
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2018

Hybrid Cloud Model Checking Using the Interaction Layer of Hybrid Cloud Model Checking Using the Interaction Layer of

HARMS for Ambient Intelligent Systems HARMS for Ambient Intelligent Systems

Mauricio Alejandro Gomez Morales
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Gomez Morales, Mauricio Alejandro, "Hybrid Cloud Model Checking Using the Interaction Layer of HARMS
for Ambient Intelligent Systems" (2018). Open Access Dissertations. 2032.
https://docs.lib.purdue.edu/open_access_dissertations/2032

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/2032?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2032&utm_medium=PDF&utm_campaign=PDFCoverPages

HYBRID CLOUD MODEL CHECKING

USING THE INTERACTION LAYER OF HARMS FOR

AMBIENT ASSISTIVE LIVING ENVIRONMENTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Mauricio Alejandro Gomez Morales

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Eric T. Matson, Chair

Department of Computer and Information Technology

Dr. John A. Springer

Department of Computer and Information Technology

Dr. Byung-Cheol Min

Department of Computer and Information Technology

Dr. Abdelghani Chibani

University Paris-Est Creteil, LISSI LAB

Approved by:

Dr. Kathryne A. Newton

Head of the Graduate Program

iii

Dedicated to God, my parents, and my nieces.

Armin and Aura; one has always been my example to follow, the other has taught

me to be patient and persistent at the same time.

Alejandra, Jimena, and Daniela who with their creativity and energy have indirectly

given me a push to keep fighting.

iv

ACKNOWLEDGMENTS

The goal that I am achieving this time has been a success not only because of my

own effort. On the contrary, all this would not have been possible without the help

of many people. I feel blessed for that and I would like to specially thank to:

First, I feel greatly thankful with my major professor, Dr. Eric T. Matson. He

has dedicated tons of time to guide me throughout all this process. I have witnessed

how he truly worries about his students, including me, not only in areas such as

professional, research, and studies but in personal matters as well. He is always

looking to open opportunities where his students can go making their own path. And

after meeting him, I can say that now I have seen a way of how to be a good professor

when I get the chance to be part of a faculty team.

Second, I would like to thank Dr. Amirat, Dr. Chibani, Dr. Springer, and Dr.

Min, who have given me good insights to improve my dissertation.

Third, thanks to all my family members, Armin, Aura, Armin (Jr.), Margarita,

Alejandra, Jimena, Daniela, Fernando, and Olga who have always been cheering me

up throughout all this long walked road.

Fourth, I am very happy that God has put all that people that I can call friends,

relatives, and labmates who have been there with me. Special gratitude to Nathalie,

my best friend, who in spite the distance, the difference of time, and any imaginable

issue, there is not a time I cannot recall of listening or reading the right words at the

right time from her.

Finally, this dissertation was conducted in Cotutelle research cooperation with

the LISSI Lab and the University of Paris-Est, Creteil.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1

1.1 Problem Statement . 2

1.2 Scope . 3

1.3 Significance . 3

1.4 Research Questions . 4

1.5 Assumptions . 4

1.6 Limitations . 5

1.7 Delimitations . 5

1.8 Summary . 6

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 7

2.1 Distributed Artificial Intelligence and Multi-Agent Systems 7

2.1.1 MAS Interaction models . 8

2.1.2 Agent Oriented Metodologies 11

2.1.3 Organization Oriented Methodologies 14

2.2 Autonomous Behavior . 19

2.2.1 Self-adaptive / Self-protection / Self-healing 20

2.2.2 Verification . 21

2.2.3 Model Checking . 22

2.2.4 Online Detection and Testing 23

2.2.5 Self-adaptation for MAS . 30

2.2.6 State Explosion Problem . 32

vi

Page

2.3 State Explosion Solutions . 33

2.3.1 Symbolic Model Checking . 34

2.3.2 Partial Order Reduction . 34

2.3.3 Counterexample-guided Abstraction Refinement 34

2.3.4 Bounded Model Checking . 35

2.3.5 Cloud Computing . 35

2.4 Cloud Computing Strategies . 35

2.4.1 MapReduce . 36

2.4.2 Verification as a Service . 40

2.5 Summary . 43

CHAPTER 3. HARMS - A MULTI-ACTOR SYSTEM MODEL 44

3.1 Layers of HARMS . 45

3.1.1 Network Layer . 45

3.1.2 Communication Layer . 46

3.1.3 Interaction Layer . 46

3.1.4 Organization Layer . 47

3.1.5 Collective Intelligence Layer . 47

3.2 HARMS model implementations . 47

3.2.1 Enabling features of multi-actor systems 47

3.2.2 Human-robot interaction and AmI environments 49

3.2.3 Safety applications . 50

3.3 Analysis and Design of Third Layer of HARMS 51

3.3.1 Problem Analysis . 52

3.3.2 Interaction Layer Design . 54

3.3.3 Initial configuration of each execution 65

3.4 Negotiation and decision making using HARMS 66

3.4.1 Autonomous bootstrapping or Leader selection 66

3.5 Summary . 70

vii

Page

CHAPTER 4. INDISTINGUISHABILITY AND SURVIVABILITY IN MAS . . 71

4.1 Guiding a person to perform a specific activity 75

4.1.1 Related work . 75

4.1.2 AAL systems . 76

4.1.3 Proposed Framework . 79

4.1.4 Complexity Analysis . 91

4.1.5 Experiments . 92

4.2 Monitoring hazardous situations within a smart home environment . . 94

4.2.1 Problem definition . 94

4.2.2 Model definition . 97

4.2.3 Algorithms definition . 99

4.2.4 Experimental setup . 101

4.2.5 Experiment cases . 113

4.2.6 Results . 114

4.3 Survivability as feature of MAS . 115

4.3.1 System survivability . 116

4.3.2 Algorithms and complexity analysis 116

4.3.3 Experimental setup . 126

4.3.4 Models evaluation . 127

4.3.5 Experiment cases . 136

4.4 Summary . 140

CHAPTER 5. CONCLUSIONS . 142

5.1 Contributions . 142

5.2 Conclusions . 143

5.3 Future Work . 144

REFERENCES . 146

viii

LIST OF TABLES

Table Page

4.1 Capabilities by actor for HARMS implementation 93

4.2 List of actors in Kitchen Monitoring . 110

4.3 List of capabilities assigned by actor in Safe Kitchen Scenario 112

4.4 Measuring indistinguishability . 115

4.5 Actors with self-healing capability . 124

ix

LIST OF FIGURES

Figure Page

2.1 Design Patterns for Multi-Agent Systems 11

2.2 Organization Paradigms Comparison . 15

2.3 Relations and Properties on Self-healing Research 21

2.4 High-level view of a run-time monitor . 26

2.5 Process of Model-Based Testing . 28

2.6 Self-adaptive software solution . 32

2.7 Reference Model for SA-MAS . 33

2.8 MapReduce Execution Overview . 37

2.9 CTL Model Checking Algorithm Using MapReduce (a) first iterative pro-
cedure, (b) system . 38

2.10 MaRDiGraS: Hybrid Iterative MapReduce Model 40

2.11 SyLVaaS VaaS architecture . 41

2.12 SyLVaaS: (a) Workflow and deployment, (b) Parallel trace 43

3.1 HARMS interaction layer components . 55

3.2 Example of capabilities.json file . 60

3.3 Example of capabilitiesImplemented.json file 61

3.4 Example of executionCapabilities.json file 62

3.5 Basic Workflow of the receive message process 63

4.1 Take me to sleep scenario drawing . 80

4.2 HARMS actors . 82

4.3 Actor Interaction Workflow of HARMS Implementation 90

4.4 Safe cooking interaction diagram . 96

4.5 Safe Kitchen Processes . 98

4.6 Data Analysis Component Workflow . 102

x

Figure Page

4.7 Temperature sensor configuration . 105

4.8 Gas sensor configuration . 107

4.9 Safe kitchen actors diagram . 111

4.10 Workflow of survivability process . 119

4.11 Self-healing actors interaction diagram 122

4.12 Self-healing original diagram . 123

4.13 Results of model check activity of general scenario 125

4.14 General configuration of virtual machines in BDCF 128

4.15 BDCF platform diagram for self-healing 137

4.16 Execution time depending on number of actors with model checking ca-
pability . 139

4.17 Execution time depending on number of models to verify 140

xi

ABSTRACT

Gomez, Mauricio A. Ph.D., Purdue University, August 2018. Hybrid Cloud Model
Checking Using the Interaction Layer of HARMS for Ambient Assistive Living
Environments. Major Professor: Eric T. Matson Professor.

Soon, humans will be co-living and taking advantage of the help of multi-agent

systems in a broader way than the present. Such systems will involve machines or

devices of any variety, including robots. These kind of solutions will adapt to the

special needs of each individual. However, to the concern of this research effort,

systems like the ones mentioned above might encounter situations that will not be

seen before execution time. It is understood that there are two possible outcomes

that could materialize; either keep working without corrective measures, which could

lead to an entirely different end or completely stop working. Both results should be

avoided, specially in cases where the end user will depend on a high level guidance

provided by the system, such as in ambient intelligence applications.

This dissertation worked towards two specific goals. First, to assure that the

system will always work, independently of which of the agents performs the different

tasks needed to accomplish a bigger objective. Second, to provide initial steps towards

autonomous survivable systems which can change their future actions in order to

achieve the original final goals. Therefore, the use of the third layer of the HARMS

model was proposed to insure the indistinguishability of the actors accomplishing

each task and sub-task without regard of the intrinsic complexity of the activity.

Additionally, a framework was proposed using model checking methodology during

run-time for providing possible solutions to issues encountered in execution time, as

a part of the survivability feature of the systems final goals.

1

CHAPTER 1. INTRODUCTION

Long ago humans stopped having those futuristic thoughts of looking at robots walk-

ing, moving, even flying by themselves. In recent times, instead, the research commu-

nity started developing and designing robots to interact either with humans or with

other robots and machines. Many real world problems can only be elucidated by a

set of different individuals that work together towards finding and executing specific

solutions. Some examples for groups of human activities are the construction of a

bridge, surveillance of a wide mountainous area, musical performances, and military

missions. Likewise, there are a number of reasons to think that achieving coopera-

tion between any number of humans, machines, and robots will soon be needed to

overcome specific problems in the future.

When multi-agent systems become pervasive and integrated within human soci-

ety, they will encounter dynamic environments. Concepts that have been applied

to control these environment variations like reliability and adaptability may not be

enough. Survivability of a system, on the other hand, assures not only to keep work-

ing as reliability and reacting as adaptability but also assures the fulfillment of the

original set of final goals. A survivable technique is based on what is observed in

the natural behaviour of living mechanisms that react to inconvenient situations that

they have not seen before. Reactions may vary from species to species, however, the

survival instinct is present in many of them. For example, a bird may break a wing

in the middle of a flight. The normal reaction is to try to counterpart the lack of

pushing force in one of the sides by testing other strategies such as flapping faster

with the other wing as a merely act to stay alive. In this document, experiments are

conducted to measure the indistinguishability. A survivability feature is proposed as

a mechanism for any multi-agent system. The tests were focused in Ambient Intel-

2

ligence (AmI) environments using the Humans, software Agents, Robots, Machines,

and Sensors (HARMS) model.

1.1 Problem Statement

Although the field of multi-agent systems, including robotics is still in its early

stages, researchers must insure that solutions involving machines and humans are

resilient. In other words, a system of this kind needs to be capable enough to au-

tonomously interact with humans or other machines and continue working even when

unexpected situations appear. Methods and procedures vastly used for identifying

possible errors of systems during design time are verification and validation [1]. Much

research has been done on the verification and validation of individual systems. On-

line verification for standalone systems study is still undergoing. Moreover, problems

become more complex-intensive, resource-demanding, costly, and error-prone when

the number of agents interacting increases. Perhaps, given that the concept of multi-

agent systems (MAS) is relatively novel and of high complexity, the reasons mentioned

above make research efforts in MAS validation and verification in an online manner

less possible up to now.

Robots or machines with the ability to correctly react to uncertain situations are

needed to let humans feel comfortable working with them. One of the mechanisms

for this purpose observed in nature are the self-healing organisms which take actions

in advance to avoid undesired future results. However, one of the biggest challenges

for self-healing systems in an online verification approach is overcoming the state

explosion problem. Such problem is generated when the system is in charge of revising

all possible paths that the flow of a system can take. This problem can even grow

onto bigger proportions when talking about a multi-agent system.

This dissertation proposes a framework that provides means to enhance the in-

distinguishability feature with the use of the interaction layer of the HARMS model.

Survivability feature, in the other hand, is proposed with a framework taking advan-

3

tage of model checking during run-time to validate the reach-ability of the systems

original final goals.

1.2 Scope

The scope of this work is focused on finding possible solutions to issues encountered

in the system during run-time. The strategy is based on the survivability feature that

is motivated in the trial and error natural reaction that living creatures apply when

they face problems that could lead to unwanted future states. The reach-ability of a

goal state is verified online with model checking techniques in possible future states

of the system when applying changes to the original model which runs smoothly in

perfect conditions.

As mentioned above, the validation process is known to consume excessive time

and resources; hence, it begs the question of whether, depending on the resources

that each agent has to give answer to such requests, it may be better to execute the

validation process within its own resources or offloading it to the cloud.

In this matter, this dissertation will present multiple scenarios where heteroge-

neous cyber-physical systems are involved and will guide or monitor a human in one

specific daily activity such as: going to sleep and cooking. There will also be backup

devices that could start working instead of the ones damaged or not working prop-

erly. Validation processes will take place over the cloud or in the resources of the

specific agent. The validation will be performed using a model checking tool such as:

NuSMV [2].

1.3 Significance

The findings of this study will redound to the benefit of society considering the

need of building systems that will be able to overcome problems that were not iden-

tified before execution time. That lack of identification of those issues implies that

systems will not count with the mechanisms to work around those possible threats.

4

The increasing push to embrace pervasive and immerse cyber-physical systems in hu-

mankind lives justifies the need of systems with a survivability feature that enhances

the accomplishment of the original goals of such systems. The necessity on accom-

plishing indistinguishability of the agents that carry on the tasks will also give more

reliability to multi-agent systems. For the research community, the findings of this

effort will guide to a set of different studies that want to provide solutions that are

always looking to assure the well-being of the end users.

1.4 Research Questions

Can the implementation of capability model based approaches in multi-agent sys-

tems, such as the HARMS model, help to insure the indistinguishability of the agents

executing the different tasks to accomplish bigger final goals of a system?

How can off-loading computationally complex processing activities, such as parallel

model checking to the cloud, be beneficial to reduce the time to provide a possible

solution within the implementation of survivability of systems final goals feature for

multi-agent systems using the HARMS model?

1.5 Assumptions

The assumptions for this study include:

• First, the system is a set of heterogeneous actors

• Second, within the devices there were or were not enough resources to execute

the validation process.

• Third, the test environment included a program that let the system make de-

cisions over the pass of time in the attempt to avoid in future states malfunc-

tioning.

5

• Fourth, the proposed solution will be able to be applied to real life scenarios of

an ambient intelligence environment. Environments where one or more of the

actors stopped working properly while executing the instruction, received and

accepted previously, to perform in a collaborative way.

1.6 Limitations

The limitations for this study include:

• First, the solution contemplates that the problems will appear in the interaction

or lower layers of the HARMS model. This, because one of the agents will stop

working properly. For example, before or when the interaction is taken place.

• Second, a model checking solution is the validation tool that will be used in

order to detect a possible path that leads to the desired final goal.

• Third, it will be assumed that one or more agents will not have enough resources

to run the validation tool used to verify if the modification in the paths guide the

system to the desired final goals. Consequently, the process of model checking

will be executed in a parallel way, instead of a sequential manner. That situation

will lead the system to be able to compute the time it takes to execute model

checking processing within the components of the agent and also the time for

execution in the cloud.

1.7 Delimitations

The delimitations for this study include:

• First, the security mechanisms involved in any of the processes of the scenarios,

such as offloading the load-charge of model checking processing to the cloud,

are not included in this study.

6

• Second, the validation of the human part will take into consideration that the

human follows as much as possible the instructions received by the actors that

integrate the system, such as a robot.

• Third, the environment to make real scenario tests is going to be ambient intel-

ligence, where a robot will help guiding a person to do a normal daily activity,

such as guiding an elderly person go to sleep.

• Fourth, all the network connectivity will be assured to be working properly all

the time that the system is running. This is delimited in order to assure that

the system encounters only problems generated in the interaction layer of the

system.

1.8 Summary

This chapter provided the problem statement, scope, significance, research ques-

tions, assumptions, limitations, delimitations, and definitions for the research project.

The reminder of this dissertation document is organized as follows: The next chapter

provides a review of the literature relevant to this dissertation. Chapter 3, discusses

the HARMS model in terms of how it is a tool that helps insuring the indistin-

guishability of multi-agent systems. It also includes the full description of how the

interaction layer was implemented based in the capability model. Following that, in

chapter 4 it is detailed the way that indistinguishability and survivability features

are applied using HARMS model in applications of ambient intelligence. Finally, in

chapter 5 are mentioned the contributions, conclusions and are also drawn what are

the future paths that following work could take based on what it is presented in this

dissertation.

7

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter provides a review of the literature relevant to the topics concerning this

dissertation.

2.1 Distributed Artificial Intelligence and Multi-Agent Systems

Distributed Artificial Intelligence (DAI) systems were conceived as a group of in-

telligent entities, called agents, that interact by cooperation, by coexistence or by

competition [3]. Researchers have focused on a ramification of DAI which is called

cooperative distributed problem solving (CDPS). CDPS covers the study of agents

with different capabilities that work in a collaborative way to solve problems that

are not possible to be deciphered by any of them alone [4]. CDPS solutions can be

measured by two different ways, cohesion and coordination [5]. A cohesive way to

evaluate the successfulness of a system as a unit where all agents work towards a goal.

The second way, coordination, is when the different agents work together to avoid

uncanny situations. Wooldridge [6] argues that issues concerning CDPS compre-

hends: a)dividing a problem to distribute it between different agents. b)synthesizing

a solution in sub-problem results. c)optimization of activities to maximize coherence

metric. d)coordination of activities amongst agents avoiding unhelpful interactions

and exploit success.

MAS and organization concepts are defined in a very similar way in [7] and [8].

Similar aspects are shared in both of them. Lacking of complete knowledge and all

the capabilities needed to solve the problem are common for each of the agents in

both kind of systems. Furthermore, data fluctuation is needed to be performed in

a decentralized way, global control is impossible, and asynchronous computation is

required.

8

Related to MAS, this work is focused on the aspects of the activity distribution

in a multi-agent system using the HARMS model up to the interaction layer. The

survivability feature that is needed in such systems is also of vital importance through

all this dissertation.

2.1.1 MAS Interaction models

An intelligent agent perceives the environment in which it is placed, interacts with

its own environment and takes initiative towards solving a specific problem [9]. Given

that the agents interact with their environment, they may be already interacting with

one or more agents of the same or different type. However, what makes the difference

between intelligent agents and MAS perspective is that the agents will be designed

from a multi-agent point of view. The multi-agent environment implies the interaction

between those different agents. Different approaches have been proposed which range

from very centralized to very de-centralized. Although it is understandable that in a

MAS setting all agents will be adding productivity to the complete solution, synergy

would not be expected from the simple sum of its component agents.

Submerged in a human society, if it is seen in detail from an organization stand-

point, knowledge flow is focused amongts the agents to support the strategic goals

of the organization. While individual standpoint focuses more on personal satisfac-

tion, creativity, and development. Organizational knowledge should encompass to

the personal interest mentioned above for the individual to decide to take part.

Dignum in [10] expressed her opinion that the society or organization model should

provide internal autonomy and collaborative autonomy as requirements. The internal

autonomy requirement assures that interaction and structure of the society should be

represented differently. Matson in [11] coincides in that, although software agents do

not possess the same emotional or physical needs and requirements as humans, they

can be adapted to work in a similar way than humans when they are arranged in an

organizational environment.

9

[12], pointed out the problems that researchers find in designing and implementing

multi-agent systems are as the following list:

• First, the domain specification problem deals with formulation of the problem

in a non-ambiguous way.

• Second, the co-ordination problem implies a cooperative teamwork that leads

to a cohesive and effective overall results.

• Third, the computational problem where a computational overload needs to be

avoided.

• Fourth, the implementation problem comprehends the techniques and tools

needed to support a MAS design and implementation.

• Fifth, the verification problem in where all formal or practical verification, di-

agnosis, and possible corrections take place.

This document is focused on the issues between the co-ordination and the com-

putational problems.

Re-organization Process

In a multi-agent system, the re-structural process of an organization may respond

to different motivations. Matson in [11] remarks that it must be looking at the inter-

actions and transitions that occur through time to understand why an organization

is successful or on the contrary, can be considered imperfect. In other words, when

the system detects that it needs to change the structure of the organization, it can

be addressed in two different forms.

Dignum, Dignum, and Sonenberg in [13] show two different ways that an organi-

zation restructures itself. The same classification is encompassed by Abbas, Shaheen,

and Amin [14] who gave specific names to both approaches as follows.

10

1. Agent-centered MAS (ACMAS) is motivated by a behavioral or agent where

internal change happens. Specifically, those changes could be agents joining or

leaving or interaction pattern instantiation.

2. Organization centered MAS (OCMAS), is motivated by a structural change

which corresponds to an organizational self design or a structural adaptation.

Computational Organization Theory

Computational organization theory (COT) is a new science which combines social

science, computer science, and network analysis to represent and design the study of

social, organizational, and policy systems as stated by [15].

Models are intended to formalize the understanding of the systems being consid-

ered. Hence, a tool adopted within a development methodology for modeling a MAS

system is considered an organizational model.

Zambonelli and Omicini [16] discuss that issues in a MAS setting can be analyzed

under three different “scales of observation” which are micro, macro and meso scales.

• The micro scale that motivates the artificial intelligence (AI) application into

MAS solutions explores nonstandard and extreme development processes.

• The macro scale, because of the multiple agent interactions, entropy and coor-

dination should be considered as specific behavior mechanisms.

• At the meso scale, ways to figure out non-considered phenomena, trust and

social intelligence are studied.

Juziuk, Weyns, and Holvoet [17] present an overview of the design pattern clas-

sification. The authors of this study saw the need of a classification given that the

literature in this regard is either not clear or biased to a specific catalog of patterns.

The design pattern classification for Multi-agent Systems is presented in Figure 2.1.

11

Fig. 2.1. Design Patterns for Multi-Agent Systems

2.1.2 Agent Oriented Metodologies

In this approach, also called ACMAS, the components of the agent and their faces

could trigger a reorganization request with complete disregard about how changes can

12

affect the global structure of the system. Hence, global change will be generated from

the bottom level agents in a bottom-up communicative way. Agent-based systems

focus on dynamically interacting components rather than in the components them-

selves. For Luck, McBurney, and Preist in [18] agent oriented-methodologies focus on

reactive and deliberative behavior which rely in excess of custom-made solutions not

giving space to a more general concept that could be replicated.

AAII model

PRS is the procedure reasoning system, where agents dynamically select plans

from a plan library to accomplish their goals, taking into consideration their current

status. The Australian AI Institute (AAII) model was developed for a range of agent-

based systems using PRS-based belief-desire-intention and the distributed multi-agent

reasoning system throughout the 1990s. AAII is an iterative process which will have

a well-known outcome such as a model very similar to the PRS agent architecture. It

basically provides both internal and external models. It identifies the relevant roles

in the application domain to develop an agent class hierarchy. Then, AAII model also

identifies the responsibilities associated with each role, services required and provided

by the role, and the goals associated with each service.

Concurrent Metate M

The concurrent Metate M model is an executable temporal logic for reactive sys-

tems. Individual objects execute temporal specifications and communicate with their

environment at certain times by broadcasting information as described by [19]. Con-

sequently, in this model, rather than seeing computation as objects sending mail

messages to each other, and thus invoking some activity, it can instead be visual-

ized as independent entities listening to messages broadcast from other objects. As a

result, the present” formula involves matching the antecedent of these rules against

13

the history of incoming messages and then executing the “present and future” time

consequences.

Agent UML

Bauer, Muller, and Odell [20] discovered the need for standards to boost agent-

oriented development in the industry. At the time of the discovery, the unified mod-

eling language (UML) was in a stage of maturity, so they took the decision of adding

two new diagrams: Protocol diagrams, are an expansion (e.g. roles and others) and

an incorporation to the UML state and sequence diagrams. Agent class diagrams

extend the general class diagrams to agent-oriented flavor and properties.

Gaia model

Wooldridge [21] defines the Gaia model as a tool that lets an analyst take all

the steps of the software cycle in an implementation of a MAS system. Abstract

and concrete are the two most important categories in the Gaia model. Abstract

concepts are used to conceptualize the system during the analysis stage and they

are: roles, permissions, responsibilities, protocols, activities, liveness properties, and

safety properties. Concrete concepts are used in the design process and are: agent

types, services, and acquaintances. An organization is viewed as a collection of roles

that stand in certain relationships to one another and that take part in systematic,

institutionalized patterns of interactions with other roles.

Agent Oriented Software Engineering

One methodology to study MAS phenomena is the agent-oriented software engi-

neering (AOSE). AOSE was created as the implementation of software systems based

on software engineering and artificial intelligence principles, as mentioned in [22].

In terms of application fields, the same authors extend, AOSE can be focused in:

14

Agent-based grid computing, agents and services, agents for self-adaptive systems,

integration of agent-oriented software into existing business processes and implica-

tions on business process re-engineering, integration of agents with legacy systems,

and multi-agent-based simulation.

According to [23] an AOSE agent should work under the four following premises:

autonomy, reactivity, pro-activeness, and social ability. The authors continue making

an analogy between object-oriented programming and agent-oriented software engi-

neering. The three differences between both approaches they mention are: autonomy,

capability of flexible behavior, and multi-threaded control.

