |2), since we call the CreateSet function for each uncovered node in the VN request.
This set-based protection scheme enables ProRed to assume multiple facility node failures,
in the event where these failures affect VMs in distinct sets (as opposed to 1-redundant and
k-redundant schemes that only support single node failure). This property can be leveraged
to enhance the fault-tolerance of VNs by spreading the VMs in a single set over multiple
fault-domains (e.g., a Top-of-Rack switch in a FatTree [14] topology).
It is important to note that the actual amount of reserved backup bandwidth in the sub-
strate network depends on the quality of the adopted SVNE approach. It can indeed be
substantially reduced with a highly-efficient embedding approach that exploits cross-sharing
and back-sharing; or it can get aggravated if the backup node was poorly placed far from the
primary virtual nodes, requiring multiple hops to reach them. In the case of ProRed, the
placement of the backup node at the VN level guarantees the predicted cross-sharing that
the resultant SVN will enjoy once embedded onto the substrate network.

4.5.3 Illustrative Example

To further illustrate the enactment of ProRed’s redesign algorithm, consider the VN topology
presented in Figure 7(a). The algorithm begins by identifying a starting node and link, which
in this case are node v7 with link {v4,v7}, since they correspond to the node with the highest
degree, and its adjacent link with the highest bandwidth demand. Next, a set is created by
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(a) (b) (c)

(d) (e)

Figure 4.7: Step-by-Step SVN Redesign Algorithm.

placing a backup node b1 on link {v4,v7}, as shown in Figure 7(b). This implies that nodes
v4 and v7 are now protected by backup node b1. Since the sum of the adjacent links to v4

(excluding link {v4,b1}) is smaller than the bandwidth on link {v4,b1}, 0 unit of bandwidth
is required to protect node v4. When v4 fails, the bandwidth reserved on the substrate paths
routing virtual links {v4,v7}, {v4,v3}, and {v4,v5} will be released. Now, v4 will migrate to b1

and that latter needs to resume v4’s communication with v3, v5 and v7; b1 will thus reuse 8
units of released bandwidth on the path connecting v4 and v7 to reach v7. Similarly, b1 will
reuse 2 units of the released bandwidth on the path connecting {v4,v7} and {v4,v3} to reach
v3, and 3 units on the substrate paths connecting {v4,v7} and {v4,v5} to reach v5.
Now to protect virtual nodes v7, we observe that the sum of its adjacent links is 12, which
implies that 4 additional units of bandwidth must be reserved on link {v7,b1} in order to
protect node v7. This is because when v7 fails it migrates to b1, that latter now needs to
go through the path connecting b1 to v7 and then cross-share the released bandwidth on the
paths connecting v7 to v6, v8 and v9. Now, given that only 8 units of bandwidth is released
on {v7,b1}; hence, 4 additional units must be reserved to fully protect v7.
Next, the set is grown by adding the adjacent leaf nodes of v4 and v7. The only leaf node found
is v5 which will be added to the set, and subsequently incurs 3 units of backup bandwidth
to be reserved on link {v4,b1}. Finally, the potential of adding non-leaf nodes is explored.
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Indeed, we find that only node v3 can be added to the set with no additional bandwidth, as
shown in Figure 7(c). When no additional nodes can be further added to the set, the set
becomes saturated. Subsequently, the CreateSet function returns set s1 with backup node
b1 protecting virtual nodes v3, v4, v5, and v7, which leaves 5 critical nodes in the given VN
uncovered. Hence, a new set is initiated starting with node v2, since it represents the next
uncovered node with the highest nodal degree. The same process repeats, and returns set
s2 with backup node b2 protecting virtual nodes v1, v2, and v6, as shown in Figure 7(d).
Finally, set s3 is created with backup node b3 covering nodes v8 and v9, illustrated in Figure
7(e). Once all critical nodes are protected, the algorithm terminates. At the end, we obtain
3 sets with 3 backup nodes protecting 9 critical nodes and an estimated 14 units of backup
bandwidth to be reserved. However, in the case of the 1-redundant scheme, a single backup
node b needs to connect to each virtual node; hence a total of 9 backup links are needed. This
means that potentially 56 units (sum of backup bandwidth to be provisioned) of bandwidth
needs to be reserved to connect b to the virtual nodes.

4.6 The SVN Embedding

Upon obtaining the redesigned VN, the next step is to embed the latter onto the substrate
network. Since the SVNE problem is NP-Hard, we adopt a disjoint mapping approach, where
we perform the node mapping first and then the link mapping. For the node mapping, we use
the VMP algorithm in [49] to find a setM of feasible node mapping solutions. Note both the
primary and backup node placement is performed jointly. Here, we sort the substrate nodes
in order of proximity (e.g. pods in a FatTree), and the VMs placement is performed set by
set. This encourages the backup node in each set to be placed on substrate nodes within
close proximity of the primary VMs it protects, thereby attempting to replicate as-much-as-
possible the virtual design performed by ProRed. Next, the link embedding is performed to
route the primary and the backup links. At the embedding phase, we separate the primary
virtual links from the augmented backup links. That is, going back to our example presented
in Figure 7(b), backup links (b1-v4) and (b1-v7) are routed separately from the primary link
(v4-v7); and the predicted backup resource sharing will be realized on all the common links
traversed by the primary and the backup paths. This prevents the primary path from being
routed through the backup node, particularly when performed in substrate topologies where
facility nodes are interconnected by multiple layers of network nodes.
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4.6.1 The SVN Embedding Model (SVNE-M)

For the link mapping, first we formulate an ILP model (denoted as SVNE-M) that performs
the primary and backup links embedding jointly. The SVNE-M will then select the lowest
cost mapping solution m ∈ M, and determine its corresponding link mapping solution. The
SVNE-M can thus be formulated as follows:

• Parameters:

Gs = (N,L) : substrate network with N nodes and L links.
Gv=(V , E) : virtual network with V virtual nodes and E virtual links.
Ê : the set of backup virtual links.
M : the set of all node mapping solutions.
S : the list of constructed sets.

δmv,n =

⎧⎨
⎩1, if v is mapped onto substrate node n in m,

0, otherwise.

• Decision Variables:

xm =

⎧⎨
⎩1, if node mapping solution m is chosen,

0, otherwise.

ye,mi,j =

⎧⎨
⎩1, if e is mapped on substrate link (i, j) in m,

0, otherwise.

yê,mi,j =

⎧⎨
⎩1, if ê is mapped on substrate link (i, j) in m,

0, otherwise.
ti,j : the primary traffic reserved on substrate link (i, j).
t̂i,j : the backup traffic reserved on substrate link (i, j).

• Mathematical Model:

Min
∑

(i,j)∈L
(ti,j + t̂i,j)

Subject to

∑
m∈M

xm = 1 (4.2)
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∑
j:(i,j)∈L

ye,mi,j −
∑

j:(j,i)∈L
ye,mj,i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
≤ 1 if δms(e),i = 1,

≥ −1 if δmd(e),i = 1,

= 0 otherwise

∀ i ∈ N, e ∈ E, m ∈M.

(4.3)

ye,mi,j ≤ xm ∀e ∈ E,m ∈M, (i, j) ∈ L. (4.4)

ti,j =
∑
m∈M

∑
e∈E

ye,mi,j de ∀(i, j) ∈ L. (4.5)

∑
j:(i,j)∈L

yê,mi,j −
∑

j:(j,i)∈L
yê,mj,i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
≤ 1 if δms(ê),i = 1,

≥ −1 if δmd(ê),i = 1,

= 0 otherwise

∀ i ∈ N, ê ∈ Ê, m ∈M.

(4.6)

yê,mi,j ≤ xm ∀ê ∈ Ê,m ∈M, (i, j) ∈ L. (4.7)

∑
m∈M

∑
ê:∈BG(v)

yê,mi,j de:{v,d(ê)} −
∑
m∈M

∑
e:∈WG(v)

ye,mi,j de ≤ t̂i,j

∀(i, j) ∈ E, v ∈ V

(4.8)

ti,j + t̂i,j ≤ dl ∀l : (i, j) ∈ L. (4.9)

xm, ye,mi,j , yê,mi,j ∈ [0, 1] ∀m ∈M, e ∈ E, ê ∈ Ê, (i, j) ∈ L. (4.10)

ti,j, t̂i,j ≥ 0 ∀(i, j) ∈ L. (4.11)

We aim at minimizing the overall bandwidth cost for the given SVN mapping solution. This
encourages the model to select a node mapping solution where the nodes are not too widely
spread. Hence, we set the model’s objective function to minimize the sum of primary and
backup traffic on the substrate links. Constraint (4.2) forces the model to select a single node
mapping solution. Constraint (4.3) represent the flow conservation constraint for the primary
virtual links. Constraint (4.4) indicates that a primary link mapping solution will only be
constructed for the chosen node mapping solution. Constraint (4.5) measures the primary
traffic routed on every physical link in the substrate network. Constraint (4.6) represents
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the flow conservation constraints for the backup virtual links. Constraint (4.7) indicates
that a backup link mapping solution will only be constructed for the chosen node mapping
solution. Constraint (4.8) measures the backup link traffic routed on every physical link
in the substrate network by exploiting cross-sharing and backup-sharing. Constraint (4.9)
ensures that the sum of the primary and backup bandwidth routed on each substrate link
does not violate its capacity.

4.7 The SVNE Heuristic (SVNE-H)

Given the NP-Hard nature of the SVNE problem, we have devised an embedding heuristic
that relies on the weighted-Dijkstra algorithm for the routing of the primary and backup
links. Similar to the SVNE model presented in Section 4.6.1, the SVNE heuristic also employs
a two-step VNE approach, that begins by generating a list of M node mapping solutions
using the Virtual Machine Placement (VMP) algorithm [49]. Next, for each node mapping
solution m ∈M, the SVNE heuristic is executed; the algorithm terminates at the occurrence
of the first node mapping solution that yields a feasible link embedding solution.
The procedural details of the SVNE heuristic are presented in Algorithm 4.3. It consists of
two main steps; in Step 1, the primary virtual links are embedded using the getShortestPath,
and in Step 2 the backup virtual links are embedded. The benefit of embedding the primary
links first is to encourage the backup-link to be routed through the same physical links,
and re-use the primary bandwidth via cross-sharing. Therefore, for each backup link, the
algorithm detects the set of virtual nodes the former protects (Lines 20-25). This implies
that this backup link can cross-share with the working path of each of these virtual nodes
(denoted by T ). Subsequently, to encourage cross-sharing, the weight on each physical link
l ∈ T is set to 0 (Line 26-32), and the getShortestPath algorithm is executed to run the
weighted-Dijkstra algorithm. The getShortestPath method presented in Algorithm 4.4 con-
sists of running a simple weighted-Dijkstra algorithm for primary links (Lines 24-30). When
a path p is found, the physical links that compose p are checked to ensure that they satisfy
the bandwidth requirement of the virtual link e; if a bandwidth violation occurs, the infea-
sible path found is added to a dedicated set T that maintains the list of infeasible paths
found, and the weight on the physical links composing this invalid path is incremented by a
large number (equal to the number of physical links in the substrate network) (Lines 32-34).
The algorithm terminates when a feasible path is found, or in the event where an infeasible
path is generated twice.
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Algorithm 4.3 SVNE-Heuristic(NodeMappingSolution m)
1: Given
2: Gv = (V,E) /*Virtual Network*/
3: Gs = (N,L) /*Substrate Network*/
4: Ê /*Set of Virtual Links*/
5: P = {}; /*Set of Primary Paths*/
6: P̂ = {}; /*Set of Backup Paths*/
7: Step 1: Embed Primary Links M
8: for (e ∈ E) do
9: /*Initialize Link Weights*/

10: for (l ∈ L) do
11: l.weight = 1;
12: end for
13: p = getShortestPath(e,P ,P̂ ,V );
14: if (p == NULL) then
15: Return NULL;
16: end if
17: P = P ∪ p;
18: end for
19: Step 2: Embed Backup Links M
20: for (ê ∈ Ê) do
21: T = {};
22: for (v ∈ V ) do
23: if (ê ⊂ BGv) then
24: T = T ∪ getWorkingPaths(v, P );
25: end if
26: end for
27: for (l ∈ L) do
28: if (l ∈ T ) then
29: l.weight = 0;
30: else
31: l.weight = 1;
32: end if
33: end for
34: p̂ = getShortestPath(ê,P ,P̂ ,V );
35: if (p̂ == NULL) then
36: Return NULL;
37: end if
38: P̂ = P̂ ∪ p̂;
39: end for
40: Return MappingSolution(m,P, P̂ );
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Algorithm 4.4 getShortestPath(virtual_link e, path_set P , path_set P̂ , virtual_nodes
V )
1: T ={}; /*Tentative Paths*/
2: p = weighted-Dijkstra(e);
3: while !(T .contains(p)) do
4: if (isBackupLink(e)) then
5: for (l ∈ p) do
6: bw = 0
7: for (v ∈ V ) do
8: if ( e ⊂ BGv) then
9: resv = getVLink(e.destination,v).bw;

10: /*Apply Cross-Share*/
11: resv -= doCrossShare(v,P );
12: /*Apply Backup-Share*/
13: resv -= doBackupShare(!v,P̂ );
14: bw = Max(bw,resv );
15: end if
16: end for
17: if (l.bw ≤ bw) then
18: T = T ∪ p;
19: Break to line 32 ;
20: end if
21: end for
22: Return p;
23: else
24: for (l ∈ p) do
25: if (l.bw ≤ e.bw) then
26: T = T ∪ p;
27: Break to line 32 ;
28: end if
29: end for
30: Return p;
31: end if
32: for (l ∈ p) do
33: l.weight = l.weight + |L|;
34: end for
35: p = weighted-Dijkstra(e);
36: end while
37: Return NULL;
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However, when embedding a backup link, cross-sharing and backup-sharing must be per-
formed to minimize the amount of bandwidth that needs to be provisioned. Here, every
virtual node v that contains e in its backup group demands a different amount of backup
bandwidth, denoted as resv; Subsequently, if any of the working paths of v coincide with any
physical link in p, cross-sharing can be performed (Line 11). However, given the fact that
the link embedding is performed sequentially, attention must be placed to ensure that no
two backup links of v are cross-sharing the same bandwidth. Similarly, if any of the backup
paths that do not belong to the BGv share common substrate links, then backup-sharing
can be performed, while avoiding redundant backup-sharing with other backup links in BGv

(Line 13). Let k be the maximum number of iterations that the getShortestPath algorithm
executes before running into a redundant path, then the complexity of the SVNE-Heuristic
is O(k · |E| · |Ê| · |N |2), where O(|N |2) is the runtime complexity of the weighted-Dijkstra
Algorithm.

4.8 Numerical Results

4.8.1 Performance Evaluation

Table 4.1: Execution Time (sec)& Cost for 1 VN - FatTree (K = 8)

T
ProRed-M 1Red-M KRed-M ProRed-H 1Red-H KRed-H

Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time
5 1090 1.6 1265 1.4 1720 1.3 1090 0.6 1265 0.2 1720 0.45
10 3167.5 2.3 3370 1.9 5530 2.7 3192.5 1.1 3390 0.8 5530 3.71
15 3982.5 2.7 4022.5 2.1 6620 5.0 4012.5 1.8 4022.5 7.4 6737.5 2.58
20 8965 7.4 10880 82.8 16275 541.6 9185 6.0 11157.5 5.1 16497.5 14.80
25 11417.5 68.5 13100 6332.3 19992.5 13500 11682.5 9.7 13485 7.5 20458.5 21.99

We start by evaluating the performance of the SVNE-Heuristic against the SVNE-Model
over the FatTree (k = 8) network [14]. To do so, we look at the execution time and the
cost achieved by the different redesign techniques as we vary the size of the VN. The aim of
this test is to see how well each of these embedding techniques scale, and how reliable our
SVNE-Heuristic is in terms of the total achievable bandwidth cost. Herein after, we refer
to the combination of a particular redesign technique followed by a particular embedding
method by RedesignTechnique-M when the redesigned SVN is mapped using the SVNE-
Model, and RedesignTechnique-H when the redesign is followed by the SVNE-Heuristic; e.g.
ProRed−M refers to a VN that was redesigned into a SVN using ProRed, followed by the
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SVNE-Model for the embedding step.
Looking at Table 4.1, we observe that the execution time of the SVNE-Model undergoes
a steep increase as the size of the VN grows, where embedding a 1-redundant SVN of 25
receivers takes up to 6332.3 seconds, whereas embedding a k-redundant SVN of 25 receivers
requires 13500 seconds, which is highly impractical. Further, we notice that embedding a
ProRed SVN requires almost a minute, which is far more scalable than that of 1- and k-
redundant redesigns, yet it remains nonviable for an online embedding scheme. The reason
why ProRed’s redesign yield a faster embedding is because the size of the problem does not
grow as fast as it does when dealing with the existing redesigns, since ProRed limits the
number of backup links by adopting the sets creation practice.
Second, we observe that the cost achieved by the SVNE-Heuristic is highly comparable to
that achieved by the SVNE-Model, with a gap that does not exceed 3% for all of the redesign
techniques. Finally, we observe that embedding cost achieved by the ProRed redesign is lower
than that achieved by either 1- or k-redundant. In fact, ProRed-M achieves 12% lower cost
than 1Red-M and 42% lower cost than KRed-M. Similarly, ProRed-H achieves 13% lower
cost than 1Red-H and 42% lower cost than KRed-H.

4.8.2 Comparative Analysis

Now we perform a comparative analysis of ProRed against the 1-redundant and k-redundant
schemes for various metrics: Blocking Ratio, Cost-to-Revenue Ratio, Total Revenue, and
Execution Time. Here, blocking ratio refers to the percentage of VNs rejected out of the
total number of VN embedding requests received at the end of each test case. We adopt 4
different substrate network topologies to conduct this evaluation. The substrate networks
used for our simulation are FatTree (k=4) and FatTree (k=8) [14], in addition to the JellyFish
(k =10) [117] network topology, and a randomly generated network [118] R with 80 nodes
and 150 links. In all of these substrate networks, we set the CPU capacity of each host
node to 64 units, and the bandwidth capacity on the substrate links is set to 1000 units.
We perform the redesign and mapping of VNs in an online fashion, upon the arrival of each
request. As VNs arrive and leave, the load on the network varies, thereby changing the
state of the substrate network in terms of residual capacity. Our proposed redesign and
embedding schemes thereby operate under this load-varying environment, wherein the state
of the network varies, and the set of incoming VN requests overtime is unknown. The size
of each VN can range between [4-12] virtual nodes when using FatTree (k=4), and between
[10-30] virtual nodes when running atop FatTree (k=8), JellyFish (k=10) or R. Each virtual
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node can be connected to any other virtual node in the VN request with a probability of 50%.
The CPU demand of the virtual nodes is set to be in the range [4-12], and the bandwidth
demand on the virtual links is in the range [50-100]. Further, we set the size of node mapping
solutions M to 30. In all test cases, the results are averaged over 15 runs, and we show the
margin of error with a 95% confidence.

1. Average Execution Time : First, we look at the average runtime to redesign and embed
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Figure 4.8: Execution Time

a single SVN using the various aforementioned redesign and embedding techniques; the
results are illustrated in Figure 8(a), 8(b), and 8(c), respectively. Here again, we assert the
scalability of the SVNE-Heuristic against the SVNE-Model, and we observe that as the
load increases, ProRed-H outperforms KRed-H and 1Red-H in terms of average execution
time.
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2. Blocking Ratio :

Now, we evaluate the blocking ratio over the FatTree(k=4) and FatTree(k=8), as well as
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Figure 4.9: Blocking Ratio

JellyFish (k=10) and the random topology R. The results are shown in Figure 4.9. We
observe for all substrate network topologies, ProRed yields the lowest blocking ratio. For
instance in FatTree(k=4), ProRed-M achieves 25% lower blocking that 1Red-M and 78%
lower blocking that KRed-M for a load of 12 (Figure9(a)). Similarly, ProRed-H achieves
28% lower blocking than 1Red-M, and 77% lower blocking than KRed-M for a load of 12.
This gain is mainly attributed to ProRed’s ability to explore the space between 1 and k.
Since FatTree connects each host node to the substrate network with a single substrate
link, this architecture puts 1-redundant at a great disadvantage, as the backup node is
forced to go through a single substrate link in order to reach the neighbors of all the critical
nodes in a given VN. Though k-redundant does not concentrate the backup bandwidth
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load on a single substrate link, its redesign technique requires as many backup nodes as
the number of critical nodes in a VN request, which renders a substantial amount of CPU
and bandwidth demand to associate each backup node with its corresponding primary
virtual node. Whereas ProRed maintains a balance between the number of allocated
backup nodes and links, thus its blocking ratio prevails over its peers. Similar gain is
observed on FatTree(k=8)(Figure9(b)).
Given that the FatTree topology does not allow ProRed to employ its prognostic redesign
technique, we further compare these 3 redesign techniques over JellyFish (k = 10) and R

to evaluate the advantage of this property. We observe that ProRed achieves encouraging
gain in terms of decreasing the blocking ratio. We find that as we increase the load to 12,
ProRed-H achieves 44% lower blocking than 1Red-H and 55% lower blocking than KRed-
H (Figure 9(c)). Indeed, the rich interconnection of the random network topology enables
ProRed from exercising its prognostic redesign technique. Hence, ProRed is capable of
greatly decreasing the incurred bandwidth cost for each VN, and subsequently increasing
the network’s admissibility. Similar gain is observed on R as shown in Figure 9(d).

