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ABSTRACT 

The evolution of technology in all fields led to the generation of vast amounts of data by modern 

systems. Using data to extract information, make predictions, and make decisions is the current trend 

in artificial intelligence. The advancement of big data analytics tools made accessing and storing data 

easier and faster than ever, and machine learning algorithms help to identify patterns in and extract 

information from data. The current tools and machines in health, computer technologies, and 

manufacturing can generate massive raw data about their products or samples. The author of this work 

proposes a modern integrative system that can utilize big data analytics, machine learning, super-

computer resources, and industrial health machines’ measurements to build a smart system that can 

mimic the human intelligence skills of observations, detection, prediction, and decision-making. The 

applications of the proposed smart systems are included as case studies to highlight the contributions 

of each system. 

The first contribution is the ability to utilize big data revolutionary and deep learning technologies on 

production lines to diagnose incidents and take proper action. In the current digital transformational 

industrial era, Industry 4.0 has been receiving researcher attention because it can be used to automate 

production-line decisions. Reconfigurable manufacturing systems (RMS) have been widely used to 

reduce the setup cost of restructuring production lines. However, the current RMS modules are not 

linked to the cloud for online decision-making to take the proper decision; these modules must connect 

to an online server (super-computer) that has big data analytics and machine learning capabilities. The 

online means that data is centralized on cloud (supercomputer) and accessible in real-time. In this study, 

deep neural networks are utilized to detect the decisive features of a product and build a prediction 

model in which the iFactory will make the necessary decision for the defective products. The Spark 

ecosystem is used to manage the access, processing, and storing of the big data streaming. This 

contribution is implemented as a closed cycle, which for the best of our knowledge, no one in the 

literature has introduced big data analysis using deep learning on real-time applications in the 

manufacturing system. The code shows a high accuracy of 97% for classifying the normal versus 

defective items. 

The second contribution, which is in Bioinformatics, is the ability to build supervised machine learning 

approaches based on the gene expression of patients to predict proper treatment for breast cancer. In the 

trial, to personalize treatment, the machine learns the genes that are active in the patient cohort with a 

five-year survival period. The initial condition here is that each group must only undergo one specific 

treatment. After learning about each group (or class), the machine can personalize the treatment of a 

new patient by diagnosing the patients’ gene expression. The proposed model will help in the diagnosis 

and treatment of the patient. The future work in this area involves building a protein-protein interaction 

network with the selected genes for each treatment to first analyze the motives of the genes and target 
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them with the proper drug molecules. In the learning phase, a couple of feature-selection techniques 

and supervised standard classifiers are used to build the prediction model. Most of the nodes show a 

high-performance measurement where accuracy, sensitivity, specificity, and F-measure ranges around 

100%. 

The third contribution is the ability to build semi-supervised learning for the breast cancer survival 

treatment that advances the second contribution. By understanding the relations between the classes, 

we can design the machine learning phase based on the similarities between classes. In the proposed 

research, the researcher used the Euclidean matrix distance among each survival treatment class to build 

the hierarchical learning model. The distance information that is learned through a non-supervised 

approach can help the prediction model to select the classes that are away from each other to maximize 

the distance between classes and gain wider class groups. The performance measurement of this 

approach shows a slight improvement from the second model. However, this model reduced the number 

of discriminative genes from 47 to 37. The model in the second contribution studies each class 

individually while this model focuses on the relationships between the classes and uses this information 

in the learning phase. Hierarchical clustering is completed to draw the borders between groups of classes 

before building the classification models. Several distance measurements are tested to identify the best 

linkages between classes.  Most of the nodes show a high-performance measurement where accuracy, 

sensitivity, specificity, and F-measure ranges from 90% to 100%. 

All the case study models showed high-performance measurements in the prediction phase. These 

modern models can be replicated for different problems within different domains. The comprehensive 

models of the newer technologies are reconfigurable and modular; any newer learning phase can be 

plugged-in at both ends of the learning phase. Therefore, the output of the system can be an input for 

another learning system, and a newer feature can be added to the input to be considered for the learning 

phase.   
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mRMR Minimum Redundancy Maximum Relevance 

NIST National Institute of Standards and Technology 

NN Neural Networks 

NSF National Science Foundation 

PLM Product Lifecycle Management 

RDBMS Relational Database Management Systems 

ReLU Rectified Linear Unit 
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CHAPTER 1. INTRODUCTION 

 

1.1 Overview 

Data is a simple isolated fact that is not significant alone because it does not relate to other data and 

comes as raw observations, statistics, and measurements. These facts (data) are put, related, combined, 

and connected in a context, and information appears after the understanding of these relations. This 

information will help to identify patterns. By processing, investigating, and studying these patterns, we 

acquire knowledge. With a complete understanding of the outcomes and effects of such knowledge, 

future consequences can be predicted, decisions can be made, and choosing between alternatives 

become more comfortable, which will all lead to insight (ElMaraghy 2009). 

Therefore, based on these definitions, it is clear that data is the primary source of information, which, 

in turn, is the primary source of knowledge, which is the primary source of insight. This hierarchy is 

shown in Figure 1 below. It is clear that the main reason for having the data, information, and knowledge 

is to have the ability to make the correct decisions. 
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Figure 1. Data, information, knowledge, and insight. 