2.1.3 Organization Oriented Methodologies

There are different approaches for an organization oriented methodologies, also

called OCMAS. However, for the different approaches to work, the theory of the

different organizational paradigms, should be based, which will be explained in the

next section. Later, this paper will mention different methodologies.

Organizational Paradigms

As stated by Horling and Lesser in [24] ten different organizational paradigms

have been developed through previous research about agent-oriented. Figure 2.2

shows a comparison of those ten paradigms. Nouwens and Bouwman [25] shortened

the list to three paradigms, hierarchy, market, and network, based in the different

types of coordination in an organization. A more recent study [22], defines MAS

organization as a hierarchical organization, a flat organization (or democracy), a

subsumtion organization, and a modular organization. For the purpose of a deep

research, in this document it was covered the paradigms presented by [24] given that

the other two approaches are only simplifications.

Hierarchies are the ones where agents can be seen organized under a tree-like

structure [26]. There, agents located in higher levels have more decision power than

15

Fig. 2.2. Organization Paradigms Comparison

the ones below. The less complicated example of a hierarchy is a single root having

one or several branches. A holon is a self-conformed group of agents with very sim-

ilar yet not identical characteristics as it was firstly conceived by [27]. The structure

of each of these groups is a basic unit of organization that can be seen throughout

the system as a whole. Coalitions in general are goal directed and short lived; they

are formed with a purpose in mind and dissolve when that need no longer exists, the

coalition ceases to suit its designed purpose, or critical mass is lost as agents depart.

Klusch, Gerber, and Intelligence [28] explain that normally, there may not be any hi-

16

erarchy within coalitions, however, there may exist one agent that represents and acts

as the complete group. A number of agents that previously agreed to work together

to solve a common goal is called a team by [29]. Agents give preference on boosting

team work productivity which reduces their objectives to satisfy their own demands.

Teamed discussions and knowledge are implemented in teams providing resilience and

robustness to this organization model. The teams cohesion is derived primarily from

the joint intentions created as part of executing the team plans. Congregations ,

for [30], are integrated by individual agents that have a combination of their own

beliefs, convictions, capabilities, and desires which are shared within a specific group.

Dignum, Meyer, and Weigand [31] make an analogy between societies being the vir-

tual counterpart of real-life societies. Agents in societies have free will to form part

of this organization paradigm as they follow different patterns of knowledge, beliefs,

interests and such. Social agents must follow some rules that are defined by an agent

or group of agents that enforce social laws, norms or conventions. Federation agents

should be able to harmonize contradictory and uniform pursuits which regularly can

lead to collective disjunctive actions as viewed from a political stand point [32]. In

federations, group members interact only with one agent that represents the whole

group, often called the facilitator, mediator or broker. Kiani et al. in [33], argue

the efficiency of a central broker where, depending on the organization performing

a combination of interfaces and decisions between the federation, it represents other

intermediaries. A set of buyers and sellers or third parties called auctioneers are the

agents that interact in a market-oriented organization. The market-place competi-

tion among agents it is typically propitiated where only the most aggressive in terms

of the transaction are the ones that get better results. Kang [34] mentioned that

much research has focused up to now on optimizing customer demands satisfaction at

enterprise-level design. Drawbacks to market-based organizations are complexity and

security. Matrix organizations encourage the multiple management to one or many

agents. Matrix organizations are very similar to human existence, where a person may

receive instructions or suggestions by many other people or entities. Levinthal and

17

Workiewicz in [35] suggest that during the early twentieth century, multiple compa-

nies realized that centralized management reduced the ability of the units to answer

to specific environment needs. Horling and Lesser in [24] defined the organization

paradigms classification presenting the compound organizations. A combination

of organization paradigms risen up from the reality that organizations may not fit

entirely in a specific paradigm but in a combination of some of them. If an agent takes

different roles which require working in a different organization paradigm, it might

complicate the problem. A detriment of accuracy to fulfill two roles can be noticed

for a broker of a federation which also plays as a role in a different organization.

However if the agent covers more information of both organizations, it may lead to

more effective solutions.

AGR and AGRE models

An extension of a previous model called AGR (agent, group, and role) is presented

by [36]. The new model aggregates to the new component called environment to

AGR. The Agent is the concept that corresponds to any active entity playing roles

within groups. Agents instantiation can range between a reactive or a clever that also

can hold multiple roles in different groups. A set of agents that interact around a

shared objective is called a group. Agents in the same group are the only ones able

to communicate with each other. A role is a set of characteristics and capabilities

that agents can be divided into. Although, for an agent to play a role there must

exist a request for it before instantiation. Environment is an abstraction of the

different domains where an agent can interact. Physical spaces can be called areas

and operations can be executed by agents only through modes.

MOISE model

Hannoun et al. in [37] presented an organizational model to control agents that

is able to work with the two different methodologies of ACMAS and OCMAS. The

18

MOISE model is based in three different levels: responsibilities (individual level),

aggregation (agency level), and global structuring and interconnection (society level).

The MOISE organizational model was viewed as a normative set of rules that con-

strains the agent’s behaviors.

OMACS model

Deloach, Oyenan, and Matson [38] developed OMACS as a framework for con-

structing complex, distributed systems than can autonomously adapt to their envi-

ronment. In other words, a system that will be able to auto-organize itself during

run-time. OMACS defines the requisite knowledge of a system’s organizational struc-

ture and capabilities that will allow the system to reorganize during run-time. Typical

OCMAS work accordingly to other approaches where goals (G), roles (R), and agents

(A) are used. In OMACS four more entities are added: capabilities (C), assignments

(Φ), policies (P), and a domain model (Σ). Capabilities are central to the process

of determining which agents can play which roles and how well they can play them.

Policies constrain the assignment of agents to roles thus controlling the allowable

states of the organization. The domain model is a critical component that defines

the ontology used to define behavioral policies and to allow agents to communicate

effectively.

System of Systems Engineering

DeLaurentis, Crossley, and Mane in [39] refer to a system of systems as the one that

is used when a specific goal is accomplished by several systemss; such systems need to

operate autonomously and at the same time effectively interact with other systems.

Furthermore, a system of systems methodology may fit in both agent or organizational

paradigms. An analysis of a ROPE table or resources, operations, economics and

policy contrasted with the different levels of organization is an important step in this

methodology. Gomez et al. in [40] discuss an implementation of a Collaborative Air

19

Autonomous (CAA) SoS design approach. The final goal of the authors was to find an

effective network configuration to increase robustness with limited number of existing

agents.

Other models

Matson and Min in [41] defined an infrastructure called HARMS to integrate

humans, agents, and robots into collectives to accomplish large-scale goals. They

defined five different layers where each of these layers provide services to the top

layers. The layers correspond to network, communication, interaction, organization,

and collective intelligence. The novelty of this model is the indistinguishably goal

to let humans and machines interact in a smooth way. Up to now, the organization

layer hasn’t been implemented yet.

2.2 Autonomous Behavior

Authors such as Arkin in [42], believe that behavioral or intelligent robots can be

studied through two different system spectrums. On one hand, reactive or reflexive

systems require low-level intelligence and simple computation. Hence, it leads to

an instant responsive action. On the other hand, the other spectrum, deliberative or

purely symbolic, is based on a representation which implies a high level of intelligence

(cognitive). Such intelligence, leads to slow and very studied answers. Meticulous

response and studied adaptation take latency and time dimension into consideration

to make decisions. This work is focused on the second spectrum where the agents or

the system as a whole execute actions to avoid disruption of service.

According to Geffner in [43], the basic problem of autonomous behavior is deter-

mining “what actions to take next”. The same author continues stating that there

are three approaches in AI for next action studies.

• First, programming-based approach where the programmer assigns directly by

coding the next action

20

• Second, learning-based approach that is induced by the experience, let this be

by itself, by other “instructors” agents or reinforced

• Third, the model-based approach is derived from a model of the actions, sensors,

and goals. The latter approach is well related to the study of this research effort

in such a way that models represent the future actions of the system.

Autonomous behavior, mentioned by Psaier and Dustdar in [44], should be able

to operate and administer the whole system based on taking the adequate actions.

The same authors continue stating that both trends of autonomic computing and

self-adaptive agree on a combination of awareness of internal and external states

allow proper adaptation. The self-* concept was first coined in executive Tek Re-

ports as stated in [45], [44]. The Paradigm of self-* includes four self properties

tied to self-managing systems: Self-configuring, self-healing, self-optimization, and

self-protection.

2.2.1 Self-adaptive / Self-protection / Self-healing

Ghosh et al. in [46] define a self-healing system to the ones that have capabilities

to detect a non expected situation. Detection is not enough up to now, also detecting

should be done in running-time. This classification of systems is also considered as

recovery oriented computing. Continuous availability is the driver for enhancing some

systems with self-healing mechanism. Depicted in Figure 2.3 can be seen the relations

and properties that were defined for self-healing [44].

Huebscher and McCann in [45] defined IBM’s MAPE-K autonomic loop. MAPE-K

contains the functions of monitor, analyze, plan, execute and knowledge. Detecting,

diagnosing and recovery are the stages identified. Policies can be action, goal, or

utility functions.

21

Fig. 2.3. Relations and Properties on Self-healing Research

2.2.2 Verification

One of the most reliable methods to perform detection on the stages mentioned in

self-healing approaches, is formal verification. Verification techniques arose when the

need of exhaustive software and hardware testing became impractical. It is considered

applied mathematics for modeling and analyzing Information and Communication

Technology (ICT) systems.

It is well known that catching software or system errors in early stages is more

beneficial for the accomplishment of the goals. Camurati, Prinetto, and Torino [47]

determined that in formal verification at design stage the designer specifies what the

system under development should do and how it should do it. What the system

should do is called its specification, while any one of the possible devices that realizes

the specification is called an implementation. The same authors continue stating that

22

verification is mostly done using two different classes: safety and liveness properties.

Safety properties are related to assure that wrong situations should be always avoided.

Liveness properties concerned with the possibility of correct status will occur in the

future.

Verification techniques can be grouped into three: theorem proving, model check-

ing, and testing [48]. Theorem proving, which allows showing correctness of programs

similarly as a proof in mathematics shows correctness of assumptions. Hence, it is

manual and requires too much time. Model checking is an automatic approach usu-

ally applied to finite state machines or automata. Testing is more precise and diverse,

but developed for specific purposes, which some other authors call monitoring tools.

2.2.3 Model Checking

For Baier and Katoen in [49] model checking is a formal verification technique

which allows for desired behavioral properties of a given system to be verified on the

basis of a suitable model of the system through systematic inspection of all states of

the model. It bases its results in a model of the system and a specification that will

be verified if either it is satisfied or not.

The same authors continue indicating that the process for model-checking consists

of three phases: The modeling phase which requires a model of the system and a

formal characterization of the property to be checked. Models of systems describe the

behavior of systems and are mostly expressed using finite-state automata, consisting

of a finite set of states and a set of transitions. In model checking temporal logic is

used as a property specification language of system properties. Functional correctness,

reach-ability, safety, and real-time are properties used in temporal logic. The running

phase starts setting up the correct initializing values for the options and directives,

followed by an exhaustive revision of all the states of the system model. The analysis

phase which can have three possible outcomes: success, failure of the model or the

computer ran out of resources to execute the complete exercise.

23

Model checking is based on temporal logic that was devised by philosophers for

making statements about changes in time [50]. A wide variety of applications have

appeared as model checkers such as: SPIN [51] , NuSMV [2] , PRISM [52], [53] ,

DiVinE [54] , and many others.

Recently, the study of model checkers grew very fast as it is stated in the bench-

mark done by [55]. Out of 80 papers that were found in the two decades period of

1994–2006, only 3 papers were categorized as exhaustive study.

In terms of model checking multi-agent systems, the majority of efforts are focused

on design stages verification in order to reduce costly failures. For instance, Mireslami

in [56] present the use of Agent UML (AUML) methodology for MAS design as an

extention of Unified Modeling Language (UML). The author uses Multi-agent Soft-

ware Engineering (MaSE) methodology based on UML diagrams to generate message

sequence charts, message sequence graphs and high-level message message sequence

charts. those charts and graphs can lead to convert them into a models able to be

verified using model checking techniques. This document is focused more in the sur-

vivability feature that takes place in the moment when the system is running and have

no human activity at all. In other words, the specific moments where the autonomous

multi-agent systems need to apply survivability features to overcome internal errors

or external variables to accomplish the initial final goals.

2.2.4 Online Detection and Testing

Efforts for research on online detection or verification have not been around very

long. Reactive adaptation results in an inefficient solution given that it may not be

the best action that can be taken. They tend to be the kind of instant and myopic

reflection where a lack of real adaptation happens due to not foreseeing what the next

adaptations will be. In this section it will be mentioned some of the efforts in a non

reactive adaptation.

24

Leucker and Schallhart [48] define that one of the main distinguishing features of

run-time verification is due to its nature of being performed at run-time. It opens up

the possibility to act whenever incorrect behavior of a software system is detected.

The same authors make a comparison between run-time verification versus testing.

They stated that run-time verification does not consider each possible execution of

a system, but just a single or finite subset, it shares similarities with test, which

terms a variety of usually incomplete verification techniques. Testing considers a

finite set of finite input-output sequences forming a test suite. Test-case execution is

then checking whether the output of a system agrees with the predicted one, when

giving the input sequence to the system under test. In that study three different

approaches were mentioned to react at run-time: FDIR, run-time reflection, monitor-

based programming. Although recent studies talk about the model-based approach

that will be added at the end of this section.

Fault Detection, Identification and Recovery

FDIR was presented in [57]. FDIR sometimes also known by Fault Diagnosis,

Isolation, and Recovery. The general idea of FDIR is that a failure within a system

shows up as a fault. A fault, however, does typically not identify the failure. Authors

used Reiter’s theory of diagnosis from first principles. Specifically, the detection of

errors is performed by diagnosis techniques leading to reconfiguration that switch the

server to work with the old version of the protocol.

Run-time reflection

The concept of short run-time reflection (RR) developed in [58], is an architecture

pattern for the development of reliable systems. The main idea is that a monitoring

layer is enriched with a diagnosis layer and a subsequent mitigation layer. The simple

architecture of the run-time reflection framework comprises four layers: Logging which

will be in charge of observing the system events and to provide them in a suitabe

25

format for the monitoring layer. The monitoring layer will include a number of

monitors to observe the information received from logging layer. Diagnosis that

will make a differentiation between detection of faults and identification of failures.

Mitigation happens to reconfigure the system to mitigate the failure, if possible.

Monitor-oriented programming

As proposed by Chen and Rou in [59] monitor-oriented programming is a software

development methodology, in which the developer specifies desired properties using a

variety of (freely definable) specification formalisms, along with code to execute when

properties are violated or validated.

A taxonomy to analyze and differentiate recent developments in run-time soft-

ware fault-monitoring approaches is presented by [60]. The taxonomy categorizes the

various run-time monitoring research by classifying the elements that are considered

essential for building a monitoring system. The same authors continue stating that

the most important parts of the taxonomy are: specification language, monitor, event

handler, and operational issues. Figure 2.4 shows the high-level view of a run-time

monitor.

Specification language comprehends: language type, abstraction level, and prop-

erty type. The language type to specify the properties, based in algebra, automata, or

logic. The abstraction level can be domain-based, design-based, or implementation-

based. There are two property types: safety property to express something bad never

occurs and other temporal which refers to progress and bounded liveness including

timing properties.

A monitor evaluates and inspects the state of the system. A comparison with the

desired status to the one observed takes place in order to detect a possible failure.

According to the taxonomy shown in [60], the summarized characteristics of the

monitor are monitoring points, placement, platform, and implementation.

26

Fig. 2.4. High-level view of a run-time monitor

The placement refers to where the monitoring code is executed. The inline check

is when the monitoring takes place embedded in the target code. Offline is when

27

the monitor executes as a separate thread or process, even in different machine.

Depending on if the application has to wait for the analyzer to execute or not is

offline (asynchronous) or offline (synchronous).

The platform refers to if it is software or hardware. Implementation can be in

three different ways: single process when it is executed along or inside the target

program, multiprogramming for when each of the programs (monitor and target) run

as different processes or threads, multiprocessor just for different processors.

Event-handler is the one in charge of taking action right after the monitor detects

something. Response actions can alter the application state space, report application

behavior, or start up another process. As the control level can be specified by the

user or the monitors that react universally. The response effect reflects the extent to

which the monitor’s response to a violation can affect program behaviors.

Operational issues include program type, dependencies, and level of maturity.

Model-based testing

The goal of testing is failure detection. Accomplishment of the final requirements

are led by the instant comparison between the status and performance of the imple-

mentation and the intended behavior [61]. Model-based testing, continued the same

authors, is an alternative for testing based on explicit behavior models. Those behav-

ior models abstract the desired paths of the system and its environment. In Figure

2.5 is depicted a general process of model-based testing in [61].

New trends on the run-time verification was developed by [62]. The verification

system was first intended especially for self-optimizing component based real-time

systems where self-optimization is performed by dynamically exchanging components.

It was also first offered as service of a real-time operating system (RTOS) as a novel

on-line model checking approach. The same authors were not able to measure what

the performance of the run-time verification will look like. However, they based their

28

Fig. 2.5. Process of Model-Based Testing

assumptions on the thought of experience demonstrating that the properties to be

checked in practice are usually not very complex.

29

Later, Zhao and Rammig in [63] extended their previous work stating that model-

based run-time verification is an extension to the state-of-the-art run-time verification

based in model driven engineering presented in [64]. One goal of the model to check

consistency comparing during execution the system implementation against the sys-

tem model. The second goal is safety checking where the system model is compared

to the system specification. Because the model runs while the system is running as

well it allows to go further than the current space of the real system. Monitoring

states in compliance to the model or deleting branches of the model when the real

system gets to specific states that may be already verified. One disadvantage can

be the cost of flexibility, which is the computational complexity of the model which

is less than the offline model checking but greater than the state-of-the-art run-time

verification.

Calinescu et al. in [65] presented a new approach that includes model check-

ing in complete harmony with quantitative verification. Quantitative verification is

defined there as a technique that is based in mathematics to evaluate correctness,

performance, an reliability of systems exhibiting stochastic behavior. There, the

combination of model checking and quantitative verification is recommended to be

used during execution to foresee and spot critical system errors and being able to plan

in advance the steps to prevent or recover from those errors. A finite mathematical

model is delineated and evaluated on how well the system requirements are met. The

difference with a normal model checking fashion is that on top of the requirements ex-

pressed in formally temporal logistics, they are also complemented with probabilities

and costs/rewards. Requirements also include external factors that may affect the

system like probabilities that faults occur while the system is running including ex-

pected response time. This approach stresses the use of discrete-time Markov chains,

or DTMCs, to express specification S and domain assumptions D, and probabilistic

computation tree logic, or PCTL, to formalize the requirements R.

Filieri and Tamburrelli in [66] define an approach very similar to the one mentioned

in the previous paragraph. They address the problem of online verification focusing

30

on probabilistic run-time model checking where requirements expressed in logical

expressions are used to verify reliable models in terms of Discrete Time Markov

Chains. This is achieved using probabilistic model checking at run-time exploring

and comparing all possible paths. The possible paths are grouped in two different

algorithms: algebra-based and state elimination.

Moreno et al. in In [67] presented a proactive latency-aware system that takes

emergent behavior using probabilistic model checking for determining the following

decisions. Non-determinism is a key concept as the model is based on a underspecified

decision. Hence, the model checker will find the solution to the non-deterministic

choices so that the accumulated utility over the horizon is maximized.

Kim et al. in [68] and Gomez, Kim, and Matson in [69] make a study of a humanoid

robot in a soccer environment. In [68] model checking is applied to a humanoid soccer

player to verify that no inappropriate states are reached. A finite State Machine is

used as model for the system. Hence, it can be validated using NuSMV. While [69]

as a complement for the previous study presents the way that a humanoid learns in

an iterative way how to intercept a ball on the same environment.

2.2.5 Self-adaptation for MAS

Verification for multi-agent systems is more complicated compared to the stand-

alone solutions presented in this paper up to the previous section. The number of

variables to verify increases exponentially when the view of the agent becomes social.

In this section it is going to be presented a brief description of recent advances in

terms of disconnected and online verification for MAS.

Common approaches for self-adaptation and model checking are model based such

as the ones presented in [70], [71], [72], [73], [74] .

Lomuscio and Raimondi in [70] presented MCMAS or model checker for MAS.

It allows the verification of specifications of common temporal; further more using

epistemic, correctness, and cooperation modalities. Interpreted systems programming

31

language (ISPL) is used to represent agents means. This approach is based on ordered

binary decision diagrams (OBDDs).

[71] presented a multi-layer architecture approach to build self-aware and self-

adaptive robotic multi-agent systems. It includes domain-specific meta-level com-

ponent types and higher-order meta-level layering as improvements to meta-level

components.

Persuasion between agents is what happens when an agent is influenced by sur-

rounding agents to perform an action or decision. Exactly this behavior is the one

that is verified by [72]. They used model checking fondness to introduce Perseus.

Perseus is a model checker designed to verify satisfaction of AGn language which

describe properties of persuasion in a given model.

Calinescu et al. in [65] discuss the need of quantitative verification at run-time.

Authors there base their self-adaptation in the continuous monitoring and projection

of vital variables in order to adapt to the needs while the program is running. 2.6

shows the solution proposed in that work, where four basic steps take place: monitor,

analyse, plan, and execute. Their ultimate goal is to help identifying, and, some-

times, predicting requirement violations resulting in a software supporting automated

changes to meet requirements even if situations evolve.

In Figure 2.7, the authors presented an architectural approach that integrates

MAS and self-adaptation(SA). There, the agent behavior contains all functionality

concerning inside the agent. The coordination module is in charge of the coordination

between agents. The self-adaptation module to address changing conditions in the

system of its environment [73].

(Elakehal et al. in [74] present a software methodology called Self-managing Multi

Agent Systems (MSMAS). It uses norms to capture the system specifications in a for-

mal representation that can be verified either in advance or at run-time. Norms

mentioned before can be system goals, system roles, the business activities, and com-

munications.

32

Fig. 2.6. Self-adaptive software solution

2.2.6 State Explosion Problem

Model checking, briefly explained in the previous section, relies on an exhaustive

formal verification technique. Within this approach, it is important to verify all

possible cases in the generated mathematical models.

33

Fig. 2.7. Reference Model for SA-MAS

Prior research such as [75], [76], [77], [78], [79], [80], have argued that one of the

problems of model checking is that resources and time needed to run the verification

of a model increase in the same proportion to an exponential curve based on the

number of states in a model.

2.3 State Explosion Solutions

Different authors have defined several advances in order to reduce the state ex-

plosion problem:

34

2.3.1 Symbolic Model Checking

This approach uses Binary Decision Diagrams (OBDDs) to represent the states

instead of listing individually each state. It uses a fixed point algorithm which nor-

mally reduces the size in an exponential way. Some examples of solutions like this

are proposed in [81], [82], and [83]. The latter example refers to a procedure called

MCMT which symbolically computes pre-images of the set of unsafe states in terms

of safety by a specific group of states generating partial Satisfiabilty Modulo Theories

(SMT).

2.3.2 Partial Order Reduction

This approach is based on the asynchronous systems composition of processes

exploiting the independence of actions. A recent study [84] supports the solution

on online dynamic tracking interactions between concurrent processes/threads. The

tracking information is exploited to generate a new partial-order reduction algorithm.

The algorithm then pinpoints backtracking paths where alternative tracks in the state

space need to be explored.

2.3.3 Counterexample-guided Abstraction Refinement

An appropriate level of refinements is the goal of this approach, where the prop-

erty of interest is still possible to be validated but the details that only are abstracted

add up to the delay of evaluation time. Clarke et al. in [85] describe an iterative and

automatic refinement methodology. An initial abstract model is generated following

an automatic analysis of the controls structures in the program to be verified. How-

ever, those abstract models may admit erroneous counterexamples that are evaluated

to refine the final abstract model.

35

2.3.4 Bounded Model Checking

BMC is the most used model checking methodology in the industrial environment

as of today. The technique is used to find errors in a finite state system using LTL.

The method verifies if a propositional formula is considered true only if it can be

disproved by a counterexample of length k. Depending on the result, if is true, it

is stored as a boolean satisfiability (SAT) solver. If no counterexample of length k

is found then the value k is increased and the process is repeated. [86] and [87] are

examples of BMC where they follow the basic idea of restricting the model checking

problem to a bounded problem. The verification changes then in terms of question.

The new question now is if there is a counterexample with a specific length, instead

of if the system violates a property.

2.3.5 Cloud Computing

Several approaches have appeared that have taken advantage of cloud computing

and big data towards a favorable result in terms of model checking problems. These

solutions are considered in more detail in the next section.

2.4 Cloud Computing Strategies

The basic idea of cloud computing is an economic principle summarized by the

well-known statement “pay as you go”. As an example, when a company is in need

to execute a batch-oriented task there is a positive difference of cost between using

1,000 servers for an hour than using one server for 1,000 hours. The benefit in terms

of cost is plausible, however, what is important here is the reduction of time that can

be gained in a distributed or parallel processing manner.

The National Institute of Standards and Technology (NIST) has defined the dif-

ferent service models in [88] as: software as a service(SaS), platform as a service(PaS)

and infrastracture as a service(IaS). As described by Armbrust et al. in [89], there

36

is a wide difference of opinion in terms of the service models offered. Moreover, as

mentioned by [90], the user interface layer of cloud computing facilitates the services

to concealed XaaS or Anything as a service layers.

2.4.1 MapReduce

Functional languages like LISP were the inspiration for developing MapReduce.

In the approach presented by Dean and Ghemawat in [91] a library is used to cover

all the mess related to data distribution, load balancing parallelization, and fault tol-

erance. Fault tolerance is accomplished through the parallelization and re-execution

mechanism of the operations of the map and reduce functions in a large group of

computers.