3. Revenue :

Revenue is an important metric that highly complements the blocking ratio metric. A low
blocking ratio does not necessarily indicate a high revenue. This is because the concerned
model may only be capable of admitting VNs with lower resource demands. When in fact,
VNs with substantial resource requirements are more profitable to the cloud provider. In
this regard, we measure the total revenue obtained by the various redesign techniques.
Given that the aim of the metric is to evaluate each of the aforementioned techniques’s
ability to admit profitable VNs, we measure the revenue of each VN in function of its
overall CPU demands and size using the following equation: Revenue =

∑
v∈V cv + πv |V|.

The results are shown in Figures 10(a)-10(d). Once more we observe for FatTree(k=8),
ProRed achieves encouraging results, with a 51% gain over 1-redundant and 62% gain
over k-redundant for a load of 10 (Figure 10(b)). Similar results are observed over all
other network topologies. This gain is mainly attributed to ProRed’s unique redesign
properties, which significantly reduce the average cost, and hence leverage the efficient
utilization of the substrate network. Subsequently, ProRed is capable of admitting more
profitable VNs in comparison with the 1 and k-redundant schemes.

4. Cost-to-Revenue Ratio : For a given VN, the cost is measured using the objective
function of the SVN embedding model presented in Section V, which is the sum of the
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Figure 4.10: Total Revenue

primary and backup bandwidth incurred by this VN in the substrate network. For each
of the aforementioned redesign techniques, we measure the cost-to-revenue ratio over
time, and compare the results obtained by the SVNE-Model against the SVNE-Heuristic.
The cost-to-revenue ratio indicates the cost incurred to generate 1 unit of revenue. We
perform this evaluation over FatTree (k=4) and JellyFish (k=10) network topologies, the
results are illustrated in Figures 11(a) and 11(b), respectively. Clearly we observe that the
cost-to-revenue ratio achieved by ProRed-M and ProRed-H outperforms the rest of the
redesign techniques. ProRed’s prognostic redesign technique for backup resource sharing
enables it to achieve this gain,while 1-redundant and k-redundant falls short due to their
agnostic approach.

5. Impact of Network Density:
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Figure 4.11: Cost-to-Revenue Ratio Over Time

Finally, we look at the impact of the network density on the various redesign techniques.

Table 4.2: Blocking for 100 VNs - R(N= 50,L)

# L
ProRed 1Red KRed

Blocking Ratio Total Revenue Blocking Ratio Total Revenue Blocking Ratio Total Revenue
80 27 243000 34 173800 37 139000
100 15 367800 30 213800 33 181000
200 3 493800 13 385600 17 349800
400 0 525200 0 525200 0 525200

To do so, we randomly generate [118] a network of 50 nodes and vary the number of sub-
strate links from [80-400] while fixing the load to 12. The results are presented in Table
4.2. Naturally, the blocking incurred by each of the aforementioned redesign techniques
decreases as the network density increases. Yet we observe that the blocking and revenue
incurred by ProRed outperforms its peers at every instance. For instance when the net-
work contains 200 links, ProRed achieves 76% and 82% lower blocking that 1-redundant
and k-redundant (respectively), with at least 22% higher revenue gain than both.

4.9 Conclusion

In this chapter, we presented ProRed a novel prognostic redesign technique for survivable
virtual networks against single facility node failures. ProRed goes beyond the dogmatic
redesign techniques that fix the number of backup nodes to either 1 or k. Further it is
equipped with a unique property that enables it to design SVNs that can highly promote
backup resource sharing once embedded in the substrate network. This property lies in
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positioning of the backup nodes in the SVN such that backup-sharing and cross-sharing can
be fully exploited. We compared ProRed against 1-redundant and k-redundant schemes, and
we show that it achieves significant gains in terms of decreasing the blocking ratio, achieving
lower average cost and substantially higher revenue, in considerably lower execution times.
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Chapter 5

Post-Failure Restoration for Multicast

Services in Data Center Networks

5.1 Problem Statement

As discussed in Chapter 3, many applications and services [72–74,77,88–90] hosted in cloud
data center networks today rely on multicast communication to disseminate traffic. The
failure-prone nature of data center networks has evoked countless contributions [116] from
the research community to develop proactive and reactive countermeasures. Yet, most of
these aforementioned techniques were developed with unicast services in mind, thereby fail
to cater to the distinctive properties and QoS requirements that multicast services entail.
Multicast services differ from unicast VNs in many aspects, which ultimately inhibit the ap-
plicability of the existing protection schemes. As presented in Chapter 3, a Multicast Virtual
Network (MVN) comprises two types of Virtual Machines (VMs): the multicast source and
a set of multicast recipient nodes. Further, the routing of traffic consists of building a multi-
cast distribution tree between the multicast source and receivers (recipient nodes) in order to
avoid duplicate traffic. Also, multicast services which involve real-time communication entail
stringent QoS requirements, such as end-to-end delay and delay-variation (differential-delay)
constraints. Thus, the problem of survivable MVNs in the event of failures demands a sep-
arate attention and a tailored restoration scheme that responds to its distinctive properties.
In this regard, this chapter is devoted towards understanding the impact of failure on mul-
ticast services residing in data center networks. We build on our previous work presented
in Chapter 3 which developed an efficient technique for solving the MVN placement prob-
lem, and we assume that the MVNs are already residing in the data center network. We
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begin by studying the impact of failures on MVNs under various failure scenarios; then, we
focus the scope of this work to study the problem of survivable MVNs in the case of facility
node failures. Here, we present a formal definition of the MVN restoration problem in the
event of facility node failure, and we prove its NP-Complete nature in general graphs (e.g.
inter-data center network interconnects, or wide-area networks). Further, we exploit the
structure topology of data center network to prove that the problem at hand can be solved
in polynomial-time for multi-rooted tree-like data center network topologies.

5.2 Related Work

Given the failure-prone nature of data center networks, a handful [73,74,77] of contributions
in the literature has surfaced to provide reliable multicast services. For instance, the authors
in [73] considered the problem of physical link or network node failures, and proposed the use
of backup overlays to retransmit traffic to affected nodes in a peer-to-peer fashion. In [77],
the authors considered the problem of provisioning survivable multicast VNs with end-to-end
delay constraints against single facility node failures. However, the authors assumed that the
failure would only affect recipient nodes, and thus the problem of restoring a MVN source
node has been disregarded. The same authors [74] have also tackled the problem of survivable
MVNs in the event of a single regional failure. Here, the authors proposed to handle the
problem in a proactive fashion by augmenting the MVN with backup-nodes. However, one
common limitation with proactive protection schemes is the fact that the provisioned resource
will remain idle until a failure occurs, which yields poor network resource utilization.
Our work is different since we consider the problem of restoring delay-sensitive MVNs against
facility node failures, and we tackle the problem in a reactive fashion such that any failure
can be restored while maintaining the QoS of the working multicast tree. Further, we prove
that the problem can be solved to optimality in polynomial-time when applied to multi-
rooted tree-like data center network topologies. Accordingly, these proposed contributions
distinguish our work from existing literature.

5.3 Impact of Failure on Multicast Services

5.3.1 Impact of Failure on MVNs

As we have previously mentioned, failures in data center networks can either affect a sub-
strate facility node (e.g., physical server), a substrate link, or a network node (e.g., a router or
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Figure 5.1: Impact of a Substrate Node or Physical Link Failure

a switch). One way to protect a multicast VN against a facility node failure is by augmenting
the latter with backup nodes, and then embed the resultant graph onto the substrate net-
work while provisioning enough backup resources. As for the failure of substrate links, this
can be mitigated by constructing an edge-disjoint backup tree. Such a scheme is commonly
known as proactive protection, since the backup nodes and links are instated prior to any
failure [79, 119]. While this offers a certain degree of reliability, it is also fairly costly since
the provisioned resources for these backup nodes and links remain idle until failures occur.
An alternative approach could be to restore the affected resource(s) upon failures. Such
a "reactive approach" is more cost-efficient as it eliminates idle resources in the network,
but it demands fast restoration time to avoid long service downtime. This work focuses on
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providing reactive countermeasures.
Case of Facility Node Failure: When a failure affects a facility node hosting a recipient
VM, the restoration scheme necessitates finding a backup that can host the failed VM with
sufficient resources. In addition, when the failed receiver belongs to a delay-sensitive MVN,
the path used to connect the backup to the rest of the multicast tree must also maintain
the MVN’s QoS requirements; that is it must be within the end-to-end delay constraint, and
satisfies the differential-delay with the remaining working receivers. Figure 1(a) illustrates
the case of a 2-receivers MVN hosted in a data center network; where the failure of facility
node n2 brought down one of its recipient nodes (t1). Given the substrate network’s capacity,
n5 is the only substrate node that has enough resources to host t1. Now to connect t1’s new
host to the rest of the MVN, the path used to reach n5 must be within the end-to-end delay
constraint of 2, and satisfies the differential delay to the rest of the working receivers; the
working receiver in this case is t2. Hence, we need to connect n5 to the remaining working
tree with exactly 2 hops given the differential-delay constraint of 0 for the MVN in question.
Subsequently, the only feasible restoration solution in this case is to connect n5 to the mul-
ticast tree via substrate path {n1-n2-n5}, as illustrated in Figure 1(b). On the other hand,
when a failure affects a substrate node hosting the source of a MVN, it mandates a look-up
for a backup node that can host the failed source, as well as a multicast tree reconstruction
that spans all existing receivers and respects the QoS requirements.
Case of Substrate Link or Network Node Failure: In the event of a substrate link fail-
ure or a network node failure, this latter will detach an entire subtree, thereby disconnecting
one or many nodes connected via this subtree to the rest of the multicast service. Figure
1(c) illustrates the case where substrate link {n1 − n2} fails, thereby detaching the subtree
rooted at n2’s adjacent network node, disconnecting receivers t1 and t2. Similar outcome
will occur if the network node connected to n2 fails.
When restoring a MVN, it is insufficient to find the backup node that maintains the service’s
QoS; rather it is important to also consider the cost of the resultant tree. It is in the network
provider’s best interest to minimize the embedding cost of the hosted services in the aim of
maximizing both his/her revenue, as well as the network’s admissibility. For instance, after
restoring receiver t1 post-failure of its original host n2, the resultant tree shown in Figure
1(b) is more costly than the pre-failure multicast tree of the given MVN. An alternative
solution (illustrated in Figure 1(d)) could be to re-route the traffic to t2 via substrate path
{n1− n2− n4}, thereby maintaining the MVN’s QoS requirements while achieving a lowest-
cost tree. In light of the above, we can conclude the following key observation:
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Observation: Multicast VN restoration demands both a service repair to restore the failed
element, as well as a multicast tree maintenance to reconstruct the lowest-cost tree that
maintains the requested QoS.

5.3.2 Advantage of Migration-Aware Restoration Schemes

(5)

(2)

(3)

10

10

(a) No Feasible Restoration

(5)

(2)

(3)

10

10

(b) Migration-Aware Restoration

Figure 5.2: Advantage of Recipient Nodes Migration

Now, it could happen that the network operator fails to find a way to restore a service
while maintaining its QoS requirements. To illustrate this, recall the 2-receivers MVN hosted
in a 5-nodes substrate network as shown in Figure 2(a). The failure of recipient node t2 kicks
off a reactive look-up for a valid backup node that can assume the role of t2 and restore the
affected service. Given that the MVN in question has an end-to-end delay requirement of
2, then t2 can migrate to substrate nodes n4 or n5 while satisfying the end-to-end delay
constraint. However, with the additional differential-delay constraint of 0, there are no
possible ways to restore t2 while maintaining the requested QoS.
One possible solution for this problem could be to re-embed the failed MVN from scratch.
Such an approach is seemingly unpleasant as it disrupts the entire service. A more promising
solution is to encourage migrating some parts of the working MVN to widen the search space.
Figure 2(b) highlights this advantage. Clearly, by migrating the active receiver VM t1 to
substrate node n4, it is now possible to migrate the failed receiver VM t2 onto substrate
node n5 and reconstruct a multicast tree that interconnects both receivers to the source
while satisfying both end-to-end delay and differential-delay requirements.
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5.4 The MVN Restoration Problem against Facility Node

Failure

In this work, we consider the case of a facility node failure. Below we provide a formal
definition of the MVN restoration problem in the event of a facility node failure by presenting
first an overview of the network model.

5.4.1 Network Model Overview

In this chapter, we adopt the same network model as the one presented in Chapter 3 un-
der Section 3.3.1; that is we repersent the substrate network as an undirected capacitated
graph denoted by Gs = (N ,L), and a delay-constrained MVN request denoted by Gv = (s,
T , b′, γ, δ). Recall that s represents the multicast source, T the set of recipient nodes, b′

the bandwidth demand, and γ and δ represent the end-to-end delay and differential-delay,
respectively.
Further in this chapter, we assume that the MVN requests are already residing in the sub-
strate network using one of the MVNE embedding schemes presented in Chapter 3.

5.4.2 Multicast Virtual Network REstoration Model (REM)

In this section, we present REM: a MVN restoration model. Given the advantage of migra-
tion, we equip REM with the ability to migrate some (or all) parts of the MVN service in
the attempt to reconstruct a lowest-cost tree. REM achieves the following two objectives:

• MVN Repair: consists of restoring the failed service component, be it failure of the
source node, any recipient node, or a physical link in the multicast tree. Repairing
physical link failures is performed by translating a link failure into the appropriate set
of disconnected receivers.

• Tree Maintenance: ensures that the repair does not violate the requested QoS, and
yields a lowest-cost tree.

REM assumes as input a substrate network, and the MVNE solution (x0
v,n indicates the node

mapping solution) for the failed multicast service(s). Table 5.1 presents a description of the
inputs and decision variables used in our problem formulation. When a failure occurs, the
restoration model is invoked for each affected MVN in the aim to repair the affected service
components, and restore a low-cost delay-bounded multicast tree. Given that VM migration
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Table 5.1: Notations Description
Inputs

Ñ Set of failed facility nodes.
N ′ = N - Ñ , Set of active facility nodes.
α ∈ [0,1] allows to adjust the weight between the dual objectives.
x0
v,n ∈ [0,1], indicates whether VM v is placed on substrate node n (pre-restoration node

mapping solution).
c′v Demand of VM v.
cn Capacity of substrate node n ∈ N
V Set of all VMs {s,T} in a MVN.
b′ Demand of the virtual links in MVN request.
bl Capacity of substrate link l ∈ L.
γ End-to-End delay constraint of the MVN.
δ Differential delay constraint of the MVN.

Decision Variables
t′i,j ≥ 0, denotes the traffic provisioned on substrate link (i, j).
ςv ≥ 0, denotes the cost of migrating VM v.
ρv ∈ [0,1], denotes whether VM v migrated or not.
yvñ,n′ ∈ [0,1], indicates whether VM v migrates from n to n′

x1
v,n′ ∈ [0,1], indicates whether VM v is placed on substrate node n′ in the post-restoration

node mapping solution.
rn ≥ 0, denotes the post-migration residual capacity on substrate node n ∈ N
qvi,j ∈ [0,1] indicates whether the path from the source to VM v is routed through link

(i, j)
θmin ≥ 0, measures the minimum differential-delay.
θmax ≥ 0, measures the maximum differential-delay
zi,j ∈ [0,1], indicates whether link (i, j) is part of the MVN tree.

has an associated cost and bandwidth usage, our proposed technique aims at restoring the
failed multicast service with the least migration cost, while attempting to reconstruct a
lowest-cost tree. Our objective function is presented in Equation 5.1. Typically, migration
cost is a function of the load on substrate links used to perform the migration [120], since the
latter reflects the downtime experienced by the MVN [121]. Given that computing migration
cost in terms of load on paths used for migration will render a non-linear objective function,
we linearize our objective function by assuming that the load in the network is uniform, and
we consider the number of migrations performed as a reflection of the migration cost. The
remainder of our mathematical formulation is presented below:

Minimize α(
∑

(i,j)∈L
t′i,j) + (1− α)(

∑
v∈{s,T}

ςv.ρv) (5.1)
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Subject To

∑
n′∈N ′

yvñ,n′ = 1 ∀v ∈ {s, T}, ñ ∈ Ñ (5.2)

∑
n′∈N ′:{n′ �=n}

yvn,n′ ≤ 1 ∀v ∈ {s, T}, n ∈ N ′ : {x0
v,n = 1} (5.3)

ρv ≥
∑

n′∈N ′:{n′ �=n}
yvn,n′ ∀v ∈ {s, T}, n ∈ N ′ : {x0

v,n = 1} (5.4)

x1
v,n′ = yvn,n′ + x0

v,n′ .(1− ρv) ∀v ∈ {s, T}, n ∈ N, n′ ∈ N ′ (5.5)∑
n′∈N ′

x1
v,n′ = 1 ∀v ∈ {s, T} (5.6)

∑
v∈{s,T}

x1
v,n′ ≤ 1 ∀n′ ∈ N ′ (5.7)

rn = cn + (
∑

v∈{s,T}

∑
n′∈N ′

yvn,n′ .c′v) ∀n ∈ N ′ (5.8)

∑
v∈{s,T}

x1
v,n.c

′
v ≤ rn ∀n ∈ N ′ (5.9)

∑
j:(i,j)∈L

qvi,j −
∑

j:(j,i)∈L
qvj,i = x1

v,i − x1
s,i ∀i ∈ N ′, v ∈ T (5.10)

∑
i∈S

∑
j∈S

∑
v∈T

qvi,j ≤ |S| − 1 ∀S ⊂ N ′, 2 ≤ |S| ≤ N ′ (5.11)

∑
(i,j)∈L

qvi,j ≤ γ ∀v ∈ T (5.12)

θmin ≤
∑

(i,j)∈L
qvi,j ≤ θmax ∀v ∈ T (5.13)

θmax − θmin ≤ δ ∀v ∈ T (5.14)

zi,j ≥ qvi,j ∀v ∈ T, (i, j) ∈ L (5.15)

zi,jb
′ − ti,j ≤ t′i,j ∀(i, j) ∈ L (5.16)

t′i,j ≤ bl ∀e : (i, j) ∈ L (5.17)

First, we start by repairing all failed VMs using Constraint (5.2). Note that this constraint
is only used in the case of source or recipient node(s) failures. Whereas in the event of a
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substrate link or a network node failure, this constraint will be omitted since disconnected
receivers do not necessarily need to be relocated. Next, intact (active) virtual nodes are
allowed to migrate to new substrate nodes in the service of making a better restoration
solution. As we have previously mentioned, migration enlarges the search-space and allows
to explore more feasible solutions that can yield a lowest-cost tree, and further allows to
avoid cases where fixing the location of the active virtual nodes yields no feasible restoration
solutions. Active virtual nodes migration is achieved with Constraints (5.3) and (5.4). Con-
straint (5.5) is used to indicate the new node mapping solution. Observe that the new node
mapping solution ensures that every virtual node in a particular MVN request is mapped
on a distinct substrate node in order to reduce the impact of failures via Constraints (5.6)
and (5.7). Further, it is imperative to ensure that the new node mapping solution respects
the substrate network’s capacity constraints. Hence, Constraint (5.8) represents this post-
migration resources release. While, Constraint (5.9) ensures that the new node mapping
solution does not violate the residual capacity of the substrate nodes. To complement the
node mapping solution, a link mapping solution must be constructed to route the traffic
between the relocated receivers and the multicast source.
Subsequently, the flow conservation constraint (Constraint (5.10)) allows to reconstruct the
multicast tree, and Constraint (5.11) ensures that the constructed tree is cycle-free (subtour
elimination constraint). Next, the multicast tree maintenance constraint guarantees that the
newly constructed multicast tree satisfies the end-to-end delay via Constraint (5.12), as well
as the delay-variation (Constraints (5.13) and (5.14)).
Finally, Constraint (5.15) indicates the set of substrate links that compose the multicast
tree, while Constraint (5.16) measures the traffic provisioned on each link, and Constraint
(5.17) ensures that these latter do not violate the substrate links’s capacity.

5.4.3 Complexity Analysis

When a facility node fails and affects a hosted MVN Gv, the MVN Restoration (MVNR)
problem requires finding another feasible facility node (with sufficient resources) to host
the failed VM, and can connect to the rest of the multicast group with the lowest-cost
delay-constrained tree. Here, we consider the cost1 as the total bandwidth consumed by the
restored tree; thus normalized by the bandwidth demand b, the cost becomes the number
of substrate links used. We represent the hosts of the unaffected VMs as K, and the set
of feasible facility nodes that can accommodate the failed VM as Q; the MVNR decision

1A penalty can be added to account for service disruption.
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problem can be formulated as follows:

Problem Definition 5.1. Given a substrate network Gs = (N,L); where N ′=N-1 denotes
post-failure active substrate node, an MVN Gv = (V, b, γ, δ, ), a failed VM v̂ ∈ V , a set K �
N ′ indicating the hosts of the unaffected VMs ({V -v̂}), and a set Q � {N ′-K} representing
the feasible new locations/hosts for v̂; is there a host x ∈ Q such that K∪{x} can be connected
by a tree in Gs satisfying the delay constraints δ and γ, and has at most μ links?

Theorem 5.1. The MVN restoration problem is NP-Complete.