What makes data big data? Big data is data that is too large to handle within a system, the data generation 

is too fast, and the data is in many different formats or types. Therefore, big data is characterized as 

large data sets with multiple dimensions, regardless of the source of information. These dimensions are 

called the big-data three Vs, which are volume, velocity, and variety. Volume means that the data is 

generated in massive amounts, velocity means the data is continuously generated (very quickly), and 
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variety means the data exists in different formats such as structured, unstructured, or semi-structured 

(Dumbill 2013). 

According to the extensive use of big data in many domains, researchers identified some other 

dimensions other than the three Vs. These new dimensions are value, validation, verification, veracity, 

vision, and volatility. From the engineering point of view, these new dimensions (the new Vs) provide 

a better means of characterization for the data collected from and about manufacturing applications and 

processes (Berman 2013), (Zheng et al. 2013).  

IBM introduced one of the proposed big-data dimensions shown in Figure 2 because it extracts business 

value as the fifth V from the four primary Vs, which are velocity, variety, volume, and veracity (Steve 

Chadwick 2016).   
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Figure 2. Extracting business value (fifth V) from the four main V’s of big data by IBM (Steve Chadwick 2016). 

1.2 Research Motivation 

Although big data is still data and the foundations are the same, big and small data analysis necessitate 

the use of the same disciplines: mathematical statistics, probability theory, computer science, and 

visualization. While small datasets can be easily managed by traditional databases, which are generally 
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known as relational database management systems (RDBMS), big data cannot be analyzed using those 

traditional methods. As big data requires special means of storage and analysis because it is generated 

in a different format from small data and contains a lot of noise and redundancy in addition to useful 

information. Big data requires preprocessing (which includes filtering and indexing) before and after 

storing it in a big-data warehouse for analysis (Santos et al. 2017). The big-data storage phase must be 

involving the use of the fastest and most reliable computer network protocols to access and analyze the 

data easily. The storage mechanism has to be dynamic to adopt modern and dramatically-changeable 

networking technology. The streamlines of data have to be stored in modern storage servers with 

parallel processors for multitasking purposes. Because the amount of data is huge, the most efficient 

algorithms have to be utilized to store and process the data to produce reports for observers and decision 

makers quickly. Many statistical and computer science approaches are used to analyze the big data in 

all fields. However, there is a difference between managing big data in different domains, such as the 

manufacturing and healthcare fields and the management of big data in other fields because, in 

manufacturing, fast decision-making leads to not only cost saving but also high levels of sustainability 

and safety, which is a necessity. Hence, the most reliable and efficient algorithm has to be selected for 

collecting, preprocessing, storing, and analyzing data and making informed decisions in this area. 

Reducing processing time is the biggest challenge in this field, such as the time it takes for driverless, 

autonomous cars to make decisions. Mistakes can cost lives. 

Therefore, this research is motivated by big-data analytics, which is the main enabler of many complex 

systems, such as smart manufacturing systems (the fourth industrial revolution), health informatics, and 

many others. The fourth industrial revolution is known as smart manufacturing (Industry 4.0). The idea 

behind Industry 4.0 is that it is different from the first three industrial revolutions, which were the results 

of advancements in mechanization, electricity, and IT, respectively. Now, the introduction of the 

internet of things (IoT) and cyber-physical systems (CPSs) to the manufacturing environment is leading 

to a fourth industrial revolution. In Industry 4.0, field devices, machines, production modules, and 

products are comprised of CPSs that autonomously exchange data and information, trigger actions, and 

control each other independently. 

Moreover, one essential enabler of sustainable manufacturing in smart manufacturing (Industry 4.0), 

which is the scope of this research, is reliable systems for storing, analyzing, and synthesizing very 

large amounts of data (big data up to the scale of terabytes) throughout the whole manufacturing system 

lifecycle. 

1.3 Problem Statement  

Today’s complex systems require rapid decision-making for improving system quality, productivity, 

and sustainability based on big-data analytics. However, different industries have different needs and 

different environments, as well as various types of data, to be utilized for decision-making. In general, 
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there cannot be one approach that solves all manufacturing decision-making problems. Some complex 

systems are not yet ready to manage and take full advantage of the big data that is available to them due 

to the lack of pipelined data acquisition, processing, analysis, and finally, decision-making procedures 

that are tailored to the specific manufacturing problem. 

Therefore, it is necessary to adopt smart decision-making tools for big data that are tailored to the 

specific manufacturing problem of how to be responsive and adaptive in a dynamic market and 

continuous technology development. To achieve this purpose, there is a need to integrate cutting-edge 

technologies, such as big data analytics, machine-learning tools, and the IoT, to accomplish a pipelined 

process that can be used to solve the decision-making issues that are faced in modern complex systems. 

Each system has it is own parameters and characteristics. Such pipeline processes must be able to 

identify the key characteristics in the system (e.g., the genes related to breast cancer or the vision 

features of the production line in a manufacturing system) to feed into the learning process. This may 

require initial human intervention to guide the identification and selection of features that are obtainable 

and relevant to the prediction problem at hand. Often, the various industries (whether it be 

manufacturing, healthcare, or otherwise) that desire to take advantage of big data for prediction and 

quality improvement have no clear idea of the characteristics that might be useful for their desired goal. 