The principal benefits of the Map and Reduce solution presented in [91] are a

combination of an implementation of an interface which achieves high performance

using a considerable easy to access PCs (or processes in the same computer) and a

plainly potent interface which facilitates large-scale computations and parallelization.

Roughly speaking, this approach works using two functions, programmed by the

user, where both of them receive and produce sets of key/values as shown in Figure

2.8. The map function receives a set of input pair and works to generate intermediate

pairs. There is an iterator that is in charge of transfering the set of intermediate

pairs. The same intermediate set of pairs that the reduce function receives to convert

them into the final merged set of pairs.

Hadoop is an implementation of a distributed file system called Hadoop file system

(HDFS) and MapReduce a large-scale data processing mechanism [92].

CTL Model Checking Algorithm Using MapReduce

Guo et al. in [78] propose a new solution of model checking running on a MapRe-

duce platform. The proposed parallel algorithm is designed to compute the set of

states of the model that satisfy a given CTL formula.

37

Fig. 2.8. MapReduce Execution Overview

An example is presented where a Kripke structure is defined as M = (S, I, R, L).

Consisting of a finite set of states S, a set of initial states I ⊆ S, a transition relation

R ⊆ S × S and a labeling function L : S → 2AP . In MapReduce, the data structure

is described as follows: consider the key-value pair where the key represents the state

ID, and the value represents the state’s information, such as its status flag, pre-S
successors, labels and successors’ information. The formula to satisfy is E(T p) in

the system shown in Figure 2.9(b). The first iteration of reduction of state explosion

is shown in Figure 2.9(a). This study continues showing until the fourth iteration

reduced state explosion. They analyzed the experiment and obtained that s0, s1, s2,

and s3 but not s4 satisfy the formula. They conclude that the CTL model-checking

38

Fig. 2.9. CTL Model Checking Algorithm Using MapReduce (a) first
iterative procedure, (b) system

algorithm based on MapReduce is feasible given that the results are consistent with

the previous analysis.

MaRDiGraS

Generating abstractions of the original state transition system is an approach to

minimize the state explosion problem. Bellettini et al. in [93] provide MaRDiGraS as

a generic library which is built on top of Hadoop MapReduce. MaRDiGraS is focused

on breaking down the state explosion problem through different kind of formalisms.

The benefit comes from simplifying the task that deals with very big state spaces by

taking advantage of large clusters of machines. The name MaRDiGraS comes from a

species of acronym of MapReduce-based DIstributed building of GraphS.

The model of Hybrid Iterative MapReduce depicted in Figure 2.10 is the one that

MaRDiGraS follows. There is an initial state from where the computation starts

constructing the sequential state-space until the set N of states not yet explored

39

becomes large enough. It takes into consideration that the sequential approach is more

efficient than the distributed one when the number of states is bellow a configurable

threshold. After the threshold is passed, the algorithm starts running over a cluster

of machines already set up in a MapReduce platform. The same authors determined

that it is better setting up the threshold during run-time, depending on which number

of new nodes are generated in each iteration. The map step is in charge of the

computation of new states, while the reduce step identifies equivalence or inclusion

relationships. The partitioner transfers the intermediate keys, meticulously checking

that they belong to the same partition between the map and the reduce functions.

The sequential algorithm is merged with the values of the reducers when the value

of |N | goes back bellow the threshold. At the end, when the set of unexplored states

becomes empty, the entire state-space is stored either in a single or distributed file

fashion.

The code of MaRDiGraS consists of two packages. The data package that com-

prises the state-space and the model, considered the data entities. The implemen-

tation of the algorithms of the framework of the hybrid iterative MapReduce model

shown and explained above are fully contained in the core package. Due to lack of

space, it is not possible to explain in detail each of the parts of the two packages, but

for more information, please refer to [93].

The same research executed different experiments. One of those experiments was

using the Amazon Elastic MapReduce on the Amazon Web Service cloud infrastruc-

ture for a benchmark real-time system model specified with Time Based Petri Nets

called The Gas Burner. The MaRDiGraS based tool, executed on the input model,

generates a graph with 14563 nodes (23635 states are generated during computation)

reducing the time to only 39 minutes, over 8 m2.2xlarge machines. The reduction of

time represents 80% less time than 175 minutes when executed in the same environ-

ment running in a complete sequential approach.

40

Fig. 2.10. MaRDiGraS: Hybrid Iterative MapReduce Model

2.4.2 Verification as a Service

As stated before, there are different models offered in the cloud than just the three

mentioned in [88]. For instance, Mancini et al. in [94] presents SyLVaaS, a Web-based

tool enabling VaaS which implements an assume-guarantee approach to perform a

System Level Formal Verification (SLFV). In this case, VaaS refers to Verification

as a Service, a new paradigm proposed to allow verification engineers to compute

the simulation campaigns needed for their SLFV activities keeping both the system

under verification (SUV) model and the property to be verified secret, thus achieving

41

Fig. 2.11. SyLVaaS VaaS architecture

full Intellectual Property (IP) protection. According to the same authors, up to now

model checkers for hybrid systems or cyber-physical systems (CPSs) cannot handle

SLFV. Currently, Simulink and VisSim are the most used tools model based design

which support Hardware in the Loop Simulation (HILS). According to Mancini et al.

in [95] SLFV shows system correctness to meet the given specifications considering

all possible scenarios. SyLVaaS is an acronym of System Level Verification as a

Service and to their knowledge is the first Web-based software-as-a-service tool for

HILS-based SLFV; its architecture is shown in Figure 2.11.

Faults, variation in system parameters, external inputs, and others are distur-

bances not easily visible events that may affect a SUV. An SUV is a deterministic

system, while disturbances are used to model non deterministic behaviors. Sequences

of inputs are bounded length (discussed previously), thus the problem is also ap-

proached through bounded SLFV. Counter examples are generated if errors are found

during verification time. The same counter examples that would help to modify the

SUV model and run again the SyLVaaS. Fast response time in SyLVaaS is achieved

42

using a new parallel algorithm for the generation of operational scenarios from a

disturbance model.

SyLVaaS requires two inputs: an integer k > 0 describing the number of com-

putational cores available in each node machines and a disturbance model defining

the operational environment. SyLVaaS generates k simulation campaigns, that will

be executed in each of the node machines. The implemented workflow as shown in

Figure 2.12(a) counts with an Orchestrator process and a number S ∈ N+ of slaves.

The Orchestrator takes care of the exploration of the state space of the disturbance

generator, splitting and delegating the job in the slaves. Depth-First Search (DFS) is

performed by the orchestrator up to bounded level (depth) L < h and delegates the

exploration of the subtrees rooted at each node at depth L to an idle slave as shown

in Figure 2.12(b).

As experimental results they presented four different scenarios where due to lim-

itations of space it will only cover the complete workflow scenario. Authors show

in a table the time needed to compute the k simulation campaigns and the overall

SyLVaaS response time, for two different disturbance models and each value for k.

Those results were obtained using S = 16 slaves during trace generation and 16 cores

to compute the k simulation campaigns. The results show a tendency to reduce the

time of generating the simulation campaign for both disturbance models, comparing

from 128 to 512 k slices. However, the overall time shows a contrast of reduction

for the first disturbance model, while for the other disturbance model represents an

increase of time.

For the sake of discussion, which was not presented by the authors, it was con-

sidered that is better not to increase the number of slices in all cases. Given that

some of the times, to work in a parallel way will fall into the effects of what is very

well-known as: “the whole is greater than the sum of the individual components”.

The latter expression means that there is a limit where expanding parallel processing

makes a positive effect in the complete execution.

43

Fig. 2.12. SyLVaaS: (a) Workflow and deployment, (b) Parallel trace

2.5 Summary

In this section, it was presented the background information needed to put the

reader in context with the solution that will be provided in this dissertation.

44

CHAPTER 3. HARMS - A MULTI-ACTOR SYSTEM

MODEL

The HARMS model acronym comes from the wide range of type of actors that are

expected to be able to connect through it [96]. Its name was inspired in the diversity

of those actors, listed as: humans, software agents, robots, machines, and sensors.

Implementations of the HARMS model have to insure the interaction will happen

based in the capabilities that each actor possesses and the type of actors conforming

the group in a network.

The HARMS model can be applied to different types of applications in the multi-

actor spectrum. Additionally, the study of team formation from the point of view of

leader or head selection is very important for such systems. Therefore, much research

can be found related to that topic. Esmaeili et al. in [97] for example, proposed an

algorithm for distributed leader selection. It is based on the capability and location

of the actors within a network of multi-actor system. Based on the homogeneity of

the actors, it is assumed that all of the can be selected as leader. The performance of

the teams is also important and triggers the process. In this document instead, the

process of leader selection is based in the capability model and a mesh communication

between a number of agents that have the capability of leading configured, not all of

them.

The HARMS model includes but does not exclude the following overall require-

ments:

• Self-organizing

• Adaptable

• Autonomous

45

• Indistinguishable actors

• Scalable

• Minimal human interaction

• Mobile

The HARMS model comprehends five different layers that are interconnected to

provide the services required in order to accomplish smooth and effective interaction

between actors. The five layers are listed as follows in a bottom up fashion:

• Network layer

• Communication layer

• Interaction layer

• Organization layer

• Collective Intelligence layer

What each of the layers comprehend will be extended in the next section.

3.1 Layers of HARMS

The model was divided into five different layers to provide the actors with the

services needed to be able to integrate with each other. Those five layers are described

in detail as follows.

3.1.1 Network Layer

The network layer represents the basic communication between the nodes of the

system. Through it, each human, software agent, robot, machine or sensor, must

46

count on basic capabilities to connect through a generic wire-bound or wireless net-

work to connect to others. The network nodes have the ability to communicate via

sending TCP/UDP messages using unicast, multicast or broadcast, depending on the

message and which set of actors it is directed towards.

3.1.2 Communication Layer

Communication is the basic exchange capability between machines, agents and

humans. Communication is defined by a specific syntax or a set of protocols between

machines and semantics. All of these protocols are modeled in a generic sense and can

be extended given a specific task domain. The HARMS model enables communication

in a natural language format between all actors. The actors will exchange messages

in terms of queries, imperatives and information share. Given that, the actors can

send messages via unicast u, multicast m or broadcast b, they can send from robota

to any robotb . . . robot∞. Ryker et al. in [98] implemented the network and

communication layers. Authors present examples proving the capability to handle

increase of ubiquity in robotic systems within a controlled environment.

3.1.3 Interaction Layer

The interaction layer represents the means to let the wide diversity of actors being

able to react depending on the message that is received. In other words, the actors will

be able to interact with each other if they use a common ”language”. That language

is based in the capabilities that each actor possesses. The interaction layer includes

a set of techniques, algorithms and technologies that provide a layer for intelligent,

rational decision making by a set of machines, agents and humans. In such kind of

systems, there is an imperative of collectiveness, interest in cooperation in which there

should exist negotiation and bargaining between actors in order to make decisions.

47

3.1.4 Organization Layer

Taking advantage of organization and multi-agent theories, HARMS model pro-

vides the form that the different actors can be assigned activities based in their

indistinguishability and letting conform any of the different organization models.

3.1.5 Collective Intelligence Layer

The Collective Intelligence behavior in a collection of agents, robots and humans

can lean in a number of different directions. In this case, the focus in this dissertation

is on collective organizations with emergent and planned behavior. In a short study,

Gomez and Matson in [99] started discussing how different level of intelligence of

actors can enhance the effectiveness, and efficiency of a survivability feature in a

MAS setting. In the case of that study, HARMS is the basis of all the assumptions

where the collective intelligence could be achieved derived by the ”level of intelligence”

of each of the actors that conform the system.

3.2 HARMS model implementations

Given its intrinsic versatility of the HARMS model, it has been referenced and im-

plemented in contexts such as: enabling features of multi-actor systems, human-robot

interaction, ambient intelligence environments, and safety applications, to mention a

few.

In this section it will be covered all the documented implementations of the

HARMS model as an attempt to bring the reader to a broader level of knowledge

of what can be done while implementing HARMS model.

3.2.1 Enabling features of multi-actor systems

The initial declaration of the model was presented by [41]. In that document,

authors focused on defining what an effective infrastructure must posses to allow any

48

combination of machines and humans to interact. The five layers of HARMS were

defined in the same paper. Motivating scenarios were presented where machine to

machine interaction takes place for intensive computation; while the man to machine

interaction happens mostly for human in the loop cases.

One case of this is the paper where authors focused on implementing HARMS-

based indistinguishability property in ubiquitous robot organizations [96]. Basically,

the efforts in this paper relate directly to the implementation of HARMS where a

specific instruction as a command was given to a group of actors in a speech format.

They implemented a basic process to parse the string in such a way that they evaluated

the accuracy of the robots understanding the instruction either with a blue-tooth

headset or an internal microphone device. Their findings showed that using the blue-

tooth headset reduced the ambient noise. Hence, a more effective identification of the

command was more possible when using an external microphone rather than the one

present within the internal parts of the robots.

When allowing digital interaction within heterogeneous actors, there exists the

possibility where malicious actions could occur in any moment. DeWees in [100] de-

fined the first steps on considering security in the communication layer of the HARMS

model. Considering the confidentiality and authentication techniques lead to propose

a secure communications protocol for the HARMS model. Experiments were con-

ducted in three different scenarios considering unfriendly actions in the surroundings

through the communication and network basic layers of HARMS.

Collaboration was the main idea behind the HARMS-based heterogeneous human-

robot team for a gathering and collection function paper [101]. In that work, authors

used HARMS model to enable coordination within a network of robots that could be

arranged to harvest products such as apples. For example purposes, they developed

the scenario where they used humanoid robots to perform the recollection of balls of

different colors.

Adaptability in autonomous robots which work in a dynamic environment should

be achieved when unwanted changes from the environment may happen [79]. Such

49

adaptability consisted of a proposed model divided in two modules. In the one side it

is the information exchange using HARMS model to allow interaction between cyber

physical systems. On the other side it is the model validation that uses NuSMV

to check whether the system can continue its mission toward the goal in the given

environment.

The concern of what will happen when multi-actor systems encounter unplanned

issues during run-time was also a motivation to start thinking on a survivability

feature of the systems final goals [102], [103], and [104].

3.2.2 Human-robot interaction and AmI environments

Matson et al. in [105] presented a communication protocol between humans,

software agents, robots, machines, and sensors using a natural language interface.

Authors made the first step in developing a complete model of interaction which

they denominated HARMS. Consequently, it can be seen that the basic motivation of

the model is the indistinguishability that can be accomplished while using a human

language to interact between any kind of actor.

Ontological Semantic Technology (OST) as the basis for implementing cooperation

between different types of actors was the motivation in [106]. Authors there were

concerned about the safety of firefighters and victims of fires which normally are

exposed to many threats due to the dangerous environments of house fires. HARMS

there was mentioned as an enabler to be applied in conjunction with OST techniques

in firefighting environments.

In the case of human interaction, the majority of papers related to HARMS are

the ones where authors discuss applications using HARMS and natural language and

reasoning properties. A document related to HARMS mentions that the original

goal of the model was to let heterogeneous robots execute actions following a speech

command received by them [107].

50

The implementation of HARMS in Ambient Assisted Living (AAL) applications

started using the Narrative Knowledge Representation Language (NKRL) [108]. NKRL

includes an inference engine that provides the reason action on any spatiotemporal

relation that exists within natural language narratives. It uses two different on-

tologies, the HClass and the HTemp. Later on, continuing this path of research

authors proposed a semantic approach for enhancing assistive services in ubiquitous

robotics [109]. There, a collective intelligence framework is proposed, based on nar-

rative reasoning and natural language processing.

Wagoner and Matson in [110] performed tests for each of the three sentence types

(imperative, interrogative, and declarative) obtaining an overall accuracy of 96.6 %.

Authors in this work presented a robust human-robot communication system using

natural language for HARMS. Motivations were that the user does not need any prior

training to be able to communicate with machines.

The motivation of an actor to take the lead part of a multi-agent system when

receiving a verbal instruction by a human took researchers to present a task manager

for such activity in [111]. Requirements satisfied in their experiments were:

• The task manager retrieved the correct task from the dialogue manager

• The task was broken into the correct sub-tasks

• The task manager returned the actors that were capable of performing each

sub-task

3.2.3 Safety applications

As mentioned before, the motivation for [106] was to use HARMS as an enabler

to be applied in conjunction with OST techniques for firefighting robots.

The fist physical implementation of HARMS model was documented in [98]. In

this work, authors present the detailed implementation of HARMS first two bottom

layers, namely, network and communication. The specific scenario used to evaluate

51

the feasibility was a fire suppression system on a top floor of a high-rise building.

Several heterogeneous actors conformed the testbed, such as: arduino-based sensors,

DARwIn-OP humanoid robots, iRobot Create robots, data servers, and human inter-

faces. Within the same big project, several teams were integrated to work together in

different sub-problems of the whole solution. a) As mentioned in sections above, [98]

was the first real implementation of HARMS two bottom layers was to provide the

platform that allowed the complete interaction between all the actors of the scenario.

b) [112] presented the implemented way using HARMS of the UGV to go finding the

source of the fire. c) Park et al. in [113] worked in the part that the different actors,

either humanoid or simple speakers and microphones around the room were using

intuitive interaction allowing speech recognition. d) Wagoner et al. in Wagoner et al.

in [114] introduced humanoid robots capable of moving towards and extinguishing a

fire and locating and rescuing humans. e) Khaday et al. in [115] detailed the way

that the wireless sensor network was implemented in such a way that used HARMS.

Additionally, it presented the documentation for Big Data storage taking place for

the scenario.

3.3 Analysis and Design of Third Layer of HARMS

Before the implementation of the scenarios and the experiments mentioned later

in this document the only layers developed were the first two: Communication and

Network layers. Consequently, in order to implement any kind applications it was

necessary to design and implement the third layer. The third layer of HARMS,

denominated Interaction layer pertains to any kind of collaboration that could exist

between one or more actors towards accomplishing a common goal. In other words,

to be able to use the HARMS model in a higher level of applications than the ones

implemented in the past, it was necessary to build the different components of the

interaction layer.

52

In this dissertation it is documented the steps that took place to bring to function

the interaction layer of HARMS. We used the methodology of prototyping of a system

life-cycle to take it from the ideas and requirements to a level of production. This

section will talk in detail about the first two phases of the life-cycle, while the third

phase will be explained in the next chapter.

3.3.1 Problem Analysis

The the third layer of HARMS should include the fulfillment of the following

requirements:

• It has to be based in the capability model that is one of the pillars of the

HARMS model

• Take advantage of the services provided by the lower layers: Network and com-

munication

• Assure the indistinguishability of each of the actors taking part in the different

scenarios

• Provide an easy way to manage any number actors, with their different specific

capabilities. It is implicit to assume that an implementation of HARMS may

scale up to a considerable number of actors. However, it should also be able to

work in small scenarios where the number of actors could be reduced to even

use self communication management. For instance, lets assume that the same

actor.

• Intuitive way of instantiation for people of any background

• It should include the possibility to implement any kind of interaction between

any kind of actors

53

• It should cover the cases when any specific command is sent to an actor has

implemented all the different capabilities needed for accomplishing a complete

scenario actor

We consider that the interaction layer corresponds directly to the capabilities

that the actor possesses. Therefore, the individuality of each actor that can possess

different capabilities must be implemented the interaction layer. We define an actor

capability as the specific ability to react to certain circumstances. A capability can

be attached to one or more tasks. Such tasks are the ones in which a big problem

can be subdivided. The triggering circumstances can be started by a set of reasons

enumerated as follows:

• A global variable that the specific capability should be monitoring, such as a

determined time.

• The call from another process, within a bigger process of the same actor, such

as sub-processes of a bigger process.

• The call to execute a command remotely from another actor.

It is also understood that the different activities, related to different tasks based

on capabilities, should be ready to be executed or called to be executed at the initial

moment when the scenario starts.

As a matter of explanation, it was considered that the individuality of each actor

is given by the actions able to execute based on the corresponding capabilities that it

has to react to specific stimuli. For instance, if an actor is able to perform a specific

action, when he receives a message asking for the related capability, depending on his

availability and ability, he will answer positively to that question. We also consider

that the concept of actions and tasks based on the capability model can be extended

to a more complex extent one where a task can be accomplished depending on many

other factors such as time, space, and associated tools at hand. However, cases were

studied where the interaction itself has its high level of complexity.

54

In earlier implementations of HARMS, the interaction layer was understood and

taking place as a matter of natural language processing, [79], [110], and [111]. How-

ever, in the implementation shown in this research effort, it was considered that the

basic interaction between humans is based more in terms of capabilities. Hence, it

was implemented the interaction layer in terms of capabilities.

3.3.2 Interaction Layer Design

The design phase of the interaction layer was basically divided into each of the

expected functionalities. However, before talking about the different functionalities

that any interaction should cover, it was defined what are the components of the layer.

Figure 3.1 shows the basic components that were defined for each of the implemented

layers of HARMS. In that figure, it was presented the other layers in order to show

the context in which the components are located. The implementation platform is

shown in each of the components. As a matter of explanation, it was divided the

solution in three group of components: executables, services, and data persistence,

as shown in 3.1.

Data persistence

For a better understanding, it will start explaining the data persistance compo-

nents of the framework. Data persistance corresponds to the term of the different

databases shown in the right side of figure 3.1. The databases are supporting the au-

tonomy of every actor. In other words, each actor has access only to its own database

files. Consequently, actora needs to ask to actorb when the value of a variable stored

in the private database of actorb is required in a process of actora. Therefore, the in-

teraction between actors is enforced due to data decentralization. The location of the

files for anything related with data either execution or configuration should be located

in the DATA folder which is located under the root folder of HARMS. In the specific

implementation of both databases, they were implemented using JSON format due

55

Fig. 3.1. HARMS interaction layer components

56

to the easiness of use. Another reason for using that format is the complete interface

and library support in the programming languages used in this implementation, such

as Java and Python.

Capabilities The JSON file of the capabilities is in charge of containing all the

information concerning to the capabilities. Following the premise of the location of

data, the location for the file containing the data of capabilities is DATA\capabilities.

The file name of the database is capabilities.json. The basic structure of the capabil-

ities database is listed as follows:

• capability: The capability ID. This is the identification that will be used to

refer to a specific capability at any moment during run-time. We have used

a nomenclature in which it is avoided a duplicate. An easy identification of

the context and the capability is also enforced. As an example, skit-lead-000 is

used to identify the capability with the code 000 of the context skit-lead which

corresponds to the leading part of the safe kitchen scenario. The provided

nomenclature is a recommendation. However, architects or persons in charge of

the integration of actors can name the capability as they consider more effective

for them.

• context: This attribute is basically to group capabilities based in the context

that the capability works.

• description: The space where the database administrator places a simple doc-

umentation of what is the capability in charge to do when it is executed.

• type: It concerns to the type of program that was implemented, it could be out

of three cases: logical when it will not do anything, but it is used as a way to

identify the actors that posses that capability such as the one used to identify

which actor represents a patient. executable, Boolean value stored to identify if

the file is an executable in the operating system. The more basic program of

this kind is the program that contains the options of the lower and basic layers

57

of HARMS. webService, when the program is going to be implemented and run

as a webService. It is worth mentionig that the parameters that the program

receives at the initial execution time are different to the ones received in each

runtime execution through a webService call.

• programmingEnvironment: This attribute identifies the right programming

environment at the moment of execution of the capability.

• programName: The name of the file that contains the program code to exe-

cute or the binary file if that is the case. It is worth mentioning that it is needed

to avoid writing the extension of the file, since the program already adds it.

• isExecutable: Attribute used to determine if it is a binary file or a program

that will be run from the specific programming environment.

• needsToBeExecuted: This is attribute serves to identify the files that will be

executed at the beginning of the scenario execution.

• programatStart; If it also includes a different program program to execute at

start time.

• implemented: A boolean attribute to determine if the capability is imple-

mented or not in the specific actor where the code is running.

• parametersExe: This is a list of possible parameters that will be sent when

the program is executed. The list of parameters can be 0 or more of them. The

different attributes for each parameter is as follows:

– name: The name or id of the parameter.

– description: It is used as a documentation of the purpose of the parameter.

– type: The type, it identifies if it is string or integer or any other type that

can be used in the program.

58

– isFixedValue: Attribute used to identify if the value is fixed from the

beginning or can be changed depending on a condition during runtime.

– value: The specific value for the specific instance.

– required : If the value is required or not.

• parametersIn: This is a list of possible parameters that will be sent when the

program is called to be executed. The specific case when this parameters are

going to be used is when the capability is type webService. The list of parameters

can be 0 or more of them. The different attributes for each parameter is as

follows:

– name: The name or id of the parameter.

– description: It is used as a documentation of the purpose of the parameter.

– type: The type, it identifies if it is string or integer or any other type that

can be used in the program.

– isFixedValue: Attribute used to identify if the value is fixed from the

beginning or can be changed depending on a condition during runtime.

– value: The specific value for the specific instance.

– required : If the value is required or not.

• parametersOut: This is a list of possible parameters that will be the output

when the program is called to be executed. The specific case when this param-

eters are going to be used is when the capability is type webService. However,

it was left open to send the different parameters as required by the different

programs. Another reason to leave it open is that, at the end, the flow of the

program is between different messages sent through the programs, not really

as a reply received back as input from the actor that the message was origi-

nally sent to. The list of parameters can be 0 or more of them. The different

attributes for each parameter is as follows:

59

– name: The name or id of the parameter.

– description: It is used as a documentation of the purpose of the parameter.

– type: The type, it identifies if it is string or integer or any other type that

can be used in the program.

– isFixedValue: Attribute used to identify if the value is fixed from the

beginning or can be changed depending on a condition during runtime.

– value: The specific value for the specific instance.

– required : If the value is required or not.

The figure 3.2 shows an example of a simple capability defined to identify an actor

as a patient.

