871 research outputs found

    Hybrid Cloud Model Checking Using the Interaction Layer of HARMS for Ambient Intelligent Systems

    Get PDF
    Soon, humans will be co-living and taking advantage of the help of multi-agent systems in a broader way than the present. Such systems will involve machines or devices of any variety, including robots. These kind of solutions will adapt to the special needs of each individual. However, to the concern of this research effort, systems like the ones mentioned above might encounter situations that will not be seen before execution time. It is understood that there are two possible outcomes that could materialize; either keep working without corrective measures, which could lead to an entirely different end or completely stop working. Both results should be avoided, specially in cases where the end user will depend on a high level guidance provided by the system, such as in ambient intelligence applications. This dissertation worked towards two specific goals. First, to assure that the system will always work, independently of which of the agents performs the different tasks needed to accomplish a bigger objective. Second, to provide initial steps towards autonomous survivable systems which can change their future actions in order to achieve the original final goals. Therefore, the use of the third layer of the HARMS model was proposed to insure the indistinguishability of the actors accomplishing each task and sub-task without regard of the intrinsic complexity of the activity. Additionally, a framework was proposed using model checking methodology during run-time for providing possible solutions to issues encountered in execution time, as a part of the survivability feature of the systems final goals

    Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner

    Get PDF
    [EN] Emerging wireless networks have brought Internet and communications to more users and areas. Some of the most relevant emerging wireless technologies are Worldwide Interoperability for Microwave Access, Long-Term Evolution Advanced, and ad hoc and mesh networks. An open challenge is to ensure the reliability and robustness of these networks when individual components fail. The survivability and performance of these networks can be especially relevant when emergencies arise in rural areas, for example supporting communications during a medical emergency. This can be done by anticipating failures and finding alternative solutions. This paper proposes using big data analytics techniques, such as decision trees for detecting nodes that are likely to fail, and so avoid them when routing traffic. This can improve the survivability and performance of networks. The current approach is illustrated with an agent based simulator of wireless networks developed with NetLogo and data mining processes designed with RapidMiner. According to the simulated experimentation, the current approach reduced the communication failures by 51.6% when incorporating rule induction for predicting the most reliable routes.This work was supported in part by the research project Construccion de un framework para agilizar el desarrollo de aplicaciones moviles en el a mbito de la salud through the University of Zaragoza and Foundation Ibercaja under Grant JIUZ-2017-TEC-03, in part by the Universidad de Zaragoza, in part by the Fundacion Bancaria Ibercaja, in part by the Fundacion CAI in the Programa Ibercaja-CAI de Estancias de Investigacion under Grant IT1/18, in part by the program Estancias de movilidad en el extranjero Jose Castillejo para jovenes doctores through the Spanish Ministry of Education, Culture and Sport under Grant CAS17/00005, in part by the Desarrollo Colaborativo de Soluciones AAL through the Spanish Ministry of Economy and Competitiveness under Grant TIN2014-57028-R, in part by the Organismo Autonomo Programas Educativos Europeos under Grant 2013-1-CZ1-GRU06-14277, and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the project under Grant TIN2017-84802-C2-1-P.García-Magariño, I.; Gray, G.; Lacuesta Gilabert, R.; Lloret, J. (2018). Survivability Strategies for Emerging Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner. IEEE Access. 6:27958-27970. https://doi.org/10.1109/ACCESS.2018.2825954S2795827970