This phase of handpicking relevant variables, and sometimes even creating new variables that are 

relevant to the goal of prediction, involve human-guided data mining.  

It is essential for modern complex systems to tune their parameters based on the learning process. The 

development of a continuous learning process that can detect unusual events using the key 

characteristics of a system and predict outcomes and, hence, make a decision is the goal for our proposed 

systems. The proposed modern complex system is required to strive to improve performance and report 

any decline in performance measurements, such as the error, specificity, and sensitivity of the outcomes. 

Therefore, this work claim is that, currently, whether it is in the healthcare or manufacturing industry, 

there is a lack of pipelined and problem-specific processes that take full advantage of big data to achieve 

improved outcomes. 

1.4 Research Objective and Scope  

Big-data analytics is a new research area and a key enabler for unlimited domains, including 

manufacturing, marketing, healthcare, information science, and business processes. For example, some 

of the important applications of big-data analytics in the different domains are shown in Figure 3 below.  
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Figure 3. Significant applications of big data. 

Big-data analytics is still not widely used in some domains, such as the manufacturing domain, in which 

the IoT and cloud computing should be integrated into the decision-making process (see the literature 

survey). These pieces of new technologies can potentially be exploited in modern systems. The essential 

big-data research is currently concentrated on capturing, processing, and analyzing big data (Li et al. 

2017).  

The literature has many proposed big-data analytics solutions for complex systems. However, there is 

a need to come up with comprehensive approaches that can put the different data analytic pieces 

together and utilize them in an integrative way. A modern complex system can integrate any new 

learning model and interact with other learning models with minimum human interference.  

Nevertheless, the nature of the target outcomes to be improved via big-data analytics are various as well 

as the types of potential characteristics that are used as inputs, relevant to the outcomes. This makes it 

difficult to have one single procedure that fits and solves each and every problem in each and every 

domain. Intelligent outcome-improving decision-making procedures need to be tailored for each and 

every class of similar industry problems.  

Therefore, our main objective in this thesis is to illustrate that such problem-specific data analytics 

solutions can be achieved in specific cases by carefully building a pipeline in which essential 

characteristics are identified, processed, fed into an appropriate data analytics modelling device, and 

finally used in making decisions about the target outcome. As shown in the red region of Figure 3 above, 

the scope and objective of this research are concentrated on the two domains, which are manufacturing 

systems and health informatics. To achieve our goal, we will use three case studies: two in healthcare 

settings and one in the manufacturing industry.  
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In summary, the objectives for the manufacturing domain are: 

 Develop a new method or tool for gathering, analyzing, and processing big data (structured or 

non-structured) generated from manufacturing system facilities that support real-time decision-

making and knowledge discovery using big data and data mining tools.  

 Develop a tool that will support decision makers in designing and operating their manufacturing 

systems sustainably as well as economically.  

 Build an integrative model for complex modern systems, which consists of big data, IoT, CPS, 

ML and DL. These components are represented in state of the art model for a real-time decision-

making process. 

 Add the missing enablers which iFactory lacks to convert it to Industrial 4.0 (Transfer I3.0 to 

I4.0). 

 Extract hidden features in the product, which can predict the unusual situations (e.g. defective 

vs normal) product to speeds up the prediction performance.  

 

While the objectives for the health informatics domain are: 

 Develop machine learning models to find gene biomarkers, that are related to breast cancer 

survivability based on specific treatments. 

 Develop a hierarchical one-versus-rest model for predicting five-year survival based on the 

treatment and gene expression.  

 Develop a Semi-supervised learning model to find borders between classes groups in a multi-

class learning problem. 

 Develop a new method or tool for gathering, analyzing and processing big data (structured or 

non-structured) generated from a healthcare system. 

 Develop a model that supports real-time decision-making and knowledge discovery using big 

data analytics and data mining tools.  

 Techniques to overcome Class-Imbalance (C-I) were presented to handle what is known as the 

curse of dimensionality problem, where the number of samples is much smaller than the number 

of features. 
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1.5 Research Gaps and Novelty  

From the literature review, it is evident that most researchers consider many things, but not a big-data 

analytics completely-pipelined process with methods and tools in some domains, such as manufacturing 

systems. In December 2016 at the IEEE International Conference on Big Data in Washington D.C. The 

National Institute of Standards and Technology (NIST) presented a summary of the Symposium on 

Data Analytics for Advanced Manufacturing with the theme of “From Sensing to Decision-Making,” 

which highlighted the key challenges, issues, and needs for implementing big-data analytics for smart 

manufacturing systems (Narayanan et al. 2017). Then in 2018, the NIST reported that even when 

manufacturers have some data analytics tools, which are implemented with technical barriers that 

prevent the widespread adoption of data analysis in practice, they are not using the scale of big-data nor 

a real-time decision-making, which has led to limited success because there are delays in the decision-

making process (NIST 2018). 