Proof. MVNR can be easily seen in the NP-class; since given a restoration solution, it can
be verified in polynomial time. Next, we will prove that the problem is NP-Complete via a
reduction from the NP-Complete graph-based Steiner Tree (ST) problem [122]. Throughout
the proof, we consider that the failed facility node is omitted/removed from the network.
For the sake of completeness, we provide below a definition of the ST problem:

Problem Definition 5.2. Given an undirected weighted graph G=(N , E) and a subset of
nodes R � N ; is there a tree connecting R with a cost less than or equal to w?

Figure 5.3: Reduction from the graph-based Steiner Tree Problem

Note that ST is NP-Complete even when the weight on all the edges is uniform. Now,
given an instance (G = (N,E), R, w) of the ST problem, we transform it in polynomial time
into an instance of the MVNR problem as follows: we build a substrate network Gs = (N ′, E ′)

by adding to G a set of auxiliary nodes R′ =|R| (with capacity set as a very large number
M); where each node in R′ is connected to a single distinct node in R via a single auxiliary
link of weight 1. Furthermore, we create an MVN Gv = (V, b, γ, δ) with |V | = |R| + 1, assign
v̂ to be an arbitrary node in V , K = R and Q � {N ′ −K}, γ = δ = ∞, and μ = w + 1.
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Figure 5.3 illustrates an example of our reduction; the highlighted vertices (in Figure5.3(a))
represent R, and the grey ones (in Figure5.3(b)) indicate the set of auxiliary vertices R′.
Clearly, this transformation can be done in polynomial-time. We now show that G has a
Steiner tree connecting the vertices in R of cost ≤ w, ⇐⇒ ∃ a host x ∈ R′ such that R ∪
{x} can be connected by a tree in Gs with at most w + 1 links. If ST has a solution P of
cost p ≤ w, then we can map the failed node v̂ on any node x ∈ R′ and augment the tree P

with the auxiliary link from x to its corresponding node in R to obtain an MVN restoration
solution of cost p+1 ≤ w + 1. Conversely, if MVNR has a solution of cost p′ ≤ w+1, since v̂

may be mapped on a node x ∈ R′, by removing the link from x to its corresponding node in
R, we obtain a tree linking the nodes in R of cost p′-1 ≤ w, that is, a solution to ST in G of
cost ≤ w. This completes the proof of the reduction, we conclude that the MVNR problem
is NP-Complete.

Note that by restriction, MVNR remains NP-Complete for any other instance with strict
delay constraints.

5.5 REAL: A Restoration Algorithm for Multi-Rooted

Tree Data Center Network Topologies

Figure 5.4: FatTree Network
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Most data center networks today adopt a multi-rooted tree topology [72,78], which con-
sists of several layers of commodity switches used to interconnect a large number of servers
via multiple equal-cost paths. The goal of this design is to provide a high bisection band-
width, and eliminate network oversubscription [78]. Figure 5.4 illustrates an example of
such network topologies known as the FatTree network. The FatTree network consists of
a multi-rooted tree-like topology built out of 3 layers of k-port switches, that interconnect
k3

4
Server Racks (SR). It consists of k pods, where each pod hosts 2 layers of switches: k

2

Aggregate Switches (AS) connected to k
2

Top of Rack (ToR) switches, forming a complete
bipartite graph inside every pod. Further, each k

2
ToR is connected to k

2
SRs, and each k

2

ASs is connected to k
2

Core Switches (CS). It has been shown in many cases that these data
center network topologies can be leveraged to enhance the support of multicast in data cen-
ters [71,78,79]. We add to these findings by proposing REAL: a novel restoration algorithm
that can find the optimal multicast restoration solution in a multi-rooted tree like network
topology in polynomial time.
In order to ensure that our restored multicast tree is always loop-free, our restoration lookup
allows the traffic in the resultant tree to change its direction once; that is up-packets can
change their direction once to move traffic downwards. However, a downward facing packet
can never be re-directed upwards. This aforementioned constraint ensures that the resultant
tree will never have any cycles [19].

Figure 5.5: FatTree Network

Theorem 5.2. The optimal multicast restoration problem can be solved in polynomial time
in the FatTree network.

Proof. Case of Recipient Node Failure: Our algorithm begins by pruning the substrate
network in order to remove server racks and/or substrate links that violate the resource
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demands of the failed receiver. Next, we search via the remaining components in the MVN
tree to find the SR that can host the failed receiver while incurring the minimal amount of
additional Steiner points. To do so, we perform a hop-to-hop search from each active VM
in the tree. Further, the look-up is encouraged to go through existing links in the multicast
tree by setting the weight on these links to 0. Subsequently, the first feasible SR that will
be reached by any VM will yield the lowest cost restoration solution, since it will incur the
minimal number of additional Steiner points. Indeed, the set of candidate hosts that will
be reached first are the SRs that share the same ToR with active VMs. If any of these
candidate hosts was deemed feasible (in terms of resource capacity and respecting the delay
constraints), then this solution will yield 0 additional Steiner points. If none of the candidate
hosts was deemed feasible, the search will persist by exploring the ASs, yielding at most 2
additional Steiner points; and finally via the CSs. Clearly, If no solution can be found,
then the MVN with the current embedding solution cannot be restored. Alternatively, the
first solution found will definitely yield the lowest cost restoration solution. The topological
structure of the FatTree network provides every pair of servers with k2

4
equal cost paths.

Further, there can be no more than k3

4
candidate SRs. Hence, if we restrict the search from

the source node only, we have a worst-case complexity of O(k5), which is indeed polynomial
in the size of the substrate network. To better illustrate this, consider the example in Figure
5.5, where a 3-receiver MVN is hosted in a FatTree (k=4). Given a recipient node failure, we
launch the hop-to-hop search from the SRs in the current MVN. Here, we find that SR1 and
SR2 are reachable from the ToRs in the current tree (ToR1 and ToR2). Note that choosing
either one of these SRs will yield the lowest cost restoration tree. However, it could happen
neither SR1 nor SR2 are feasible (e.g., due to resource scarcity), then the hop-to-hop search
will continue by moving towards the ASs and so on, until a feasible solution is found.
Case of Source Node Failure : Now, the problem becomes that of finding a SR that can
host the source and yield the lowest cost delay-constrained Steiner tree. Here, we prove that
by adopting a path-convergence approach from the recipient nodes, the first feasible SR that
these nodes will converge to will definitely yield the lowest cost restoration solution. We
distinguish between two cases: Case 1, where the recipient nodes are residing in the same
pod, and Case 2 where the recipient nodes are distributed across multiple pods. In case 1, if
the recipient nodes are sharing the same ToR, then they will always converge first towards
any feasible SR connected to that same ToR. If no solution was found, the next convergence
will occur at the intra-pod SRs. Finally, in the event where no intra-pod solution can be
found, then the next convergence will occur at SRs residing in alien pods. Clearly, the first
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solution found will yield the lowest cost restoration tree, as it will be composed of fewer
Steiner points interconnected via lower-cost (lower-layer) substrate links. Now in case 2, all
receivers will explore all SRs at the same time; and the algorithm will return the lowest-
cost solution found. Given that to each candidate source node, we can find at most k2|T |

4

distribution trees; hence we have a worst-case complexity of O(k2|T |+3), which is polynomial
in the size of the network.

5.6 Numerical Results

We evaluate how well our proposed restoration schemes perform. We compare our proposed
restoration algorithm REAL against the restoration model proposed in Section 5.4.2, and
two benchmark algorithms: First-Fit node embedding with Steiner tree reconstruction (de-
noted as Steiner), and a Greedy node mapping with shortest path restoration (denoted as
Greedy). Here, we distinguish between two variations of our proposed model: migration-
aware restoration model, and no-migration restoration model that is obtained by omitting
Equations (5.3), (5.4), and (5.8). Hence, the new node mapping solution obtained via Equa-
tion 5.5 will maintain the old node mapping solution of all intact virtual nodes. Further, we
slightly modify Equation 5.9 to perform substrate nodes capacity check for the new hosts of
the failed virtual nodes only. Throughout our numerical analysis we adopt the no-migration
variation of REM.
The Steiner restoration scheme consists of finding the first host that can accommodate the
failed node, tear down the initial tree and then reconstruct the Steiner tree to connect the
intact VMs with the new host. The greedy restoration on the other hand consists of sort-
ing the hosts based on their residual resource capacity, and iteratively select the host with
the highest capacity to host the failed VM. If the failed VM is a recipient node, then the
shortest path from the new host to the MVN source node is established (using Dijkstra);
alternatively, if the failed node is the source, then the shortest path from the source to each
receiver is established (in a source-driven fashion).
To perform this evaluation, we look at three main metrics: execution time, restoration ratio
(RR), and total revenue achieved; where restoration ratio measures the percentage of re-
stored MVNs out of the total number of failed MVNs. Throughout all our simulation, we set
the capacity of the substrate nodes to 64 GB, and that of substrate links to 1 Gbps. Further,
all our MVNs are randomly generated with size ranging between [2-14] receivers over FatTree
(k=4), and [5-30] receivers over FatTree (k = 8) and (k=16) and the two random networks.
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The resource demand of the virtual nodes and links are randomly selected from the range
between [2-12] and [50-300], respectively. We assume that the VNs arrival follows a poisson
process with an arrival rate λ per time unit, and the departure follows a negative exponential
distribution with a service rate μ per time unit. We assume that the VNs arrival follows a
Poisson process distribution with a normalized load of 10, and are embedded using one of
our proposed embedding techniques in Chapter 3. To simulate failures, we setup a random
failure generator with a frequency metric F , where F defines the interval of random failures
that will occur over time, and we set a constant Mean Time To Repair (MTTR) interval for
the failed nodes.

Table 5.2: Average Execution Time (ms) - Restoration over FatTree Network
REM REAL Steiner Greedy

FT (K=4) 417 2 2 2
FT (K=8) 540745 57.25 12.75 8.5
FT (K=16) 123 132 60.25

a) Execution Time:

First, we look at the execution time achieved by each of the aforementioned techniques.
As we are dealing with a reactive scheme, execution time is of paramount importance
as it is additive to the restoration time, and therefore greatly impacts the downtime or
slow-time experienced by the service during restoration. Table 5.2 illustrates the average
execution time obtained over FatTree (k=4), (k=8), and (k=16). Clearly, we observe that
the runtime of the REM grows exponentially as we move from FatTree (k=4) to (k=8)
reaching an average of 9 minutes to compute a restoration solution for a single MVN.
On the other hand, we observe that our restoration algorithm, as well as the Steiner and
Greedy remains in the order of milliseconds on average.

b) Restoration Ratio:

Second, we look at the restoration ratio, since a fast execution time is only significant
if it returns good quality solutions. Figures 6(a)-6(c) illustrate the obtained results over
FatTree (k=4), (k=8), and (k=16), respectively. Over FatTree (k=4) (Figure 6(a)), we
observe that both REM, as well as REAL achieve 100% restorability as we vary the failure
frequency from 2 to 8. On the other hand, the restorability of both the Steiner and Greedy
restoration schemes are greatly affected as we increase the failure frequency. Indeed, we
observe that as the failure frequency hits 8, the restoration ratio of Steiner drops to 60%,
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and that of Greedy to 46%. Similar results are observed over FatTree(k=8) (Figure 6(b))
and FatTree (k=16) (Figure 6(c)). Again, we observe on FatTree (k=8) that REAL
achieves a 100-95% restoration ratio, whereas Greedy’s restorability drops from 100%
to 58%, and Steiner’s from 100% to 61%. Overall, we can conclude that REAL achieves
equal restorability to the restoration model, and a much higher restoration ratio than both
Greedy and Steiner. Further, the Steiner restoration scheme achieves better restorability
than Greedy. Greedy’s source-driven tree construction yield significant redundant traffic
and poor resource utilization, thereby greatly impacting its restorability as the failure
frequency increases. On the other hand, building the lowest-cost tree (Steiner), does not
always necessarily guarantee that the latter will satisfy the delay-constraints of the MVN
in question, hence Steiner fails to find feasible restoration solutions due to its limited
search space.

c) Total Revenue:

Finally, we look at how the restoration capability of each of the aforementioned schemes
affects the long-term revenue achieved by the cloud provider. We measure the total rev-
enue using the following equation:

Revenue =
∑

v∈{s,T}
dv +

∑
e′∈E′

b′. (5.18)

Further, whenever the adopted method fails to restore a failed MVN, then the cloud
provider will be penalized by remitting 50% of the revenue gained from hosting this
particular service. Figures 6(d)-6(f) show our obtained results over FatTree (k=4), (k=8),
and (k=16). Here we draw upon two main observations: First, all adopted restoration
techniques experience a revenue drop as we increase the failure frequency, since the failed
substrate nodes shrink the network’s admissibility. Second, we observe that the low
restorability exhibited by both Steiner and Greedy leads to a much lower achievable
revenue. Indeed for a failure frequency of 8, REAL achieves 10-15% higher revenue than
Greedy and Steiner over all tested network topologies.

5.7 Conclusion

In the proposed manuscript, we studied the impact of failure on MVNs hosted in data center
networks. We mathematically formulated the migration-aware post-failure restoration of
MVNs, and proved its NP-Complete nature in arbitrary graphs. Further, we exploited the
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structured topology of tree-like data center networks to prove that the MVN restoration
problem can be solved to optimality in polynomial time. Our numerical results covenant
for the promising restorability achieved by our proposed scheme within considerably fast
execution time.
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Figure 5.6: Performance Analysis
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Chapter 6

A Reliable Embedding Framework for

Elastic Virtualized Services in the Cloud

6.1 Problem Statement

In Chapters 4 and 5, we considered the problem of the survivability of unicast and multicast
VNs against facility node failures. These fail-over techniques guarantee 100% availability of
cloud services against any facility node failure. Such a scheme is particularly attractive for
services with mission-critical components that do not tolerate any failure. Another poten-
tial fail-over mechanism is to provide an availability guarantee for hosted services. Service
availability guarantees a ratio of uptime over the total elapsed time for the tenant’s service;
e.g., a five 9s availability guarantees less than 6 minutes service downtime per year.
Providing availability guarantees to tenants is commonly referred to as the availability-aware
VNE [58,59]. Here, cloud providers must allocate resources to tenant’s services; while mak-
ing sure that the availability of the physical hardware running the tenant’s service satisfy
the availability guarantee requested by the tenant. This problem is particularly challenging
given that data center hardware exhibit heterogeneous failure rates. The heterogeneous en-
vironment of cloud infrastructures is due to the fact that cloud hardware are not provisioned
at the same time; rather cloud providers acquire resources gradually to grow their infras-
tructure [123]. This incremental provisioning process leads to having different generation
hardware from different vendors and specifications cohabiting the same infrastructure. This
aspect has been pointed out several times in the literature [104,123–125] based on real data
center traces from VMware [123], Microsoft [104], IBM [126], and Google [125]. In fact, ac-
cording to Microsoft [104] servers are meant to last as long as 3 to 5 years, with increments
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ordered quarterly or yearly. The heterogeneous configuration of machines has been further
elucidated in [125]; where a table characterizing the varying platform and memory/compute
ratio of available machines in the cluster is presented.
A handful of contributions [58,59] recently emerged to propose availability-aware embedding
techniques. The two main limitations of the aforementioned work is that they have over-
looked the problem of "availability-overprovisioning"; that is providing services with more
availability guarantees than requested. As this chapter will show, such a scheme leads to poor
resource utilization, thereby decreases network admissibility. The second limitation is the
assumption that cloud services’s resource demands remain static throughout their residency.
When in fact network load may change over time; this is particularly true for services with
periodic resource demands (e.g., an online shopping store during holiday seasons, streaming
election results, etc.). Elasticity is notably one of the most attractive features of the IaaS
paradigm [127,128]. This flexibility in scaling up and down the provisioned resources allows
to swiftly adapt to services’ actual needs over time. Indeed, it has been shown that 90% of
IT services exhibit periodic resource demands [60], hence SPs/tenants can decide to increase
their leased computing resources to meet the peaks, and decrease them during steady or
idle times to economize. In fact, cloud providers are aware of this common demand pat-
tern, therefore a number of them (e.g, Amazon EC2 Cloud, GoGrid) offer different type of
instances to encourage tenants wishing to host applications with unpredictable workload to
opt out from reserving steady resources.
While managing a scale-up request, the current network elements hosting the scaling service
may fail to meet the requested changes. Thus, more resources may need to be provisioned.
For example, the service may request additional network bandwidth to mitigate network
delays and/or reduce completion times, or virtual machines need more computing resources,
or the level of availability provided by the current hosting elements may not be satisfactory.
In response, the cloud provider must make the necessary reconfigurations/adjustments, all
while making sure that the requested level of availability is maintained. As this manuscript
will show, the problem of managing scaling requests for VNs with strict availability demands
is not intuitive, and encompasses multiple challenges. Hence, the cloud provider must weigh-
in these various inter-playing factors and make the rightful decision that best serves his/her
design objective (e.g., maximize the long-term revenue). To the best of our knowledge, the
problem of managing reliable elastic1 VNs has not been considered in prior literature.
To this extent, we propose RELIEF: a reliable embedding framework for elastic VNs in

1Throughout this chapter we use the terms elastic and scaling interchangeably.
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failure-prone data center networks. It consists of two main modules: an availability-aware
embedding module for incoming VN requests, and a reliable reconfiguration module to man-
age scaling requests of hosted services. As opposed to existing work [58, 59] on availability-
aware embedding, our proposed scheme achieves resource utilization efficiency by providing
"just-enough" availability. This allows to circumvent resource wastage incurred by availabil-
ity over-provisioning. Further, we introduce the concept of protection-domains to equip our
proposed scheme with the ability to augment services with redundant nodes to enhance their
availability. This novel concept is also useful when managing scaling requests of services with
low tolerance to disruption. Hence, our main contributions can be summarized as follows:

• We formally define the availability-aware resource allocation problem and prove its
NP-Hard nature.

• We introduce the concept of "protection-domains" to alleviate availability breaches,
and we propose JENA: a novel Tabu-based search to perform VN placement with
Just-ENough Availability guarantees.

• We formally define the problem of managing VNs scaling requests in failure-prone data
centers, and we highlight the tradeoff between a migration and a redundancy enabled
scheme.

• We propose ARES: a novel Availability-aware, migration and redundancy enabled,
REconfiguration Scheme to manage VN scaling requests.

• We evaluate the performance of our proposed modules against peer techniques ex-
tracted from the literature, as well as benchmark algorithms, and we show that our
framework outperforms its peers in terms of network admissibility, and achievable rev-
enue.

6.2 Related Work

6.2.1 Availability-Aware VNE

Given the failure-prone nature of data center networks, significant effort [48–55, 58, 59, 129–
131] has been devoted to solve the resource allocation problem in the cloud with survivabil-
ity guarantees. The aforementioned work consists of providing 100% availability guarantees
under various conditions; for instance some [53–55,129,131] considered survivability against
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single facility node, while others accounted for the case of [48, 50, 131] single link failure, or
considered [49,51,52] the problem of survivability against risk-group failures. Another wave
of work [130,132,133] focused on providing fault-tolerance guarantees. For instance, the work
in [130] proposed to enhance the survivability of VNs by spreading their VMs across multiple
fault-domain, such that a "worst-case survival" guarantee can be achieved while minimizing
bandwidth consumption. Similarly, the work in [132] characterized fault-domains in data
centers, and provided a correlation study between recovery time and failure complexities,
showing that when a failure affects more than one service component, the recovery time of
the latter significantly increases.
Another fail-over mechanism that emerged in the literature is the VNE problem with avail-
ability guarantees [58, 59]. In [58], the authors proposed a novel technique to compute
VNs availability by listing all possible failure scenarios, and factoring-in their conditional
probability. Their proposed embedding technique consists of a greedy embedding where all
possible mapping solutions are explored. It is important to note that this former work con-
siders replication groups (redundant/backup nodes) to be given. Whereas the work in [59]
considered the problem of embedding VN requests with a star topology, and also proposed a
greedy availability-aware embedding technique. Here, both the availability of facility nodes
and network nodes are considered, and VMs of the same VN are allowed to be collocated
on the same physical machine. In the event where a VN embedding fails to satisfy the re-
quested availability, the latter will be augmented with k backup nodes, where k is equal to
the minimum number of collocated VMs, which may lead to significant backup footprints.
While VM collocation can indeed reduce bandwidth consumption, it can also severely impact
the fault-tolerance (worst-case survival guarantee) of the VNs in question, not to mention
the increase in recovery time as shown in [132], and idle resources for provisioned backup/re-
dundant resources. When all the VMs of a particular service are placed on a single facility
node, then a single failure will bring down the entire VN; whereas when the VMs are spread
across multiple servers (fault-domains), the failure of a particular facility node (or a subset
of nodes) does not necessarily bring down the entire service, it may still remain operational
only with a degraded performance [130].
Our work is different, as we propose a reliable embedding framework that also manages
VN scaling requests over time. Further, as opposed to existing work, our availability-aware
embedding module is topology-independent, and aims to provide just-enough availability-
guarantees. This former attribute leverages the utilization efficiency of the substrate re-
sources, thereby rendering higher admissibility than existing work [58].
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6.2.2 Elastic Services in the Cloud

When a service’s demands changes over time, the initial facility nodes hosting this service
may not have sufficient residual capacity to meet the requested changes [134]. In this re-
gard, numerous work [121, 135–138] have been devoted towards managing scaling requests.
In [135], the authors proposed a multi-agent learning algorithm introduced at every substrate
node and link. The role of these agents is to monitor the actual substrate network usage by
each hosted VN and dynamically re-adjust (reconfigure) the amount of reserved resources
for each VN depending on the perceived needs. The work in [136] considered the problem
of embedding VNs with periodic resource demands. The authors presented two embedding
techniques: one that assumes that the periodic demands of any VN is known apriori, and
another that predicts the resource demand of VNs based on their historic demand pattern,
and adjusts the amount of allocated resources to each VN accordingly. In [137], the authors
proposed an incremental re-embedding scheme for evolving VN requests that considers both
resource demand increase, as well as new components arrival. Their incremental process
consists of tackling resource demand increase first, then network components arrival. The
authors also employed resource migration to support resource demand increase. However, it
is important to note that such an approach is only applicable for horizontally scalable services
(e.g., distributed storage system). Similarly, the work in [138] also addressed the problem of
reconfiguring existing VN requests as they evolve with time. The authors considered 4 sce-
narios of VN request changes: increase/decrease of resource demands, and arrival/departure
of new network components. They proposed two heuristic algorithms to handle the increase
of resource demands and new components arrival. However, their proposed method exhaus-
tively considers all mapping combinations to find the most cost-efficient one. Hence, their
proposed method is not suitable when employed over large substrate networks. Finally, the
work in [121] proposed a migration-aware embedding and resource consolidation framework
to achieve energy conservation. Their framework only considers resource demand increase,
and consists of a greedy embedding that handles scale-up requests by evaluating the cost of
each candidate host, to find the lowest cost reconfiguration solution.
Our work distinguishes itself from the above-surveyed literature in that it addresses the
problem of managing availability-aware elastic VNs. In this context, the management of
elastic VN requests requires the reconfiguration of the VN’s embedding solution while also
preserving its availability. To the best of our knowledge, this problem has not been tackled
in the literature before. Hence, this chapter is devoted towards studying this problem, and
proposing a novel framework that performs reliable embedding and reconfiguration of elastic
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services in the cloud.