    Big Data Analytics for Complex Systems

    Get PDF
    The evolution of technology in all fields led to the generation of vast amounts of data by modern systems. Using data to extract information, make predictions, and make decisions is the current trend in artificial intelligence. The advancement of big data analytics tools made accessing and storing data easier and faster than ever, and machine learning algorithms help to identify patterns in and extract information from data. The current tools and machines in health, computer technologies, and manufacturing can generate massive raw data about their products or samples. The author of this work proposes a modern integrative system that can utilize big data analytics, machine learning, super-computer resources, and industrial health machines’ measurements to build a smart system that can mimic the human intelligence skills of observations, detection, prediction, and decision-making. The applications of the proposed smart systems are included as case studies to highlight the contributions of each system. The first contribution is the ability to utilize big data revolutionary and deep learning technologies on production lines to diagnose incidents and take proper action. In the current digital transformational industrial era, Industry 4.0 has been receiving researcher attention because it can be used to automate production-line decisions. Reconfigurable manufacturing systems (RMS) have been widely used to reduce the setup cost of restructuring production lines. However, the current RMS modules are not linked to the cloud for online decision-making to take the proper decision; these modules must connect to an online server (super-computer) that has big data analytics and machine learning capabilities. The online means that data is centralized on cloud (supercomputer) and accessible in real-time. In this study, deep neural networks are utilized to detect the decisive features of a product and build a prediction model in which the iFactory will make the necessary decision for the defective products. The Spark ecosystem is used to manage the access, processing, and storing of the big data streaming. This contribution is implemented as a closed cycle, which for the best of our knowledge, no one in the literature has introduced big data analysis using deep learning on real-time applications in the manufacturing system. The code shows a high accuracy of 97% for classifying the normal versus defective items. The second contribution, which is in Bioinformatics, is the ability to build supervised machine learning approaches based on the gene expression of patients to predict proper treatment for breast cancer. In the trial, to personalize treatment, the machine learns the genes that are active in the patient cohort with a five-year survival period. The initial condition here is that each group must only undergo one specific treatment. After learning about each group (or class), the machine can personalize the treatment of a new patient by diagnosing the patients’ gene expression. The proposed model will help in the diagnosis and treatment of the patient. The future work in this area involves building a protein-protein interaction network with the selected genes for each treatment to first analyze the motives of the genes and target them with the proper drug molecules. In the learning phase, a couple of feature-selection techniques and supervised standard classifiers are used to build the prediction model. Most of the nodes show a high-performance measurement where accuracy, sensitivity, specificity, and F-measure ranges around 100%. The third contribution is the ability to build semi-supervised learning for the breast cancer survival treatment that advances the second contribution. By understanding the relations between the classes, we can design the machine learning phase based on the similarities between classes. In the proposed research, the researcher used the Euclidean matrix distance among each survival treatment class to build the hierarchical learning model. The distance information that is learned through a non-supervised approach can help the prediction model to select the classes that are away from each other to maximize the distance between classes and gain wider class groups. The performance measurement of this approach shows a slight improvement from the second model. However, this model reduced the number of discriminative genes from 47 to 37. The model in the second contribution studies each class individually while this model focuses on the relationships between the classes and uses this information in the learning phase. Hierarchical clustering is completed to draw the borders between groups of classes before building the classification models. Several distance measurements are tested to identify the best linkages between classes. Most of the nodes show a high-performance measurement where accuracy, sensitivity, specificity, and F-measure ranges from 90% to 100%. All the case study models showed high-performance measurements in the prediction phase. These modern models can be replicated for different problems within different domains. The comprehensive models of the newer technologies are reconfigurable and modular; any newer learning phase can be plugged-in at both ends of the learning phase. Therefore, the output of the system can be an input for another learning system, and a newer feature can be added to the input to be considered for the learning phase

    Developing Frameworks to Assess Impacts of Multiple Drivers of Change on Grassland System

    Get PDF
    Grassland systems face many simultaneous pressures including market and policy compliance that operate from local to global scale. The ability to adapt to these pressures against a background of constrained natural resources and inputs is vital to the continued success of the grassland livestock industry and all those dependent on its outputs. New Zealand and Uruguay collaborators have been developing a suite of tools and processes embedded in an “innovation platform” to enable farmers, agribusiness and policy planners to engage and collectively learn about the impact of their interacting individual decisions and strategies. We describe the generic framework and demonstrate examples of the tools and processes used and their applicability across scale in both New Zealand and Uruguay

    Understanding Behavior of System of Systems Through Computational Intelligence Techniques

    Get PDF
    The world is facing an increasing level of systems integration leading towards systems of systems (SoS) that adapt to changing environmental conditions. The number of connections between components, the diversity of the components and the way the components are organized can lead to different emergent system behavior. Therefore, the need to focus on overall system behavior is becoming an unavoidable issue. The problem is to develop methodologies appropriate for better understanding behavior of system of systems before the design and implementation phase. This paper focuses on computational intelligence techniques used for analysis of complex adaptive systems with the aim of identifying areas that need methodology customization for SoS analysis

    Driving venture capital funding efficiencies through data driven models. Why is this important and what are its implications for the startup ecosystem?

    Get PDF
    This thesis aims to test whether data models can fit the venture capital funding process better, and if they do fit, can they help improve the venture capital funding efficiency? Based on the reported results, venture capitalists can only see returns in 20% of their investments. The thesis argues that it is essential to help venture capital investment as it can help drive economic growth through investments in innovation. The thesis considers four startup scenarios and the related investment factors. The scenarios are a funded artificial intelligence startup seeking follow-on funding, a new startup seeking first funding, the survivability of a sustainability-focused startup, and the importance of patents for exit. Patents are a proxy for innovation in this thesis. Through quantitative analysis using generalized linear models, logit regressions, and t-tests, the thesis can establish that data models can identify the relative significance of funding factors. Once the factor significance is established, it can be deployed in a model. Building the machine learning model has been considered outside the scope of this thesis. A mix of academic and real-world research has been used for the data analysis of this thesis. Accelerators and venture capitalists also used some of the results to improve their own processes. Many of the models have shifted from a prediction to factor significance. This thesis implies that it could help venture capitalists plan for a 10% efficiency improvement. From an academic perspective, this study focuses on the entire life of a startup, from the first funding stage to the exit. It also links the startup ecosystem with economic development. Two additional factors from the study are the regional perspective of funding differences between Asia, Europe, and the US and that this study would include the recent economic sentiment. The impact of the funding slowdown has been measured through a focus on first funding and longitudinal validations of the data decision before the slowdown. Based on the results of the thesis, data models are a credible alternative and show significant correlations between returns and factors. It is advisable for a venture capitalist to consider these
    corecore