Babiceanu proposed future work that focuses on big-data algorithms developed for manufacturing 

operations (Babiceanu et al. 2016). Also (Qiu et al. 2015) considered the benefits of sharing assets and 

services by having a system for these assets, an information infrastructure, and finally, a decision 

support system (DSS) for big data in manufacturing supply chains. 

Some other researchers only discuss big-data requirements (Gölzer et al. 2015), while (Dutta et al. 2015) 

only presented a framework for implementing big-data projects in manufacturing systems that were 

validated by examining real implementations in Indian manufacturing companies. A new paradigm, 

namely cloud-based design and manufacturing (CBDM), was presented by (Wu et al. 2015) which is 

also not dealing with big data analysis. (Kashkoush et al. 2015) Introduced a knowledge-based model 

for the optimum assembly sequence for a product family. It was a data managing method that was 

applied for a manageable amount of data, not big data. Kumaraguru and Morris proposed continuous 

performance management with real-time analytics for manufacturing systems, but not for big data 

(Kumaraguru et al. 2014). A sample of the literature review is presented in Table 1 below. 
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Table 1. A sample of the literature review. 

 

Paper 

Manufact

uring 

System 

CPS IoT 
Cloud 

Computing 

Big 

Data 

Decision 

Making 

National Institute of Standards 

and Technology (2018) 
x x x x  x 

Babiceanu, R. F., & Seker, R. 

(2016) 
x x x x x  

Baheti, R., & Gill, H. (2011) x x x x x  

Gölzer, P., Cato, P., Amberg, 

(2015) 
x x x x x  

Wang, L., Törngren, M., Onori, 

(2015) 
x x x x x  

Borgia, E. (2014) x x x x x  

Qiu, X., Luo, H., Xu, G., 

Zhong, R.,  (2015) 
 x x x  x 

Xu, X. (2012)   x x   

Dutta, D., & Bose, I. (2015) x    x  

Kumaraguru & Morris, (2014) x x x    

Wu, D., Rosen, D. W., Wang, 

L., (2015) 
x x x x x  

 

For a long time, companies used to get rid of data because they had too much data to manage. However, 

with the existence of big-data tools like the Spark ecosystem, they can now manage massive amounts 

and different types of data. The stored data, with its different formats and huge size, complicates 

processing and analysis. Therefore, some machine-learning tools are used to create metadata catalogues 

that can help data analysts to develop decision-making models. Therefore, companies tend to use big 

data only for tracking purposes, not as a basis for improving operations. 

From the wide and critical literature review, we can identify the research gaps in big data in general, 

and especially in manufacturing systems and healthcare domains. As for the big-data gaps, researchers 
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indicated that they most likely result from data variety, not data volume, because heterogeneous data 

mixing is more significant than the data volume. Therefore, the emphasis is not on the “big” part of the 

big data but, rather, the problem of data variety. In these two domains, research gaps are identified as 

not only the lack of decision-making methods and tools for big data but also how to manage this huge 

sort of data, starting with collecting, storing, analyzing, securing, and processing this data — taking the 

variety, velocity, and volume of data into considerations. Finally, integration solutions needed to 

connect all the data sources (software and hardware technologies) to create data standers that are 

manageable (Obitko et al. 2013).  

It is clear that the industrial automation and manufacturing sector is already a large producer and 

consumer of a lot of data. During the last few decades, manufacturing companies demonstrate 

significant productivity gains regarding both improved quality and efficiency based on the utilization 

of processed data and advanced methods of data analysis. Today, the big-data paradigm is a promising 

concept for another substantial wave of gains to achieve improved efficiency in design, production, 

product quality, and achieving customers’ needs. According to (Manyika et al. 2011), big data can help 

manufacturers to reduce their product development times by 20% to 50%, as well as defects before 

production through simulation and testing. By using real-time data, companies can also manage demand 

planning across extended enterprises and global supply chains while reducing defects and rework within 

production plants (Obitko et al. 2013). 

From the above literature, we can claim that the significant gaps in the literature on big-data analytics 

in the various industries is that there seems to be no published research about the employment of a 

complete pipeline to take full advantage of big data (concerning volume, variety, and velocity) in real-

time decision-making in the manufacturing industry. And also the claim that there could exist a single 

big-data analytic pipeline that can solve every problem in all domains. Such claims have been made 

without substantiating them. Our aim in this thesis is to fill this understanding gap and provide a few 

case studies that support the need for tailoring different data analytic pipelines for different situations 

and that such pipelines need to be partially human-guided. Nevertheless, some generality can be 

achieved within classes of similar issues. In particular, in this thesis, we consider case studies in which 

the desired decision-making problems are based on the classification of the outcomes of interest. 

1.6 Thesis Hypothesis 

Human-guided big-data analytic pipelines can be used as decision-making tools for specific categories 

of similar issues that are relevant to the manufacturing and healthcare industries. 

We use three case studies to verify this hypothesis: two in healthcare and one in manufacturing. 

Throughout our proposed pipeline/solution, we emphasize how it is essential to tailor the big-data 

analytic loop to the specific characteristics of the issues at hand and that there cannot be a single pipeline 

that can fit all types of decision-making problems. Nevertheless, we propose some pipeline algorithms 



11 
 

that extend from data acquisition and feature selection (both human-guided and automatic) to the 

prediction of the desired outcomes in real-time, which have some degree of generality within the classes 

of industry issues that are considered here. These pipelines are designed to accommodate large datasets 

and use cloud-based computational tools to build and select models and use new input data for 

predicting the desired outcomes. 