Implemented Capabilities This is the database containing the list of capabilities

that are implemented in the specific actor where the HARMS stack is running. The

name of the file is capabilitiesImplemented.json. The location for the file is in the

folder with the name of DATA\capabilities. The structure of the database contains

the following attributes:

• actor: Which is the ID of the actor. It is going to be the same value stored in

the config.txt.

• capabilities: This attributes extends to be a list of the capabilities imple-

mented in this actor. The sub-attributes are:

– capability : The id of the capability. It has to be the same than the one in

the file capabilities.json to be able to perform logical joins during runtime.

– implemented : It is a boolean attribute determining yes if it is implemented

and no otherwise.

60

Fig. 3.2. Example of capabilities.json file

Execution Capabilitites In order to let the context of capability services work

properly a database was developed. The name of that database is executionCapabili-

ties.json which is located in the directory DATA\capabilities. An example of the file

containing the execution capabilities database is shown in figure 3.4. The attributes

included in the database are:

• peers: Which contains a list of attributes corresponding to each of the ones

that has been receiving data. The attributes contained in this list are:

– hasCapability : Which will correspond to the value whether the peer or

actor has the capability implemented or not.

61

Fig. 3.3. Example of capabilitiesImplemented.json file

– random: Corresponds to the random number that the peer has assigned

at the beginning of the execution of the specific capability.

– peer : The code or ID as the actor is identified when a message will be sent

as it is stored in the file peers.txt.

Executables

The executables are the binary files that were developed in order to implement

the different layers of HARMS.

In the case of the interaction layer, depending on the goal intended to accomplish

by the executable it was decided which programming language was used. Java, and

specifically the version JDE-1.8.0 171 was used to program, compile, and generate

binary files of the two bottom layers and some functionalities of the interaction layer

62

Fig. 3.4. Example of executionCapabilities.json file

of HARMS. Python version 3 was used to program the majority of the functionalities

of the interaction layer of HARMS.

Receive Message As it can be seen in 3.1, the first component that the interaction

layer contains and that is directly connected to the communication layer is the Receive

Message component. This component implies a modification in the original program

of HARMS executable Java code. The basic program of HARMS, which contains the

network and and communication layers, originally developed in Java. Consequently,

to align the implementation of the lower part of the interaction layer it was developed

in the same executable. When mentioning it as a receive message functionality, it is

understood that it is on top of the communication layer. It is triggered each time

that the computer receives a message. That message can be, as stated by [98] either

command, notification, or query. Therefore, the system knowing that will be able to

react in the corresponding way each time that a message is received.

The workflow of the receive message process is shown in figure 3.5. It goes to

consult capabilities.json database to see if that capability is implemented within itself.

It is important to mention that the database capabilities.json will be updated with the

63

Fig. 3.5. Basic Workflow of the receive message process

attribute implemented at the start of the instance. If the attribute of that capability

is yes, then it proceeds to make a call to the specific activity attached to it. As

explained in the attributes of capabilities.json database, it can be either a program

or a web service.

Start Services When implementing the third layer or HARMS, it was considered

that, in order to be able to react to the messages or instructions received, the actor

should be ready with his own capabilities enabled. For this reason, it was developed

64

the startServices.py program which was implemented using python language version

3.4. The location of this file is other src\python from the root of the implementa-

tion of HARMS. The goal of this program is to place at ready any of the activities

corresponding to the capability ID that will be received afterwards.

Sevices

We decided to use web services as a mean to assure the ubiquity of the imple-

mentation of HARMS. In the basic implementation of HARMS it was noticed that

in order to fulfill the indistinguishability of the model, it was needed to develop the

capabilities functionalities.

As web services it is understood that they will be running all the time that the

process is running. They also have specific requirements on basic parameters to

receive. Those parameters are listed as follows:

• peerTo: Which corresponds to the peer that will be the one receiving a reply

in the case that it would be needed. It also corresponds to the actor from which

the message is receved from.

• capability: It will correspond to the capability that the system will use as a

base to react to the message received..

Capability Services We decided to proceed to develop each capability as web ser-

vices in order to assure that the execution will be easily accessed from within the

same and different actors. Another reason to implement it in other language is to

assure the independence of the code between layer 2 and 3, or communication and

interaction. For that reason, it was also needed to implement the basic operations

regarding capabilities. With that, all actors will have a base layer to work around

capabilities that each of them has to provide towards a specific final goal. The lan-

guage used to develop the webServices was Python and specifically the version was

3.4.

https://startServices.py

65

The capability services, as the name indicates, will provide the basic operations

regarding capabilities which are:

• Asked for implemented capability: The id of this capability is capa-001.

The actor with this capability receives a request to know if it has implemented

a specific capability within itself. The steps that take place when this capability

is requested are:

– Gets a number stored in the file executionCapabilities.json. That number

corresponds to a random number updated in each initial execution of a

specific process.

– Sends a message back to the peer from which the message was called.

Within the message it also sends as parameter the random number gener-

ated.

The message is sent as a unicast message to the peer from which the request was

received. The corresponding program is stored with the name askCapabilities.py

which is located in the folder other src\python\capabilities under the root folder

of HARMS code. It requires an additional parameter denominated requiredCa-

pability which is the capability that will be corroborated if it is implemented

within itself.

• Receive capability replies: The id of this capability is capa-002. The actor

with this capability will be able to receive capability replies. That implies that

will go to update the same database denominated executionCapabilities.json.

Each time that a message with this capability associated is received it will go to

either update or add a new tuple in the database in the case it does not exist.

3.3.3 Initial configuration of each execution

As it happens in any organization, when it is required to be formed, each of the

actors already possess their own capabilities and are ready to be executed. The same

https://askCapabilities.py

66

way should be for a multi-actor system. Therefore, it was created the program that

will be needed to run at the start point of the scenario. This needs to happen in order

to have all the web services associated to each capability sound and running.

The file containing the instructions of the program is located in the foler other src\python

and the corresponding file is start services.py. The program goes to the database

capabilities.json to consult which capabilities are implemented within the actor. De-

pending on which capabilities are implemented, the program may run either the bi-

nary execution files or the raw programming files with the help of the corresponding

instructions to run.

3.4 Negotiation and decision making using HARMS

The third layer of HARMS, denominated interaction layer, has the purpose of

enabling the basic negotiations and decisions among a set of actors that would accept

to cooperate to solve a problem. In this section an example will be documented.

3.4.1 Autonomous bootstrapping or Leader selection

As a matter of documentation, the general process of a negotiation between more

than one actor will be documented here. Specifically speaking, the process imple-

mented was denominated the autonomous bootstrap or leader selection.

Algorithm definition

Algorithms 1 and 2 present a negotiation that happens at the start of the execution

of the scenario. There will be more than 2 agents involved in the initial negotiation

to select the actor to perform the leading during all the execution. Such negotiation

will be executed each time that the scenario is called to be executed. The initial

instructions corresponding to bootstrapping are detailed in the algorithm 1. The

subsequent instructions executed when a message is received is shown in the algorithm

https://services.py

67

2. Both algorithms combined and executed in each of the sides, the sender and the

receiver, constitute the leader selection process.

Algorithm 1 determiningLeader(agent A, event e, time t)
Require: ∃A . agent where the algorithm is running
Require: ∃e . event that calls the execution
Require: ∃t . time for the delay
1: A.ranNum ← generateRandomNumber()
2: A.query(broadcast, ”leader capability?”)
3: A.Delay(t)
4: A.query(broadcast, ”execute leadership”)

A broadcast message is sent from each agent that has the leader capability is the

first instruction shown in algorithm 1. Given that at least two different actors will

have the same capability configured within the network, the process is decided by a

poll. A random number created while negotiating and each actor shares with all the

peers with the same capability is included in the poll. A comparison of the values for

each of the numbers created by each agent will be performed in each of those agents.

That simultaneous comparison of all the values is possible due to the mesh commu-

nication between all actors. Such comparison in a mesh communication increases the

possibility of equal distribution of leader assignments. Two sub-algorithms integrate

the complete process. Basically, both are waiting for an event to happen. One of

them starts when an external event provokes its initiation such as an specific time

arrives. This algorithm 1 is the one in charge of generating the random number and

store it for being able to share it alter on, when it is requested to be shared with

other actors. After sending the number to all agents, that requested it, each actor

waits until all numbers are received. One specific actor is selected by all the leader

actors in an agreement based on which of them has the highest random number. The

receiving messages part of the algorithm is detailed in the second algorithm. Upon

reception of the message, the agent will first determine if the message is sent to itself.

Even though the initial message is sent in a broadcast manner, the agent that will

execute the leading process each time that it will be executed will be only one of the

68

actors. The reason for that is to reduce the communication overhead caused by a

distributed This last singularity of assignment, perfectly aligning with the indistin-

guishability expected of the implementation of the HARMS model, is accomplished

by the instructions contained in the algorithm 2.

Complexity analysis

In this section a detailed complexity analysis is performed for both algorithms 1

and 2.

The formula 3.1 shows the evaluation equation for the algorithm 1 which is reduced

to 2 instructions and 2 messages sent in a broadcast manner.

2n + 2 (3.1)

Given that the instructions are executed in each of the actors, it leads to the 2n,

first part of the equation 3.1. The coefficient of 2 in the same equation corresponds

to the instructions to designate the random number and the delay.

On the other hand, the algorithm 2 is detailing the instructions taking place when

a message is received. Formula 3.2 shows how was evaluated that part of the program.

A simple n is assigned due to a simple flow of of instructions starting with an if.

n (3.2)

If both equations are multiplied as a combination of both algorithms, the result

is as is shown in formula 3.3.

2n 2 + 2n (3.3)

Ending in a simplification of the highest exponent as shown in equation 3.4.

θ(n 2) (3.4)

69

Algorithm 2 receiveMessageLeader(agent A, string msg, agent O, agent D)
Require: ∃A . agent where the algorithm is running
Require: ∃msg . message
Require: ∃O . agent origin of the message
Require: ∃D . agent destination of the message
1: if A = D then
2: if msg = ”leader capability?” then
3: if ”leader” in A.capabilities then
4: A.notification(O, ”yes ” + A.ranNum)
5: end if
6: end if
7: if msg = ”yes ” + O.ranNum then
8: if A.ranNum < O.ranNum then
9: A.selected ← A
10: else
11: if A.ranNum = O.ranNum then
12: if A.ID < O.ID then
13: A.selected ← A
14: else
15: A.selected ← O
16: end if
17: else
18: A.selected ← O
19: end if
20: end if
21: A.notification(O, ”leader ” + A.selected)
22: end if
23: if msg = ”leader ” + O.selected then
24: if A.selected <> O.selected then
25: A.Notification(O, ”leader correction ” + A.selected)
26: else
27: A.Notification(O, ”Ok ” + A.selected)
28: end if
29: end if
30: if msg = ”leader correction ” + O.selected then
31: A.selected ← O.selected
32: end if
33: if msg = ”execute leadership” then
34: A.executeAction(lead)
35: end if
36: if msg = ”Ok ” + O.selected then
37: doNothing
38: end if
39: end if

70

3.5 Summary

In this chapter of the dissertation it was presented the HARMS model to im-

plement the means for enabling any kind of interaction between different types of

actors. The HARMS model consists of five different layers that provide services in a

bottom-up approach. In this chapter was also detailed the different implementations

and related work that have been done at the moment. The documentation of the

implementation of the third layer, interaction layer was also detailed in this chap-

ter. Finally, as an explanatory case, it was meticulously analyzed an algorithm of

interaction between actors using the HARMS model.

71

CHAPTER 4. INDISTINGUISHABILITY AND

SURVIVABILITY IN MAS

Autonomous heterogeneous multi-agent systems are integrated by actors of many dif-

ferent types. They work together to accomplish a specific goal. Lately, many applica-

tions of MAS have been turned towards giving a solution to human societal problems.

Ambient intelligence (AmI) environments comprehend digital environments that work

towards supporting people in their daily lives [116]. Within that definition could be

included several environments such as smart homes, health monitoring and assistance,

hospitals, transportation, emergency services, education, and workplaces [117].

Out of an extension of the benefits of adopting the Internet of Things, newer

concepts like the Internet of Robotic Things (IoRT) appear. Quotidian problems

of society can be addressed by solutions that integrate different types of actors, in-

cluding robots. On the one hand, Vermesan et al. in [118] show a detailed list as:

sensing, cognition, perception, planning, actuating, and control as aspects to take

into consideration for developing robotic systems. On the other hand, Chibani et al.

in [119] present perception, actuation, and control as the fundamental functions that

motivates the majority of robot systems. Advanced and elaborated Artificial intel-

ligence (AI) techniques are common characteristics that devices and robots will be

gifted to face close future problems. Chibani et al. in [119] presented IoRT systems

as solutions to single actor system problems through the collaboration that can be

achieved in a smart fashion within a network of heterogeneous actors. Expressed in

a different way, individual abilities to solve big problems in a collaborative way; a

problem that can not be solved otherwise. Such abilities include evaluation, actuation

or both. Nonetheless, a good challenge is seen ahead to develop autonomous IoRT

services that may populate greater defiance for the research community to accomplish

a harmonic orchestration of all the actors.

72

A system that is able to accomplish its own mission, providing minimal acceptable

values for aimed services and accomplishes the goals regardless of the hostility of the

environment is a survivable system [120]. Hence, survivable systems ought to be able

to autonomously recover at the moment when the problematic situation is over-passed

without regard if the improvement was due to external or internal changes. Generally

speaking, survivability of original goals for a system of an individual actor to manage

a problem that is not programmed to overcome is essentially impossible. In recent

times, different approaches of autonomous systems have been studied in more detail.

Although, the network topics have been of more interest in terms of survivability

proprieties for researchers up to now [121], [122], [123]. Nonetheless, one of the appli-

cations that researchers have recently focused on is Ambient Assisted Living systemd

(AALs). Motivations for this gradual change to focus in AALs could be pushed by

the gap population problem between elderly people and their caregivers. Problem

that is more perceivable in developed countries. However, also the complexity of this

kind of solutions such as the one that is generated for including several heterogeneous

actors to the environment could be one of the reasons to have less related research

at the moment. Moreover, when humans are considered not users, but actors within

the solution, it generates that the scenario has to be able to evaluate any possible

path that could happen responding to the unpredictability of such actors. Still, the

IoRT systems should include reliable features that make them capable to succeed in

what they were created for in a survivability fashion in spite of facing issues that

are unknown before execution time. To the concern focused in this document, solu-

tions that include survivability feature should have more related research, specially

given that soon solutions will be provided as AALs and AmI, where humans will be

depending in a higher level of systems suggestions.

Applying model checking in execution time and taking advantage of Cloud re-

sources was presented in previous work [103]. Providing possible solutions to issues

encountered during run-time as a survivability mechanism was the research focus of

that work. In other words, the focus is set on providing possible solutions towards

73

reaching the original final aims of the system in contrast to only being successful to

identify errors while the system is running. This last mentioned is the target of model

checking since its inception. Moreover, the cloud is used to reduce the response time

used for the model checking activity while using several compute services a parallel

execution. Such execution is used to increase resources destined to the state explosion

problem. The state explosion problem is an implicit issue while running the model

checking technique. In this research, an evaluation of the benefits of using the cloud

resources to offload the model checking activity as a part of the survivability of the

system final goals.

Governments of developed countries are turning their research priorities to the

safety and security of elderly citizens at home, as the European Union [124]. Moti-

vated by the gap difference increase between old people and their own caregivers [125].

Consequently, one of the strategies to tackle down this governments problem is with

the AALs that are expected to be able to let old people live by their own in initial

stages of specific deceases.

Multi-Agent Systems(MAS) paradigm could be used as a viable approach upon

AALs solutions. Related to that, on the one hand, Sycara [7] defines MAS as the

systems that has the ability to do the following.

1. Give solution to large problems which can not be managed by centralized actor.

2. Allow the interconnection and inter-operation throughout to any other system.

3. Solve problems related to organizational autonomous actors.

4. Optimize the use of sparse and distributed information.

5. Manage efficiently different levels and distribution of expertise.

On the other hand, Carley [15] gives the meaning of an organization as

1. collections of processes and intelligent adaptive actors

2. are task oriented

74

3. socially situated

4. technologically bound

5. and continuously changing.

Characteristics that are similar are easily identified in both definitions. Summarized

as an integration of multiple heterogeneous actors that don’t count with complete in-

formation and competences to give solution to a problem; Impossibility to count with

global control and data fluctuation are enforced to work in a decentralized manner.

In multi-actor systems each and every actor provides either computation, sensor, or

actuation capabilities in a coordinated way. Many different forms have been defined

at the moment to accomplish that coordination, such as centralized or the complete

opposite betting in the autonomy of the actors. Many failures could be reached when

a set of different independent and autonomous actors are set to collaborate. Detection

of such failures may not be possible during analysis stage. Consequently, designs of

such systems could lack of mechanisms to overcome them.

HARMS is based on the Machine-to-Machine (M2M) infrastructure to integrate

humans, software agents, robots, machines and sensors into collectives [41]. The

different layers defined for HARMS are: network, communication, interaction, orga-

nization, and collective intelligence. Each of those layers provide the means for the

agents to interact. Indistinguishability is the most important feature for HARMS.

Such characteristic lets the assurance of the activity to be done, no matter the actor

performing it [96]. Services over the cloud are used to execute the model checking

processing to accomplish the survivability feature over AALs using HARMS. Parallel

running of model checking over the cloud is used to evaluate which of the modifica-

tions of the model could be applied as a solution for the issue encountered during

run-time.

75

4.1 Guiding a person to perform a specific activity

There exist many applications where multi-actor systems help people to perform

activities in an AmI setting. This section starts mentioning related work to the frame

that will be presented next as means to provide indistinguishability and survivability

features in the scope of AALs using HARMS.

4.1.1 Related work

The complete framework presented in this research effort includes and tacles down

several different aspects of AmI and AALs spectrum. Survivability, for example,

which is mostly investigated in different fields than in ambient assisted living systems.

Ayara and Najjar in [126] present health care as an applicable scenario of a formal

specification model for survivability in pervasive systems. There, authors evaluate the

degree of survivability as a means to ensure the acceptable execution of the services

offered. Based on that evaluation, in that research, they present an adaptation to the

current situation. Model checking is not used in that research, consequently, that is

the main difference to what is studied in this document. Also, even though it was

applied to health care systems it was not applied to AALs.

Research community is focused mostly at the moment in topics such as adapt-

ability [127] based in fault tolerance approaches to propose a re-configurable model

framework in home automation. The research effort in this document presents an ap-

proach to accomplish the feature of survivability of original final goals of the system.

In the present, exhaustively monitoring the targeted patients is one of the trends in

AALs. Such trend is possible due to the information generated by pervasive devices

located more and more in humans daily life environments. Forkan, Khalil, and Tari

in [128] propose a cloud-based, real-time, context-aware platform to analyze the enor-

mous amount of data generated by the different connected devices. Tailored services

are used to provide global and individual needs are the goals of that solution. The

latter kind of solutions are grouped in context-aware solutions which differ from the

76

solution presented in this work. The cloud services are used only to execute the model

check activity and it is triggered only if an error has appeared while the system is

running. Consequently, the monitoring of possible errors is considered as out of the

scope of this research effort. Using cloud resources with temporal logic and model

checking during run-time has been used to monitor and recognize activities for smart

environments in the kitchen room [129]. That work uses model checking to recognize

activity patterns instead of trying to find a solution to the problems encountered

during run-time. No deep studies were found for verification during run-time applied

in AALs. A study that converts patterns of behavioral UML models of AALs archi-

tecture to specifications able to be formally executed and PRISM is used to verify

the corresponding model can be found in [130]. That study was an effort on analysis

of dependability. Changes of actors executing an activity is possible overtime due

to the indistinguishability that is possible with the use of the HARMS model. Such

difference to the case of using UML diagrams to code that can be used in a formal

verification tool as explained in [130].

The novelty of the HARMS model could be one of the reasons why there is no

deep related research. Nonetheless, a narrative knowledge representation language

that uses defined reasoning rules as an example of implementation of the HARMS

model as enabler of interaction between heterogeneous actors [109]. Model checking

is not used to propose a solution as in this research effort differs to the one presented

by [109] which applies intelligence to the mentioned perspective.

4.1.2 AAL systems

The goal of survivable systems is to induce corrective actions in order to maintain

the ability to accomplish the original final goals even though unknown issues could

be found during run-time. The relevance of the framework presented in this work

is presented in this section. After that, two different use cases of AALs applying

77

indistinguishability and survivability based in the implementation of the HARMS

model will be presented.

An old person with Alzheimer is the motivation for the first scenario presented in

this chapter. Persons with Alzheimer lose the sense of time. Because of that, when

they sit to watch TV they may spend not hours but days. Consequently, guiding a

person with those characteristics to go to bed covers the first motivating scenario. As

shown in Fig. 4.1, the scenario involves several actors that work autonomously and

agree to work together to fulfill the goal of guiding the end user to their bed.

A list of the problems that could be encountered by the previously mentioned

system are:

• The mobile robot could stop with no explainable reason

• The communication may be not possible anymore

• The patient or the robot that need to be guided could not be following the

instructions in the correct way

• Delays out of boundaries determined in the original plan

• Speakers not working properly

• One of the actors cannot get the information properly such as the actor needed

to be assisted is not able to recognize the message

The aforementioned case of AAL system encapsulates guiding a patient or another

actor to execute a specific activity such as going to sleep. Such solution includes the

use of a heterogeneous multi-actor system where each of the actors provides their own

capabilities to accomplish the big goal.

Independently of how often the situation takes place, it is understood that every

single execution of the system will vary in a very dynamic environment such as the one

where these framework is applied to. The uncertainty implicit in the scenario could

drive the execution path to get changes depending on the values that each variable

78

take during run-time. Consequently, the focus in this research effort is extended to the

part of finding solutions to issues not seen before execution time in an implementation

of the HARMS model for a person needing guide to go to bed scenario. Moreover,

given the complexity to manage all the involved actors by a traditional dependable

MAS approach the focus in this document will be on scenarios where unexpected

circumstances take place during the run-time of AALs. Consequently, the HARMS

model is the base to perform ad-hoc organizations. The problem of this section of

the document is divided in three different part as:

• The bootstrap of the scenario is based in redundancy or actors where the system

can rely in that if an actor is not working another can step in to cover it.

• The creation of the team of actors with activities assigned is done in an au-

tonomous way.

• The system counts with a simple verification of the current status of the execu-

tion compared against the model of the system itself. If a discordance is found,

an exception starts the process of solution generation which will propose the

best possible solution to implement in order to overcome the issue found during

run-time in a survivable way.

An elderly person is guided to sleep from the living room at an specific moment

of the day as shown in figure 4.1. The list below show the steps taking place in that

scenario:

• Step 0: The beginning of the run, depending on a specific time of day an event

will start the negotiation to determine which actor will be the leader of the

scenario.

• Step 1: A device is requested to execute an activity in order to accomplish a

goal.

• Step 2: The device executes the different steps needed to accomplish the goal.

79

• Step 3: A normal on-line verification to confirm no errors occurred.

• Steps 4 and 5: Where the device in charge finishes one or more sequential

activities.

• Step 6: (not shown in the figure) Is a confirmation indicating that the goal was

successfully achieved.

4.1.3 Proposed Framework

This research effort presents a framework which extends what was presented

in [103]. In that work authors were reaching self-healing feature based on the in-

formation and the work-flow of four not directly connected processes. First, the

algorithms leader selection and autonomous team formation detail the steps for the

implementation of the HARMS model in the scenario of guiding a patient to sleep.

Second, the algorithms called survivability and self-healing show the steps for the

implementation of the survivability feature.

HARMS implementation

The HARMS model could be used to provide indistinguishability and survivability

features in AAL scenarios such as the one mentioned in the previous section as the

motivating scenario. HARMS is a model that enables a multi-actor system to coordi-

nate in an indistinguishable method the assignment and execution of activities [96].

HARMS is a model based on the capability model, where different autonomous actors

have a number of capabilities and work together to accomplish a collective goal [41].

Consequently, in this research effort the first three layers of the HARMS model are

used, namely, the network, communication, and interaction layers. Within an AALs

there are several heterogeneous autonomous actors that are detailed as follows:

• Assorted sensors will be located in different places to be able to monitor impor-

tant values from other actors such as patient and other robot. Context infor-

80

F
ig
.
4.
1.

 T
ak
e
m
e
to

 s
le
ep

 s
ce
n
ar
io

 d
ra
w
in
g

81

mation related to other actors is the type of readings that those actors could

get and provide to the system. Such context information could be the exact

location of other actors such as the patient. The location of the patient could

be accomplished as a triangulation of readings of several contextual information

actors.

• It is assumed that the patient or dependable actor will always have in a reachable

distance the way that will be used to detect their location. Such device would

be like a phone which allows to the actors mentioned in the previous bullet to

determine the exact location.

• There will exist more than one actor that will be able to start the scenario at a

given time.

• It is assumed that within all the actors all there will exist capabilities redun-

dancy. In other words, within all actors, at least 2 of them will have the ability

of each of the capabilities.

• This framework is based in the redundancy of the actors, where all different

capabilities are going to be able to

As a formal definition, for any AAL system using HARMS there should exist the

following elements: A0...An actors with C0...Cm capabilities that can be held by any

number of the actors to solve T0...Tl tasks or specific problems to be solved.

The term actors above refers to the different humans, software agents, robots,

machines, and sensors eager to cooperate to accomplish a big goal. An actor capability

is the way that the actor has to react to specific circumstances. As an example, if

an actor receives a message with the parameters to execute an action, it will be able

to accomplish it only if it has configured that capability. As mentioned tasks in the

formal definition is understood all the different activities that the actors will execute

or are able to execute to accomplish the final goal. As it can be seen in the above

definition, the coordination and control of this kind of system is complex.