6.3 RELIEF Framework Overview

Figure 6.1: RELIEF Framework

First, we begin by giving an overview of our proposed framework. RELIEF is an
availability-aware embedding and reconfiguration framework for elastic services in the cloud.
It encompasses two main modules (as shown in Figure 6.1): JENA, the VN Embedding
(VNE) module with Just ENough Availability, and ARES, the Availability-Aware REconfiguration
Scheme. Our proposed framework is performed online, upon the arrival of any VN request.
It begins by processing an incoming VN request by invoking JENA to return an embed-
ding solution that meets the requested availability. During the residency time of the VN,
its request may evolve/change overtime; these scale-up (or down) requests are treated by
ARES to reconfigure the embedding solution accordingly to meet the requested changes,
while maintaining the availability of the VN in question. Throughout the embedding and
reconfiguration, RELIEF aims to provide the hosted services with the requested resource
demands, while minimizing the amount of squandered availability. As opposed to existing
work [58, 59], our proposed work aims to achieve efficient use of network resources by pro-
viding "just-enough" availability, which in turn yields a much higher admissibility (as shown
in our numerical evaluation). In the remaining of the manuscript, we thoroughly revise the
problem behind each proposed module.
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(a) Substrate (b) VN (c) Availability-Aware VNE

Figure 6.2: Network Model

6.4 Availability-Aware VNE problem

1. The Substrate Network : We represent the substrate network as an undirected
graph denoted by Gs = (N ,L), where N is the set of substrate nodes, and L is the
set of substrate links. Each substrate node n ∈ N is associated with R resource
types (CPU, memory, etc.), each with a finite capacity denoted by crn. Moreover, each
substrate node is associated with a unique failure rate, denoted as fn, which indicates
the future probability that substrate node n will fail based on its historic failure pattern.
Similarly, each substrate link l ∈ L has a finite bandwidth capacity, denoted by bl.
Figure 2(a) illustrates a substrate network with 6 nodes. Throughout our motivation
examples we present a simplified representation of a substrate network by only showing
the facility nodes interconnect. It is important however that throughout our numerical
analysis we adopt realistic networks with servers interconnected via several layers of
network nodes (routers/switches). Further, for the sake of clarity we show a single
resource type (represented by the number in parenthesis above each node), followed by
the node’s failure rate. Similarly, we observe that the substrate links interconnecting
the network nodes exhibit 10 units of bandwidth capacity each (represented by the
number next to each substrate link). To obtain the failure rate of a particular node,
let an denote the availability of substrate node n; then fn = 1 - an, where the availability
of n can be computed as follows:

an =
MTBFn

MTBFn +MTTRn

(6.1)

MTBFn and MTTRn denote the mean time between failure and mean time to repair
for substrate node n.

2. The Virtual Network (VN) : We represent a VN as a set of virtual nodes (virtual

133



machines), interconnected via virtual links. The virtual links correspond to the com-
munication requirements between the virtual nodes in a given VN request. We denote
a VN as a graph Gv = (V ,E), where V represents the set of virtual nodes, each with
resource demand of c′rv for each resource type r ∈ R (CPU, memory, etc.). E represent
the set of virtual links, where o(e), d(e), and b′e denote the origin, destination, and
bandwidth requirement of each e ∈ E, respectively. Figure 2(b) shows an example of
a VN request with 3 virtual machines (nodes) interconnected via two virtual links. In
addition to the resource and bandwidth demands of the virtual nodes and links, each
incoming VN request (tenant) demands a specific availability requirement Areq for its
service (in this example, we assume that Areq = 99.95%).

The availability-aware VNE problem is defined as:

Problem Definition 6.1. Given a substrate network Gs, and a virtual network request Gv;
find the minimum cost mapping solution of Gv onto the substrate network, such that the
overall availability requirement Areq of the VN request is satisfied, as well as its resource
demands, without violating the capacity constraints of the substrate network.

Similarly to the VNE problem, the availability-aware VNE problem can also be decom-
posed into two subproblems: the VMs Placement (VMP), and the Virtual Links Routing
(VLR) subproblems. Let s represent a feasible mapping s = (sN ,sE) of a given VN request,
which holds the solution for the two subproblems:

• VMP: sN : v −→ N .

• VLR: sL: e −→ P . P represents the substrate path routing virtual link e.

Note here that by finding the minimal cost mapping solution for each incoming VN request,
the infrastructure provider can maximizes the utilization efficiency of the substrate network;
which ultimately yield higher admission and long-term revenue. The availability of a VN is
depicted by the availability of the facility nodes hosting its VMs. That is, at any given point
in time, a VN is said to be available if all of its hosting substrate nodes are up and running.
Subsequently, the availability of a VN can be represented as follows2: A = Prob{each physical
server hosting a VM ∈ VN is available}, which is computed as the product of the availability
of the hosting substrate nodes: A =

∏
n∈sN an. Figure 2(c) illustrates an example of the VN

in Figure 2(b) hosted in the substrate network presented in Figure 2(a). Here, we observe
2We disregard network element failures and focus on facility node failures.
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(a) V N2 (b) VNE with "Just-Enough" Availability

Figure 6.3: Greedy Vs. Just-Enough Availability Aware VNE

that v1 is hosted on substrate node B with failure rate of 0.00001, hence with an availability
of 0.99999. Similarly, v2 is hosted on substrate node A with availability of 0.99999, and v3

on substrate node C with an availability of 0.99997. This implies that the overall availability
of this VN is A = aA.aB.aC = 0.9999, that is a 99.99% ≥ Areq availability catered by the
product of the availabilities of the hosting nodes.

Theorem 6.1. The availability-aware VNE problem is NP-Hard.

Proof. We prove that the problem at hand is NP-Hard by restriction. Proof by restriction
[139] consists of showing that the problem under consideration has at least one specific
instance that is known to be NP-Hard. Indeed, the availability-aware VNE problem is
equivalent to solving the VNE problem when the availability requirement is 0. Since the
latter is also NP-Hard [33], and represents an instance of the availability-aware VNE problem,
this leads us to conclude that the availability-aware VNE problem is also NP-Hard.

6.4.1 Problem Motivation

Given the NP-Hard nature of the availability-aware VNE problem, one possible way to solve
it is by performing a greedy embedding. Given a bare-bone3 VN request and a substrate
network, greedy embedding is achieved by first sorting the facility nodes based on their
availability measure (in a descending order). Next, the VMs are placed one-by-one, starting
with the most available facility node, onwards. Such a greedy embedding will for sure
guarantee that the VN’s availability requirement will be satisfied if possible; and if no solution
can be found, then there is definitely no other subset of substrate nodes that can satisfy the
VN’s availability demand. While this approach seems reasonable, and has been used in

3A virtual network that is not augmented by any backup/redundant node(s) is referred to as a bare-bone
network.

135



the existing literature ( [59]), multiple concerns emerge along with it: first, performing a
greedy embedding could very much yield to a solution wherein the VN has a much higher
availability than requested. This could in turn incur a poor resource utilization, as the
capacity of highly available facility nodes will be quickly drained, thereby hindering the
admissibility of future VN requests with high availability demand. Hence, the first challenge
is finding the embedding solution that can satisfy the VN’s resource demand with "just-
enough" availability provisioning.
To better illustrate this, consider again Figure 2(c); observe how this solution represents
a greedy embedding that surpasses the requested availability of 99.95%; hence yield an
excessive availability of 0.04%. Now consider that at time t1, a new VN request (denoted as
V N2) arrives (illustrated in Figure 3(a)), which demands a high availability requirement of
99.99%. Clearly, there is now no feasible embedding solution for V N2, since highly available
nodes are already occupied, and those remaining fall short from providing the requested
availability for this tenant. However, notice that the current embedding for the initial VN
(Figure 2(b)) is squandering the substrate network resources by unnecessarily occupying the
highly-available nodes; when in fact, hosting v1, v2, and v3 onto substrate nodes D, C, and
E (respectively), instead will achieve a "just-enough" availability provisioning of 99.95%,
as well as free-up the highly-available nodes, making room for V N2, and increasing the
substrate network’s admissibility. Finding the most suitable embedding solution for a given
VN, that achieves just-enough availability guarantees, can be a daunting task. In fact, in
the case where all substrate nodes have enough capacity to host any virtual node, there are

N !
(N−V )!

combinations to choose from, which is exponential. Hence, exhaustively enumerating
all possible solutions is clearly a bad and expensive proposition.
We build on these observations to propose an embedding approach that achieves just-enough
availability, which ultimately distinguishes our work from prior work.

6.4.2 Problem Formulation

In this section, we present a mathematical formulation to the problem of VNE with just-
enough availability for bare-bone VNs. The model assumes as input the VN with its avail-
ability requirement, as well as the failure rates of the substrate nodes. We set the objective
function to minimize the overall computed availability (squandered), under the constraint
that the requested availability guarantee is achieved.

• Parameters:
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Gs(N,L) : Substrate network with N nodes and L links.
Gv(V ,E) : Virtual network with V virtual nodes and E virtual links.
Areq: Requested availability requirement.

• Decision Variables:

xv,n =

⎧⎨
⎩1, if virtual node v is mapped on substrate node s,

0, otherwise.

yei,j =

⎧⎨
⎩1, if virtual link e is routed through substrate link (i, j),

0, otherwise.
A: denotes the computed availability.
ti,j: denotes the traffic measured on link (i,j).

• Mathematical Model:

Min A

Subject to ∑
n∈N

xv,n = 1 ∀v ∈ V (6.2)

∑
v∈V

xv,n ≤ 1 ∀n ∈ N (6.3)

∑
v∈V

xv,nc
′r
v ≤ crn ∀r ∈ R, n ∈ N (6.4)

A =
∏
v

av (6.5)

A ≥ Areq (6.6)∑
i:(i,j)∈L

yei,j −
∑

j:(j,i)∈L
yej,i = xo(e),i − xd(e),i

∀i ∈ N, e ∈ E

(6.7)

ti,j =
∑
e∈E

yei,jb
′
e ∀(i, j) ∈ L (6.8)

ti,j ≤ bi,j ∀(i, j) ∈ L (6.9)

Constraints (6.2)-(6.4) perform the VMP subproblem, where Constraint (6.2) indicates that
every virtual node v ∈ V is placed on a substrate node n ∈ N , and Constraint (6.3) ensures
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that at most one VM can be placed on a single substrate node. Avoiding conflicted placement
of substrate nodes enhances the VN’s fault-tolerance [130]. Constraint (6.4) avoids substrate
nodes capacity violation. Constraint (6.5) measures the availability induced by the VMP;
where av =

∑
n∈N xv,nan denotes the availability of each VM v’s host. Constraint (6.6)

ensures that the latter respects the requested availability requirement. Constraint (6.7)
represents the flow conservation constraint, while Constraint (6.8) measures the traffic routed
on each substrate link. Finally, Constraint (6.9) avoids substrate links capacity violation.
Complexity Analysis:

Clearly the presented model is a Mixed Integer Non-Linear Program (MINLP), owing to
Equation 6.5. Hence, to solve the model to optimality, we need to linearize it. This can
be easily achieved by replacing the product of every two node embedding variables (xv,n ∈
{0,1}) with a single variable, and then adding three inequalities to bound the value of the
new variable by that of the variables it replaces. However, given N substrate nodes and V

virtual nodes, there will be N !
(N−V )!

terms to linearize; and for each term, (V -1) additional
variables to add, and 3 times more inequality constraints.
To better illustrate this, consider the availability computation of the bare-bone VN presented
in Figure 2(b); further, consider that we are aiming to embed the former on a substrate
network with 3 substrate nodes n1, n2, and n3. Subsequently, we have:

A = (xv1,n1 .xv2,n1 .xv3,n1).an1 + (xv1,n2 .xv2,n2 .xv3,n2).an2+

(xv1,n3 .xv2,n3 .xv3,n3).an3 + (xv1,n1 .xv2,n1 .xv3,n2).an1 .an2+

(xv1,n1 .xv2,n2 .xv3,n3).an1 .an2 .an3 + ...

(6.10)

Hence to linearize the first term in the equation, we can replace xv1,n1 .xv2,n1 with z1, where
the first term becomes z1.xv3,n1 , which in turn can be replaced with z2. The value of z1 is a
function of the values of xv1,n1 and xv2,n1 , which can be expressed as follows:

z1 ≤ xv1,n1

z1 ≤ xv2,n1

z1 ≥ xv1,n1 + xv2,n1 − 1

(6.11)

The same applies to z2, and to all other terms in Equation (6.10). Clearly this lineariza-
tion process leads to an exponential increase in the number of variables and constraints,
thereby nullifying any benefit incurred by it as the execution time of the model will increase
dramatically. On the other hand, by relaxing the integrality of the node embedding and
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(a) VNE (R = 99.88%) (b) Backup for
V3

(c) VNE with Protection Do-
mains

Figure 6.4: Availability Analysis of Protection Domains

(a) D = {v1,v2,b} (b) D = {v1,v2,b},{v1,b,v3}

Figure 6.5: Protection Domains

link embedding variables (xv,n and yei,j respectively), the problem becomes in the form of
a Geometric Programming (GP) [140] problem, which can be solved in polynomial time;
however that will only provide us with a lower-bound. Given the NP-Hard nature of the
availability-aware VNE problem, we propose JENA: a novel Tabu-based [103] search algo-
rithm to provide a scalable approach for performing VNE with just-enough availability. The
details of JENA are provided in Appendix 9.2.

6.5 Protection Domains for bare-bone VNs

6.5.1 Computing VN Availability with Protection Domains

Now, it could happen that no embedding solution can be found for the bare-bone VN that
satisfies the service’s availability demand. This occurs when the highly available servers
are fully saturated; and the remaining feasible nodes4 fail to satisfy the requested avail-
ability. For instance, consider the VN presented in Figure 2(b) embedded in the substrate
network presented in Figure 4(a); here, observe that the highly available servers are fully ex-
hausted, hence the mapping of the aforementioned VN on the remaining feasible nodes yields
a 99.88% availability measure, which violates the requested availability of 99.95%. One way
to overcome this limitation is by augmenting the VN with redundant nodes. The impact of

4Feasible physical machines refer to the active machines that have enough resources to satisfy the demands
of the VMs.
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augmenting a VN with redundant nodes (VMs) is additive on its overall availability. Since
now, the VN’s availability in no longer restricted to the availability of its primary VMs’s
hosts, but also to that of backup/redundant node(s)’s host(s) as well.
When a VN request is augmented with a redundant (backup) node, this redundant node is
designated to protect a subset (or all) of the primary virtual nodes (VMs). This is achieved
by provisioning the backup VM with enough computing resources to assume the breakdown
of any VM in the set of protected VMs. Further, the backup node also requires bandwidth
to resume communication with other VMs; hence backup virtual links must be provisioned
between the backup node and the neighbors of each protected VM (with sufficient bandwidth
resources). For instance, in the event where the bare-bone VN in Figure 2(b) is augmented
with a backup node b to protect virtual node v3 (as shown in Figure 4(b)), b will be pro-
visioned with 2 units of computing resources, and will connect to v1 (v3’s neighbor) via a
virtual link with 2 units of bandwidth demand.
We denote this redundancy-enabled protection as a protection-domain. In the previous ex-
ample where b is designated to protect v3 (as shown in Figure 4(b)), this redesign will
subsequently yield a protection domain d = {v1,v2,b}. Hence, the availability of this VN
becomes:

A = Prob{each physical server hosting an unprotected VM ∈ V N is

available, or any protection domain is available}
= av1 .av2 .av3 + av1 .av2 .ab.(1− av3)

Going back to our example, by mapping b on the remaining available machine F (as shown
in Figure 4(c)), the overall availability of the VN becomes 99.89%. Note that the availability
improvement provided by protection domain d = (v1,v2,b) was not sufficient to achieve the
availability requirement of 99.95%. In this regard, the cloud provider can decide to add more
protection domains by protecting more primary VMs; for example, if b is set to protect v2

and v3 (as shown in Figure 5(b)), then b must now be provisioned with 3 units of computing
resources (max computing demand of v2 and v3), and again b only needs to connect to
v1 (shared neighbor of v2 and v3) with 2 units of bandwidth resources. Hence, the set of
protection domains becomes D = [{v1,v2,b},{v1,b,v3}]. Subsequently, the availability of this
VN becomes

A = av1 .av2 .av3 + av1 .av2 .ab.(1− av3) + av1 .ab.av3 .(1− av2)
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By protecting both v2 and v3 the overall availability of the VN will reach 99.95%.
To generalize this, when a virtual node is augmented with k backup nodes protecting V ′

primary VMs in a given VN request, the availability of this VN can be quantified as the
probability that all primary V virtual nodes are available, or any protection domain d ∈ D

is available, which can be expressed as follows:

A =
∏
i∈V

ai +
∑
d∈D

∏
i∈d

ai(1− aj) ∀j ∈ V : {j �= i} (6.12)

Given an initial greedy embedding solution for a bare-bone VN whose availability is below
Areq; the problem of provisioning protection domains while minimizing backup bandwidth
(BW ) can be expressed as follows:

Min A+BW

Subject to
A ≥ Areq (6.13)

BW represents the total amount of bandwidth provisioned for backup traffic; that is the
bandwidth provisioned to connect the backup node to the neighbors of the primary VMs it
protects. Hence, it is dependent on the placement of the added backup/protection nodes, as
well as the protection assignment of each backup node to the various critical primary VMs.
It should be noted that this model is generic, in that it adds as many protection domains
as needed until it satisfies the required availability. Further, it can also be classified as an
MINLP owing to Equation (6.12).

6.5.2 Protection Policies for Protection Domains Provisioning

Given that the problem of provisioning protection domains is complex in nature (as shown
above), a more practical approach is to iteratively add a single protection domain until the
requested availability is satisfied. Subsequently at every iteration, the only variable would
be the placement of the backup node. However, the challenge becomes in deciding which
critical VM this backup will protect. Hence, we propose two main protection policies: node
residing on the most vulnerable host, or the node with the lowest "importance index". A
node’s importance index is denoted by the sum of the bandwidth demands on its adja-
cent links. The intuition behind these selection-policies are two-fold : while protecting the
most vulnerable node achieves the highest overall availability improvement, the incurred
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(a) Increase in Resource Demand (b) Arrival of New Network
Component

Figure 6.6: Elastic VN Requests

bandwidth cost to connect the backup to its adjacent nodes may yield significant backup
footprint, particularly if this node exhibits a high importance index. Conversely, protecting
a node with a low importance index minimizes the incurred backup bandwidth cost, but
may not yield a significant availability improvement, thereby requiring the addition of more
protection domains. As will be shown through our numerical evaluation, selecting the best
protection policy is highly correlated with the network state at the time of the embedding.
Hence, we let the cloud provider dictate (alternate) the protection policy after assimilating
the network’s state via network monitoring tools (e.g. [81]).

6.6 Reliable Elastic Services

As previously mentioned, hosted services or network functions may scale up/down their
requirements over time. We denote G̃v= (Ṽ , Ẽ) as a request to scale-up or down Gv at time
t1, with an availability requirement Ãreq. A VN scaling request could enfold one or many of
the following changes:

• Increase/Decrease in resource demands: This change typically involves the VMs in
Ṽ , such that V ∩ Ṽ �= ∅, and/or the virtual links in Ẽ, such that E ∩ Ẽ �= ∅. For
instance, Figure 6(a) illustrates the case where v3’s resource demand increases from 2
to 10 units.