For instance, in the manufacturing industry, the proposed decision-making pipelines are expected to 

enhance the overall outcomes of the production system, including the quality of the products, 

performance measurements, as well as reduce the cost by speeding up the decision-making process.   
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CHAPTER 2. LITERATURE REVIEW 

2.1 Overview 
In this section, I discuss the main components of big data analytics for complex systems, such as the 

smart manufacturing complex system (Industry 4.0). A definition and extensive literature review for 

each component are represented in this chapter. 

 

 

Figure 4. Components of smart manufacturing (Industry 4.0). 

 

2.2 Big Data Analytics in Complex Systems-Related Domains 

The implementation of project phases in big data in manufacturing domains are somehow similar to 

other big data implementation projects in other domains. As presented by (Dutta et al. 2015), when they 

successfully implemented a big data project at an Indian company (Ramco Cements Limited), they 

stated that any big data project implementation has three main phases and ten detailed steps. The three 

main phases are strategic groundwork, data analytics, and implementation, and the ten detailed steps 

are stating the business problem, research, team formation, creating a roadmap for the project, the 

examination and collection of data, data modelling, data analysis, IT system integration, and 

professionals training, which is shown in Figure 5. Therefore, manufacturing domain projects not only 

follow the same phases or steps but also use the already-available visions and understandings from 

related domains, such as logistics and supply chains (Dutta et al. 2015). 
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Figure 5. Big Data project implementation phases (Dutta & Bose, 2015). 

McKinsey stated that by applying advanced analytics, which is the application of statistics and other 

mathematical tools to assess and increase performance, manufacturers could enhance their production 

processes by reducing waste and improving quality and yield (output per unit of input) by applying data 

analytics. This can be achieved by processing the historical data, identifying relationships and patterns 

between the process stages and inputs, and then improving the features that have the most significant 

effects on yield (see Figure 6). The most critical point how big is the generated data is because most 

companies only use big data for tracking purposes, not as a basis for improving operations (Auschitzky 

et al. 2014). 
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Figure 6. Advanced analytics for complex manufacturing processes (Auschitzky et al., 2014). 

(Dubey et al. 2016) Proposed a theoretical, conceptual framework to investigate the importance of big 

data analytics (BDA) for world-class sustainable manufacturing (WCSM), which is a set of practices 

that lead to superior sustainability performance. While (Glawara et al. 2015) presented an approach for 

product quality management by breaking down the data from the production facilities into condition 

monitoring data, wear data, quality data, and production data and then linking them with data mining 

methods for deriving patterns, aiming to have zero-defect production. As is well known, conducting 

proper maintenance measures at the right time is the main reason for product quality, secure plant 
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availability, and process efficiency in manufacturing systems. (Hazen et al. 2014) Stated that data 

quality is a significant step in analytics and proposed a method for controlling and monitoring data 

quality in supply chain practices. Stating the problems and issues and suggestions for research. 

(Li et al. 2015) stated that the vast amount of data related to the three main stages of product lifecycle 

management (PLM), which are beginning of life (BOL), middle of life (MOL), and end of life (EOL), 

are analyzed and concluded. The framework of big data in PLM is shown in Figure 7 below. 

 

 

Figure 7. The framework of big data in PLM (J. Li et al., 2015). 

(Obitko et al. 2013) Discussed some essential points about big data, by stating that the key output of 

BDA is to have enhanced data-driven decision-making. They also mentioned some related challenges 

like data search, data visualization, decision-making converted to action, and parallel big data 

processing. The multi-agent systems (MAS) can be employed for the last challenge. The MAS 

methodology is a very appropriate complement to big data processing. With its high-performance 

computing and parallel programming tasks, the spatial nature of big data be solved with MAS and the 

heterogeneity of data sources as well as the real-time or near real-time data processing because the MAS 

has some real-time processing benefits, like increasing efficiency and speed due to asynchronous and 
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parallel computation, increasing robustness (the systems degrade smoothly with agent failure), and 

increasing scalability (agents can be added when required). 

(Zhong et al. 2015) proposed a significant big data methodology as a framework with its key stages 

starting with data collection, cleansing (to remove the noise), compression, classification, pattern 

recognition, machine learning, KDD, and decision-making. 

Techniques and tools are required to process and analyze big data, such as log, text, audio, video, or 

other files. These tools have some key resources, such as memory, storage, network, and processing 

capabilities. For example, the most known one is the Apache Spark Ecosystem (Loshin 2013).  

 

2.3 Data Mining, Artificial Intelligence, Machine Learning, and Neural Networks 

(Deep Learning) 

The new generation of artificial intelligence (AI) simulates, extends, and stretches human intelligence. 