82

Fig. 4.2. HARMS actors

83

A series of steps are needed to be executed at the moment when a new actor joins

a specific HARMS network. Next it will be detailed the assumptions of the steps that

a new actor should go one by when when it firstly integrate the HARMS network.

1. The HARMS model software should be installed in the actor.

2. The complete information regarding the self-identification, self basic configura-

tion. The list of peers should also be set in the system.

3. The actor count with the a list of capabilities that the actor can perform with

the different physical and software configuration it has.

4. All the configuration of the capabilities that the actor is able to carry on have

to be assigned and

Communication is enabled to let different actors to interact using the HARMS

model protocol, as it is shown in figure 4.2. The other layers of the HARMS model

let the different actors to interact, organize, even generate collective intelligence.

Physical and logical setting of the different actors determines the first level of what

they will be able to contribute to solve the big problem. In this scenario, the first

three layers of the HARMS model are the only ones used. The first layer, allows basic

network protocols. The second layer, provides communication syntax and semantics.

The third layer, lets the actors define in an autonomous manner the way that they

will collaborate.

Network layer In terms of the network layer, the basic physical communication

functions are provided where the protocols to be used will depend on the actors.

Basically the most common will be TCP/IP, or sockets. HARMS model is open to

the possibility that in some cases it would be necessary to use other protocol such as

XMPP. Also, the type of messages able to be sent are unicast, multicast, or broadcast.

Each of the three cases were implemented in this scenario, depending on the context

of information needed to be sent. As an example, a broadcast message could be the

84

one sent by to leader to all the other actors to ask for the ones that count with a

specific capability. An example of a unicast message in contrast could be the one sent

as a reply to the previous question, from the one replying and sent only to the one

that was asking for that capability. Lastly, an example of a multicast message could

be the one that will be sent to the actors that count the capability to see the patient,

specifically, when the leader will ask for the actors that see the actor at that moment.

Communication layer The basic information exchange is expected to be accom-

plished when implementing this second layer of the HARMS model. In this scenario

all actors can use any type of message: query, imperative, or notification as options

to send. Hereof, the kind of message sent between actors can be of any of the options

available, depending on the specific communication objective between two or more

actors. When the location of a specific actor is needed, the leader actor in the system

will send a query to all the actors that possess the capability of location. The query

type message requires answer from the actors that receive it. Consequently, the an-

swer will be addressed sending the reading of the location for each actor that can see

the actor. Lastly, the type of message imperative or command is when there is the

need of a specific actor to perform an action. For example when the instruction to

execute the guiding activity to the actor guide.

Interaction layer The interaction layer provides the basic means to let different

actors to perform different group decisions among them. An auction could be accom-

plished as the decision of which actor will perform a specific activity directly related

to a capability. As an example it is the one that takes place when the leader is

selected.

The layers of organization and collective intelligence are not included nor required

for the implementation of this scenario. Consequently, there is nothing specified for

them in this document.

85

Model definition

This section is devoted to declare in a detailed manner each of the actors that are

used in the scenario.

Leader actors (A) The actors that possess the leading capability are those ones

that are able to coordinate the other different actors to work together to accomplish

a big goal.

Contextual information actors (C) Contextual information actors are the ones

able to read information about the environment related to other actors. For example,

the RFID readers, used to get the location of the patient and the guide actor, working

in a networked triangulation for improving accuracy.

Assistive actors(As) The assistive actors possess the capability to guide, monitor,

give instructions, and physically help to other specific actors such as patient and

robots.

Dependable actor (De) A dependable actor is the one that will be guided to do

a specific activity. In this specific scenario, the dependable actor is the patient that

needs to be guided to bed. Nevertheless, the way that it is proposed the framework

includes any kind of actors in a generic algorithm presented. With that, the depend-

able actor could even be one of the actors that stop working properly during execution

time, such as the guide actor.

Origin actor (O) The origin actor is the one that sends a message when a protocol

of communication takes place.

Destination actor (D) Destination actor is the one that receives a message pre-

viously sent by another actor. Self communication is possible as well through the

HARMS model.

86

Algorithm definition

In this section the algorithms related to the cloud survivability framework applied

in AALs using HARMS are presented and detailed.

The algorithms are four and are presented next.

Autonomous bootstrap or leader selection Since the implementation of the

HARMS model implies a decentralization of control and information, it also drives

every scenario to start each activity without any actor assigned. Consequently, in the

start of running all scenarios that use the HARMS model, there will exist an initial

negotiation between the actors that possess the leading capability. This process was

completely documented at the end of the previous chapter.

Autonomous team formation Continuing with the implementation of the HARMS

model in this scenario when an old person needs to be guided to go to bed, the team

needs to be created during run-time each time it is executed. A communication

between the different actors exchanging information regarding their capabilities and

availability will be important for the implementation of this algorithm. Expressed it

in a different way, one actor asks with a broadcast message for the actors that have a

specific capability configured. Following the reception of the request, the actors that

count with that capability, they reply with other message to the requester with an

affirmative answer.

A cohesive group is created in an autonomous fashion as shown in algorithm 3.

In that algorithm the focus is to work in generic scenarios of AALs. What happens

when in the destination actor upon reception of a message is shown in algorithm 4.

Note that algorithms related to the reception of messages could be many. However,

here it was presented only one as an example.

As mentioned before, algorithms 3 and 4 include the different instructions to

integrate all the actors needed for each execution of the scenario, depending on the

87

available actors. To easily understand the process lets divide the sequence in two

sections:

1. Determining the most fit-able HARMS model between different AAL scenarios.

2. Since each activity, including the ones included in AAL scenarios have specific

steps to be followed to accomplishing them, they need to be defined as well.

Negotiation as a basis of what happens between not previously grouped actors

is presented in the algorithm 3. This algorithm starts from the assumption that the

leader actor has already been selected, following the process detailed at the end of the

previous chapter, specifically in algorithms 1 and 2. Consequently, the leader actor

can be able to determine which actors posses the capability of ”see” a selected group

of actors. The capability of spotting or provide location of other actors, status, and

other environment variables are called contextual information actors. As an example

could be mentioned the RFID readers that could calculate the location of actors that

have the RFID tags that are visible for the readers. In the specific scenario presented

in this section, humans needed to be guided will always have a phone with RFID tag

in their own pockets. Basic communication runs back and forth between the general

leader actor and the actors that have the specific contextual information capability.

The leader actor receives a positive answer from the actors that have such capability

configured and are also able to read it at that moment. As an example, in this case

will be asked not only for the actors that have the capability, rather than asking

which actors can really apply it now, such as ”seeing” at that specific location of the

patient. Following that, the leader actor asks for the specific read of the actors that

replied positively to the question of whether they were able to get that specific values

at that moment. The calculation of the position of an actor is out of the scope of this

work. Consequently, it is only called as a simple function that returns the location

within the scenario. After getting the location of the patient or dependable actor, the

leader actor starts the process to assign the guide actor. Such process is a handshake

related to ask for capability of guiding, where only the ones with that capability will

88

reply acknowledging that they have it. The assignment of the actor a in charge of

guiding actor p is materialized based in the positive replies. A group of steps are then

shown in the algorithm which correspond to the action of guiding the patient to bed.

All those instructions are sequential, where non of them can be skipped. The process

is considered finished or accomplished when the assistive actor sends a message to

the leader actor stating that the patient is already in bed.

Algorithm 3 leadTeamFormation(actor A, actor D, time t, actor[] C*, actor[] As*)
Require: ∃A . leader actor (selected previously)
Require: ∃De . dependable actor
Require: ∃t . time for the delay
Require: ∃C∗ . group of actors w/context capability
Require: ∃As∗ . group of actors w/assistive capability
Require: ∗ . updated during runtime possibly by other procedure
1: A.Query(broadcast, ”[Context] capability?”)
2: A.Delay(t)
3: A.Query(multicast(C), ”[Context] info De?”)
4: A.Delay(t)
5: D.location ← A.DetermineLocation(C)
6: L.Query(broadcast, ”[Assistive] capability?”)
7: A.Delay(t)
8: A.Query(multicast(As), ”[status] info?”)
9: A.Delay(t)
10: Asbest ← As0

11: for each a in As do
12: if a.[status] > Asbest.[status] then
13: Asbest ← a
14: end if
15: end for
16: A.Directive(Asbest, ”Inst ” + MoveToActorLocation + De.location)
17: A.waitForMsg(Asbest, ”Done”)
18: A.Directive(AsBest, ”Inst ” + AskActorPerformAction + De)
19: A.waitForMsg(Asbest, ”Done”)
20: A.Directive(ABest, ”Inst ” + [AssistiveAction] + De)
21: A.waitForMsg(Asbest, ”Done”)
22: A.Notification(O, ”Done”)

The algorithms 1 to 4 corresponding to the scenario of guiding a patient to bed

can be seen in the figure 4.3

89

Algorithm 4 receiveMessageTeamFormation(actor A, string msg, actor O, actor D)
Require: ∃A . actor where the algorithm is running
Require: ∃msg . message
Require: ∃O . actor origin of the message
Require: ∃D . actor destination of the message
Require: ∃De . dependable actor received in message
1: if A = D then
2: if msg = ”[Context] capability?” then
3: if [Context] capability in A.capabilities[] then
4: A.Notification(O, ”Yes”)
5: end if
6: end if
7: if msg = ”[Context] info D?” then
8: contextInfo ← getContextInfo(De)
9: A.Notification(O, ”[Context] info =
10: end if
11: if msg = ”[Assistive] capability?” then
12: if [Assistive] in A.capabilities[] then
13: A.Notification(O, ”Yes”)
14: end if
15: end if
16: if msg = ”[status] info?” then
17: status ← getStatusInfo

” + contextInfo)

18: A.Notification(O, ”[status] info = ” + status)
19: end if
20: if msg = ”Inst ” + MoveToActorLocation + De.location then
21: MoveToActorLocation(De.location)
22: A.Notification(O, ”Done”)
23: end if
24: if msg = ”Inst ” + AskActorPerformAction + De then
25: while response != ”Yes” do
26: response ← AskActorPerformAction(De)
27: end while
28: A.Notification(O, ”Done”)
29: end if
30: if msg = ”Inst ” + [AssistiveAction] + D then
31: [AssistiveAction](D)
32: A.Notification(O, ”Done”)
33: end if
34: end if

90

Fig. 4.3. Actor Interaction Workflow of HARMS Implementation

91

4.1.4 Complexity Analysis

It was considered important to evaluate the complexity of the algorithms presented

in the previous section. Consequently, in order to better evaluate such algorithms, it

was considered pertinent to divide them in two groups as:

1. Bootstrap or leader selection

2. Autonomous team formation

Bootstrap or Leader Selection

The complete complexity analysis of this algorithm was evaluated at the end of

the previous chapter and the result is n2 .

Autonomous Team Formation

As an initial abstraction of the algorithm 3 it was determined that all steps con-

tained after the line 14 will be evaluated with complexity of 1. Nonetheless, an n is

assigned to the steps of broadcast and multicast given that it implies that they will

be sent to all the actors or a group of them, not just one of them.

Formula 4.1 shows the evaluation in complexity terms of the algorithms mentioned

in the previous paragraph and shown in algorithm 3

5n + 13 (4.1)

While for algorithm 4 a simple evaluation can be seen in 4.2.

n (4.2)

Consequently, formula 4.3 presents the consolidation of the two algorithms 3 and

4.

92

4n 2 + n + 13 (4.3)

The conversion presented as 42 + n + 13 is the result of the 4 n associated to

the messages sent to more than one actor. The final is a loop. Therefore, it is only

multiplied 4n to the n number of messages received.

In the end, the result of the evaluation of complexity of algorithms 3 and 4 is

similar to what was the result obtained in the end of chapter 3 as it is shown in the

equation 4.4.

θ(n 2) (4.4)

4.1.5 Experiments

Seven different virtual machines in the BDCF platform were used as the test bed

for the experiments of the scenario where an elderly person who is performing other

activity than sleeping needs to be guided to go to bed. Although it is a virtual

environment, the experiments were conducted to evaluate the behavior of the system.

The specific configuration for the seven virtual actors is depicted in the table 4.1. Data

and control is not allowed to be centralized. Consequently, the only actor that knows

which capability they have is only themselves given that the implementation is using

the third layer of the HARMS model, as it was explained in the previous chapter. To

be more specific in explaining that, the only way to implement indistinguishability is

that actor1 is the only one that knows what capabilities it possesses. The same for

actor2, actor3, and all of them. Actors from 1 to 3 are configured with the capability

of leading and model checking capability as well. The actor 6 acts as the patient and

all the other actors have their own capabilities assigned. The capability of patient is a

logical capability, given that it does not represent any specific activity to perform, but

just to identify which actors have it configured. The last capability is still configured

with indistinguishabiilty, even though the patient will always be the same, but it was

93

Table 4.1.
Capabilities by actor for HARMS implementation

No Name Description
Actors

001 002 003 004 005 006 007
1 harm-000 HARMS Java app yes yes yes yes yes yes yes

2 harm-001
Ability to send
messages

yes yes yes yes yes yes yes

3 capa-001 Ask for capabilities yes yes yes yes yes yes yes

4 capa-002
Reply for asked
capabilities

yes yes yes yes yes yes yes

5 lead-001
Determining master
leader

yes yes yes no no no no

6 lead-002
Gets master lead of
the execution

yes yes yes no no no no

7 lead-003
Assign guide,
receiving location patient

yes yes yes no no no no

8 lead-004
Send message of
result to second best

yes yes yes no no no no

9 pati-000
Identification as
patient

no no no no no yes no

10 loca-001
Determine location of
X actor (RFID)

no no no yes no no no

11 guid-001
Guide patient to
specific activity

no no no yes no no yes

94

decided like that to follow a full indistinguishability scenario. Following that premise,

the capability of patient is also requested to identify the actor that represents the

patient. That actor that has the capability of patient assigned is used to determine

the location of the patient that that actor represents.

4.2 Monitoring hazardous situations within a smart home environment

Several applications of Ambient Intelligence (AmI) environments have been de-

veloped in the context of monitoring hazardous situations within smart homes. For

instance Skubic et al. in [131] implemented and monitored the activity for a space

of time of over 2 years to residents in 17 apartments of an elderly care facility. Their

purpose was to monitor and to find patterns to early detect possible alerts such as

falls and extracting patterns of the usage of time for the people living within those

apartments. While it is true that aging population is a concern for various countries

in different continents, solutions for smart homes are targeted not only for people

with those special needs. One of the reasons to develop this kind of solutions in a

broader sense is to provide tools that are also created for people that are not suffering

of any kind of disability.

Consequently, in this section, a framework is defined where while implementing

the HARMS model that was able to set the environment to monitor a kitchen place.

An special case was taken as the specific scenario where it could be used a gas stove,

which given its own characteristics, it presents special hazards even for people with

no special needs. Cases of house or building fires are countless where the ignition

point has been a stove such as the one mentioned earlier in this paragraph.

4.2.1 Problem definition

Figure 4.4 shows the sequence and interaction diagram that all the actors need

to perform in order to monitor a safe kitchen environment. However, the different

activities could represent more than only one interaction or message between actors.

95

For instance, the actor that will perform the data analysis, in order to retrieve the

information regarding the most recent value of a sensor needs to receive the raw data

from the sensor that will be assigned to sense that variable.

The basic constraints for a problem as such are:

• The scenario will include a set of actors that may agree to cooperate towards

solving the specific problem of monitoring a kitchen environment.

• There should be at least two or more actors able to accomplish each specific

capability, with the exception of the actor that will count as the care giver,

which normally it is a human.

• The surrounding environment will be specifically a set of a kitchen in a normal

apartment.

• The stove has to be one that works with gas in any denomination, such as

butane.

• The specific point to trigger the scenario is the turn on, turn off of the burners

of a gas stove.

• There could be cases where the stove may not ignite, however, the gas may be

flowing causing possible problems leading to a fire hazard.

• The end user could be leaded to turn off the burner by any means. For example

by playing the sound of a string trough a TTS program.

• The different variables to measure should be a combination of at least one

related to possible fire hazards, such as smoke, gas, and temperature.

• The solution should include the implementation of a multi-actor stack model

that assures indistinguishability of the actors such as HARMS.

96

F
ig
.
4.
4.

 S
af
e
co
ok
in
g
in
te
ra
ct
io
n

 d
ia
gr
am

97

4.2.2 Model definition

Figure 4.5 shows a macro view of the processes taking place for the safe kitchen

scenario. The four different processes that take place are:

• In the case of the determining leader was implemented exactly the same way

that it was implemented for the example of guiding a human to perform an

action.

• The process denominated lead start is analogous to the process defined in the

previous example as team formation, however, the process takes different con-

figuration. Hence, it requires a different definition given that different actors

take action due to the specific capabilities that each actor possesses and are

required by the solution. Within this process, the assignation of activities to

different actors will take place.

• The next big process is called sensor data analysis, which represents the im-

portant part where there is at least one actor that performs the analysis of the

data. Such data will be received from other actors concerning the values that

the sensors capture in run-time. The data gathered while the system is run-

ning will be compared to some values previously stored for allowed gaps (e.g.

minimum and maximum values) for each variable sensed.

• The last (not external) process that will take place is the scenario in question

is the one going by the name of perform action. Specifically, this process cor-

responds to the activity that an actuator will perform. For instance, a speaker

could play the sound of a string using TTS technology. Other example could

be to have a humanoid robot that goes to turn off itself the burner. However,

due to the lack of time, it was decided to use the first example.

It is understood that both, the start, and end process flags are performed possibly

by external actors to the complete solution. In other words, the start presented in red

color in the figure 4.5 takes places when a contact sensor perceives that the burner

98

Fig. 4.5. Safe Kitchen Processes

99

gauge has been turned on. The same case will happen for the one presented in green

color, corresponding to the event when the burner has been turned back off, either

by the end user, or any other actor of the scenario.

4.2.3 Algorithms definition

It was considered necessary to define the algorithms for two of the big processes

present in the complete solution. The first to define is the Lead start, which starts

with values needed from the initial execution of the process. That means the time

when the last setup happened. Values required before the algorithm starts are the

ones that let the process know which sensors are already implemented and working

in the complete solution. Next, in line 1, the actor care giver is found out by calling

the function that determines it within the ones that have the capability ’skit-care-

001’ configured in their own capabilities. In line 2, it is verified if the actor exists

or not among all the actors in the HARMS configured network. If it does not exist,

the process finishes right after displaying a notification to the user that it was not

able to continue given that situation. In line 6, the actor that will perform the data

analysis is determined. That action leads to the same verification that took place for

the care-giver. Then, the same definition of each specific actor of the implemented

variables will be specified. Due to the lack of space in this document, it was only

presented in the algorithm the temperature actor. However, in the program it has the

complete code for each actor. The only variant for the validation if the actor exists is

that it also verifies if the specific sensor was implemented. The value corresponds to

the one that is required to exist since the last configuration of the actors took place.

After determining all the actors, the process will start sending the variables of the

run to the analysis actor. Such variables are, which are the actors for specific action

and the values of which sensors are active in the scenario. Then, the instruction to

get the specific information of the sensor and be sent directly to the actor that will

perform the data analysis. This set of two instructions is written in the code for all

100

the sensors. In spite that in the algorithm presented it is omitted for the other two

sensors. Lastly, the command sent to the actor in charge of the data analysis to start

performing it is sent. Consequently, the lead is then transferred to that actor which

will be coordinating all the next efforts. Specifically the actor with the analysis sensor

data capability assigned.

Algorithm 5 leadStart()
Require: ∃tempImplemented . Is temperature implemented?
Require: ∃gasImplemented . Is gas implemented?
Require: ∃smokeImplemented . Is smoke implemented?
1: careGiverActor ← findOutActor(0skit − care − 0010)
2: if careGiverActor == ” then
3: ShowMessage(’No actor care giver, process aborted’)
4: Return
5: end if
6: analysisActor ← findOutActor(0skit − sens − 0 − 10)
7: if analysisActor == ” then
8: ShowMessage(’No analysis actor, process aborted’)
9: Return
10: end if
11: tempActor ← findOutActor(0skit − sens − 0030) . for all sensors (gas, smoke)
12: if tempActor == ” and tempImplemented then
13: ShowMessage(’No temperature actor, process aborted’)
14: Return
15: end if
16: sendVariable(analysisActor, ’actorAnalysis’, analysisActor) . Parameters:

actorTo, variable, value
17: sendVariable(analysisActor, ’actorTemp’, tempActor) . for all sensors (gas,

smoke)
18: sendVariable(analysisActor, ’tempImplemented’, tempImplemented) . for all

sensors (gas, smoke)
19: if tempImmplemented then . for all sensors (gas, smoke)
20: getInformation(’temperature’, tempActor, analysisActor) . Parameters:

sensor, actorSource, actorDestination
21: end if
22: SendCommand(actorAnalysis, ’start’)

The way that the sensor values are verified is shown in figure 4.6. In the case of

the analysis of the sensor data, the algorithm 6 starts calling the functions to get the

101

information corresponding to the context values. Then, it directly gets into a while

loop which will keep running until the value running is set to ’no’. It is important to

mention that the value of that specific variable changes only by external commands.

Then, inside the while loop the values of each sensor will be extracted and verified,

if they are implemented. The comparison will be between the current value, which

will be constantly updated with the values received from the actor that is in charge

of that activity in the run. If the current value goes beyond the allowed gap, then

it starts the call to the process of performing action of ’Turn off the stove’. Such

action, as it was mentioned before, it can be as complex as needed. However, for this

experiment, the selected was for the simplest, which is to play the sound of a string

using a TTS tool. It is important to note in this algorithm that all the values that

the actor will get are the ones that are stored in its own memory. However, those

values are updated when receiving the values read by the different sensors by normal

message communication through HARMS. This allows the indistinguishability and

decentralization of the parts.

Algorithm 6 sensorDataAnalysis()
1: getContextValues . running, max, min, actors, etc
2: while running do
3: if tempImplemented then . for all sensors (gas, smoke)
4: currentT emp ← getValue(0temperature0)
5: if currentT emp > maxT emp then
6: performAction(’turn off the stove’)
7: end if
8: end if
9: getContextValues . specifically, running variable
10: end while

4.2.4 Experimental setup

For the experiments, in this section it was determined to use 8 different actors.

Each node was set up with its own different capabilities. except the two actors with

leading capability which also share other capabilities. It was decided like that given

102

F
ig
.
4.
6.

 D
at
a
A
n
al
y
si
s
C
om
p
on
en
t
W
or
k
fl
ow

103

that there were available only 8 actors to work with. The reason to count with at

least two actors with each capability was in a matter of redundancy which will be

taken advantage of, while assuring the indistinguishability feature. The capability

that is only assigned to one actor is the care giver due to the reason that a care

giver is a person responsible to oversee the activities and status of the user and the

environment being monitored.

Hardware and software configuration

Each of the eight different actor, used for the experiments, was configured accord-

ing to its own function. There were two actors with gas sensor, two other actors with

temperature sensor, two more actors configured with smoke sensor capabilities, and

two more actors that were configured with more than one capability. The way that

each of those configurations were made are documented next.

Common actors configuration All the actors share a basic specific configuration

in terms of hardware which is listed as follows:

• Raspberry Pi 3 (RPi3) Model B Quad-Core 1.2 GHz 1 GB RAM with On-board

WiFi and Bluetooth Connectivity.

• MicroSD card of 32 Gb used to store the different specific software and config-

uration of each of the actors.

Likewise, in terms of software and configuration, all actors were configured with

the following list of programs:

• Raspbian as the oficial supported operating system for Raspberry Pi. The

version downloaded and installed was 4.14, which comes with the installation

package denominated NOOBS V2.7.0 The basic installation contains software

and programs that were used as:

104

– Java 1.8.0 65 that is used for the execution of the general program of

HARMS

– Python version 3.5 that was used to execute the HARMS programs

• Network configuration with an IP address used by the HARMS model to allow

the communication between actors

• SSH connectivity and configuration to let a general actor to coordinate the

initial execution of all the actors to put them ready to start each time that the

scenario was planned to be executed

• Java binary files of HARMS that contains the implementation of the first two

layers (Network and communication). It also contains the interface for the third

layer.

• Different python programs that correspond to the basic implementation of the

HARMS model. Those programs were developed either as web services or as

normal executable programs needed for the interaction layer to work properly.

Actor with leader, data analysis, and actuator capabilities Apart of the

basic configuration of all the actors mentioned above, the actor with leader, data

analysis, and actuator capabilities was configured with a speaker using Bluetooth

connection. In terms of software it was covered in the Python program corresponding

to the capability of actuation. It specifically uses a text to speech (TTS) library to

play the sound of an instruction that will be given to the end user. An example of

the instruction that the speaker will play could be sent through the communication

layer to the actuator actor such as: ”Please, turn off the stove burner because the

temperature sensor is perceiving a value of 150 degrees, which is higher than the

threshold of 100 degrees”.

Actor with leader, data analysis, actuator, and care giver display capabili-

ties This type of actor, has the complete same set of capabilities and configuration

105

Fig. 4.7. Temperature sensor configuration

of the one just mentioned in the previous paragraph. However, it only has one more

capability assigned which is the display of the status of the user and the environment

being monitored. The display is used as a medium to provide online feedback of

the activities and variables related to the system that the care giver is in charge of

overseeing. As an example, when the end user turns on and off a stove burner, this

actor will receive a notification containing that information.

Actors with temperature sensor capability The actors with temperature capa-

bility were implemented following the online instructions found in [132]. The specific

circuit configuration for the sensor recommended in the same source is shown in figure

4.7. The actors with this configuration also include the common configuration of all

the actors mentioned above as the common actor configuration.

In terms of hardware, the list of parts used for each of the actors with temperature

capability is detailed as follows:

• DS 18B20 Temperature Sensor

106

• 4.7k Resistor

• GPIO breakout kit

• Breadboard

• Breadboard Wire

In the same way, the actors with temperature capability were accommodated

with the program in Python that receives the values in a specific general-purpose

input/output (GPIO) port. In the implementation that was performed for the set of

experiments it was used the port number 4.