• Arrival/Departure of New Network Component(s): This change typical involves VMs
in Ṽ , such that V ∩ Ṽ = ∅, and/or the virtual links in Ẽ, such that E ∩ Ẽ = ∅. Figure
6(b) illustrates the case where an additional VM v4 has been added to the original VN
request in Figure 2(b), and needs to communicate with v3 with 2 units of bandwidth.
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• Service Class Upgrade/Downgrade: Areq at time t can change into Ãreq at time t1 > t,
such that Ãreq ≥ Areq or Ãreq ≤ Areq.

Problem Definition 6.2. Given a VN request Gv = (V ,E) with an availability requirement
Areq at time t0, which scales (up/down) into G̃v= (Ṽ , Ẽ) at time t1 with an availability
requirement Ãreq; find the optimal reconfiguration of s into s̃ such that the resource demands
of G̃v are met, while satisfying Ãreq and minimizing the overall reconfiguration cost.

Here, reconfiguration cost reflects the amount of resources needed to host G̃v, as well as
any service disruption/downtime that Gv might undergo in transition. In this work, we
only consider the case of VMs resource demands increase, new network components arrival,
and/or service class upgrade; and we handle VN scale-down requests by simply releasing the
provisioned resources.
When a VN scales up into G̃v, it may happen that the initial reliable VNE solution is no
longer feasible; e.g. a VM requires more resources beyond the residual capacity of its current
host. In this regard, the cloud operator must reconfigure/update the initial embedding
solution to satisfy the scale-up request. We denote V ′ as the set of VMs whose placement
must be reconfigured; that is either existing VMs that demand additional resources beyond
the residual capacity of the current hosts; or newly added VMs. Hence, the problem can
now be seen as a quest for finding the lowest-cost placement of the VMs in V ′ that satisfies
the availability demand of the VN in question.

Theorem 6.2. The problem of managing reliable VN scaling requests is NP-Hard.

Proof. We prove that the problem at hand is NP-Hard by restriction. Proof by restriction
[139] consists of showing that the problem under consideration has at least one specific
instance that is known to be NP-Hard. Indeed, the problem of reconfiguring a reliable
VN scaling request is equivalent to solving the NP-Hard Generalized Quadratic Assignment
Problem (GQAP) [141] when the availability requirement is 0. Since the latter has been
proven to be NP-Hard [142], and represents an instance of the problem of managing reliable
VN scaling requests; this leads us to conclude that the latter is also NP-Hard.

When managing a scaling request, the cloud provider must make the necessary recon-
figurations to accommodate the requested changes. This can be achieved by treating G̃v

as a newly arrived VN request, and subsequently it will be re-embedded and provisioned
with resources from scratch. However, this will incur a high service disruption since even
the unmodified VMs will be suspended and migrated. Alternatively, migration can be per-
formed only for a subset of the VMs to meet the demands change while satisfying Ãreq.
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(a) Availability-Aware VNE (A = 99.95%) (b) Availability-Aware VNE (A = 99.93%)

(c) Migration-Scheme (A = 99.96%) (d) Redundancy-Scheme (A = 99.96%)

Figure 6.7: Benefits of Migration and Redundancy-Aware Approach

Indeed, when it comes to services with low-tolerance to disruption, this may be a more at-
tractive solution for the cloud provider to avoid penalties for downtime experienced by this
service during the re-embedding [121]. Moreover in some situations, migration alone might
not be possible (services with no tolerance to disruption), insufficient (fails to reconcile the
availability breach), or too costly (spreads the VMs too far apart, yielding longer substrate
paths to route the traffic between them). Hence, in the following section we provide several
illustrative examples to highlight the benefits of a migratory scheme to accommodate VN
requests changes, as well as the importance of augmenting the VN with protection domains
to circumvent cases where migration fails to reconcile the availability breach, or when the
resultant post-migration solution is too costly.

6.6.1 Motivational Examples

6.6.1.1 Benefits of a Migration-Aware Approach

When managing a scaling request, the original embedding solution (resource allocation)
may fail to meet the requested changes. For instance, consider the case where the bare-
bone VN in Figure 2(b) is initially hosted in a given substrate network as shown in Figure
7(a), with a just-enough availability of 99.95%. At time t1, the VN scales up by demanding
additional resources for VM v3, as shown in Figure 6(a). Here, we assume that the evolved
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VN maintains its initial availability requirement of 99.95%(Ãreq = Areq). Hence at time t1,
the initial embedding solution presented in Figure 7(a) is no longer feasible since it fails to
satisfy the requested resource demand increase. Here, the cloud provider must reconfigure
the existing embedding solution to find a new host for v3 that has enough resources to
accommodate the new resource demand of 10 units. Observe in Figure 7(a) that v3 can
either migrate to substrate nodes D or F . Either way, an availability breach will occur
since both these substrate nodes have a lower availability than v3’s current host. In fact, if
substrate node D was chosen to host v3 (as shown in Figure 7(b)), the overall availability of
this VN will decrease to 99.93% < 99.95%. Note that this availability breach will translate
into 8 additional minutes of downtime per month above the negotiated threshold.
Hence, the cloud provider can either decide to reject this request, thereby losing revenue, or
shift (migrate) some of the existing (unmodified) VMs to new hosts with higher availability
in order to reconcile the availability breach. Indeed, migrating virtual node v2 to substrate
node E (as shown in Figure 7(c)) will improve the VN’s availability to 99.96%, thereby
alleviating the former infraction. However, this availability restoration comes at the expense
of a service disruption while migrating v2.

6.6.1.2 Benefits of a Redundancy-Aware Approach

When dealing with services which are highly intolerable to disruption, or in the event where
migration is not feasible due to absence of available and/or more reliable hosts, then the
migration-aware approach is no longer a valid option. Alternatively, protection domains can
be added in the attempt to improve (reconcile) the availability. Going back to our example
in Figure 7(b), by augmenting the VN in Figure 6(a) with a backup node b to protect VM
v2, a protection domain d = {v1,b,v3} will be created. Hence by placing b on substrate node
C (Figure 7(d)), the new overall availability of this enhanced VN (Equation (6.12)) becomes
99.96%. Note that this availability improvement incurs backup footprint to provision this
redundant node, which remains idle until a failure occurs.

6.6.1.3 A Joint Migration and Redundancy-Aware Reconfiguration

Clearly, there exists a trade-off between a migration and a redundancy-enabled reconfigura-
tion. Hence, the cloud provider must weigh-in the various options in order to find the most
cost-efficient solution. In some situations, combining the benefits of both migration and re-
dundancy can be explored to achieve the lowest overall bandwidth cost. To better illustrate
this, consider again the bare-bone VN in Figure 2(b) embedded on the substrate network in
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(a) Availability-Aware VNE (A =
99.97%)

(b) Migration-Scheme (A = 99.96%)

(c) Redundancy-Scheme (A = 99.96%) (d) Migration & Redundancy-Scheme (A
= 99.96%)

Figure 6.8: Joint Migration and Redundancy-Aware Reconfiguration

Figure 8(a) with A = 99.97%. Further, consider that this VN scales-up by requesting an ad-
ditional VM v4 as shown in Figure 6(b). Here, the cloud provider needs to accommodate this
VN change by finding the optimal embedding of the new node that yields the overall lowest
reconfiguration cost while satisfying the requested availability Ãreq = 99.95% (assume the
availability does not change in this example). The most straightforward solution is to embed
v4 on either substrate node D or F , since they are the only nodes with enough resources to
accommodate v4. However, by doing so, the overall availability of this VN becomes 99.87%,
thereby violating Ãreq.
If the migration-aware approach is employed, VM v3 can migrate to substrate node E (since
E is the only host with a higher availability than any current host in the original embedding
solution). Subsequently, v4 can be placed on substrate node C (as shown in Figure 8(b)),
improving the availability back to 99.96%, with an overall bandwidth cost of 12 units. On
the other hand, the redundancy-enabled approach can add a backup node b to protect v4

(the VM residing on the host with the weakest availability), as shown in Figure 8(c), also
improving the availability back to 99.96%, and with an overall bandwidth cost of 12 units.
Conversely, combining these two approaches by swapping the hosts of v2 and v3 (migrating
v3 to B and v2 to C), and adding a redundant node b to protect v4 (as shown in Figure 8(d)),
the overall availability of this solution becomes 99.96% with an overall bandwidth cost of
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just 8 units. That is a 33% lower cost than the migratory and redundancy-enabled schemes,
at the expense of migrating two (unmodified) VMs and adding backup footprint to provision
b.

6.7 ARES: Availability-Aware Reconfiguration Scheme

Figure 6.9: ARES Approach

Given the benefits and apparent trade-off between a migration- and a redundancy-enabled
reconfiguration scheme, we propose ARES: our availability-aware reconfiguration scheme for
managing VN scaling requests, which harnesses the benefits of both migration and protection
domains adhesion. Our proposed approach, handles VMs resource demands increase and/or
arrival of new VM instances, with or without service class upgrade. The procedural details
of ARES are presented in Figure 6.9. It starts by receiving a request to scale up/down a
VN Gv = (V , E). We denote V ′ as the amended set of virtual nodes at time t1; that is
the set of virtual nodes with increased resource demands that cannot be satisfied by their
current host, and the set of newly arrived instances. Let V̂ ⊂ V denote the set of unmodified
VMs in the original VN request. Subsequently, the cloud provider must decide the optimal
placement for V ′, while satisfying the required availability Ãreq. It starts off by employing
an initial greedy embedding for V ′ by scouting the substrate network for the set of substrate
nodes that have enough resources to host each v′ ∈ V ′, and then selecting the ones with the
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highest availability (while avoiding conflicting placement with V̂ ). If no substrate nodes with
enough residual capacity can be found to host any v′ ∈ V ′, then the algorithm terminates
for resources scarcity. Conversely, the resultant embedding solution sN will be returned.
In the event where the obtained greedy embedding solution satisfies Ãreq with a much larger
availability than requested (availability over-provisioning), the embedding solution must be
adjusted by shifting some VMs to less reliable hosts such that "just-enough" availability is
achieved. Hence, we run our proposed Tabu-based search again (as presented in Section 9.2)
to enhance on the greedy-embedding solution, and find a lower-cost mapping which provides
"just-enough" availability with minimal service disruption. However, we slightly modify
our initial Tabu-based search (Appendix 9.2) to enable migration of unmodified VMs in
V̂ , only if this migration yields a lower embedding cost. Note that since migration yields
service disruption, we modify the cost function (Equation 9.5) to include a migration penalty.
Hence, Tabu will try to enhance on the greedy embedding solution without incurring a large
service disruption.
On the other hand, if the greedy embedding solution of V ′ fails to satisfy Ãreq, then the
cloud provider must decide to either migrate a subset of V̂ , or introduce redundant nodes
to improve the VN’s availability. Clearly we need to decide which node to either migrate
or protect. Given the greedy embedding solution with an availability breach, the choice to
migrate or protect one node over the other severely impacts the incurred cost, as well as
the achievable availability improvement (as presented in Section 6.6.1). Thus, we delegate
this choice to our Migration/Redundancy Iterator (MRI) algorithm. The role of the MRI
is to determine the best course of action based on the substrate network’s state at the time
when the scaling request is received, as well as the SLA of the associated VN. The MRI is
invoked iteratively while A < Ãreq. Once an embedding solution that exceeds the requested
availability is found, then the migratory-aware variation of Tabu is executed, to enhance on
the solution. The procedural details of the MRI are elucidated below.

6.7.1 Migration/Redundancy Iterator (MRI)

In the event where the greedy embedding solution fails to satisfy Ãreq, the MRI is invoked to
decide whether to migrate one of the VMs in V̂ , or augment the VN with a redundant/backup
node to improve the VN’s availability. This decision depends on many factors, mainly the
state of the substrate network at the time when the reconfiguration is performed, as well
as the VN’s tolerance to service disruption. For instance, if the VN is highly intolerable
to service disruption, then a VM migration will incur grave penalties. Alternatively, if the
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substrate network has scarce resources, then investing in redundant (idle) resources might
be an injudicious/infeasible move at that moment. Hence, we set two weight values αm and
αr for migration and redesign, respectively. Before invoking the MRI, the cloud provider can
adapt the value of these weights after assimilating the network’s state and the VN’s SLA.
Subsequently, if αm is greater than a predefined threshold, MRI will invoke the redesign-aware
scheme, otherwise the migration-aware scheme will be invoked. If the weight on αm and αr is
comparable, then the MRI will pick the move that yields the lowest overall embedding cost
in terms of bandwidth. Here, the challenge becomes in deciding which critical VM to protect
or migrate at every iteration. Hence, we adopt the same policies proposed in Section 6.5.2.
Let v̂ denote the VM selected based on the dictated protection policy, hence the problem of
finding the optimal reconfiguration can be formulated as follows:

Min − γ(A− A0) + (1− γ)
∑

(i,j)∈L
(ti,j + t̂i,j) (6.14)

Subject to ∑
n∈N

zn ≤ 1 (6.15)

zn +
∑
v∈V

x0
v,n ≤ 1 ∀n ∈ N (6.16)

∑
i:(i,j)∈L

ŷvi,j −
∑

j:(j,i)∈L
ŷv(j,i) = zn − x0

v,i ∀i ∈ N, v ∈ Adj(v̂) (6.17)

t̂i,j =
∑
v∈V

ŷvi,j.b
′
v,v̂ ∀(i, j) ∈ L (6.18)

∑
n′∈N :{n′!=n}

mn,n′ ≤ 1 ∀n ∈ N : {x0
v̂,n = 1} (6.19)

∑
i:(i,j)∈L

y
e:(v,v̂)
i,j −

∑
j:(j,i)∈L

y
e:(v,v̂)
j,i = x1

v̂,i − x0
v,i wv̂ ∀i ∈ N, v ∈ Adj(v̂) (6.20)

wv̂ ≥
∑

n∈N :{x0
v̂,n=1}

∑
n′∈N :{n′ �=n}

mn,n′ (6.21)

∑
n′∈N ′

(zn′ +mn,n′) = 1 ∀n ∈ N : {x0
v̂,n = 1} (6.22)

The presented model has a weighted objective, striking a balance between migration and
redesign. The objective function (6.14) aims to find the solution that yields the highest
availability improvement with the lowest overall embedding cost; where A0 (given) and A
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(computed via Equation 6.12) denote the availability of the pre- and post-reconfiguration
solution, respectively, and ti,j and t̂i,j denote the primary and backup traffic routed on each
link (i, j) ∈ L. γ is used to adjust the weight between these two objectives. Constraints
(6.15)-(6.18) indicate the mapping of the backup node and backup links. Let x0

v,n denote the
initial embedding solution. Constraint (6.15) indicates the placement of the backup node
(zn ∈ {0,1}), while Constraint (6.16) ensures non-conflicting placement between primary and
backup nodes. Constraint (6.17) performs the flow conservation constraint for the backup
links, whereas Constraint (6.18) measures the backup bandwidth incurred on each substrate
link. Constraints (6.19) decides the new host for v̂ (in case of migration, mn,n′ ∈ {0,1}),
and Constraint (6.20) re-routes the primary virtual links of v̂ accordingly (yei,j ∈ {0,1}).
Constraint (6.21) indicates whether the selected node has migrated or not (wv̂ ∈ {0,1}),
and Constraint (6.22) forces the model to make a single move, by either migrating v̂, or
placing a backup node to protect it. Note that additional constraints must be placed to
avoid conflicting node placement and substrate network capacity violation.

6.8 Numerical Results

In this section, we numerically evaluate the performance of RELIEF, first by looking at
how the availability-aware embedding module performs compared to peer and benchmark
algorithms, and second by analyzing the reconfiguration module as the embedded VNs scale
over time. Hence, we separate these two evaluation concerns. We vary the availability of the
substrate nodes between [0.9999,0.999999], and we vary the availability requirement of the
VNs between [0.999,0.99999]. Throughout our numerical results, we let the size of the VNs
vary between [2-20] VMs.

6.8.1 Comparative Analysis of JENA Module

To evaluate the performance of JENA, we look at three main metrics: blocking ratio, revenue
and execution time. Blocking ratio refers to the percentage of VNs rejected out of the total
number of VN embedding requests; and revenue is computed as follows:

∑
r∈R

∑
v∈V c′rv ρr;

where ρr denotes the price per unit of leased resource r for a period of time. We adopt
the FatTree (k=4) and (k=8) [28] networks (denoted as FT4 and FT8, respectively), since
FatTree is a commonly adopted topology for data centers. We begin by comparing it against
HIVI [59]: a peer embedding technique extracted from the literature, as well as three bench-
mark algorithms: namely, a static greedy (denoted as SG), and a dynamic greedy with and
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without protection (denoted as DG-P and DG-NP, respectively). Here, SG consists of treat-
ing each incoming mapping request in a greedy fashion, that is sorting the set of substrate
nodes in descending order of their availability measure, and then attempt to embed the
VMs one-by-one. The DG-NP differs from the former in the fact that it aims to provide
just-enough availability. Hence, upon performing a greedy embedding for an incoming VN,
the DG-NP attempts to remove any over-provisioning by iteratively downgrading the VMs
from highly available servers to ones with lower availability, while satisfying the requested
availability guarantee. Finally, DG-P performs the same embedding routing as DG-NP, and
in addition is equipped with the ability to add protection domains in case no feasible solution
can be found for a bare-bone VN.
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Figure 6.10: Comparative Analysis of JENA

1. Execution Time: First, we look at the execution time achieved by each one of the
aforementioned techniques, the results are shown in Table 6.1. We randomly generate
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Table 6.1: JENA Runtime Analysis(ms)

JENA-V JENA-I DG-P HIVI SG DG-NP
FT4 16 42 5 2 1 2
FT8 43 78 35 14 12 21

a set of 100 VNs, and we set the load to 10. Clearly, we observe that all of the
aforementioned techniques execute in the order of milliseconds. Here, we also compare
the execution time of our embedding technique under different protection policies:
vulnerable (denoted as JENA − V ), and importance index (denoted as JENA − I).
Observe how the importance index policy exhibits a higher execution time (61% higher
over FT4) than the vulnerable host policy, since the former requires more iterations to
enhance on the availability measure than the latter.

2. Blocking Ratio: Next, we look at the blocking ratio; since a high execution time does
not necessarily indicate a good performance in terms of network resource utilization
and admissibility. The results are illustrated in Figure 10(a) and 10(b). Clearly, we
observe that JENA achieves the lowest blocking ratio among its peers over both FT4

and FT8. Indeed, for a load of 10 over FT4, JENA achieves 23% lower blocking than
DG-P, and at least 33% lower blocking than HIVI, SG and SG-NP.
Further, we observe that over the FT4 network, DG-NP achieves a lower blocking
than SG (20% lower for a load of 10), which vows for the positive correlation between
achieving just-enough availability and its impact on network resource utilization and
network admissibility. Moreover, the leverage in alleviating availability violations via
protection domains is highlighted by the higher admissibility achieved by each one of
the redundancy-enabled techniques: HIVI, DG-P, and JENA. Finally, we can conclude
that the systematic Tabu-based search that JENA adopts for finding the lowest-cost
embedding solution with "just-enough" availability, allows it outperform both HIVI
and DG-P.

3. Total Revenue: Finally, we look at the total revenue achieved by each of the
aforementioned approaches (as shown in Figure 10(c) and 10(d)). Here again, we
observe that our proposed embedding module achieves the highest total revenue as we
vary the load over both substrate networks. Indeed, for FT4 and a load of 4, JENA
achieves 10% higher revenue than DG-P and HIVI, as well as 30% and 51% higher
revenue than SG and DG-NP, respectively. Similar results can be observed over FT8.
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6.8.2 Comparative Analysis of ARES

In this section, we numerically evaluate the performance of ARES against benchmark scaling
techniques that are either migration or redundancy oblivious. We refer to these latter as
"Iterative Migration" (denoted as M) and "Iterative Redesign" (denoted as R), respectively.
Also, we distinguish between two selection-policies, that is either selecting the most vulner-
able node or the node with the lowest importance index to migrate or protect. Here we
adopt three main network topologies: FT4, FT8, and a randomly generated [118] substrate
network with 60 nodes and 90 links (that we denote as RN), and we look at four main
metrics: execution time, average cost, revenue, and admission. Further, to simulate scaling
requests, we setup a random scaling trigger with a frequency metric F , where F defines the
interval of random scaling requests that will occur over time. At every scaling trigger, we
let P% of the VNs hosted to scale up/down. This scaling can be: an increase/decrease of
resource demands, arrival/departure of VMs, service upgrade/downgrade, or any combina-
tion of them. Throughout our numerical evaluation, we let γ=0.5, and we set F , P , and the
load to 30, 40%, and 8, respectively.

1. Execution Time: First, we begin by evaluating the execution time of the various
reconfiguration schemes (as shown in Table 6.2). We generate a random set of 100 VNs,
and we measure the average time to reconfigure the mapping solution of the various
scaling requests. Here, we observe that all of these reconfiguration schemes execute
in the order of seconds. Further, we observe that the selection-policy greatly impacts
the execution time, where selecting the most vulnerable node to migrate/protect can
reconciliate the availability breach in fewer iterations. For instance, we observe that
for MRI over FT8 with the importance index as the selection-policy, is 50% slower than
the case where the vulnerable node policy is selected.