AI replaces the need for humans to analyze, optimize, judge, and make decisions through machine 

perception, machine learning (ML), machine thinking, and intelligent behaviour, such that AI ultimately 

provides intelligence for systems. Therefore, as the most disruptive technology in the world, a new 

generation of AI technology called AI 2.0, which includes ML, big data, cloud computing, the IoT, and 

other cutting‐edge AI technologies, is profoundly influencing and changing manufacturing systems 

worldwide (Cheng et al. 2019). The relationships between different AI disciplines are shown in Figure 

8. 
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Figure 8. The relationship among different AI disciplines. 
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2.3.1 Data Mining 

Data mining (DM) is an interdisciplinary task that is usually defined as the process of extracting valid, 

unknown, precise information from different huge databases to adjust and improve business decision-

making (Fayyad et al. 1997). DM is based on computational intelligence, such as artificial neural 

networks, machines learning (association rules and decision trees), and advanced statistical techniques, 

such as logistical regression, that have created new intelligent tools for the extraction of useful 

knowledge and information. Nowadays, and due to a large amount of data generated by complex 

systems, traditional data analysis methods are no longer the best choice to use. DM approaches have 

created new intelligent tools for automatically extracting useful information and automatically. 

Therefore, the main objective of DM is knowledge discovery, and DM methodology is a technique used 

to extract predictive information and knowledge from databases (Wang 2007). 

The main techniques of DM are classification, prediction, association, description, and clustering. These 

techniques involve applying some algorithms to extract hidden patterns, structures, associations, and 

differences from huge databases. In complex manufacturing systems, a vast amount of data that is 

generated about the product lifecycles, such as that about design, planning, quality check, maintenance, 

and fault finding, are stored in databases and data warehouses. DM is a significant tool for extracting 

knowledge from these data sources. The two main DM techniques that are most used in manufacturing 

are description and prediction. Predictive DM emphasizes forecasting model behaviour and predicting 

future values of variables based on current information from databases, while descriptive DM involves 

discovering remarkable patterns with which to describe data. Prediction and description goals can be 

accomplished using different DM techniques and tools (Choudhary et al. 2009). 
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Figure 9. Venn diagram for AI, DM, and big data. 

The Venn diagram shown in Figure 9 illustrates the overlapping of multidisciplinary AI, DM, and big 

data analysis. 

 

2.3.2 Artificial Intelligence 

In attempts to make machined have human functions, AI is considered to be an emerging 

interdisciplinary subject that involves theory, methodology, technology, and system applications that 

integrate cybernetics, statistics, computer science, mathematical logic, neurophysiology, and other 

disciplines and is used to mimic, extend, and stretch human intelligence. In industrial engineering, AI 

is used to make machines do several tasks and become highly human-independent. With that being 

mentioned, revolutionary AI reduces the time and cost of production and improves the quality of 

products, and machines can adapt to their surrounding environments, which means they can be aware 

of any unusual behaviour, decision-making, and most importantly, learn from previous experiences (JU 

et al. 2018, Zhang et al. 2018). 

Data is the new gold, and extracting information from raw data can create revenue for any organization. 

From predicting customer’s potential product interests to clustering customers for targeted sales 

packaging, all of these examples of the new dimensions of DM in different industries, and 

manufacturing systems are not exceptions. 
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The iFactory can generate large amount of data, including performance reports and logs. Machines 

sensors can also add to that amount of data. Making sense of the generated data requires collaboration 

from two fields, DM to extract information from the raw data, and big data to facilitate the access to 

data and store the new data. From this perspective, we are using DM as a tool to extract actionable 

information from (usually) very big data generated from iFactory. DM is considered to be part of ML. 

 

2.3.3 Machine Learning (ML) 

Machine Learning Definition (algorithms for inferring unknowns from knowns). ML represents a 

powerful set of algorithms that can extract features, adapt, learn, cluster, categorize, forecast, and 

analyze data, amplifying our understanding of things like obesity and our capacity to make predictions 

with unprecedented precision. ML application examples include Netflix, Alexa, speech recognition, and 

Tesla driverless cars. 

A keyword in the field of ML is “finding patterns” in big data and using and learning from those patterns 

to make predictions. These predictions will be decisions or assist humans in making decisions. 

Therefore, the essence of ML is finding an objective function f that forms the best mapping between an 

input variable X and an output variable Y (i.e., Y = f(X)). The goal of ML is to find this optimal mapping 

to enable more predictions of outputs. The types of ML can be classified into three categories (Cheng 

et al. 2018) based on the differences among input samples: 

 

2.3.3.1 Supervised Learning 

If the learning process can be guided by prior knowledge, then this type of ML has supervised learning. 

The sample I has both an input feature vector xi and a corresponding output label, yi. Because we know 

label vector yi, a supervised algorithm can learn yi and categorize the new samples that have no label. 

If the variable yi has a continuous value, then the supervised learning approach involves the use of a 

regression model while if the value is categorization-based (e.g., “cancer,” “normal” samples or 

“defected,” “normal”) products, then the supervision problem is called classification. As an example of 

supervised learning in regression (DeGregory et al. 2018), linear regression is the most commonly-used 

model for characterizing the relationship between a dependent variable and one or more explanatory 

variables (Bishop 2006). Logistical regression differs from linear regression by predicting categorical 

outcomes or classifying outcomes. In obesity, this is most relevant to the classification of obesity-related 

disease states or risks. 