In terms of calibration of the DS 18B20 Temperature Sensor. It was used an

average of the values presented in a range of 30 minutes by both of the devices.

The specific value obtained in a controlled environment like the apartment where the

experiments took place with the stove turned off was 76.6616 Fahrenheit degrees.

Consequently, in the system it was set up a 10% extra or 84.32776 Fahrenheit degrees

as the maximum threshold allowed for the experiments performed. Even if these

values do not reflect a real scenario of a maximum value representing a hazard of

a fire. They were considered as a change noticeable enough for the systems for the

experiments to perform.

Actors with gas sensor capability The way that the actors with gas sensor

capability were implemented is documented in [133]. The circuit configuration docu-

mented in the link mentioned above in this paragraph is also as shown in figure 4.8.

The actors with this configuration also include the common configuration of all the

actors mentioned above as the common actor configuration.

In terms of hardware, the list of parts used for each of the actors with gas capability

is detailed as follows:

• MQ-2 (Methane, Butane, LPG, smoke) sensor

• Analog-Digital Converter (8 Ports)

107

Fig. 4.8. Gas sensor configuration

108

• 5V to 3.3V Logic Level Converter

• Breadboard

• Breadboard Wire

In the same way, the actors with gas capability were accommodated with the

program in Python that receives the values in a specific serial peripheral interface

(SPI) port. In the implementation that was performed for the set of experiments it

was used the analog port number 0.

For calibration of the MQ-2 gas sensor, before the real tests took place, and given

the possible hazards related to manage a flammable element within an apartment

setting, it was considered to take an initial reading of 30 minutes without the gas

gauge open. The average value thrown by both readers or sensor was of 0.0077195.

Consequently, in the same way, a 10% above that value, namely 0.00849145 was used

as the upper limit allowed for the conducted tests.

Actors with smoke sensor capability The smoke sensor configuration follows

the same configuration than the gas sensor, since the MQ-2 sensor reads gas and

smoke at the same time. What was done is that the capabilities of sensing smoke

were configured to only two of the actors as in opposition to the four actors that

count with the physical capability.

For calibration purposes of the MQ-2 smoke sensor, it was run the reading of smoke

value for a space of time of 30 minutes without having the stove burner functioning.

The value thrown was 0.0148069, for both sensors. It was calculated a 10% value

above the average or 0.01628759 to consider it as the maximum allowed value of

smoke to have inside a closed environment such as an apartment complex, where the

experiments took place.

109

Actors configuration for experiments

Table 4.2 shows the basic configuration that was set up for each actor. Accordingly,

figure 4.9 also shows the following distribution of capabilities that will be explained

more in detail later in the chapter:

• Actor1 is configured with the capabilities of leader, data analysis, and actuator

• Actor2 is configured with the capabilities of gas sensor

• Actor3 is configured with the capabilities of smoke sensor

• Actor4 is configured with the capabilities of gas sensor

• Actor5 is configured with the capabilities of temperature sensor

• Actor6 is configured with the capabilities of temperature sensor

• Actor7 is configured with the capabilities of smoke sensor

• Actor8 is configured with the capabilities of leader, data analysis, actuator, and

care giver display

In table 4.3 it is shown in detail all the different capabilities that were required

to be implemented in order to make the scenario of safe kitchen work. Each of

those capabilities are related with each of the actors. Also figure 4.9 shows the

configuration diagram, where icons are used to represent the capabilities assigned

to the different actors. In the same figure, it is shown that all the actors process

any interaction using the third layer of the HARMS model. That process provides

standardization within HARMS implementations to assure the effectiveness of the

interactions between actors. In other words, when a message is received through

HARMS stack, the layer 3 is the one in charge of letting the actor know what should

be done with the received information, in the case that the capability is configured

for that actor. The flow of the process when a message is received is documented at

110

Table 4.2.
List of actors in Kitchen Monitoring

Peer IP Address role
Actor1 192.168.1.18 leader, data analysis, actuator
Actor2 192.168.1.19 gas sensor
Actor3 192.168.1.20 smoke sensor
Actor4 192.168.1.21 gas sensor
Actor5 192.168.1.24 temperature sensor
Actor6 192.168.1.25 temperature sensor
Actor7 192.168.1.22 smoke sensor
Actor8 192.168.1.26 leader, data analysis, actuator, and care

the end of the previous chapter. In the same figure, it can be seen that each of the

actors is composed by at least the Raspberry pi configuration plus each capability. As

an example, Actor1 counts with the capabilities of leading, which is represented by

the machine with the different cogs; the other capability it possesses is the actuating

part, represented by a small robot. Another example would be Actor2 that possesses

the capability of gas sensor which is represented by a nose that can detect smells

and odors. A third example is the Actor3 which has a thermometer to represent the

temperature sensor capability. The only actor that posses the capability of care giver

is Actor8, given that it is considered that the care giver has to be a person. Such

capability is represented by a nurse drawing.

111

Fig. 4.9. Safe kitchen actors diagram

112

T
ab
le

 4
.3
.

L
is
t
of

 c
ap
ab
il
it
ie
s
as
si
gn
ed

 b
y

 a
ct
or

 i
n

 S
af
e
K
it
ch
en

 S
ce
n
ar
io

C
a
p
a
b
il
it
y

D
e
sc

ri
p
ti
o
n

A
c
to
r

N
a
m
e

lo
ca

ti
o
n

ru

n
 a

t
st
a
rt

1

2

3

4

5

6

7

8

h
ar
m
-0
00

H
A
R
M
S

 j
av
a
ap
p
li
ca
ti
on

X

X

X

X

X

X

X

X

H
A
R
M
S
.j
ar

\

ye
s

h
ar
m
-0
01

A
b
il
it
y

 t
o
se
n
d

 m
es
sa
ge
s

X

X

X

X

X

X

X

X

se
n
d
M
es
sa
ge
S
o
ck
et

\o
th
er

 s
rc
\h
ar
m
s

n
o

ca
p
a-
00
1

A
sk

 f
or

 c
ap
ab
il
it
ie
s

X

X

X

X

X

X

X

X

as
k
C
ap
ab
il
it
ie
s

\o
th
er

 s
rc
\c
ap
ab
il
it
ie
s
ye
s

ca
p
a-
00
2

R
ep
ly

 f
or

 a
sk
ed

 c
ap
ab
il
it
ie
s

X

X

X

X

X

X

X

X

re
p
ly
C
ap
ab
il
it
ie
s

\o
th
er

 s
rc
\c
ap
ab
il
it
ie
s
ye
s

sk
it
-l
ea
d
-0
00

T
im
er

 e
x
ec
u
ti
on

 t
h
at

 w
il
l
tr
ig
ge
r
th
e
sc
en
ar
io

 t
o
ru
n

X

X

co
m
b
in
ed
L
ea
d

\o
th
er

 s
rc
\s
k
it
-l
ea
d

ye
s

sk
it
-l
ea
d
-0
01

L
ea
d
er

 c
ap
ab
il
it
y

 o
f
sa
fe

 k
it
ch
en

 s
ce
n
ar
io

 (
n
eg
ot
ia
ti
on
)
X

X

d
et
er
m
in
eL
ea
d
er

\o
th
er

 s
rc
\s
k
it
-l
ea
d

ye
s

sk
it
-l
ea
d
-0
02

E
x
ec
u
te

 l
ea
d
in
g
ca
p
ab
il
it
y

 o
f
sa
fe

 k
it
ch
en

 s
ce
n
ar
io

X

X

L
ea
d

\o
th
er

 s
rc
\s
k
it
-l
ea
d

ye
s

sk
it
-s
en
s-
00
1

S
to
ve

 b
u
rn
er
s
ca
p
ab
il
it
y

 (
on
/o
ff

 s
en
so
r)
?

X

X

O
n
O
ff
B
u
rn
er

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-c
ar
e-
00
1

C
ar
eg
iv
er

 c
ap
ab
il
ty

 (
re
ce
iv
e
m
es
sa
ge
s)

X

re
ce
iv
eM
es
sa
ge
C
ar
eG
iv
er

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-s
en
s-
00
0

S
en
so
r
V
ar
ia
b
le
s
(G
et

 /
 u
p
d
,
et
c)

X

X

X

X

X

X

X

X

se
n
so
rV
ar
ia
b
le
s

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-s
en
s-
00
1

R
ec
ei
ve

 s
en
so
r
in
fo

X

X

X

X

X

X

X

X

R
ec
ei
ve
S
en
so
rD
at
a

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-s
en
s-
00
2

R
ea
d

 s
en
so
r
in
fo

 (
se
n
so
r
or

 g
en
er
al

 i
n
fo
)

X

X

X

X

X

X

X

X

re
ad
S
en
so
rD
at
a

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-s
en
s-
00
3

T
em
p
er
at
u
re

 s
en
so
r
ca
p
ab
il
it
y

 (
re
ad

 &
 s
to
re

 v
al
u
e)

X

X

re
ad
T
em
p
er
at
u
re

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-s
en
s-
00
4

G
as

 s
en
so
r
ca
p
ab
il
it
y

 (
re
ad

 &
 s
en
d
in
g
if

 v
al
u
e
on
)

X

X

re
ad
G
as

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-s
en
s-
00
5

S
m
ok
e
se
n
so
r
ca
p
ab
il
it
y

 (
re
ad

 &
 s
en
d
in
g
if

 v
al
u
e
on
)

X

X

re
ad
S
m
ok
e

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-s
en
s-
0-
1

A
n
al
y
si
s
of

 s
en
so
r
d
at
a

X

X

d
at
aA
n
al
y
si
s

\o
th
er

 s
rc
\s
k
it
-s
en
s

ye
s

sk
it
-a
ct
u
-0
01

A
ct
u
at
or

 (
ro
b
ot

 /
 s
p
ea
ke
r
/
ot
h
er
)
ca
p
ab
il
it
y

X

X

T
u
rn
O
ff
B
u
rn
er

\o
th
er

 s
rc
\s
k
it
-a
ct
u

ye
s

113

4.2.5 Experiment cases

To test the success in accomplishing the indistinguishability of the different actors

involved in the setup, the following different experiment cases were conducted:

• Case 1: No alarms issued This case is the one happening when the end user,

such as the person with special needs, follows a normal set of actions to cook

with no special issue encountered by the system.

• Case 2: Alarm(s) issued This case is characterized when the end user, such

as the person with special needs, unconsciously forgets or misses to identify a

possible hazard. That issue may be noticed by the system, action by which, it

starts the corresponding set of instructions in order to avoid an emergency.

In order to conduct the tests in an environment as close as possible of a real test

bed, the tests took place in an apartment complex in an ambience of a normal living-

kitchen room located in a building of apartments around the city of West Lafayette,

Indiana, between the first days of July of 2018.

To evaluate the indistinguishability, a set of 10 exercises were performed, to ver-

ify which actor was assigned for each task. According to Harnard [134], the term

indistinguishability has its origins in the thoughts about the Turing tests. Where the

goal of those test was motivated in such a way that the user would not be able to

identify if the entity in the other side of the computer was, either another computer

or a human. In these experiments it was expected to assure that the task related

to a capability is accomplished independently of which actor performs the activities

related to it. It is considered that a good measure of indistinguishability could be

not having a 100% of task assignations to the same actor in all the times that the

experiment was ran.

For that purpose, within the implementation of the system a file is stored in the

actor that performs the data analysis. That file denominated ”logConfigFile.json”

contains the log of all variables of each execution. By terms of log of all variables it

includes but it does not exclude the following list of information:

114

• actorLeader is the actor that was determined by the process explained in detail

in the previous chapter.

• actorAnalysis identifies the actor that verifies that the run-time variables are

within the acceptable parameters to consider that a possible hazard alarm has

not been issued.

• The different actors in charge of gathering the information of the different vari-

ables during execution. This list includes temperatureActor, gasActor, and

smokeActor

• The different variables of what sensors are implemented for each of the runs.

This list includes temperatureImplemented, gasImplemented, smokeIm-

plemented

• lastStart and lastStop correspond to the start and stop time stamps of the

run. Those values correspond to the time when the burner was turned on, and

the time when the burner was turned off.

Since the analysisActor itself can be indistinguishable, the log may be scattered

all around the actors. To counterpart that, it was proceeded to gather the log of each

actor and merge it to one single file to have all the log data.

4.2.6 Results

Table 4.4 shows the results that were obtained while executing the two different

real life scenarios mentioned as experiment cases. As mentioned before, if the percent

of the load distribution is more likely to be assigned the majority of the times to a

specific actor, then that would imply that the indistinguishability measure would also

be not effective as expected.

In the case of the leading capability, given that it was implemented with the

algorithm of leading selection, it was considered that the indistinguishability value

115

Table 4.4.
Measuring indistinguishability

Actor First 10 Second 10 Overall
1 50% 70% 60%
8 50% 30% 40%

obtained corresponds to an acceptable value. However, for the assignation of other

activities, that were assigned by the leader, the percentage of assignation was 100%

for the same actor all the execution times. Nevertheless, the execution of the activity

is performed given that the tasks needed for accomplishing the capability can be

performed by more than one of the actors in the configured network of actors.

Such behavior corresponds to the algorithm of broadcast which is a sequential

process that goes to send message by message in the order that the actors are in the

file peers. It was noticed that the specific case of the experiment case does not affect

for the indistinguishability of assignation of tasks to the actors.

4.3 Survivability as feature of MAS

Within recent times the development of systems that will be in close contact with

living creatures, specially humans, has been increased. In spite if the person is or

not lacking of determined abilities, solutions have been oriented to permit human-

system or human-robot collaborations. Due to their distinct functionalities and the

problems they are commended to work on, those systems can be categorized as com-

plex systems. However, it comes to the focus concern in this dissertation what could

happen right after the moment when the system encounters either external events or

internal errors that could affect the plan of action of the system, hence the results.

Consequences could be disastrous in any of the two possible outcomes of a system

without a survivability feature. On the one side, the system could stop working, and

imagining that the end users that it are directly interacting and depending on the

116

system could not be aware of the situation, it could lead to a stressful moment for

them. On the other side, if the system overpass the situation and guides the scenario

not to the desired original final goal rather than other point. Drivers for the need

of survivable solutions could be based in the premise that there is no place for pure

reliable methods, given that systems such as AmI are immerse in a very dynamic

environment. Destructive events are not predictable enough either by probabilistic

methods or calendar calculations.

4.3.1 System survivability

Efforts to measure survivability as the one mentioned in previous sections can be as

the natural thought of the effectiveness of a system after a given set of impacts [135].

Such definition is rather vague and the focus was set in the situations that may appear

during run-time of the systems. In this research effort, survivability is defined as the

number of times that the system can accomplish the goals set before run-time in spite

of finding unknown problems. The survivability feature is based in the assumption

that the system is well documented from its inception through a valid model that

works in all situations to what it was designed to work. Also, based on the possibility

that future robotic systems may encounter a very dynamic environment which could

bring many variables to play during run-time and may not be know before execution

time. In those cases, the only effort to find a solution to an unknown issue responds

to the natural instinct of survivability.

4.3.2 Algorithms and complexity analysis

Survivability

To accomplish the survivability feature, it was implemented using the first three

layers of the HARMS model. Survivability is divided into two parts.

117

First, a simple mechanism is used to be verifying the current status of the system

and validate it with what should be the state of the system at that moment generates

awareness of possible problems during run-time. Such elementary mechanism provides

the characteristic expected of the multi-actor system to identify errors not easy to

find during the analysis and design stages of the system. For the error or uncertain

situation discovery, it is proposed to have a time interval that is considered acceptable

for each specific capability to fulfill the related activities. Consequently, the time

interval to have either finished the activity or to have received answer from other actor

is part of the information stored in the capabilities file and will be active for each or

certain capabilities during run-time. Messaging is the basis of the assumption for the

different actors to communicate and detect possible errors encountered. For example,

a maximum wait time will be assigned when an actor sends a message containing

an instruction to execute activities related to a capability. There could also exist

capabilities that have no maximum wait time to receive the desired answer. However,

for the ones that have the timer, if that threshold is reached without receiving any

of the expected answers, it will start the process of self-healing as a part of the

survivability feature. Such maximum time will be set as an average of the time for

that activity to happen in previous executions. Identifying the right time when the

execution does not match what the model of the system says it should be doing is

important from the stand point of issue detection. That is important due to be able

to know in what state of the model the changes could start bein doing. In the solution

proposed in this research effort the focus is on finding a possible solution. That is

the reason why the simple on-line verification is used for error or issue detection,

avoiding to make exhaustive studies of what is in the environment. Also, another

reason is that a detailed analysis of the environment variables is out of the scope of

this research effort.

Second, at the time that an issue has been identified, the self-healing process as

a survivable feature will start. What is expected to receive back from the execution

of the self-healing process is a possible solution, including a path course of steps to

118

follow to still achieve the original final goals. Such solution or set of instructions as

solution will be confirmed if it is possible to be executed with the capabilities existing

in the actors that are in the network at that time. In other words, solution corrobo-

ration process consists of another round of handshaking to reassure requirements of

capabilities availability as shown in lines 4 to 7 of the algorithm 7. If the solution

provided first is not possible to be executed if the actors present do not count with

one of the capabilities needed, the process will corroborate more than one possible

solution. Such corroboration also includes the selection of the actors that better suit

for accomplishing the new set of actions. The process finishes with the assignment of

the new activities to the selected actors.

As stated before, the survivability process will be triggered by the detection of a

process that exceeds the maximum time to accomplish the activity set for an activity.

Algorithm 7 survivability(actor A, event error, model OriginalModel)
1: if Error != 0 then
2: A.SolutionFinder(OriginalModel)
3: Asnew ← BetterActor(As, [Assistive] + ”capability”)
4: Directive(A, Asnew, assistiveAction)
5: end if

The four processes presented in [103] and shown in figure 4.10 are:

• Base model generation is the assumption that the model that is running is

always updated and ready to be sent as parameter in case of needing it.

• Current activity verification implies the process of validation of the cur-

rent status of the system against the status that the model says it should be

happening during all the time that the system is running.

• Solutions generation and evaluation auto-generates model variations and

coordinates models validation through a model checker, such as NuSMV.

• Solutions corroboration insures the viability of any of the actors that could

receive the assignment to accomplish the new set of steps.

119

Fig. 4.10. Workflow of survivability process

120

An actor adaptive task-based model was presented in [79], in that work, authors

defined the model as a tuple robot = {S, T, I, →, AP }, where, S is a set of states, T

is a set of transitions, I = S0 ∈ S is an initial state, →⊆ ST S is a transition, and

AP is a set of atomic propositions. The point of view of that work differs to the one

presented in this research effort in such a way that here it is based the survivability

feature in the communication taking place between all actors of a multi-actor system

using the HARMS model.

Other strategies to formally verify open systems are contrasted in [136]. Au-

thors in that work present a comparison between module checking CTL and model

checking alternating-time temporal logic (ATL). The analysis discusses that there are

properties that can be expressed in module checking that can not be represented in

ATL.

Self-healing

The self-healing process, as shown in 8 is compound of four different sub-processes.

Creation of several different models based on the original take place at first. Such

changes to the model should take place in the specific state where the issue was

encountered during run-time. An exhaustive evaluation of all the possible paths of

each of the different models created is the following step. For that evaluation is used

the NuSMV tool [2]. This part will be explained in more detail in the following

section. After the results of the NuSMV tool are returned, a comparison in terms of

time response is executed. In this research effort, the value to compare is the time

response, however, in future work it could be extended to evaluate other variables.

The model execution that got a better time response is the solution that will be

proposed to the agent that requested the execution of the self-healing process. After

the result is returned to the general leader, it is followed by a corroboration or a

new handshake to determine if there is another actor that can execute the solution

provided by the self-healing part. It is assumed that there would be other actors

121

that can receive the assignment of the missing activities to accomplish the original

final goal as a survivability feature. However, it is not assumed that there would be

actors waiting to receive a new instruction. Expressing it in a different way, since

the cost of the actors could be elevated, it is assumed that actors will be working

in other activities such as cooking, surveillance, and actor support, nonetheless they

will be able to respond based in priorities. Such priorities will let them stop doing

what they may be doing and go to support a system that needs to solve an issue at

that moment. Figure 4.12 presents the flow diagram of the self-healing process.

In figure 4.11, the actors can be found in in the interaction diagram that illustrates

how it happens for the algorithm 7, survivability and algorithm 8, self-healing.

Algorithm 8 SelfHealing
Require: Parameter of original model
1: ModelVariationGeneration(OriginalModel)
2: ParallelExecution(ModelVariations)
3: BestSolution ← ResultsComparison()
4: Return(BestSolution)

Complexity analysis for the algorithms 7 and 8 is less complex than the ones

studied before as is shown in the equation 4.5.

n + 2 (4.5)

n in that algorithm is related to the number of iterations of the loop happening to

obtain the right actor in terms of availability and possesing the capabilities required.

The coefficient presented as 2 corresponds to the two following instructions.

On the other hand, for the algorithm 8 the complexity is calculated as it can be

stated in the equation 4.6.

3n + 1 (4.6)

The consolidation of the algorithms 7 and 8 would represent an evaluation result

as shown in equation 4.7.

122

Fig. 4.11. Self-healing actors interaction diagram

123

Fig. 4.12. Self-healing original diagram

124

Table 4.5.
Actors with self-healing capability

No Name Description
Actors

001 002 003 004 005 006 007

1 modc-001
General model
checking (coordinator)

no no no yes no no no

2 modc-002
Model verification
(model checking)

yes yes yes yes yes yes yes

4n + 2 (4.7)

where one of the 2 coefficient of equation 4.5 converts in the (3n + 1) because it

carries out the complexity of equation 4.6.

The final complexity evaluation results in a simple n as shown in equation 4.8.

θ(n) (4.8)

Self-healing mechanism The implementation of the self-healing mechanism was

possible due to the use of seven different virtual machines obtained from the BDCF

platform. Each of the machines worked in an autonomous way. That means that each

machine corresponded to an actor with its own autonomy and isolated information

including the capabilities configured. The table 4.5 shows that all the actors were

configured with the capability of model checking. However, only one of the actors

was configured with the capability to coordinate the model checking activity. That

capability, as explained before, will perform the modifications of the original model

and consequently distribute those models to the different actors that count with the

capability of model checking. This process takes advantage of the use of pynusmv

library which is executed each time that capability is requested.

125

F
ig
.
4.
13
.
R
es
u
lt
s
of

 m
o
d
el

 c
h
ec
k

 a
ct
iv
it
y

 o
f
ge
n
er
al

 s
ce
n
ar
io

126

4.3.3 Experimental setup

This section is devoted to explain in detail what was the configuration of all

the different aspects needed to execute the experiments. Such experiments were

conducted to determine the feasibility and benefits obtained while uploading the

model checking processing to the cloud in scenarios like the ones mentioned before.

Cloud Tools

BDCF platform was the cloud environment used for the experiments. A number

of seven virtual compute resources were configured using the BDCF platform. In the

seven virtual machines the different configurations were assigned for the seven differ-

ent actors running on top of each of the different virtual machines. The machines were

configured in terms of platform and software as shown in figure 4.14. Each machine,

as shown in that figure, has a public network configuration. Such connection gives the

possibility to be managed from outside or from other machines as one of the benefits

of the cloud. Web services were configured to allow the communication between the

different actors of the experiments. Each call was made using the third layer of the

HARMS model, which imply messages based in capabilities. Those capabilities have

a specific web service to be executed upon receiving a message of that kind. Those

machines were previously configured with two programming environments which were

Java and Python.

Java Programming Environment

The HARMS model in the first two layers was implemented using JAVA language.

Consequently, the Java programming environment was set up in each of the actors.

The HARMS model has been programmed through Java code and requires at least

to have the JRE component to run.

127

Python Environment

For the third layer of the HARMS model it was mostly implemented in Python

to allow the web service to be implemented and run smoothly. Each capability has

a web service associated to run each time that a message with that code is received.

All the code for those web services was made using Python developing environment.

HARMS Model

The problem statement was specifying that the use a multi-actor system was

required to accomplish the specific scenarios. Consequently, for the communication

an interaction part of this other sub-scenario also used the HARMS model. The use of

decentralized databases is one of the key components of the third layer of the HARMS

model. Consequently, in the framework proposed in this paper, the first three layers

of the HARMS were implemented: network, communication, and interaction layers.

JSON Format Database

The complete information pertinent to each of the capabilities that an actor has

configured is located in a JSON format file. With the files configured in a decentralized

manner the indistinguishability of HARMS is insured. In other words, each actor has

different files that have the configuration of the capabilities that it has configured.

4.3.4 Models evaluation

For the different models’ evaluation, model checking will be used, specifically a

tool called NuSMV [137]. NuSMV is a temporal logic model checker, which takes as

input an automata model and a temporal logic formula. An automata is a finite state

machine (FSM) which is used as a model on which it will be verified a specification

in a temporal logic formula fashion. The models to be verified will be the different

variations created based on the basic original model that represents the system in the

128

Fig. 4.14. General configuration of virtual machines in BDCF

129

way that it is running. To mimic the natural behavior of living creatures, the change

of the model is set up in a dynamic way where the changes will take places only after

the error was encountered. Specifically those changes will be made at the same point

represented in the model for the status that the system was at the moment of finding

the issue. In other words, the change in the models will be reflected in transitions or

states in the model just after the state where the problem emerged.

FSM model

As stated before, to verify the results of time response with the possibility of

successfully accomplishing the original final goals a model checker such as NuSMV

will be used. NuSMV uses SMV extension files which contain the description of finite

state machines and to express a set of requirements in computational tree logic (CTL)

and linear temporal logic (LTL) [2]. In this approach, it was used the original model

which is the implementation of HARMS discussed in previous sections of this work.

The way that was used to represent the model is following the rules of writing an

automaton model in the SMV format which is the one required by NuSMV.