Table 6.2: ARES Runtime Analysis (ms)

M R MRI
I V I V I V

FT4 0.075 0.068 0.172 0.104 0.178 0.112
FT8 1608 546 2493 834 1850 938
RN 0.445 0.217 0.417 0.281 0.908 0.398

2. Impact of Substrate Nodes Availability: Next, we look at the impact of substrate
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Figure 6.11: Comparative Analysis of ARES - Impact of Substrate Nodes Availability and
Network Bandwidth

nodes availability on the achievable restoration ratio by each of the aforementioned re-
configuration techniques. Restoration ratio denotes the percentage of successful recon-
figurations out of the total number of scaling requests received. We adopt the random
network RN , and we vary the range of the substrate nodes’s availability within either
L-R=[0.999,0.99995] or H-R=[0.9999,0.9999999], where L-R and H-R denote the low
and high servers availability range, respectively. Here, we observe that the iterative
migration M ’s restoration ratio drops from 95% to 87%, whereas R and MRI maintain
an availability above 92% (as shown in Figure 11(a)). Hence, we can conclude that the
effectiveness of the iterative migration scheme is highly dependent on the availability
of the servers in the substrate network. To better reflect the impact of this restoration
ratio drop, we look at the total revenue achieved by each of the proposed schemes, il-
lustrated in Figure 11(b). Indeed, we observe that M achieves 11% lower total revenue
than R, and 13% lower revenue than MRI.

3. Impact of Bandwidth Capacity: Second, we look at the impact of substrate links
capacity (as shown in Figure 11(a)), as we vary their size between 1 Gbps (denoted as
L-BW ) and 10 Gbps (denoted as H-BW ). We observe that the restoration ratio of the
iterative redesign scheme is negatively affected under the L-BW network state, with
a restoration ratio drop from 98% to 88%, leading to a lower total revenue than that
achieved by M and MRI (as shown in Figure 11(b)). On the other hand, under the
H-BW network state, R outperforms M , while MRI achieves the highest gain under
either one of these network states.
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These results support our claim on the correlation between network’s state and the
selection policy undertaken by the cloud provider. Indeed, when the network is in a
state of high traffic load (case of low bandwidth L-BW ), it is more acute to avoid
adding redundant nodes to avoid the fallout cost of backup footprint. On the other
hand, when the network has a low traffic load (case of high bandwidth H-BW ), then
iterative redesign achieves better results than iterative migration, since the latter is
restricted to the availability of the primary hosts. Clearly combining the benefit of
migration and redesign, using our proposed MRI, enables to circumvent the limitations
of network traffic load and primary hosts availability, as observed by the gain achieved
in terms of restoration ratio and revenue under different network states.

4. Admission, Cost and Revenue: In this section, we look at the admission rate,
total revenue, and average cost over time, for two substrate networks RN and FT4

(as shown in Figure 12(a)-12(f)). Overall, we observe that MRI achieves the highest
admission and revenue over time for both substrate networks. For instance in Figure
12(a), in the time slot between [40-60], we observe that though MRI and R exhibit the
same admission rate, yet the average reconfiguration cost achieved by MRI is 7-20%
lower than that achieved by R (as shown in Figure 12(c)). Indeed, this cost-efficient
reconfiguration scheme enhances the network’s admissibility, rendering a 14-25% higher
admission over R in the time slot between [60-75], and an overall revenue gain that is
30-60% higher than that achieved by M , and 4-44% higher than that achieved by R

over time. Similarly for the random network, MRI achieves a 20-77% higher revenue
than M , and 2-69% higher revenue than R over time. Indeed, we can conclude that
by harnessing the benefits of both migration and redundancy, the admissibility of the
substrate network is enhanced, and subsequently the network operator’s long-term
revenue.

6.9 Conclusion

In this chapter, we proposed a novel reliable embedding and reconfiguration framework for
elastic services in failure-prone data center networks. We proved that as opposed to existing
work, our embedding module promotes better resource utilization as it avoids availability
over-provisioning. Further, we showed that as VNs scale, their initial embedding solutions
may fail to meet the requested changes, or even yield an availability breach. Hence, we mathe-
matically formulated the problem, and provided several motivational examples to present the
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Figure 6.12: Comparative Analysis of ARES - Admission, Cost, and Revenue
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pros and cons of a migratory versus a redundancy-enabled scheme to reconfigure scaled VNs.
Given the intricate interplay of these two schemes, we proposed ARES: an availability-aware
reconfiguration module for elastic services that leverages the benefits of the redundancy and
migratory schemes to achieve a low-cost reconfiguration with minimal service disruption.
Our numerical results prove that our suggested approach achieves encouraging gains over
migration or redundancy oblivious schemes.
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Chapter 7

A Cut-and-Solve Based Approach for the

VNF Assignment Problem

Middleboxes have recently become a ubiquitous element in operator’s networks [143–147],
with an abundance commensurate to the numbers of routers/switches in the network [148].
This "middlebox-outburst" is mainly due to the significant value-added services these latter
provide to traffic flows, in terms of enhanced performance and security. Firewalls, Load
Balancers, and Intrusion Detection Systems (IDSs) are some examples of middleboxes, also
known as network functions (NFs), residing in today’s networks. Each of these middleboxes,
provide a function to serve the flows on their path from source (ingress) to destination
(egress). E.g., firewalls filter traffic based on predefined rules, load balancers distribute the
traffic to multiple destination hosts, IDS collect data for security checks, etc. Flows usu-
ally need to traverse multiple middleboxes in a predefined order; For instance, a packet
must traverse an IDS before going through a Wide Area Network (WAN) optimizer [149]
for encryption. This type of traffic flow traversal is referred to as Service Function Chaining
(SFC), commonly prescribed as a traffic flow policy [150]. The IETF presents several SFCs
use cases in data centers [151], mobile [152], and broadband [153] networks.
Typically, Middleboxes run on specialized hardware, which make them highly obstinate.

(a) Policy Chain 1 (b) Policy Chain 2

Figure 7.1: Service Function Chaining
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Their location/placement in the network is bound to lose its efficiency over time, particu-
larly as the traffic flow in the network is unpredictable; not to mention network bandwidth
overconsumption when routing traffic from ingress to egress points that are too far from the
middlebox location. Moreover, hardware NFs are expensive and vendor-specific, and net-
work operators tend to over-provision in the number and type of hardware NFs procured to
handle traffic surges [154]. This in turn yields significant overheads in terms of Cap-ex and
Op-ex, to power, maintain, and configure them. Furthermore, given the short hardware life
cycle and the fast-pace technological advancements, adding new services and functionalities
or replacing existing hardware requires the procurement of more hardware NFs, which is a
tedious and cumbersome procedure [61,154].
Network Function Virtualization (NFV) is a promising new technology that aims at tackling
the aforementioned limitations of hardware NFs [61]. It consists of decoupling the software
from the hardware, yielding softwarized-middleboxes that can run atop any hardware com-
modity (standard servers, or routers/switches [155]). These Virtualized Network Functions
(VNFs) can be instantiated on demand, and migrated anywhere in the network; thereby
reducing the Cap-ex associated with middlebox over-provisioning. Moreover, these software-
based NFs support multi-tenancy, and can be easily upgraded/modified [61]; thereby reduc-
ing Op-ex required to maintain/configure them, and greatly enhancing the time-to-market.
Yet, NFV is still in its infancy, and there exists multiple challenges, reported by the ETSI
group [61] and IETF [150], that must be addressed to facilitate and enhance its adoption.
Recently, NFV has received significant attention from the literature in response to these calls
for actions. While some [156–161] targeted the VNF orchestration and management concerns,
others aimed at facilitating the realization of NFV by developing virtualized software-based
NFs platform e.g. ClickOS [154], NetVM [162], and routing function virtualization [163].
Further, to achieve the economy of scale promised by NFV, the placement of VNFs and
the flow-to-VNF assignment emerged as equally important problems [61]. Indeed, subop-
timal placement of VNFs may yield to inefficient resource utilization, as well as significant
bandwidth overhead to route the traffic flow through them, therefore lowering the admis-
sibility of the network. We denote the latter problem as the Virtual Network Function
Assignment problem, which has been proven to be NP-Hard [147]. It consists of finding the
optimal placement for the VNFs and the flow-to-VNF assignment to maximize the admis-
sion of policy-aware traffic requests. Given the NP-Hard nature of this problem, a large
body of work emerged lately to tackle it. While some relaxed the problem by considering
a single VNF placement [164–167], or a single policy class [168], others considered that the
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traffic flows are known-apriori, and proposed Integer Linear Programming (ILP) formula-
tion [149,168–172] which runs in the order of hours. Moreover, a handful of heuristic-based
methods [147,173–176] emerged, with no guarantees on the quality of the obtained solutions.
This chapter is concerned with the VNF assignment problem, and proposes to jointly address
the problem of VNF placement and policy-aware traffic steering to maximize the number of
flows routed across the network. Unlike previous work, and to keep track of the problem,
we propose a cut-and-solve based approach. Hence, we decompose the problem into two
subproblems: a master and a subproblem. The master is in charge of performing the VNF
placement and assigning appropriate VNF instances to every flow; while the subproblem
performs the policy-aware routing of every flow along its designated VNF instances. At
every iteration, constructive piercing cuts are generated and added to the master to tighten
its search space. We compared our proposed method against the ILP, as well as a heuristic-
based method, and we show that our approach achieves optimal solution 700 times faster
than the ILP-based formulation.

7.1 Related Work

Recently, a handful of contributions [146,177,178] have tackled the policy-aware traffic steer-
ing problem via hardware middleboxes. However, given the limitations of hardware middle-
boxes, attention converged towards enabling the support of network function virtualization.
While some focused on providing an architecture for building and supporting softwarized-
middleboxes, such as XOMB [179], ClickOS [154], and NetVM [162]; others proposed solu-
tions to deploy and orchestrate VNFs [158–160].
An equally challenging problem that emerged along with NFV is solving the VNF assignment
problem; that is the policy-aware traffic steering via virtualized network functions. Here,
the location of the VNFs is undefined, and it is up to the network operator to decide on the
number of VNF instances to deploy, such that the forwarding policies associated with incom-
ing traffic requests can be fulfilled. PACE [176] is among the earliest work that addressed
this problem; and given its NP-Hard nature, the authors tackled the placement of VNFs
and the traffic steering of flows disjointly. Such an approach is bound to be costly, since
the VNF placement greatly affects the traffic-steering and may very well yield to significant
bandwidth consumption; particularly when the VNF instances are placed too far from the
flows’s ingress and egress nodes. The work in [166,167] also considered the VNF assignment
problem; however, the authors considered that every flow can be routed via a single network
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function; further in [167] the authors relax the problem by assuming a tree-based network
topology with a single path between every pair of substrate nodes. Other work [164, 165]
also relax the problem by either considering unlimited network resources [164], or unlimited
number of VNF instances [165].
Further, a handful of contributions consisted of ILP-based formulations [149,168–172], which
are known to be fairly unscalable and computationally intractable. In [149], a Mixed Integer
Quadratically Constrained Program (MIQCP) is proposed for finding the best placements of
chained VNFs; while the work in [168] model the problem as an ILP, and considers a single
policy class for all incoming traffic requests. In [169] and [171], the authors also formulate
the problem as an ILP model. In [171], the authors propose a heuristic-based approach to
guide the ILP solver towards near-optimal solutions, which runs in the order of minutes, and
in [172] a sequential fixing-based heuristic is proposed to solve larger instances of the problem.
In [170] the authors tackle the hybrid VNF assignment problem, where network functions
can be either hardware or software; and propose an ILP model to solve it. Other work in the
literature consisted of heuristic and meta-heuristic based approaches [147,173–175], with no
guarantee on the quality of the obtained solution. For instance, Lukovszki and Shmid [175]
present a deterministic algorithm for solving the online VNF embedding problem, while Bari
et al. [147] model the problem as a multi-stage graph, and sequentially solve the VNF as-
signment problem for every incoming flow request using a Viterbi-based algorithm. In [173],
the authors proposed a simulated annealing based algorithm. Finally, in [174] the authors
proposed an ILP model to solve the VNF assignment problem, as well as different heuristic
variations for solving the problem for larger instances. One proposed heuristic (Heuristic-
A1) consists of solving the VNF assignment problem disjointly, by sequentially finding the
shortest path from the ingress to the egress node of every flow, then attempts to place the
VNF instances required in the flow’s policy along this path. An other proposed heuristic
(Heuristic-B) consists of dividing the flow requests into groups, then iteratively solving the
VNF assignment problem for each group using the ILP model. The remaining heuristics
are a variation of Heuristic-B, and mainly differ in the way the flows are partitioned into
different groups.
Our work is different since it provides an exact solution to the VNF assignment problem
within considerably much faster runtime than the ILP. As opposed to heuristic-based work,
our algorithm provides optimal solutions, and as shown in our numerical results is much
more scalable than ILP-based formulations. Further our approach is topology-independent,

1A variation of this heuristic is used in our numerical analysis.
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supports chains of multiple VNFs, and aims to solve the problem while accounting for the
finite resource capacity of the substrate network, as well as the limited number of VNF
instances allowed.

7.2 The VNF Assignment Problem

7.2.1 Network Model Overview
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Figure 7.2: Network Model

In this section, we present a formal definition of the VNF assignment problem by de-
scribing the various components involved:

1. The Substrate Network :

We represent the substrate network as an undirected graph, denoted by Gs = (N ,L),
where N is the set of substrate nodes, and L is the set of substrate links. Each substrate
node n ∈ N is associated with a finite capacity2, denoted by cn . Similarly, each substrate
link l ∈ L has a finite bandwidth capacity, denoted by bl.
2For the sake of simplicity, we only consider a single resource type (e.g., memory, CPU); however our

work can be easily extended to account for multiple resource types.
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2. Virtualized Network Functions (VNFs):

VNFs represent the various network functions offered by the network provider. Let M

denote the set of all VNF types (e.g., a firewall represent one VNF type). To deploy an
instance of a VNF type m on a substrate node n, the latter must have enough resources
to accommodate the former’s resource requirements (e.g., memory and CPU needed to
run an instance of a firewall). Hence, each VNF type m ∈ M is associated with resource
requirement wm. Note that there can be multiple instances of a single VNF type, and
different middlebox instances can be collocated on the same substrate node. Further,
every deployed instance of a VNF type is associated with a processing capacity (pm), which
reflects the maximum traffic load each instance can accommodate. Here, the maximum
number of instances allowed for any middlebox type is limited, e.g., by the number of
licenses owned by the network provider [149], that we denote as Km. Throughout this
work, we consider that all VNF types are stateless [173](i.e., can be shared by multiple
tenants), but our work can be easily modified to account for stateful VNFs.

3. Traffic Flows :

We consider a set of incoming traffic flows F , where each flow f ∈ F has a forwarding
policy (SFC) sf , and a bandwidth demand b̂f . sf represents the sequence of VNF types
that the flow must be routed through. Here, we distinguish between three types of traffic
flows: traffic originating from a host in a network and destined to a host in the same
network, traffic originating from a host in the network and destined to a host outside
the network, or traffic originating from and destined to a host outside the network. In
this work, we consider that the ingress and egress nodes for incoming traffic flows are
known apriori, denoted by nf and n′f , respectively. We represent a traffic flow request as
a virtual graph Gv

f = (Vf ,Ef ) where Vf = {nf ,sf ,n′f} represents the nodes in the virtual
graph, and Ef = {(nf ,mi), (mi,mi+1),...,(m|sf |,n

′
f )} (1 ≤ i ≤ |M |) represents the virtual

links.

4. The VNF Assignment Problem :

The VNF assignment problem consists of determining the optimal deployment of VNF
instances that maximizes the amount of flows routed across the network. A flow can
only be routed/admitted if its associated policy is met; that is, it is assigned a single in-
stance of every VNF type in its forwarding policy, and successfully routed through these
instances in the correct order. Figure 7.2(a) shows an example of a policy-aware traffic of
a single flow across a substrate network. Here, we observe a flow with a chain of 3 VNF
types, abstracted as a virtual graph of 5 nodes and 4 virtual links. The number next to
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each virtual link denotes the bandwidth demand of the flow, while the digit next to each
physical node/link denotes its capacity.

The VNF Assignment problem can be formally defined as follows:

Problem Definition 7.1. Given a substrate Gs = (N,E) and a set of flows F , each with
a forwarding policy sf , find the optimal placement of VNFs that maximizes the number of
admitted traffic flows, while respecting the capacity constraints of the substrate network.

Deploying VNF instances is highly correlated with the number of flows that can be admit-
ted, and it entails not only determining the location/physical host of each instance, but also
the number of instances needed of every VNF type. The location of a VNF instance affects
the amount of bandwidth consumed to route traffic flows through this instance; particularly
if the ingress/egress node of the flows are too far from the location of the deployed instance.
To better illustrate this, consider the example in Figure 7.2; here, we observe that a different
VNF placement for the same flow yields a different network resources utilization. In Figure
7.2(a), the location of the intermediate VNF in the flow’s chain caused a loop/detour in the
flow’s path towards its egress node in order to respect the policy chain. Alternatively, a care-
ful embedding of the VNFs (as shown in Figure 7.2(b)) greatly reduces the network’s resource
utilization, and subsequently its admissibility. Hence, to reduce the amount of bandwidth
consumed, the network operator can decide to alternate the placement of the VNFs, or even
deploy more VNF instances while incurring a higher cost in terms of substrate node resources
needed to host the various VNFs. Clearly, the VNF assignment problem entails multiple in-
tricate challenges, and can be logically divided into three sub-problems: (1) VNF instances
deployment, which indicates the number and placement of VNF instances; (2) flow-to-VNF
instance assignment; and (3) policy-aware routing for each flow along its designated VNF
instances. Note that the flow-to-VNF instance assignment ensures that each admitted flow
is assigned a single instance of every VNF type in its forwarding policy, and that the total
load on any VNF instance does not exceed its processing capacity. Let H denote the set of
all VNF assignment solutions. Each h ∈ H represents a feasible solution for a set of incoming
flows F ; h = (hN ,hM ,hE) thus holds the solution for the following three subproblems:

• VNF Mapping: hN : M −→ N .

• Flows-to-VNF assignment: hM : F −→ M̄ . M̄ represents the instantiated VNF types.

• Policy-Aware Traffic Routing: hE: F −→ R. R represents the substrate paths used to
route the flows in F ; each composed of one or many substrate links.
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7.2.2 Problem Formulation

In this section, we mathematically formulate the VNF assignment problem with the objective
of maximizing the total number of flows admitted.
Parameters:

• Gs(N,L): Substrate network with N nodes and L links.

• cn: the capacity of substrate node n.

• bi,j: the capacity of substrate link (i,j); where i and j denote the source and destination
of the link, respectively.

• F : the set of flows, where every flow f ∈ F is abstracted as a virtual graph Gv
f (Vf , Ef ),

with a demand b̂f . Each virtual link e ∈ Ef is composed of a pair of VNF types, where
o(e) and d(e) denote the source and destination VNF types of edge e, respectively.

• M : the set of VNF types.

• pm: the processing capacity of VNF type m.

• wm: the resource demand of VNF type m.

• Km: the maximum number of instances allowed for any VNF type m.

Decision Variables:

• xk
m,n =

⎧⎨
⎩1, if instance k of m is placed on n.

0, otherwise

• δf,km,n =

⎧⎨
⎩1, if f is assigned instance k of type m on n.

0, otherwise

• af =

⎧⎨
⎩1, if flow f is admitted.

0, otherwise.

• ye,fi,j =

⎧⎨
⎩1, if e ∈ Ef is routed through link (i,j).

0, otherwise.

• ti,j: indicates the amount of traffic measured on link (i,j).
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• Mathematical Model:

Max
∑
f∈F

af (7.1)

Subject to

VNF Placement ∑
n∈N

xk
m,n ≤ 1 ∀1 ≤ k ≤ Km, m ∈M (7.2)

Km∑
k=1

∑
n∈N

xk
m,n ≤ Km ∀m ∈M (7.3)

∑
m∈M

Km∑
k=1

xk
m,n.wm ≤ cn ∀n ∈ N (7.4)

Flow-to-VNF Assignment

δf,km,n ≤ xk
m,n ∀1 ≤ k ≤ Km, m ∈ sf , n ∈ N, f ∈ F (7.5)

∑
n∈N

Km∑
k=1

δf,km,n ≤ 1 ∀m ∈ sf , f ∈ F (7.6)

∑
f∈F

∑
n∈N

δf,km,n.b̂f ≤ pm ∀1 ≤ k ≤ Km,m ∈M (7.7)

xk
m,n ≤

∑
f∈F

δf,km,n ∀1 ≤ k ≤ Km, m ∈M, n ∈ N (7.8)

Policy-Aware Traffic Routing

∑
j:(i,j)∈L

ye,fi,j −
∑

j:(j,i)∈L
ye,fj,i =

Km∑
k=1

δf,ko(e),n −
Km∑
k=1

δf,kd(e),n

∀e ∈ Ef , f ∈ F, i ∈ N.