In this work, we have the supervised learning classification model showcased in Case Study 2, “A 

machine learning approach for identifying gene biomarkers guiding the treatment of breast cancer.” 
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2.3.3.2 Unsupervised Learning 

Sample i has only an input features vector xi; no corresponding output label yi exists. The goal of the 

learner is to group all samples in the sample space, using techniques such as cluster analysis. 

In this proposal, we have an unsupervised classification model showcased in Case Study 3, “A novel 

approach for identifying relevant genes for breast cancer survivability on specific therapies.” 

 

2.3.3.3 Semi-Supervised Learning 

Semi-supervised learning can also be classified into a single category similar to the above two categories 

of ML. Here, semi-supervised learning possesses features and partial labels, and it contains 

classification, regression, and clustering methods. Only one or two of them are included in supervised 

learning and unsupervised learning (Yu et al. 2018). 

In this proposal, we have a semi-supervised classification model showcased in Case Study 3, “A novel 

approach for identifying relevant genes for breast cancer survivability on specific therapies.” 

 

2.3.3.4 Decision Tree Analysis 

Decision tree learning is a predictive algorithm that uses both categorical and numerical data to assign 

samples to specific classes (Bishop 2006). Here, we will use decision trees to group subjects based on 

their characteristics into classes of varying health risks based on blood pressure and body fat percentage 

cut-offs. Unlike regression models, which rely on the minimization of error through least squares, 

decision tree analysis involves determining thresholds derived from input data. For example, falling 

above or below the threshold for patient age moves the patient into the appropriate class. While decision 

trees are effective standalone models for classification, the algorithm’s performance is, in some cases, 

improved by using random forests, which aggregate the results of randomly-generated decision trees to 

produce an effective model (Bishop 2006). 

 

2.4 Neural Networks 

An artificial neural network (or simply, a neural network) is a mathematical representation of the 

architecture of the human neurological system and, hence, falls under the field of AI. Neural networks 

mimic the underlying learning capabilities of the human brain. The neural network is modelled such 

that a series of neurons (or nodes) are organized in layers in such a way that each neuron in one layer 

is connected to neurons of other layers with associated weights. 
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Neural networks are used to predict both continuous numerical and categorical data. There are two 

phases of effective neural network development. The first phase is what is known as training or learning. 

During the training phase, weights that are associated with connections between nodes are adjusted until 

the model performs well. This completed model is then applied to new data to make a prediction. This 

application of the model is called the testing phase. There are many variations of neural networks that 

are adapted for different conditions and applications (Bishop 2006). 

 

2.4.1.1 Deep Learning 

For many tasks, it is difficult to know what features should be extracted to feed to the AI algorithms. 

Aiming at learning feature hierarchies with features from higher levels of the hierarchy formed by the 

composition of lower level features (Bengio 2009), deep learning methods have the potential to 

overcome the deficiencies above in current intelligent fault diagnosis methods (Hinton et al. 2006). 

In deep learning methods, automatically learning features at multiple levels of abstraction enable 

systems to learn complex functions. For machines to learn about these complicated functions, deep 

architectures are needed that are composed of numerous levels of non-linear operations. Through the 

deep architectures, deep learning-based methods can adaptively capture representative information 

from natural input signals through non-linear transformations and approximate complex non-linear 

functions with a small margin of error. Deep learning is part of ML. It was invented based on an artificial 

neural network (ANN) with multiple processing layers that tries to obtain hierarchical data 

representations. There are deferent deep learning techniques, such as CNN, recurrent neural networks 

(RNNs), and ANNs. The following is a brief about deep learning techniques (Zhao et al. 2016). 

2.4.1.2 Convolutional Neural Network (CNN) 

(LeCun et al. 1990) Proposed the use of CNN for image processing. It has two main properties: spatial 

weights and spatial pooling. It was sufficient for numerous computer vision applications (Krizhevsky 

et al. 2012) for which the input data usually has two dimensions. CNN was also successfully applied in 

different sequential data applications, such as natural language processing and speech recognition (Kim 

2014). CNN is used to extract decisive features using two layers, convolutional and pooling layers. The 

convolution layer preserves the spatial associations among the drawn data (pixels) by learning image 

features using sliding windows of data input, which are relatively small, such as 7x7 or 9x9. Then these 

sliding windows are multiplied by the image matrix. The sliding windows are called kernel filters. The 

kernel filters slide from the left to right of the image with one or two overlapping pixels. Changing the 

values of kernel filters will produce different feature maps for the same input image. The output of this 

layer is the dot product between the kernel filter matrix and the concatenation matrix representation. 

This process is called a convolution operation. The second layer is the pooling layer. It aims to learn 
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the objects regardless of their places in the images and to decrease the length of the feature map. This 

reduces the number of the model’s parameters. 

2.4.1.3 Recurrent Neural Networks (RNNs) 

(Schmidhuber 2015) Indicated that the RNN is one of the deepest neural networks. It can also address 

and create memories of sequences of input patterns. Connections between units from the directed cycle 

can also be built using RNNs. 