The SMV program is subdivided into four different files:

• Actor localization RFID readers are actors that correspond to this category

and also called as contextual information actors in the previous sections of this

document.

• Actor Guide is the one in charge of guiding the patient to go to sleep. The term

assistive actor was used previously for this kind of actors.

• Actor Controller or the leader actor as mentioned in previous sections is the

one in charge of leading the complete scenario.

• Code main is the code that contains the macro part of the system.

130

In the code listing 4.1 it is presented the code for the FSM of the localization

actor, addressed before as contextual information actor. Basically the actor’s states

stay the same until the state of the general leader is set to asking for the location.

Listing 4.1 Code Actor Localization (RFID)

MODULE agt_loc(ag_ct_state)
VAR

state : {
idle,
cal_loc,
snd_loc};

ASSIGN
init(state) := idle;

next(state) := case
state=idle

& ag_ct_state=snd_cmd_loc : cal_loc;
state=cal_loc : snd_loc;
state=snd_loc : idle;

TRUE : idle;
esac;

The code listing 4.2 presents the code in SMV representation fro the actor that

guides the patient to bed. In the description given before this actor is called the

assistive actor. Upon receiving a message stating the capability associated to the actor

locator or contextual information, the code listing represents the model pertaining

that part of the system. Later on, when the actor arrives to the desired location of

the dependable actor it switches state to state that it has arrived and other set of

actions will follow such as giving instructions to follow him towards the bedroom. A

validation of a positive answer of the patient will be performed in order to continue

with the following instruction. And when it is located in the bedroom, it will verify if

the person is laid in bed. Finishing with with turning off everything in the bedroom

and moving back the robot to the place where it was at the beginning of the execution.

The actor controller or leader actor will lead all the scenario. The code listing

shown in 4.3 comprehends the states and transitions related to that actor.

131

Listing 4.2 Code Actor Guide

MODULE agt_guide(ag_ct_state)
VAR

state : {
idle,
mov_to_loc_pat,
play_follow_inst,
mov_to_bed,
play_lay_inst,
verify_patient_pos,
error};

location : {
anywhere,
on_track,
on_target_loc};

ASSIGN
init(state) := idle;
init(location) := anywhere;

next(state) := case
state=idle & ag_ct_state=snd_cmd_guide

& location=anywhere : mov_to_loc_pat;
state=mov_to_loc_pat : play_follow_inst;
state=play_follow_inst : mov_to_bed;
state=mov_to_bed : error;

TRUE : error;
esac;

next(location) := case
location!=on_target_loc

& state = mov_to_loc_pat : on_track;
location=on_track

& state = mov_to_loc_pat : on_target_loc;
TRUE : anywhere;

esac;

In the next code listing 4.4 it is presented the main code which corresponds to the

declaration of the actors.

Hereof, it will be used the Kripke structure for the formal definitions that start

as follows.

132

Listing 4.3 Code Actor Controller

MODULE agt_ct
VAR

state : {idle,
rq_other_ct,
ans_ct_cap,
dt_ag_ct,
snd_cmd_ct,
rq_ag_loc,
snd_cmd_loc,
rq_ag_guide,
dt_ag_guide,
snd_cmd_guide,
fwd_complete_msg,
error};

ASSIGN
init(state) := idle;

next(state) := case
state=idle : rq_other_ct;
state=rq_other_ct : ans_ct_cap;
state=ans_ct_cap : dt_ag_ct;
state=dt_ag_ct : snd_cmd_ct;
state=snd_cmd_ct : rq_ag_loc;
state=rq_ag_loc : snd_cmd_loc;
state=snd_cmd_loc : rq_ag_guide;
state=rq_ag_guide : dt_ag_guide;
state=dt_ag_guide : snd_cmd_guide;
state=snd_cmd_guide : fwd_complete_msg;
state=fwd_complete_msg : idle;

TRUE : error;
esac;

Definition 4.3.1 Define an AAL generic problem actor = {S, T, S0, →, AP, P T }

where S represents a set of states that the actor can adopt in any moment of the

execution time space. Whereas, a specific state si ∈ S. T substitutes all the turning

points or transitions from one actor’s state to another. S0 denotes all the initial

actor’s states which should be part of all valid S states. In other words, S0 ∈ S. A

right arrow → is a transition relation which implies the step from one actor’s state

to other as →⊆ S × S. AP relates a set of atomic propositions PT groups the

133

Listing 4.4 Code Main

MODULE main
VAR

ag_ct_state : {idle,
rq_other_ct,
ans_ct_cap,
dt_ag_ct,
snd_cmd_ct,
rq_ag_loc,
snd_cmd_loc,
rq_ag_guide,
dt_ag_guide,
snd_cmd_guide,
fwd_complete_msg,
error};

ct_1: process agt_ct;
ct_2: process agt_ct;
loc_1: process agt_loc(ag_ct_state);
loc_2: process agt_loc(ag_ct_state);
loc_3: process agt_loc(ag_ct_state);
guide_1: process agt_guide(ag_ct_state);
guide_2: process agt_guide(ag_ct_state);

ASSIGN
init(ag_ct_state) := idle;

validation of possible Atomic propositions depending on the specific actor’s state as

PT : Si → 2AP .

In this structure it is insured that the only possible transitions are the ones detailed

there. For example, to insure that the system changes of state from guiding while

moving the patient to arrived to the bedroom. There could be an extra validation

loop where if the distance between the guide actor and the patient does not exceed a

maximum threshold. The other possible transition should be the one where the robot

has already arrived to a specific location as a temporal goal for it. With that it is

possible to validate that the system is behaving as expected, because if the system

goes out of what it is expected, could be easily identified as an issue during run-time.

Definition 4.3.2 Define an AAL generic problem system = {sS, Agt, sT, sS0, →

, sAP, sP T } where sS represents a set of states that the system can adopt in any

134

moment of the execution time space. Whereas, a specific state ssi ∈ sS. Agt groups

all the actors that are in the system at the runtime sT substitutes all the turning

points from one state to another. sS0 denotes all the initial states which should be

part of all valid sS states. In other words sS0 ∈ sS. → is a transition relation which

implies the step from one state to other as →⊆ sS × sS. And sAP relates to the

possible set of atomic propositions which depends on the specific state as sSi → 2sAP .

The general SMV or original code that is shown in listings 4.1, 4.2, 4.3, and 4.4

exemplify one of the generic problems discussed above. Even though the code listings

present a generic problem, the specific problem focus in this section of the document

is the guiding the patient to bed. It is considered necessary to mention that in the

code that NuSMV will read does not have to have every single part of the code of the

scenario. The only parts important for NuSMV are regarding the different states and

transitions that force to change between states. The previous sentence is written in

this document as a matter of explanation of why not all the instructions are coded in

SMV format. The only ones that are important for the model checking part is when

the status changes.

As it was explained previously, the system will receive the original code with one

parameter, which is the model also indicating the state where the error was found.

Modifications to the original model will be done in different files with different file

names. The changes will be also done starting from the state where the error was

found. Changes in the SMV code may vary from adding a new actor, adding different

transitions, deleting others, adding other actions, subdividing goals, and others. A

validation will be performed to see if the original final goals are achieved with those

changes.

135

Logic formula

The model checking technique requires a model that represents the system and a

logic formula which will be evaluated to verify if the model of the system holds all

properties stated.

All models will be evaluated using the same specification that will be hold only

if the original final goals are accomplished. In the experiments for this section, the

formula that will be checked as shown in this work in formula 4.9. It was previously

decided to use the final state of fwd complete msg for the actor Controller 1 ct 1.

Controller 1 is the actor that is assumed to take the lead role to the complete execution

of the scenario.

EF (ct 1.state = idle− > ct 1.state = fwd complete msg) (4.9)

Offloading the model checking part to the cloud

The motivation of reducing time of processing the model checking activity drives

the decision to offload that activity to the cloud services. Another reason is to reduce

the risk on the systems running out of resources while executing the model checking

activity. A parallel execution is possible using the cloud services where they are

configured as actors in an implementation of the HARMS model. The solution finder

part involves the offloading of the model checking part.

The big data capabilities framework (BDCF) is an open source topology model

that provides parallel execution by composing software components which are as-

sociated and extend the processing capabilities [138]. The BDCF framework was

selected out of several options that were assessed. This framework targets to pro-

vide solution for three different layers, which are virtualization, orchestration, and

provisioning. Within this context, virtualization where an infrastructure as a ser-

vice(IaaS) allocates the resources needed for each execution within all the shared and

available hardware assets. Orchestration takes care of the allocation of the different

136

resources (compute, network, disk space). And software requirements, installation,

and configuration are managed by the provisioning layer.

BDCF uses Alien4Cloud, a technology adopted by researchers as aplications of

TOSCA components [139] BDCF includes as an intuitive graphical user interface

(GUI) software which manages in a web fashion the catalog and application de-

sign. The applications that can be addressed using BDCF are based in different

tools, technologies, and platforms, such as, Hadoop MapReduce and Hortonworks

for distributed storage and process apps, elastic stack components for log analysis.

Furthermore, other components that are offered in BDCF can be Kafka as a message

broker, Consul as a consensus system, Rstudio for data scientists and researchers,

and other development environments such as Java and Python. Alien4Cloud assures

the top-notch standard for cloud environment through the utilization of topology and

orchestration specification for cloud applications(TOSCA).

In the BDCF platform the solution presented in this research effort includes the

components as shown in 4.15:

• One Compute, which will be the one of running each of the processes

• Webservice of an automatic run of PyNusMV [140] which will have as an output

the result of the execution of that specific thread received as input

• Python code that will run the webservice for the different variations created

• Python code component which will contain the code that will modify, or in this

case will simulate the part that will make the changes of the SMV code [137]

for variations and save them in different files

4.3.5 Experiment cases

Two distinct cases were selected for experiments to be conducted for determin-

ing the benefits of offloading the model checking part to the cloud as a part of the

survivability feature that can be accomplished using the HARMS model.

137

F
ig
.
4.
15
.
B
D
C
F

 p
la
tf
or
m

 d
ia
gr
am

 f
or

 s
el
f-
h
ea
li
n
g

138

• In the one hand, experiments were performed to evaluate the way that offloading

the model checking to the cloud could benefit the overall performance of the

system.

• In the other hand, a set of experiments were programmed to measure the effec-

tiveness of the survivability feature.

While performing an offload of processing of activities to the cloud many variables

could be monitored to evaluate the performance of such implementation. Figure

4.13 shows the results obtained in one of the executions of the process. Such result

is presented in the JSON format that is the basic format used to store important

information for each of the actors. Actor 4 is the only that has different configuration

within the seven different actors used for these experiments. The reason for the

difference is that Actor 4 will be in charge of coordinating the model checking activity,

while the others actors contribute with the model checking capability. Consequently,

that actor cannot call himself to run that capability. After finishing the corresponding

of model verification capability all actors send the result as a message reply to the

actor that ordered them to execute that validation process. In that specific run, the

actor that executed the verification capability with less time was Actor2. Therefore

the model variation 2 is the selected by the coordinator actor and will be implemented

with another handshake. The model variation that was verified in the Actor2 was

model2ver2. Validation is the last stage included in the results within this work.

The way that the system reacts when the number of actors able to execute the

model checking over the cloud increases and the number of models to verify stays

fixed is shown in 4.16. The results show that the time to verify the 6 possible changes

of the original model goes decreasing according to the number of actors where parallel

execution will take place.

Also, the way that the system behaves when the number of actors that execute the

model checking capability stays fixed, and the number of models to verify increases

139

Fig. 4.16. Execution time depending on number of actors with model
checking capability

140

Fig. 4.17. Execution time depending on number of models to verify

is documented in 4.17. There, the trend shows that the value of time goes increasing

strictly related to the number of models to verify.

4.4 Summary

In this chapter of the dissertation it was explained three different cases where

it can be implemented both, the indistinguishability or the survivability of a multi-

actor system with the use of the interaction layer of the HARMS model. The first

scenario that was detailed in this chapter corresponds to the one when a MAS has

the goal of guiding a human to perform a specific activity. The second scenario that

was mentioned in deep in this chapter was the scenario where monitoring hazardous

situations within a smart home environment can be solved using HARMS model.

141

The last scenario that was presented in this chapter was the one that permitted the

evaluation of how offloading model checking processing to the cloud can help reducing

that the survivability feature takes to provide possible solutions to a problem identified

during execution time.

142

CHAPTER 5. CONCLUSIONS

In this section, the important contributions, findings, impact, conclusions, and future

work related to this dissertation are summarized.

5.1 Contributions

There are four main contributions out of this research effort which are listed as

follows.

• First, The implementation of the third layer based in the capability model for

HARMS applications has augmented the decentralization of control and the

information stored in the private databases of each of the actors.

• Second, the indistinguishability of the agents executing activities based on their

own capabilities for a multi-agent system was completely implemented and ver-

ified. This contribution was enhanced with the use of the interaction layer of

the HARMS model.

• Third, the benefit of distributing and offloading the model checking calculation

to the cloud was evaluated. The aim of the performed experiments was to verify

the minimization of the time to propose possible solutions during run-time.

• Fourth, the framework that contains the survivability feature that works to-

wards solving problems identified only during run-time was presented with the

use of model-checking during execution time of the system. Such attribute is of

great importance for MAS and systems in general, specially when the end user

will be relying in a high level of the system recommendations, such as in AALs.

143

5.2 Conclusions

This dissertation presented solutions to the problems that any system could face

during run-time. The concern of this dissertation is motivated by how, from a suviv-

ability point of view, a multi-actor system could reduce the risk of having human lives

in danger if those systems find problems that are not programmed to overcome. In

this work two techniques were introduced to let multi-agent systems take advantage

of the different interactions that happen between the different actors to assure the

full accomplishment of the original final goals in a survivable fashion.

At this moment, the feature of multi-agent systems based on the behaviour of liv-

ing creatures survivability instinct does not exist. Similar efforts in which survivability

has been mentioned are well studied in multi-agent systems as a different approach

than the one addressed in this dissertation in a way where the problem has already

occurred. In other words, the majority of the studies that exist today try to find the

reason why a problem exist, making probabilistic studies before it is really happening,

in a prevention manner. However, the dynamic environments that systems like the

ones mentioned at the beginning of this section will represent a high complexity to

be able to study for solutions given the variables at stake during run-time, specially

for actors that count with small set of processing resources. Consequently, this study

presents a solution where with a simple verification if the execution of the system

goes transitioning as expected to detect a possible issue, which will trigger the execu-

tion of the survivability feature. Experiments provided show the efficacy in applying

the survivability feature to let the system continue working towards accomplishing

the original goal in spite of finding issues that they were not originally designed to

surpass. Offloading the computation of the model checking process to the cloud was

also evaluated in how it could help to reduce the time to provide a possible solution

to the issue encountered in execution time.

Our first intention in this dissertation was to propose the implementation of a

survivability feature to multi-agent systems, as explained in the previous paragraph.

144

However, while trying to implement such element for multi-agent systems the imple-

mentation and assurance of the indistinguishability was needed to let the survivability

feature work in a proper way. The indistinguishability then was reached with the im-

plementation of models based in capability such as HARMS. This finding is important

given that, the majority of systems developed so far are using fixed and specific agents

to perform activities which could generate bottlenecks. Problems like the one that

was just mentioned can be materialized due to many reasons. Nevertheless, the focus

in this dissertation is not, to find the reason why the problem was initiated. On the

contrary, the importance is given to find the solution, rather than finding the cause

of the problem. Survivability behaviour happens in nature, where trial and error is

implemented. Further evaluation of the success of those trials follows to determine

how effective the implementation was. Experiments were performed to corroborate

that the indistinguishability feature can be achieved with the implementation of an

algorithm of leader selection in multi-agent systems using HARMS model.

While implementing the third layer of the HARMS model it was possible to ac-

complish the direct interaction enforcing due to the decentralization of data. Conse-

quently, if an actor needs to to know a value that it is only in the private database

of another agent, the only way to get it, is through an exchange of messages.

5.3 Future Work

A variety of questions appeared when implementing the approaches mentioned

above which lead to sketch possible further work. One possible future path of this

work is to apply other artificial intelligence methods to the mechanism that will

propose the different changes to the model that will be checked. It is considered that

with solutions as such the time to provide the solution will be less perceivable by the

dependable agent, such as the patient, and also the accuracy of the options to verify

can be improved. This work also has other paths that can be studied in depth, such as

autonomous fault detection for AALs, since it was one assumption for this work and

145

could be improved applying techniques as mentioned that went out of the scope of

this dissertation. Another direction that this study could take in forthcoming stages

can be to evaluate to mix a context-aware solution to not only detect an error but

also to propose the possible changes to the model. Moreover, another avenue for this

study is to conduct experiments taking into consideration that the complexity of the

different capabilities can be extended. For example, if the availability to execute a

specific capability will depend on the presence of other factors. To be more specific,

if a system has the need to paint a house, then, in order to paint a house, there

may be specific tools and resources that are needed to perform the action in a proper

way. That could also be another path for the future of this work, since only the

implementation of a basic capability model was studied.

REFERENCES

146

REFERENCES

[1] W. L. Oberkampf and T. G. Trucano, “Verification and validation,” Sandia
National Labs, Albuquerque, New Mexico, Tech. Rep., 2007.

[2] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV: A new sym-
bolic model checker,” International Journal on Software Tools for Technology
Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[3] B. Chaib-Draa, P. Millot, R. Mandiau, and B. Moulin, “Trends in distributed
artificial intelligence,” Artificial Intelligence Review, vol. 6, pp. 35–66, 1992.
[Online]. Available: http://link.springer.com/article/10.1007/BF00155579{\%
}5Cn{\%}3CGotoISI{\%}3E://A1992JD63000002

[4] E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Trends in Cooperative Dis-
tributed Problem Solving,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 1, no. 1, pp. 63–83, 1989.

[5] M. Wooldridge, “Coherent social action,” in Proceedings of the Eleventh Euro-
pean Conference on Artificial Intelligence (ECAI-94), 1994, pp. 279–283.

[6] ——, An Introduction to MultiAgent Systems, 2nd ed. Glasglow, Great Britain:
Wiley, 2009.

[7] K. P. Sycara, “Multiagent Systems,” AI Magazine, vol. 19, no. 2, p. 79, 1998.
[Online]. Available: http://www.aaai.org/ojs/index.php/aimagazine/article/
view/1370

[8] K. M. Carley, “Computational and mathematical organization theory: Perspec-
tive and directions,” Computational and Mathematical Organization Theory,
vol. 1, no. 1, pp. 39–56, 1995.

[9] S. N. P. Russel, Artificial Intelligence: A modern approach. New Jersey: Pren-
tice Hall, 2009.

[10] M. V. Dignum, “A model for organizational interaction: based on agents,
founded in logic,” Ph.D. dissertation, Utrecht University, 2004.

[11] E. T. Matson, “Transition in Multi-Agent Organizations,” Ph.D. dissertation,
University of Cincinnati, 2008.

[12] E. Oliveira, K. Fischer, and O. Stepankova, “Multi-agent systems: Which re-
search for which applications,” Robotics and Autonomous Systems, vol. 27,
no. 1, pp. 91–106, 1999.

[13] V. Dignum, F. Dignum, and L. Sonenberg, “Towards dynamic reorganization
of agent societies,” in Proceedings of Workshop on Coordination in Emergent
Agent Societies, 2004, pp. 22–27.

http://www.aaai.org/ojs/index.php/aimagazine/article
http://link.springer.com/article/10.1007/BF00155579

147

[14] H. A. Abbas, S. I. Shaheen, and M. H. Amin, “Organization of
Multi-Agent Systems: An Overview,” International Journal of Intelli-
gent Information Systems, vol. 4, no. 3, pp. 46–57, 2015. [Online].
Available: http://www.sciencepublishinggroup.com/journal/paperinfo.aspx?
journalid=135{\&}doi=10.11648/j.ijiis.20150403.11

[15] K. M. Carley, “Computational organization science: a new frontier,”
in Proceedings of the National Academy of Sciences of the United
States of America, vol. 99 Suppl 3, no. 1, 2002, pp. 7257–62.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=128594{\&}tool=pmcentrez{\&}rendertype=abstract

[16] F. Zambonelli, F. Zambonelli, A. Omicini, and A. Omicini, “Chal-
lenges and Research Directions in Agent-Oriented Software Engineering,”
Autonomous Agents and Multi-Agent Systems, vol. 9, pp. 253–283, 2004. [On-
line]. Available: http://www.springerlink.com/openurl.asp?id=doi:10.1023/B:
AGNT.0000038028.66672.1e

[17] J. Juziuk, D. Weyns, and T. Holvoet, “Design Patterns for Multi-agent Sys-
tems: A Systematic Literature Review,” Agent-Oriented Software Engineering:
Reflections on Architectures, Methodologies, Languages, and Frameworks, vol.
9783642544, pp. 79–99, 2014.

[18] M. Luck, P. McBurney, and C. Preist, “A manifesto for agent technology: To-
wards next generation computing,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 9, no. 3, pp. 203–252, 2004.

[19] M. Fisher, “Concurrent {METATEM} - A Language for Modelling Reactive
Systems,” Parallel Architectures and Languages Europe, pp. 185–196, 1993.
[Online]. Available: citeseer.nj.nec.com/fisher93concurrent.html

[20] B. Bauer, J. P. Muller, and J. Odell, “Agent UML: a Formalism for
Specifying Multiagent Software Systems,” International Journal of Software
Engineering and Knowledge Engineering, vol. 11, no. 03, pp. 207–230,
2001. [Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/
S0218194001000517

[21] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia
Methodology for Agent-Oriented Analysis and Design,” Autonomous
Agents and Multi-Agent Systems, vol. 3, no. 3, pp. 285–312,
2000. [Online]. Available: http://eprints.soton.ac.uk/253748/{\%}5Cnhttp:
//link.springer.com/10.1023/A:1010071910869

[22] O. Shehory and A. Sturm, Agent-oriented software engineering: Reflections on
architectures, methodologies, languages, and frameworks. Berlin: Springer,
2014.

[23] M. Wooldridge and P. Ciancarini, “Agent-Oriented Software Engineering:
The State of the Art,” in Agent-Oriented Software Engineering, 2001, vol.
1957/2001, pp. 55–82.

[24] B. Horling and V. Lesser, “A survey of multi-agent organizational paradigms,”
The Knowledge Engineering Review, vol. 19, no. 04, p. 281, 2005.

http://eprints.soton.ac.uk/253748/{\%}5Cnhttp
http://www.worldscientific.com/doi/abs/10.1142
https://citeseer.nj.nec.com/fisher93concurrent.html
https://AGNT.0000038028.66672.1e
http://www.springerlink.com/openurl.asp?id=doi:10.1023/B
http://www.pubmedcentral.nih.gov/articlerender.fcgi
https://journalid=135{\&}doi=10.11648/j.ijiis.20150403.11
http://www.sciencepublishinggroup.com/journal/paperinfo.aspx

148

[25] J. Nouwens and H. Bouwman, “Living Apart Together In Electronic Commerce:
The Use Of Information And Communication Technology To Create Network
Organizations,” Journal of Computer-Mediated Communication, vol. 1, no. 3,
p. 0, 2006. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1111/j.
1083-6101.1995.tb00169.x/full

[26] Y.-P. So and E. H. Durfee, “Designing tree-structured organizations for compu-
tational agents,” Computational and Mathematical Organization Theory, vol. 2,
no. 3, pp. 219–245, 1996.

[27] A. Kestler, The Ghost in the Machine, 1st ed. New York: Macmillan, 1967.

[28] M. Klusch, A. Gerber, and A. Intelligence, “Formation among Rational
Agents,” IEEE Intelligent Systems, vol. 17, no. 3, pp. 42–47, 2002.

[29] G. Beavers and H. Hexmoor, “Teams of agents,” 2001 IEEE International
Conference on Systems, Man and Cybernetics. e-Systems and e-Man for
Cybernetics in Cyberspace (Cat.No.01CH37236), vol. 1, pp. 574–582, 2001.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=969875

[30] C. Brooks, E. Durfee, and A. Armstrong, “An introduction to congregating
in multi-agent systems,” in Proceedings Fourth International Conference
on MultiAgent Systems, 2000, pp. 79–86. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=858434

[31] V. Dignum, J.-J. Meyer, and H. Weigand, “Towards an organizational model
for agent societies using contracts,” in Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, 2002, pp. 694–695.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=544862.544909

[32] D. J. Gordon, “An Uneasy Equilibrium: The Coordination of Climate Gover-
nance in Federated Systems,” Global Environmental Politics, vol. 15, no. 2, pp.
121–141, 2015.

[33] S. L. Kiani, A. Anjum, M. Knappmeyer, N. Bessis, and N. Antonopoulos,
“Federated broker system for pervasive context provisioning,” Journal of
Systems and Software, vol. 86, no. 4, pp. 1107–1123, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2012.11.050

[34] N. Kang, “Multidomain Demand Modeling in Design for Market Systems,”
Doctoral Dissertation, University of Michigan, 2014.

[35] D. A. Levinthal and M. Workiewicz, “Are Two Heads Better than One: The
Multi-authority Form and Organizational Adaptation,” Social Science Research
Network, pp. 1–36, 2015.

[36] J. Ferber and F. Michel, “AGRE: Integrating Environments
with Organizations,” Agent-Oriented Software Engineering IV, vol.
3374, no. Chapter 2, pp. 48–56, 2005. [Online]. Avail-
able: http://www.springerlink.com/index/10.1007/978-3-540-32259-7{\ }
2{\%}5Cnpapers2://publication/doi/10.1007/978-3-540-32259-7{\ }2

http://www.springerlink.com/index/10.1007/978-3-540-32259-7
http://dx.doi.org/10.1016/j.jss.2012.11.050
http://portal.acm.org/citation.cfm?doid=544862.544909
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm
http://onlinelibrary.wiley.com/doi/10.1111/j

149

[37] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat, “MOISE: An orga-
nizational model for multi-agent systems,” Advances in Artificial Intelligence,
vol. 1952, pp. 156–165, 2000.