(7.9)

ti,j =
∑
f∈F

∑
e∈Ef

ye,fi,j .b̂f ∀(i, j) ∈ L (7.10)

ti,j ≤ bi,j ∀(i, j) ∈ L (7.11)
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af .|sf | =
∑
m∈sf

Km∑
k=1

∑
n∈N

δf,km,n ∀f ∈ F (7.12)

Our objective function aims to maximize the number of admitted flows. Constraint (7.2)
avoids duplicate placement of any VNF instance. Constraint (7.3) ensures that the number
of instances placed of any VNF type does not exceed the maximum number of instances
allowed. Constraint (7.4) is the substrate nodes capacity constraint. Constraint (7.5) resolves
the flow-to-VNF assignment, and Constraint (7.6) ensures that each flow can use at most
one instance of any middlebox type. Constraint (7.7) ensures that the processing capacity of
each VNF instance is not violated, while Constraint (7.8) makes sure that a VNF type will
never be instantiated if is not assigned to at least a single flow. Constraint (7.9) is the flow
conservation constraint to perform the policy-aware traffic routing, while Constraint (7.10)
measures the traffic incurred on each substrate link, and Constraint (7.11) avoids substrate
links capacity violation. Finally, Constraint (7.12) indicates that a flow is routed, if and only
if, it is assigned a single instance of each VNF type in its corresponding policy.
The VNF assignment problem has been proven [147] to be NP-Hard via a reduction from the
capacitated facility location problem. Hence in the following section, we provide a cut-and-
solve based approach to exactly solve the problem within considerably much faster runtime
than the ILP-based formulation.

7.3 A Cut-and-Solve Based Approach

In this section, we present our cut-and-solve based algorithm to provide an exact solution
for the VNF assignment problem. Cut-and-solve [180] consists of decomposing the problem
into two subproblems a master model and a subproblem. The master model is an ILP with
a sparse search space, and hence is easier to solve than the original problem. At every
iteration, a piercing cut is generated and added to the master to tighten its search space.
Solving the master problem provides an upper bound to the original problem, while solving
the subproblem provides a lower-bound. As the cuts accumulate, the search space will
become tighter, and the cuts more constructive. When the upper-bound and lower-bound
converge, then the obtained solution is optimal and the algorithm terminates. Figure 7.3
illustrates our proposed cut-and-solve based approach. First, a pre-processing is performed
to tighten the bound of the master model, then the master and the subproblem are executed
iteratively, where O is the number of flows admitted by the master, and P those admitted

167



Figure 7.3: Cut-and-Solve Flow Chart

by the subproblem. At the end of every iteration, if the subproblem could not route all the
flows admitted by the master (P < O), two classes of cuts are generated: a diversification cut
extracted from the set of flows that were not admitted at every iteration, and a separation
cut to avoid bottleneck links in the substrate network. The details of our cut-and-solve
algorithm are provided below.

7.3.1 Pre-Processing Model

The pre-processing model consists of adding an initial cut on the master model’s search
space. This is achieved by running a Multi-Commodity Flow (MCF) problem that attempts
to route each flow from its ingress to its egress node. The pre-processing model can be
formulated as follows:

G = Max
∑
f∈F

af (7.13)

Subject to

∑
j:(i,j)∈L

yfi,j −
∑

j:(j,i)∈L
yfj,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

af , if i = nf

−af , if i = n′f

0, otherwise.

(7.14)
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∑
f∈F

yfi,j.b̂f ≤ bi,j ∀(i, j) ∈ L (7.15)

Constraint (7.14) ensures that each admitted (af = {0,1}) flow is routed (yfi,j = {0,1}) from
its ingress to its egress node, and Constraint (7.15) is the substrate links capacity constraint.
Solving the pre-processing thus provides an upper-bound G on the optimal solution that
can be obtained by the master model; since if the substrate network’s capacity can only
accommodate a maximum of G ⊂ F flows, then any policy-aware routing, that accounts for
the VNFs placement, cannot exceed G due to the physical links capacities.

7.3.2 The Master Model

The master model consists of solving the VNF placement and flow-to-VNF assignment sub-
problems without any consideration to the substrate network’s bandwidth capacity. This
indeed makes the problem much easier to solve than the original problem. The solutions
to the VNF placement and flow-to-VNF assignment subproblems are represented by two
variables sne,f and dne,f , which indicate the "physical" host of the source and destination of
every virtual link. Given that each virtual link represents a pair of VNF types in a flow’s
chain, this therefore means that a VNF instance of the required VNF type is deployed on the
source and destination hosts, respectively. Thus, each placed VNF instance is immediately
associated with a particular flow; thereby, avoiding the placement of VNF instances that are
not associated with any flow. The master model is mathematically formulated as follows:
Decision Variables:

• xk
m,n =

⎧⎨
⎩1, if instance k of m is placed on n.

0, otherwise.

• ue,f =

⎧⎨
⎩1, if virtual link e of f is admitted.

0, otherwise.

• sne,f =

⎧⎨
⎩1, if n is the source of edge e (e ∈ Ef ).

0, otherwise.

• dne,f =

⎧⎨
⎩1, if n is the destination of e (e ∈ Ef ).

0, otherwise.
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• qne1,e2 =

⎧⎨
⎩1, if e1 and e2 meet at n.

0, otherwise.

• af =

⎧⎨
⎩1, if flow f is admitted.

0, otherwise.

• Mathematical Model:

O = Max
∑
f∈F

af (7.16)

Subject to

∑
n∈N

sne,f ≤ af ∀e ∈ {Ef − e1}, f ∈ F (7.17)

∑
n∈N

dne,f ≤ af ∀e ∈ {Ef − e|Ef |}, f ∈ F (7.18)

ue,f ≤ (
∑
n∈N

sne,f +
∑
n∈N

dne,f )
1

2
∀e ∈ Ef , f ∈ F (7.19)

sne,f ≤
Km∑
k=1

xk
o(e),n ∀e ∈ Ef , f ∈ F, n ∈ N (7.20)

dne,f ≤
Km∑
k=1

xk
d(e),n ∀e ∈ Ef , f ∈ F, n ∈ N (7.21)

qnei,ei+1
≤ (dnei,f + snei+1,f

)
1

2
∀(ei, ei+1) ∈ Ef :

{1 ≤ i ≤ |Ef | − 1}, f ∈ F, n ∈ N
(7.22)

∑
n∈N

qnei,ei+1
≤ 1 ∀(ei, ei+1) ∈ Ef : {1 ≤ i ≤ |Ef | − 1}, f ∈ F (7.23)

∑
n∈N

qnei,ei+1
≥ af ∀(ei, ei+1) ∈ Ef : {1 ≤ i ≤ |Ef | − 1}, f ∈ F (7.24)

∑
n∈N

Km∑
k=1

xk
m,n ≤ Km ∀m ∈M (7.25)
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∑
m∈M

Km∑
k=1

xk
m,n.wm ≤ cn ∀n ∈ N (7.26)

∑
f∈F

∑
e∈Ef :o(e)=m

sne,f .b̂f ≤
Km∑
k=1

xk
m,n.pm ∀m ∈M,n ∈ N (7.27)

af ≤ ue,f ∀e ∈ Ef , f ∈ F (7.28)

We let the objective function be to maximize the number of flows routed. Constraints (7.17)
and (7.18) indicate that the source and destination of a virtual link can be placed on at most
a single node each. Constraint (7.19) indicates that a virtual link is admitted, if and only
if, both of its edge nodes have been assigned a substrate host. Constraints (7.20) and (7.21)
ensure that the edge nodes of a virtual link cannot be placed on a given node if that nodes
does not host the required VNF type. Constraints (7.22), (7.23), and (7.24) indicate that a
flow can use at most a single instance of any VNF type, by making sure that every pair of
contiguous virtual links share at least a single host. Constraint (7.25) makes sure that the
maximum number of instances allowed for any VNF type is not violated. Constraint (7.26)
is the substrate nodes capacity constraint. Constraint (7.27) is the VNF processing capacity
constraint. Finally, Constraint (7.28) indicates whether a flow is routed.

7.3.3 The Subproblem Model

Every iteration of the master model is followed by running a subproblem to obtain a lower-
bound. Given the source and destination of every virtual link (s̄ne,f and d̄ne,f , respectively),
the subproblem attempts to route the maximum number of flows possible without violating
the substrate links capacity constraints. The subproblem model can thus be formulated as
follows:
Parameters:

• s̄ne,f =

⎧⎨
⎩1, if n is the source of edge e.

0, otherwise.

• d̄ne,f =

⎧⎨
⎩1, if n is the destination of e.

0, otherwise.

Decision Variables:
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• af =

⎧⎨
⎩1, if flow f can be admitted.

0, otherwise.

• ze,f =

⎧⎨
⎩1, if edge e of flow f is routed.

0, otherwise.

• ye,fi,j =

⎧⎨
⎩1, if edge e of flow f is routed through (i,j).

0, otherwise.

• Mathematical Model:

Max|Ef |.
∑
f∈F

af +
∑
e∈Ef

∑
f∈F

ze,f (7.29)

Subject to

∑
j:(i,j)∈L

ye,fi,j −
∑

j:(j,i)∈L
ye,fj,i = af (s̄

i
e,f − d̄ie,f ) ∀i ∈ N, e ∈ Ef ,

f ∈ F

(7.30)

∑
f∈F

∑
e∈Ef

ye,fi,j .b̂f ≤ bi,j ∀(i, j) ∈ L (7.31)

ze,f ≥ ye,fi,j ∀e ∈ Ef , f ∈ F, (i, j) ∈ L (7.32)

ze,f ≤
∑

(i,j)∈L
ye,fi,j ∀e ∈ Ef , f ∈ F (7.33)

af .|Ef | =
∑
e∈Ef

ze,f ∀f ∈ F (7.34)

The subproblem’s objective function is to maximize the number of flows admitted, as well
as the total number of virtual links routed for every flow. The purpose of this dual objective
is to encourage the subproblem to route the maximum number of flows possible (by adding
a weight on the number of flows routed), while also indicating the virtual links that could
be routed. The latter will be used to generate the piercing cuts on the virtual links that
could not be routed. Constraint (7.30) represents the flow conservation constraint, while
Constraint (7.31) measures the traffic routed through each physical link (i,j) and makes sure
that the measured traffic does not exceed the capacity of the substrate link. Constraint
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(7.32) and (7.33) indicate the virtual links routed, while Constraint (7.34) indicates that a
flow is admitted, if and only if, all of its virtual links have been routed.

7.3.4 Piercing Cuts

As we have previously mentioned, at every iteration, two classes of cuts are generated:
diversification cuts induced from the set of virtual links that could not be routed, and
separation cuts to avoid bottleneck links.

1. Diversification Cuts: At the end of every iteration of the master, the subproblem is
fed with a solution for the VNF placement and flow-to-VNF assignment subproblems.
Subsequently, the subproblem attempts to route each virtual link across the substrate
network. Let F̄ be the set of flows admitted by the master, and F̂ ⊂ F̄ be the subset of
flows that the subproblem failed to admit; that is failed to route all of its virtual links.
From this set of unrouted flows, a diversification cut can be induced to encourage the
master to step away from this solution. This can be achieved by forcing the master
to change the source or destination of at least one virtual link belonging to a flow in
F̂ . To better illustrate this, consider the example in Figure 7.4 of a flow that was

Figure 7.4: Cut Induced from Unrouted Virtual Links

admitted by the master but rejected by the subproblem. The reason why the flow was
rejected is because virtual links e2 and e4 could not be routed. The failure to route
virtual link e2 can either be caused by the location selected for its source or that of its
destination; similar observation can be said for e4. Subsequently, the cut must force
the master to change the source or destination of either e2 or e4; but not necessarily
both because re-routing one virtual link may facilitate routing the other (in case of
overlapping substrate links), and vice-versa. The proposed cut can be expressed as
se2 + de2 + se4 + de4 <= 3. Note that in the case of two contiguous unrouted virtual
links ei and ei+1, the cut will include the source of ei and the source and destination
of ei+1 (excluding the destination of ei to avoid redundancy).
To generalize this, let Êf denote the unrouted virtual links for flow f , and D denote
the total count of unrouted virtual links’s source and/or destination at the end of a
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subproblem iteration; where D can be computed as follows:

D =
∑
f∈F̂

∑
e∈Êf

∑
n∈N

s̄ne,f +
∑
f∈F̂

∑
e∈Êf :{(e+1)/∈Êf}

∑
n∈N

d̄ne,f (7.35)

Hence, the proposed cut becomes:

∑
f∈F̂

∑
e∈Êf

∑
n∈N

sne,f +
∑
f∈F̂

∑
e∈Êf :{(e+1)/∈Êf}

∑
n∈N

dne,f ≤ D − 1 (7.36)

2. Separation Cuts: In addition to the cuts induced from unrouted virtual links, we

Figure 7.5: Separation Cut

also attempt to provide additional constructive cuts to the master to promote solutions
that are more likely to yield a feasible link routing solution. To do so, for each unrouted
flow, we try to detect the bottleneck link(s) that prevented the flow from being admit-
ted by the subproblem. Subsequently, a separation cut is formulated by dividing the
substrate network into two subsets N1 and N2; where N1 includes the substrate nodes
on one end of the bottleneck link(s) and N2 the nodes on the other end as illustrated
in Figure 7.5. The role of the separation cut is thus to ensure that the total amount of
traffic routed from nodes in N1 towards nodes in N2 does not exceed the total capacity
available on the physical links connecting N1 and N2. To generalize this, let B be the
total amount of bandwidth capacity on the links connecting N1 and N2, a separation
cut can be formulated as follows:

∑
f∈F

∑
e∈sf

(sN1
e,f .d

N2
e,f + dN1

e,f .s
N2
e,f ).b̂f ≤ B (7.37)

In the following section, we elucidate the algorithmic procedure for separation cuts
generation.
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7.4 Separation Cuts Generation

In this section, we provide the procedural details for the separation cuts generation (as
shown in Algorithm 7.1). As we have previously mentioned, a separation cut is generated
to encourage the master to step away from solutions that place the VNFs of a chain around
bottleneck links. For each unrouted flow, a separation cut is generated around the bottleneck

Algorithm 7.1 Separation-Cuts-Generation Algorithm
1: Given:
2: F̂ /*Set of Unrouted Flows by the Sub-problem*/
3: S = {};
4: for each (f ∈ F̂ ) do
5: N1 = {};
6: N2 = {};
7: for each (e ∈ Ef ) do
8: if (e is routed) then
9: N1 = N1 ∪ se;

10: N1 = N1 ∪ de;
11: else
12: N̄ = RUN-BFS (se,b̂f );
13: N1 = N1 ∪ N̄ ;
14: N2 = N2 ∪ de;
15: Break
16: end if
17: end for
18: Sf = {N1,N2}
19: S = S ∪ Sf ;
20: end for
21: Return S;

links that prevented the routing of its virtual link(s). This is achieved as follows: for each
unrouted flow, the virtual links composing the flow’s chain are processed sequentially. If
the virtual link has been successfully routed by the subproblem, its source and destination
hosts (denoted as se and de respectively for each virtual link e) are placed in N1. At the first
occurrence of an unrouted virtual link, a Breadth First Search (BFS) is executed from the
host of the virtual link’s source. The aim of the BFS search is to explore the substrate nodes
that are reachable from the source of the virtual link within the requested b̂f . Subsequently
all of the reachable nodes, denoted as N̄ , are placed in N1; and the host of the virtual link’s
destination in N2. Next, all of the remaining substrate nodes (not in N1) are added to N2, and
a separation cut is thus generated. To better illustrate this, consider the example presented
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Figure 7.6: Example of a Separation Cut

in Figure 7.6. Here we observe two flows f1 and f2; f1 demands 6 units of bandwidth,
and its traffic must be routed from its ingress node n3 to its egress node n6, while being
processed along the way by two VNF types. Similarly, f2 demands 5 units of bandwidth,
and its traffic must be routed from its ingress node n3 to its egress node n6, while being
processed along the way by three VNF types. Following the execution of the master, f1’s
VNF types are placed on nodes n1 and n4, while f2’s VNF types are placed on nodes n4,
n1, and n5. Subsequently, the subproblem is invoked to execute the virtual links routing;
and we observe that f2 was admitted by the subproblem, while f1 was rejected due to the
inability to route virtual link e2. Here, Algorithm 1 is thus invoked to generate a separation
cut for f1. The algorithm begins by placing the physical source and destination of e1 in N1.
Next, e2 is detected as the first virtual link that could not be routed, and a BFS search is
launched from n1; One adjacent link of n1 has enough capacity to reach n2, but cannot move
further than n2; therefore n2 is added to N1, whereas n4 and all other remaining facility
nodes {n5, n6} are placed in N2. The generated separation cut thus indicates that the total
sum of traffic that can be routed from nodes in N1 to nodes in N2 cannot exceed 20 (total
bandwidth available on the substrate links interconnecting the two subsets). This would
force the master to move the source of e2 of flow f1 to N2, or its destination to N1 to escape
the bottleneck links in the next iteration.
The separation cut generation algorithm has a worst-case runtime of O(|F̂ |.N2). Note that
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initial separation cuts can be generated by setting each facility node n in N1, and the
remaining facility nodes in {N -n} in N2. These initial cuts can be added at the pre-processing
phase to prevent the master from assigning the source or destination of a subset of virtual
links on substrate node n, if the total demand of these virtual links exceeds the total capacity
of n’s adjacent links.

7.5 Numerical Analysis

In this section, we numerically evaluate the performance of our cut-and solve based ap-
proach against the ILP model, as well as a heuristic-based approach that we denote as the
"k-ShortestPath". The k-shortestPath heuristic is similar to Heuristic-A proposed in [174]; it
consists of finding the k shortest paths between the ingress and egress node of every flow, and
then attempts to place the VNF types associated with its policy along one of the generated
paths. The generated paths are fed to an ILP model to decide on the optimal placement of
VNFs that maximizes the number of flows admitted. In our numerical evaluation, we adopt
two random network topologies R1 with 40 nodes and 75 links, and R2 with 60 nodes and 160
links, as well as a three-layered data center (DC) network topology of 36 nodes and 48 links.
For each substrate network, we consider that each substrate node has a resource capacity of
48 CPU, and every link has a bandwidth capacity of 1 GBps. Further, the set of flows to be
routed are randomly generated with bandwidth demand in the range [25-100] Mbps, and a
random policy chain of up to 5 VNF types. The number of instances allowed for any VNF
type is in the range between [10-20], with resource demand in the range [4,6,8,12] CPU, and
a processing capacity of 1 GBps.
We decompose our numerical analysis into two sections: a performance analysis which con-
sists of evaluating the cut-and-solve based approach against the ILP model; mainly by com-
paring the execution time (scalability) of the former compared to the latter, and a compar-
ative analysis to compare the cut-and-solve against the k-shortestPath heuristic by looking
at 4 main metrics: admission, runtime, revenue, and node and link utilization. All our test
cases are performed on an 8GB RAM machine with a 3.6 GHz processing speed.

7.5.1 Performance Analysis

In this section, we evaluate the performance of our cut-and-solve based approach against
the ILP model over the data center network topology. To do so, we look at the execution
time of the ILP model against our proposed method as we vary the number of flows. The
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Table 7.1: Runtime (sec) Analysis for Data Center Network (N = 36, L = 48)

# Flows ILP Model Cut-and-Solve
Admission Runtime Admission Runtime

5 5 0.67 5 1.32
10 10 1.57 10 1.37
15 15 5.32 15 1.72
20 20 9.99 20 2.27
25 25 41.91 25 3.3
30 28 46.33 28 5.4
35 32 4506.32 32 6.42

results are illustrated in Table 7.1. Clearly, we observe that the runtime of the ILP model
grows exponentially. In fact, the ILP took 1 hour and 20 minutes to route 32 flows, while
the cut-and-solve based approach was able to achieve the same admissibility in less than 7
seconds; that is 700 times faster than the ILP model. This clearly shows that the ILP-based
approaches for solving this problem are not efficient and do not scale for larger instances.

7.5.2 Comparative Analysis

Now, we compare our cut-and-solve based approach against the k-ShortestPath algorithm
for k = 1 and k = 5. Here, we look at 4 main metrics: runtime, admission, revenue, and
node and link utilization.

• Admission:

First, we look at the total admission achieved by our proposed approach against the
k-ShortestPath heuristic. The results are illustrated in Figure 7.7. In all of the test
cases, we observe that the cut-and-solve approach achieves a higher admission than the
k-ShortestPath with k=1. For instance, to route 50 flows over the DC network (Figure
7(a)), we observe that the cut-and-solve approach achieves a 20% higher admission;
even when the number of shortest path generated for the heuristic is increased to 5 (k-
ShortestPath (k=5)). The multi-layered architecture of data center networks, although
offers multiple paths between every pair of nodes, most of these paths share the same
lower-layer links. For instance, in a FatTree network [28], each server rack is connected
to the Top-of-rack switch by a single link. Subsequently, when the lower layer links
are congested, no other alternative path will be able to route the traffic. Whereas
for the random topologies (Figures 7(b)) and 7(c), we observe that increasing the
number of shortest path generated to 5 enables the k-shortestPath algorithm to achieve
comparable results to the optimal solution. However as the size of the problem increases
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(a) DC (N=36,L=48) (b) R1 (N=40,L=75)

(c) R2 (N=60,L=160)

Figure 7.7: Admission

(as shown in Figure 7(c)), we observe that even for k set to 5, the k-shortestPath
algorithm still falls short from attaining the optimal solution (obtained by the cut-
and-solve). Further, as will be shown in the sequel, increasing the size of k comes at a
considerable cost in terms of runtime.