[38] S. A. Deloach, W. H. Oyenan, and E. T. Matson, “A capabilities-based model
for adaptive organizations,” Autonomous Agents and Multi-Agent Systems,
vol. 16, no. 1, pp. 13–56, 2008.

[39] D. A. DeLaurentis, W. A. Crossley, and M. Mane, “Taxonomy to Guide
Systems-of-Systems Decision-Making in Air Transportation Problems,” Journal
of Aircraft, vol. 48, no. 3, pp. 760–770, 2011.

[40] M. Gomez, Y. Kim, E. Matson, M. Tolstykh, and M. Munizzi, “Multi-agent
System of Systems to Monitor Wildfires,” in System of Systems Engineering
Conference (SoSE), 2015, pp. 262–267.

[41] E. T. Matson and B. C. Min, “M2M infrastructure to integrate humans, agents
and robots into collectives,” in IEEE Instrumentation and Measurement Tech-
nology, Binjiang, 2011, pp. 408–413.

[42] R. C. Arkin, Behavior Based Robotics. Masachusetts: MIT Press, 1998.

[43] H. Geffner, “The Model-based Approach to Autonomous Behavior : A Per-
sonal View,” in AAAI Conference on Artificial Intelligence. Atlanta, Georgia:
Association for the Advancement of Artificial Intelligence, 2010, pp. 1–4.

[44] H. Psaier and S. Dustdar, “A survey on self-healing systems : approaches and
systems,” Computing, vol. 91, no. 1, pp. 43–73, 2011.

[45] M. C. Huebscher and J. a. McCann, “A survey of autonomic computingdegrees,
models, and applications,” ACM Computing Surveys, vol. 40, no. 3, pp. 1–28,
2008. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1380584.
1380585

[46] D. Ghosh, R. Sharman, H. R. Rao, and S. Upadhyaya, “Self-healing systems
survey and synthesis,” Decision Support Systems, vol. 42, pp. 2164–2185, 2007.

[47] P. Camurati, P. Prinetto, and P. Torino, “Formal Verification of Hardware
Correctness : Introduction and Survey of Current Research,” Computer, vol. 21,
no. 7, pp. 8–19, 1988.

[48] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.jlap.2008.08.004

[49] C. Baier and J.-p. Katoen, Principles of Model Checking. Masachusetts: MIT
Press, 2008.

[50] K. L. McMillan, Symbolic Model Checking. New York: Springer Sci-
ence+Business Media, LLC, 1993, vol. 1.

[51] G. J. Holzmann, “The Model Checker SPIN,” Ieee Transactions on Software
Engineering, vol. 23, no. 5, pp. 279–295, 1997.

http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://portal.acm.org/citation.cfm?doid=1380584

150

[52] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM : Probabilistic Symbolic
Model Checker,” In Computer Performance Evaluation Modelling Techniques
and Tools, vol. 2324, pp. 200–204, 2002.

[53] ——, “Verification of Probabilistic Real-Time Systems,” Lecture Notes in Com-
puter Science, vol. 6806, pp. 585–591, 2011.

[54] J. Barnat, L. Brim, V. Havel, J. Havĺıček, J. Kriho, M. Lenčo, P. Ročkai,
V. ˇ . An Explicit-State Model Checker forStill, and J. Weiser, “DiVinE 3 0
Multithreaded C & C ++ Programs,” Computer Aided Verification, vol. 8044,
no. LCNS, pp. 863–868, 2013.

[55] R. Pelánek, “BEEM: Benchmarks for Explicit Model Checkers,” Lecture Notes
in Computer Science, vol. 4595, no. 201, pp. 263–267, 2007. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-73370-6{\ }17

[56] S. Mireslami, “Verification of Multi-Agent Systems Using AUML Methodology,”
Ph.D. dissertation, University of Calgary (Canada), 2013.

[57] J. Crow and J. Rushby, “Model-based reconfiguration: Diagnosis and recovery,”
SRI International Corp., Menlo Park, CA., Tech. Rep. NASA-CR-4596, NAS
1.26:4596, 1994.

[58] A. Bauer, M. Leucker, and C. Schallhart, “Model-based runtime analysis of
distributed reactive systems,” in Proceedings of the Australian Software Engi-
neering Conference, ASWEC, vol. 2006, 2006, pp. 243–252.

[59] F. Chen and G. Rou, “MOP : An Efficient and Generic Runtime Verification
Framework ,” ACM SIGPLAN Notices, vol. 42, no. 10, pp. 569–588, 2007.

[60] N. Delgado, A. Q. Gates, and S. Roach, “A Taxonomy and Catalog of Runtime
Software- Fault Monitoring Tools,” IEEE Transactions on Software, vol. 30,
no. 12, pp. 1–16, 2004.

[61] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” in Software Testing, Verification and Reliability, vol.
Volume 22, 2012, pp. 297–312. [Online]. Available: http://onlinelibrary.wiley.
com/doi/10.1002/stvr.450/pdf

[62] Y. Zhao, S. Oberthür, M. Kardos, and F. Rammig, “Model-based Runtime
Verification Framework for Self-optimizing Systems,” Electronic Notes in The-
oretical Computer Science, vol. 144, no. 1, pp. 125–145, 2006.

[63] Y. Zhao and F. Rammig, “Model-based Runtime Verification Framework,” pp.
179–193, 2009.

[64] S. Kent, “Model Driven Engineering,” Integrated Formal Methods, vol. 2335,
pp. 286–298, 2006.

[65] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-adaptive
software needs quantitative verification at runtime,” Communications of the
ACM, vol. 55, no. 9, pp. 69–77, 2012.

http://onlinelibrary.wiley
http://link.springer.com/chapter/10.1007/978-3-540-73370-6

151

[66] A. Filieri and G. Tamburrelli, “Probabilistic verification at runtime for self-
adaptive systems,” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7740 LNCS, pp. 30–59, 2013.

[67] G. a. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive Self-
Adaptation under Uncertainty : a Probabilistic Model Checking Approach Cat-
egories and Subject Descriptors,” in Proceeding of the 10th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2015, pp. 1–12.

[68] Y. Kim, M. Gomez, J. Goppert, and E. T. Matson, “Model Checking
of a Training System Using NuSMV for Humanoid Robot Soccer,” Robot
Intelligence Technology and Applications 3, vol. 208, no. 96, pp. 531–540, 2015.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-37374-9

[69] M. Gomez, Y. Kim, and E. T. Matson, “Iterative learning system to intercept
a ball for humanoid soccer player,” ICARA 2015 - Proceedings of the 2015
6th International Conference on Automation, Robotics and Applications, pp.
507–512, 2015.

[70] A. Lomuscio and F. Raimondi, “MCMAS: A model checker for multi-agent sys-
tems,” in Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems, vol. 3920, 2006, pp. 450–454.

[71] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic, G. Sukhatme,
and B. Petrus, “Architecture-driven self-adaptation and self-management in
robotics systems,” in Proceedings of the ICSE Workshop on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS. Vancouver, Canada:
IEEE, 2009, pp. 142–151.

[72] K. Budzyńska and M. Kacprzak, “Model checking of persuasion in multi-agent
systems,” Studies in Logic, Grammar and Rhetoric, vol. 23, no. 36, pp. 99–122,
2011.

[73] D. Gil de la Iglesia and D. Weyns, “SA-MAS: Self-adaptation to Enhance
Software Qualities in Multi-agent Systems,” in Proceedings of the 2013
International Conference on Autonomous Agents and Multi-agent Systems,
2013, pp. 1159–1160. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2484920.2485120

[74] E. E. Elakehal, M. Montali, and J. Padget, “Run-time Verification of MSMAS
Norms Using Event Calculus,” in International Conference on Self-Adaptive
and Self-Organizing Systems, 2014, pp. 110–115.

[75] E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani, “Model Checking and the
State Explosion Problem,” in Tools for Practical Software Verification, B. Meyer
and M. Nordio, Eds. Springer, 2012, no. 2005, ch. 1, pp. 1–30.

[76] E. Clarke, “Counterexample-Guided Abstraction Refinement*,” in Interna-
tional Symposium on Temporal Representation and Reasoning. IEEE, 2003,
pp. 7–8.

http://dl.acm.org/citation.cfm?id
http://link.springer.com/10.1007/978-3-642-37374-9

152

[77] A. Valmari, “The state explosion problem,” Lectures on Petri Nets I: Basic
Models, Lecture Notes in Computer Science Volume 1491, vol. 1491, pp.
429–528, 1998. [Online]. Available: http://www.springerlink.com/index/10.
1007/3-540-65306-6

[78] F. Guo, G. Wei, M. Deng, and W. Shi, “CTL Model Checking Algorithm Using
MapReduce,” in Emerging Technologies for Information Systems, Computing,
and Management. Springer, 2013, vol. 236, ch. 39, pp. 341–348. [Online].
Available: https://books.google.com/books?id=zVpHAAAAQBAJ

[79] Y. Kim, J.-W. Jung, and E. T. Matson, “An Adaptive Task-Based Model
for Autonomous Multi-Robot Using HARMS and NuSMV,” in Procedia
Computer Science, vol. 56, no. MobiSPC. Elsevier Masson SAS, 2015,
pp. 127–132. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S1877050915016610

[80] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Distributed CTL model
checking using MapReduce: theory and practice,” Concurrency Computation
Practice and Experience, pp. 685–701, 2015.

[81] M. Kacprzak, A. Lomuscio, and W. Penczek, “Verification of multiagent sys-
tems via unbounded model checking ,” in Autonomous Agents and Multiagent
Systems. New York: IEEE, 2004, pp. 638 – 645.

[82] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[83] S. Ghilardi and S. Ranise, “MCMT: A model checker modulo theories,” in
Automated Reasoning, vol. 6173 LNAI. Trento, Italy: Springer-Verlag, 2010,
pp. 22–29.

[84] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model
checking software,” ACM SIGPLAN Notices, vol. 40, no. 1, pp. 110–121, 2005.

[85] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided
Abstraction Refinement *,” Computer Aided Verification, vol. 1855, no. LNCS,
pp. 154–169, 2000.

[86] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, “Simple bounded LTL
model checking,” Formal Methods in Computer-Aided Design, vol. 3312, no.
LCNS, pp. 186–200, 2004. [Online]. Available: http://www.springerlink.com/
index/A1JNFCB7Q9KNC1Q1.pdf

[87] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan,
“Linear Ecodings of Bounded LTL Model Checking,” Logical Methods in
Computer Science, vol. 2, no. 5, pp. 1–64, 2006. [Online]. Available:
http://www.lmcs-online.org/ojs/viewarticle.php?id=116

[88] P. Mell and T. Grance, “The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and Technology,”
National Institute of Standards and Technology, Information Technology
Laboratory, vol. 800-145, pp. 1–3, 2011. [Online]. Available: http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

https://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.lmcs-online.org/ojs/viewarticle.php?id=116
http://www.springerlink.com
http://linkinghub.elsevier.com/retrieve/pii
https://books.google.com/books?id=zVpHAAAAQBAJ
http://www.springerlink.com/index/10

153

[89] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of cloud comput-
ing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[90] X. Xu, “From cloud computing to cloud manufacturing,” Robotics and
Computer-Integrated Manufacturing, vol. 28, no. 1, pp. 75–86, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.rcim.2011.07.002

[91] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” Communications of the ACM, vol. 51, no. 1, p. 107, 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1327452.1327492{\%}5Cnhttp:
//portal.acm.org/citation.cfm?doid=1327452.1327492

[92] T. White, Hadoop : The Definitive Guide, 4th ed. O’Reilly Media, Inc., 2015.

[93] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “MaRDiGraS: Simplified
building of reachability graphs on large clusters,” Reachability Problems, vol.
8169 LNCS, pp. 83–95, 2013.

[94] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “SyLVaaS:
System Level Formal Verification as a Service,” in Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. IEEE,
2015, pp. 476–483. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7092763

[95] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci, “System
Level Formal Verification via Model Checking Driven Simulation,” in Interna-
tional Conference on Computer Aided Verification (CAV), vol. 8044, no. LCNS,
2013, pp. 296–312.

[96] J. Lewis, E. T. Matson, S. Wei, and B. C. Min, “Implementing HARMS-
based indistinguishability in ubiquitous robot organizations,” Robotics and
Autonomous Systems, vol. 61, no. 11, pp. 1186–1192, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.robot.2013.04.001

[97] A. Esmaeili, N. Mozayani, M. R. Jahed Motlagh, and E. T. Matson, “A socially-
based distributed self-organizing algorithm for holonic multi-agent systems:
Case study in a task environment,” Cognitive Systems Research, vol. 43, pp. 21–
44, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.cogsys.2016.12.001

[98] A. Ryker, E. Matson, S. Kim, S. Lee, and I. Jang, “Implementing a HARMS-
based software system for use in collective robotics applications,” ICARA 2015
- Proceedings of the 2015 6th International Conference on Automation, Robotics
and Applications, pp. 416–420, 2015.

[99] M. A. Gomez and E. T. Matson, “Survivability of MAS through Collective Intel-
ligence,” in 2018 Second IEEE International Conference on Robotic Computing
(IRC), IEEE, Ed., Los Angeles, CA, 2018.

[100] M. D. DeWees, “Securing Communication Within The HARMS model for use
with Firefighting Robots,” Ph.D. dissertation, Purdue University, 2015.

[101] M. Kim, I. Koh, H. Jeon, J. Choi, B. Cheol Min, Y. Im Cho, and E. T. Matson,
“A HARMS-based Heterogeneous Human-Robot Team for a Gathering and
Collection Function,” in 16th International Symposium on Advanced Intelligent
Systems (ISIS2015), Mokpo, South Korea, 2015, pp. 4–7.

http://dx.doi.org/10.1016/j.cogsys.2016.12.001
http://dx.doi.org/10.1016/j.robot.2013.04.001
http://ieeexplore.ieee.org/lpdocs
http://dl.acm.org/citation.cfm?id=1327452.1327492{\%}5Cnhttp
http://dx.doi.org/10.1016/j.rcim.2011.07.002

154

[102] M. Gomez, Y. Kim, J. Goppert, and E. Matson, “Using Online Model Checking
Technique for Survivability, Evaluating Different Scenarios on Runtime,” in
Procedia Computer Science, vol. 94, 2016.

[103] M. Gomez, A. Chibani, Y. Amirat, and E. T. Matson, “Self-healing Mechanism
over the Cloud on Interaction Layer for AALs Using HARMS,” in De la Prieta
F. et al. (eds) Trends in Cyber-Physical Multi-Agent Systems. The PAAMS
Collection - 15th International Conference, PAAMS 2017. PAAMS 2017.
Advances in Intelligent Systems and Computing, 2018, vol. 619, pp. 264—-267.
[Online]. Available: https://doi.org/10.1007/978-3-319-61578-3{\ }33

[104] M. Gomez, A. Chibani, Y. Amirat, and E. Matson, “IoRT cloud survivability
framework for robotic AALs using HARMS,” Robotics and Autonomous Sys-
tems, vol. 106, 2018.

[105] E. T. Matson, J. Taylor, V. Raskin, B. C. Min, and E. C. Wilson, “A natural
language exchange model for enabling human, agent, robot and machine in-
teraction,” ICARA 2011 - Proceedings of the 5th International Conference on
Automation, Robotics and Applications, pp. 340–345, 2011.

[106] J. H. Hong, B.-C. Min, J. M. Taylor, V. Raskin, and E. T. Matson, “NL-Based
Communication With Firefighting Robots,” in IEEE International Conference
on Systems, Man, and Cybernetics. Seoul, Korea: IEEE, 2012, pp. 1461–1466.

[107] D. Erickson, M. Dewees, J. Lewis, and E. T. Matson, “Robot Intelligence
Technology and Applications 2012,” in Robot Intelligence Technology and
Applications 2012. Springer, 2013, pp. 873–882. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-37374-9

[108] E. T. Matson, “Towards the design of intelligent assistive services by integrating
NKRL and the HARMS model,” in International Workshop on ASROB at
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2013), Tokyo Big Sight, Tokyo, Japan, 2013, pp. 1–5.

[109] N. Ayari, A. Chibani, Y. Amirat, and E. Matson, “A semantic
approach for enhancing assistive services in ubiquitous robotics,” Robotics
and Autonomous Systems, vol. 75, pp. 17–27, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.robot.2014.10.022

[110] A. R. Wagoner and E. T. Matson, “A robust human-robot communication
system using natural language for HARMS,” Procedia Computer Science,
vol. 56, no. 1, pp. 119–126, 2015. [Online]. Available: http://dx.doi.org/10.
1016/j.procs.2015.07.178

[111] ——, “A task manager using an ontological framework for a HARMS-based
system,” Journal of Ambient Intelligence and Humanized Computing, vol. 7,
no. 4, pp. 457–463, 2016.

[112] M. Gomez, E. Matson, J. Song, S. Baek, and J. Kim, “UGVs spotting fire
location for Cooperative Fire Security System using HARMS,” in ICARA 2015
- Proceedings of the 2015 6th International Conference on Automation, Robotics
and Applications, 2015.

http://dx.doi.org/10
http://dx.doi.org/10.1016/j.robot.2014.10.022
http://link.springer.com/10.1007/978-3-642-37374-9
https://doi.org/10.1007/978-3-319-61578-3

155

[113] S. Park, Y. Kim, E. T. Matson, H. Jang, C. Lee, and W. Park, “An intuitive in-
teraction system for fire safety using a speech recognition technology,” 2015 6th
International Conference on Automation, Robotics and Applications (ICARA),
pp. 388–392, 2015.

[114] A. Wagoner, A. Jagadish, E. T. Matson, L. Eunseop, Y. Nah, K. K. Tae, D. H.
Lee, and J. E. Joeng, “Humanoid robots rescuing humans and extinguishing
fires for Cooperative Fire Security System using HARMS,” ICARA 2015 - Pro-
ceedings of the 2015 6th International Conference on Automation, Robotics and
Applications, no. 207689, pp. 411–415, 2015.

[115] B. Khaday, E. T. Matson, J. Springer, Y. K. Kwon, H. Kim, S. Kim, D. Ken-
zhebalin, C. Sukyeong, J. Yoon, and H. S. Woo, “Wireless Sensor Network and
Big Data in Cooperative Fire Security system using HARMS,” ICARA 2015 -
Proceedings of the 2015 6th International Conference on Automation, Robotics
and Applications, no. 207689, pp. 405–410, 2015.

[116] C. Ramos, J. C. Augusto, and D. Shapiro, “Ambient Intelligence the Next Step
for Artificial Intelligence,” IEEE Intelligent Systems, vol. 23, no. 2, pp. 15–18,
2008.

[117] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient intelligence:
Technologies, applications, and opportunities,” Pervasive and Mobile
Computing, vol. 5, no. 4, pp. 277–298, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.pmcj.2009.04.001

[118] O. Vermesan, A. Broring, E. Tragos, M. Serrano, D. Bacciu, S. Chessa,
C. Gallicchio, A. Micheli, M. Dragone, A. Saffiotti, P. Simoens, F. Cavallo,
and R. Bahr, “Internet of Robotic Things Converging Sensing/Actuating,
Hyperconnectivity, Artificial Intelligence and IoT Platforms,” pp. 1–
35, 2017. [Online]. Available: http://www.riverpublishers.com/pdf/ebook/
chapter/RP{\ }9788793609105C4.pdf

[119] A. Chibani, Y. Amirat, S. Mohammed, E. Matson, and N. Hagita,
“Ubiquitous robotics : Recent challenges and future trends,” Robotics and
Autonomous Systems, vol. 61, no. 11, pp. 1162–1172, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.robot.2013.04.003

[120] Z. Yanjun, “Survivable RFID Systems: Issues, Challenges, and Techniques,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 4, pp. 406–418, 2010. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs{\ }all.jsp?arnumber=5440949

[121] J. P. Sterbenz, E. K. Ç etinkaya, M. A. Hameed, A. Jabbar, S. Qian, and J. P.
Rohrer, “Evaluation of network resilience, survivability, and disruption toler-
ance: Analysis, topology generation, simulation, and experimentation: Invited
paper,” Telecommunication Systems, vol. 52, no. 2, pp. 705–736, 2013.

[122] E. K. Ç etinkaya, D. Broyles, A. Dandekar, S. Srinivasan, and J. P. Sterbenz,
“Modelling communication network challenges for Future Internet resilience,
survivability, and disruption tolerance: A simulation-based approach,” Telecom-
munication Systems, vol. 52, no. 2, pp. 751–766, 2013.

[123] S. Jha and J. M. Wing, “Survivability analysis of networked systems,” Proceed-
ings - International Conference on Software Engineering, pp. 307–317, 2001.

http://ieeexplore.ieee.org/xpl/freeabs
http://dx.doi.org/10.1016/j.robot.2013.04.003
http://www.riverpublishers.com/pdf/ebook
http://dx.doi.org/10.1016/j.pmcj.2009.04.001

156

[124] A. Moschetti, L. Fiorini, M. Aquilano, F. Cavallo, and P. Dario, “Preliminary
Findings of the AALIANCE2 Ambient Assisted Living Roadmap,” in Ambient
Assisted Living, S. Longhi, P. Siciliano, M. Germani, and A. Monteriù, Eds.
Cham: Springer International Publishing, 2014, pp. 335–342.

[125] H. Steg, H. Strese, C. Loroff, J. Hull, and S. Schmidt, “Europe is facing a
demographic challenge Ambient Assisted Living offers solutions,” IST project
report on ambient assisted living, 2006.

[126] A. Ayara and F. Najjar, “A formal specification model for survivability in per-
vasive systems,” Proceedings of the 2008 International Symposium on Parallel
and Distributed Processing with Applications, ISPA 2008, pp. 444–451, 2008.

[127] M. Darwish, “Architecture and deployment of services of assistance to the per-
son,” Ph.D. dissertation, Universite de Bretagne-Sud, 2017.

[128] A. Forkan, I. Khalil, and Z. Tari, “CoCaMAAL: A cloud-oriented
context-aware middleware in ambient assisted living,” Future Generation
Computer Systems, vol. 35, pp. 114–127, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2013.07.009

[129] T. Magherini, A. Fantechi, C. D. Nugent, and E. Vicario, “Using Temporal
Logic and Model Checking in Automated Recognition of Human Activities for
Ambient-Assisted Living,” IEEE Transactions on Human-Machine Systems,
vol. 43, no. 6, pp. 509–521, 2013.

[130] G. N. Rodrigues, V. Alves, R. Silveira, and L. A. Laranjeira, “Dependability
analysis in the Ambient Assisted Living Domain: An exploratory case study,”
Journal of Systems and Software, vol. 85, no. 1, pp. 112–131, 2012.

[131] M. Skubic, G. Alexander, M. Popescu, M. Rantz, and J. Keller, “A smart home
application to eldercare: Current status and lessons learned,” Technology and
Health Care, vol. 17, no. 3, pp. 183–201, 2009.

[132] Pi My Life Up, “Raspberry Pi Temperature Sensor: Build a
DS18B20 Circuit,” 2016. [Online]. Available: https://pimylifeup.com/
raspberry-pi-temperature-sensor/

[133] Host-On.de, “Configure and read out the Raspberry Pi gas sensor
(MQ-X),” 2017. [Online]. Available: https://tutorials-raspberrypi.com/
configure-and-read-out-the-raspberry-pi-gas-sensor-mq-x/

[134] A. S. Harnad, “Minds , Machines and Turing : The Indistinguishability of
Indistinguishables Source : Journal of Logic , Language , and Information ,
Vol . 9 , No . 4 , Special Issue on Alan Published by : Springer Stable URL
: http://www.jstor.org/stable/40180236 Minds,” Journal of Logic, Language,
and Information, vol. 9, no. 4, pp. 425–445, 2000.

[135] I. Ushakov, “System survivability,” in Probabilistic Reliability Models, 2012, ch.
System Sur, pp. 162–168.

[136] W. Jamroga and A. Murano, “On module checking and strategies,” in Proceed-
ings of the 2014 international conference on Autonomous agents and multi-agent
systems, no. Aamas, Paris, France, 2014, pp. 701–708. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2615845{\%}5Cnhttp://delivery.

http://dl.acm.org/citation.cfm?id=2615845{\%}5Cnhttp://delivery
http://www.jstor.org/stable/40180236
https://tutorials-raspberrypi.com
https://Host-On.de
https://pimylifeup.com
http://dx.doi.org/10.1016/j.future.2013.07.009

157

acm.org/10.1145/2620000/2615845/p701-jamroga.pdf?ip=66.254.241.109{\&
}id=2615845{\&}acc=ACTIVESERVICE{\&}key=EA62C54EFA59E1BA.
367AD4ADD93F5D2F.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}CFID=
762133550{\&}CFTOKEN

[137] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella, “NuSMV 2: An OpenSource Tool for Symbolic
Model Checking,” in International Conference on Computer Aided Verification.
Springer, Berlin, Heidelberg, 2002, pp. 359–364.

[138] W. T. François Exertier , Mathis Gavillon , David Kuik , Mihai Mitrea , Anil
Sinaci , Béchir Taleb Ali, “D4 . 1 Medolution Platform APIs and Specification
V1 ITEA3 Project 14003,” Medolution Consortium, Tech. Rep., 2016.

[139] J. Carrasco, F. Durán, and E. Pimentel, “Trans-cloud: CAMP/TOSCA-
based bidimensional cross-cloud,” Computer Standards and Interfaces,
vol. 58, no. August 2017, pp. 167–179, 2018. [Online]. Available:
https://doi.org/10.1016/j.csi.2018.01.005

[140] S. Busard and C. Pecheur, “PyNuSMV: NuSMV as a Python library,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 7871 LNCS, pp. 453–458,
2013.

	Hybrid Cloud Model Checking Using the Interaction Layer of HARMS for Ambient Intelligent Systems
	Recommended Citation