• Total Revenue:

Second, we look at total revenue achieved by each one of the evaluated methods
(Figure 7.8). Revenue is measured as a function of the flow’s demands in terms of
bandwidth and the number of VNF types in its policy chain; which can be expressed
as follows:

Revenue =
∏
BW

bf +
∏
V NF

|sf |. (7.38)

Here again, we observe that over the data center network, the cut-and-solve based
approach achieves a much higher revenue than the k-ShortestPath algorithm for k = 1
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(a) DC (N=36,L=48) (b) R1 (N=40,L=75)
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(c) R2 (N=60,L=160)

Figure 7.8: Total Revenue

and k = 5. Indeed, when solving the VNF assignment problem for 50 flows over the DC
network (Figure 8(a)), the cut-and-solve approach achieved 27% higher revenue than
its peers. As for the random topologies (Figures 8(b) and 8(c)), we observe that the
k-shortestPath algorithm with k=5 achieves comparable results to the optimal solution
obtained by the cut-and-solve based approach; however, this comes at a huge cost in
terms of runtime (as shown will be shown in Tables 7.2 and 7.3).

• Node and Link Utilization:

Next, we look at the node and link utilization of the cut-and-solve approach against
the k-ShortestPath Algorithm. The results are presented in Figures 7.9 and 7.10. In all
of the adopted network topologies, we observe that the cut-and-solve based approach
achieves a much lower node utilization. Hence, even when the k-shortestPath algorithm
with k=5 achieves comparable admissibility (over R1 and R2), the incurred cost in

180



(a) DC (N=36,L=48)
# Flows

N
o

d
e

 U
ti
liz

a
ti
o

n

(b) R1 (N=40,L=75)

N
o

d
e

 U
ti
liz

a
ti
o

n

(c) R2 (N=60,L=160)

Figure 7.9: Node Utilization

terms of node utilization is much higher; which is expected since the k-shortestPath
tackles the problem in a disjoint fashion by attempting to deploy VNFs on predefined
paths.
Whereas for link utilization, we observe that the k-shortestPath algorithm achieves a
much lower link utilization than the cut-and-solve based approach. To enhance the
link utilization of the cut-and-solve based approach, at each iteration, we warm-start
the subproblem by running a shortest-path algorithm (e.g. Dijkstra) and using the
obtained results as an initial solution to the subproblem. Here, if the shortest-path
algorithm was capable of routing all of the flows admitted by the master, then the sub-
problem will use the warm-start solution. Alternatively, it will try to enhance on the
solution if possible. Clearly, the cut-and-solve based approach with warm-start achieves
a much lower link utilization; for instance, over R2 and for 30 flows, the warm-start
enables the cut-and-solve based approach to achieve 27% less link utilization compared
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Figure 7.10: Link Utilization

to the cut-and-solve without warm-start (as presented in Figure 10(c)). Note that the
low node and link utilization achieved by the k-shortestPath with k=1 is a reflection
of its low admissibility, and restricted input set (single shortest path).

• Runtime Finally, we look at how the runtime of the evaluated methods varies as
we increase the number of flows. The results for random topology R1 and R2 are
presented in Tables 7.2 and 7.3, respectively. We denote the cut-and-solve with and
without warm-start as "CS w/ ws" and "CS w/o ws", respectively, and we denote the
k-ShortestPath with k=1 and k=5 as "SP (k=1)" and "SP (k=5)", respectively. Here,
we observe that runtime of all of the evaluated methods increases as we increase the
number of flows. Mainly, we find that the warm-start slightly increases the runtime of
the cut-and-solve based approach, since every iteration now entails also invoking the
shortest-path algorithm. Second, we remark that the runtime of the k-shortestPath
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Table 7.2: Runtime (sec) Analysis for R1(N = 40, L = 75)
# Flows CS w/ ws CS w/o ws SP (k=1) SP (k=5)

5 0.94 0.76 0.04 0.17
10 2.02 1.59 0.08 0.24
15 3.22 2.30 0.09 0.34
20 4.68 3.32 0.09 0.59
25 7.92 5.72 0.17 1.05
30 13.42 9.66 0.58 17.33
35 31.4 26.10 1.05 195.97
40 46.12 39.63 1.91 567.24
45 59.3 50.61 3.93 6424.6

Table 7.3: Runtime (sec) Analysis for R2(N = 60, L = 160)
# Flows CS w/ ws CS w/o ws SP (k=1) SP (k=5)

5 2.42 1.7 0.05 0.14
10 5.4 3.64 0.06 0.37
15 9.4 5.51 0.09 0.46
20 21 14.43 0.13 9.42
25 48 38.33 0.22 32484

algorithm is greatly affected by the number of paths generated. Namely, for R2 and
20 flows, the k-shortestPath algorithm with k=5 is 72 times slower than the case
where k=1. However, recall that generating more paths allows for higher admissability
and achievable revenue. Finally, we observe that although the k-shortestPath with
k=5 achieves comparable admissibility to the cut-and-solve over R1 and R2 network
topologies; it is also highly unscalable. Namely, over R2 and for 25 flows, it took 9
hours to return a solution that is at 4% gap from optimal (achieved by the cut-and-
solve method as shown in Figure 7(c)).
As for the cut-and-solve based approach, we observe that its runtime also increases with
the number of flows; yet in our test cases it remained less than a minute. For highly
dynamic network traffic, our proposed approach may complement existing heuristic-
based techniques by offering a timely approach that allows to evaluate the quality of
the obtained solution, and can also be employed for periodic reconfiguration to enhance
the substrate network’s utilization over time.
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7.6 Conclusion

In this chapter, we tackled the VNF-assignment problem. A prominent problem in the litera-
ture, where most of the existing contributions consisted of unscalable ILP-based approaches,
or heuristics with no guarantee on the quality of the obtained solution. As opposed to exist-
ing work, we proposed a cut-and-solve based approach to solve exactly the VNF assignment
problem. Our cut-and-solve method is equipped with two classes of piercing cuts that allow
for quick convergence. We compared our proposed technique against the ILP formulation, as
well as a heuristic-based method, and we have found that our approach can solve the VNF
assignment problem to optimality within a considerably much faster runtime.

184



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This dissertation is concerned with the problems of traffic and resource management in ro-
bust cloud data center networks. Both of these concerns are vital for enabling and supporting
the multi-million dollar business of cloud computing. The traffic management concern is due
to the unprecedented growth of the underlying infrastructure that runs cloud services, and
the traffic shift from N/S to E/W. The resource allocation problem on the other hand is re-
lated to the virtualization of the cloud infrastructure that enabled better resource utilization
due to consolidation, while also evoking the virtual-to-physical resource mapping problem;
or what we referred to, throughout this manuscript, as the VNE problem.
We approached the problem of traffic management with policy-aware and policy-oblivious
flows, where Chapter 2 addressed the latter by solving the NP-Complete VLAN assignment
problem, and Chapter 7 tackled the former by studying the VNF assignment problem. As
for the VNE problem, we introduced in Chapter 3 the VNE for services with one-to-many
communication mode, and due to the failure prone nature of the cloud infrastructure, we
dedicated Chapters 4, 5, and 6 to study the VNE with survivability and availability guaran-
tees.
Namely in Chapter 2, we presented the traffic engineering problem in Layer-2 data center
networks. Here, we showed that the use of multiple VLANs allows to overcome the limita-
tions of the inherent traffic splitting technique of Layer-2 Ethernet switches. This lead us to
define the NP-Complete VLAN assignment problem and elucidate on its exponential search
space. Subsequently, we proposed an exact and a semi-heuristic decomposition to solve the
VLAN assignment problem. Through numerical analysis we have shown that our proposed
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decomposition explores less than 1% of the available search space, with an optimality gap of
at most 4%.
In Chapter 3, we shifted our attention towards the resource allocation problem. By sur-
veying the literature, we have shown that most of the existing work overlooked the mode
of communication that cloud services may exhibit. Subsequently, in this dissertation, we
considered the VNE problem for services with one-to-many communication mode, and pre-
sented the unique properties that differentiate multicast from one-to-one (unicast) services,
as well as enlisted many real-life cloud services that can benefit from such a tailored embed-
ding scheme. In this regard, we formally defined the multicast VNE problem and proved its
NP-Hard nature in arbitrary graphs. We proposed a 3-Step approach for solving the MVNE
problem, and proved that it can obtain optimal solution in polynomial time when employed
for MVNs with homogeneous resource demands over tree-like DCN. For arbitrary graphs
and MVNs with heterogeneous resource demands, we proposed a Tabu-based meta-heuristic
for solving the MVNE problem. Through our numerical evaluation, we have shown that
our Tabu-based MVNE achieves promising results over peer embedding techniques within
encouraging runtime.
To ensure service continuity in failure-prone data center networks, in Chapters 4 and 5 we
studied the survivable VNE problem against facility node failure. In Chapter 4, we con-
sidered the survivable VNE problem for unicast services, and we focused on the proactive
scheme that consists of redesigning VNs into survivable VNs by augmenting the service with
backup/redundant nodes. We showcased the limitation of existing literature that fix the
number of backup nodes to a predefined constant value, and presented several motivational
examples to support this claim. Further, we presented a novel prognostic redesign technique
that we dubbed as "ProRed". ProRed’s redesign not only finds the number of backup nodes
needed, it also determines which subset of nodes each backup will protect, as well as its
placement/location that promotes backup sharing. Via numerical analysis, we showcased
the multiple gains that ProRed achieves compared to existing redesign techniques in the
literature.
Chapter 5 also considered the survivable VNE problem; however it focused on the case of
multicast services and proposed a reactive scheme to repair/restore multicast services in the
event of facility node failure. Similarly to VNE, existing work on survivable VNE also over-
looked the various mode of communication of cloud services. To this extent, this Chapter
was devoted towards understanding the impact of failure on MVNs residing in cloud DCN.
We formally defined the MVN restoration problem, and proved its NP-Complete nature.
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Further, we proved that this problem can be solved in polynomial-time over tree-like DCN
topologies.
Along the same efforts, we also considered the problem of providing a guarantee on service
continuity by studying the "availability-aware" VNE problem. Here, the availability of the
cloud service is the product of the availability of the physical servers hosting it. By surveying
the existing literature on availability-aware VNE, we showed that existing work overlooked
the problem of "availability-overprovisioning" which can greatly limit the admissibility of
the substrate network. Further, the VN resource demands were considered static; as in their
demands do not change overtime; which goes against the elastic nature of cloud services. To
this extent, in Chapter 6 we proposed a novel framework that consists of two main mod-
ules: JENA an availability-aware embedding module for incoming services that provides
"just-enough" availability, and ARES a reconfiguration module that manages the scale-up
requests of hosted services over time while maintaining the "just-enough" availability guar-
antees. Our proposed framework presents encouraging gains over existing and benchmark
schemes in terms of enhanced admissibility and long-term revenue.
Finally, in Chapter 7 we revisited the traffic management problem but this time we tack-
led the case of policy-aware traffic flows. We considered the problem of policy-aware traffic
steering via "softwarized" network functions; commonly referred to as the NP-Complete
VNF assignment problem. Here, most existing work consisted of ILP or heuristic based
approaches; where the former lacks scalability and the latter provides no guarantees on the
quality of the obtained solution. In this regard, we presented a cut-and-solve based ap-
proach for the VNF assignment problem which consists of decomposing the problem into
two subproblems: a master and a subproblem. At every iteration, constructive piercing cuts
are extracted from the subproblem and introduced to the master to tighten its search space
until it converges to the optimal solution. Through our numerical evaluation, we showed
that our approach achieves optimal solutions 700 times faster than ILP-based formulations.

8.2 Future Work

This thesis presented significant contributions in the areas of traffic and resource manage-
ment for robust cloud data center networks. Yet, there exists several interesting future
research directions that can be explored:
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• For the proposed decomposition method presented in Chapter 2, and as we have pre-
viously mentioned, employing a more effective technique to go from the relaxed LP
solution to the integral ILP solution can potentially improve our model’s optimality
gap. Hence, an interesting research direction can be to explore the impact of such
techniques (e.g., branch-and-bound) to affirm this proclamation. Also, in our pro-
posed work, we have assumed that the traffic demands are given. VLAN assignment
problem with unknown traffic demands is a more challenging problem, thus another
interesting future direction for this work is to devise an efficient online decomposition
model that can handle the unpredictable nature of demands in cloud data centers.
Another crucial point is to characterize traffic flows with more metrics, such as delay
sensitivity, in order to broaden the scope of our current model.

• As for the MVNE problem presented in Chapter 3, given the dynamic nature of cloud
services, an interesting future direction can be to propose a re-optimization technique
to improve the network’s resource utilization over time as MVNs leave the substrate
network. Further to widen the scope of our suggested embedding technique, it would be
interesting to study the problem of embedding VNs with heterogeneous communication,
including the case where a single VN includes both unicast and multicast jobs.

• Now for the prognostic redesign proposed in Chapter 4, it would be interesting to
explore the SVN design problem to handle multiple network components failure (which
is rare but probable). Another important study can be to consider the SVN design
problem for services with different mode of communication.

• For the problem of managing scaling requests of availability-aware services; recall that
ARES only manages scale-up requests. Hence, and interesting extension for this work
is to consider the problem of reconfiguring VN scale-down requests to optimize sub-
strate network utilization efficiency over time, as well as the problem of reconfiguring
VN scaling requests following bandwidth demands increase and/or arrival of new com-
munication requirements.

• Finally, VNF is still in its infancy; and there exists multiple problems that need to be
tackle to facilitate and enable its support. Some of the interesting research directions
in this area is the availability-aware VNF assignment problem. Here, the availability
of VNs is the product of the availability of the servers hosting its VMs, as well as the
hosts of the various VNFs processing the communication demand between these VMs.
The problem is also particularly more interesting in the case of stateless VNFs that are
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shared by multiple tenants.
Another equally important problem is the problem of VNF scheduling. This problem
arises in the case of stateless VNFs that are shared by multiple tenants. Here, the
network provider must find the optimal way to schedule/organize the usage of different
VNFs by different tenant flows. The problem is further aggravated when tenant’s
jobs are associated with deadlines and the network provider aims to achieve energy
conservation by consolidating/processing tenants’s jobs with the minimal number of
VNFs. Another interesting factor that comes into play is managing the scheduling
of VNFs for traffic flows for VNFs residing on distinct hosts (e.g., for fault-tolerance
purposes). Here in addition to the time needed for each VNF to process the incoming
flows, the transmission time to for from VNF to another must also be factored-in.
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Chapter 9

Appendix

9.1 Enumerating All Spanning Trees in a FatTree Net-

work

The FatTree network consists of a multi-rooted tree-like topology built out of 3 layers of
K-port switches, that connect K3

4
Server Racks (SR). It consists of K pods, where each

pod hosts 2 layers of switches: K
2

Aggregate Switches (AS) connected to K
2

Top of Rack
(ToR) switches, forming a complete bipartite graph inside every pod. Further, each K

2
ToR

is connected to K
2

SRs, and each K
2

ASs is connected to K
2

Core Switches (CS). Our spanning
trees enumeration for the FatTree network is performed under the following constraint:
Constraint for Loop-Free Trees: A packet that is sent upwards from a source, can only
change its direction once to go downwards towards recipient nodes.
Under this constraint, it has been proven [19] that any distribution tree constructed in the
FatTree network will always be loop free. This constraint implies that starting at a particular
source node, this node has a choice of a single ToR to forward the traffic upwards into the
pod. Next, the ToR has a choice of k

2
ASs to forward the traffic to. The selected ASs will

then need to either move the traffic upwards to CSs, or downwards to ToRs, or both. Each
AS has the choice of k

2
- 1 ToRs and k/2 CSs as shown in Figure 5.4. We denote Lc as the

number of ways a ToR switch goes up to n ASs, where only c of them are allowed to leave
the pod. Lc can be formulated as follows:

Lc =

k
2∑

i=c

(
k
2

i

)(
i

c

) c∑
j=0

(
c

j

)
D(i− c+ j,

k

2
− 1) (9.1)
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D(n,m) represents the number of ways m ToRs can be connected to n ASs, where each
AS is connected to at least a single ToR and not two ASs are connected to the same ToR.
D(n,m) is a recurrence that can be computed as follows:

D(n,m) =

m−(n−1)∑
j=1

(
m

j

)
D(n− 1,m− j) (9.2)

; such that :

D(n,m) =

⎧⎨
⎩0, n = 0 || n > m

1, n = 1
(9.3)

Now, for a given Lc, c ASs are designated to leave the pod, that is each one of these ASs
must select at least one CS out of its corresponding k

2
CSs. Note that each AS in a given

pod is connected to distinct k
2

CSs. The selected CSs must span all the remaining k-1 pods.
Assume the case where c ASs where designated to channel the traffic upwards, then the
number of ways these c ASs can pick among their k

2
CSs to span the remaining k-1 pods (to

reach other SRs) can be computed using the following recurrence:

D′(c, k − 1) =

k
2∑

j=1

(
k
2

j

) k−c∑
i=j

(
k − 1

i

)
D(j, i)D′(c− 1, k − 1− i) (9.4)

Note that here again, we can make use of our recurrence D(n,m) presented in Equation
9.4 to compute the number of ways m pods can be distributed to n CSs, where each CS is
connected to at least one pod, and not two CSs are connected to the same pod.
Overall, the total number of spanning trees in a FatTree network is equal to

∑ k
2
c=1 LcD

′
c.

9.2 JENA: VNE with Just-Enough Availability

Tabu is a widely adopted meta-heuristic algorithm, which was proven capable of achieving
optimal and near-optimal solutions for various optimization problems. The most attractive
feature of Tabu-based search is the use of "adaptive memory" to direct the search towards
solutions that best service the desired objective function. In this work, we adopt the tabu-
based search to find node mapping solution for every incoming VN that minimizes the amount
of excess availability. In what follows, we present the various components of our Tabu-based
approach for solving the availability-aware VNE.
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1. Initial Bare-Bone Solution: Our initial solution is obtained via a greedy embedding
heuristic, by mapping the VMs on the feasible physical nodes with the highest avail-
ability. If the greedy embedding returns a feasible solution with excessive availability,
then the Tabu search is launched in the aim to find the lowest-cost embedding solution
with "just-enough" availability. However, if the greedy placement failed to find an
embedding solution that meets the requested availability demand, then this VN must
be augmented with additional protection domains. Given the selection policy dictated
by the cloud provider, the VN is augmented iteratively with a backup node, that is
placed on the first vacant host with the highest availability. At every iteration, the
availability of the VN is evaluated again. Once the availability of the initial greedy
embedding solution surpasses the acceptable threshold, the algorithm proceeds to en-
hance on the solution found. Note that if no greedy embedding solution can be found
due to resource scarcity, the VN request is rejected.

2. The Neighborhood Structure: We define a move mv
n,n′ to be a shift of a virtual

node v from one physical node n to another n′. Each virtual node v finds a set of
candidate moves Cv by exploring the physical nodes within k hops from its current host
location. While selecting the set of candidate moves, an active pruning is employed
where candidate moves are automatically discarded if they fail to satisfy the resource
requirement of v, or drop the overall availability of the virtual network below the
requested value. The union of all candidate moves for the given virtual network is
denoted as C. Next, the cost of each candidate move m ∈ C is evaluated, using the
following equation:

Costm = L+ P1 (9.5)

where L represents the sum of the load on each substrate host. Here, choosing the move
with the least cost aims to encourage solutions that balance the load across the network,
and hence on the long run increase the network’s admissibility. Next, P1 represents
the penalty function for excessive availability. It consists of multiplying every unit of
excess availability by 100. This allows Tabu to converge towards a solution that offers
"just-enough" availability.

3. Tabu Moves: We keep track of two Tabu lists, one for the virtual nodes and another
for the physical nodes. We fix the size of the Tabu list for the virtual nodes to be equal
to 2, and that of the physical nodes to 7. Every time a move mv

n,n′ is chosen from the
set of candidate moves C, v is placed in the Tabu list of virtual nodes, and the source
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host n is added to the Tabu list of physical nodes. By marking both v and n as Tabu,
this prevents the selection of a future move that will place v back on n for the next
x iterations (throughout our numerical results we let x be 7), thus reversing the move
just made.

4. Aspiration and Diversification Strategies: The aspiration criteria consists of free-
ing a move from its Tabu status if it returns a solution with a cost lower than the best
known solution so far. Finally, we set two main diversification strategies : a "random
restart" and "penalizing moves with high frequency". The random restart is launched
when no candidate moves can be found at a given iteration. The second diversification
strategy consists of penalizing moves with a move frequency higher than x (x = 7 in
our numerical results); that is moves that have been selected as the best candidate
move for x number of iterations. The goal of these diversification strategies it to allow
Tabu to leap into the unexplored search space.

Our Tabu’s stopping criteria is set as the number of k consecutive iterations with no improve-
ment. Once the stopping criteria is met, Tabu returns a node mapping solution for the VN
in question. Next, the link mapping phase is launched using a shortest path algorithm (e.g.,
Dijkstra). It could happen that the best node mapping solution obtained by Tabu yields an
infeasible link mapping solution. In this regard, we let Tabu keep track of x best solutions
found (x is set to 7 in our experimental results). Assume Tabu executes at most I iterations,
then the worst-case complexity of our proposed Tabu-based search is O(I.|V |.|N2|).

211