Different from a primary neural network in which multi-layer perceptron can only map from input data 

to target vectors, an RNN can map from the entire history of previous inputs to target vectors in principle 

and allow the memory of prior inputs to be kept in the network’s internal state. RNNs can be trained by 

backpropagation through time for supervised tasks with sequential input data and target outputs. 

2.4.1.4  Artificial Neural Networks (ANNs) 

ANNs are believed to be the most commonly-used algorithm (Hopfield 1982). In its most popular form, 

there are three components in an ANN: the input layer, a hidden layer, and the output layer. Units in 

the hidden layer are called hidden units because their values are not observed. ANN is an intelligence 

technique based on several simple processors or neurons. The circles labelled “+1” are intercept terms 

and are called bias units. Figure 10(a) is a human neuron, and Figure 10(b) is a simple model of an 

ANN. aij represents the jth neuron unit in the ith layer. 

 

Figure 10. Human neuron and A multilayer perceptron (MLP) with two hidden layers (Liu et al. 2018). 

The “neuron” in ANN is a computational unit that takes as input x1; x2; x3 and an intercept term. The 

output y can be obtained using the following formula: 

𝑦 = 𝑓(𝑊𝑇𝑥) = 𝑓 ∑ 𝑊𝑖𝑥𝑖 + 𝑏

3

𝑖=1

 

 

( 1 ) 

Where f is the activation function, there are many activation functions. Sigmoid is the most common 

one and is usually used for ANNs. b is a scalar. The interconnections between many neurons are 

represented as a network of neurons in which the input of one is the output from the one in the previous 
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layer. This interconnection is what simulates and achieves human neurological performance. W is the 

weight matrix, where the values are updated during the learning process in an iterative procedure. W is 

updated during the forward-backward learning process in which the ANN computes the error and 

improves the learning rate based on a cost function (Liu et al. 2018). Many cost functions can be used. 

Gradient descent (GD) and Stochastic gradient descent (SGD) are commonly used to optimize cost 

reduction based on the learning rate (α). The vanishing problem in GD during deeper ANNs pushed for 

better optimization methods, such as dropout and ADAM (a method for stochastic optimization method  

(Kingma et al. 2014). 

 

2.4.1.5  K Nearest Neighbour 

K nearest neighbour (KNN) the idea of this classifier is simple, highly efficient and effective. It assigns 

a class to a sample point based on the smallest distance to a previously classified neighbouring point. 

In two-dimensional dataset in Figure 11. A simple Euclidean distance can be used to calculate the 

distance between the test data and the input data for class prediction. 

 

KNN was presented by (Fix et al. 1951). However, it is still widely used for ML applications, such as 

pattern recognition, text categorization, ranking models, and object recognition and event recognition 

applications. (Bhatia 2010) discussed many different variations of KNN that were derived from the 

basic model in detail. The basic and straightforward characteristics of this approach are one of its main 

advantages. The biggest drawback is that it is heavy on computation time because of the exhaustive 

distance calculation between every data point. However, because of the evolutional computational 

resources, it is still feasible to use KNN. 

White noise is one of the most common problems encountered in data processing, especially image 

processing. In image processing, filters for noise reduction and eliminations are designed based on 

KNNs. NVIDIA implemented a filter based on KNN to remedy this issue (Kharlamov et al. 2007). 

Deng et al. focused on scaling a KNN for big data applications. The results showed that the proposed 

Figure 11. 2D data set displayed on a graph. 
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KNN classification worked well in terms of accuracy and efficiency and, thus, its appropriateness for 

use in dealing with big data. 

 

2.5 Manufacturing Systems Paradigms 

Nowadays, manufacturing companies are facing frequent increasing and unpredictable market changes 

due to market competition and demand for new products, new product variants, and customized 

products. Therefore, to be competitive, manufacturers must have high-quality manufacturing systems 

and reasonable product prices but also the ability to quickly respond to market changes from the demand 

side, as well as from the variety perspective. Therefore, manufacturing systems should be immediately 

adaptable to market changes, product changes, government regulation changes, and system failures 

(Koren et al. 2010). 

In this section, we identify three distinct manufacturing systems paradigms: dedicated manufacturing 

lines (DMLs), flexible manufacturing systems (FMSs), and reconfigurable manufacturing systems 

(RMSs). A comparison between the three paradigms is shown in Table 2 Below. 

Table 2. Features comparison of DML, FMS, and RMS (Koren & Shpitalni, 2010). 

 Dedicated FMS/CNC RMS/RMT 

System structure Fixed  Changeable Changeable 

Machine structure Fixed  Fixed Changeable 

System focus Part  Machine Part family 

Scalability No  Yes Yes 

Flexibility No  General 
Customized (around 

a part family) 

Simultaneously 

operating tools 
Yes  No Possible 

Productivity Very high  Low High 

Cost per part 
Low (For a single part, 

when fully utilized) 

 Reasonable (Several   

parts simultaneously) 

Medium (Parts at 

variable demand) 

 

For the first paradigm, the DML has a fixed system and machine structure with very high productivity 

but neither scalability nor flexibility, and it produces specific products or parts at a large scale for a long 

time without having a wide product variety, which means we have mass production with limited product 

variants. Achieving this mass production will lead to cost savings only in the case of full capacity 

operation. Therefore, DMLs are sufficient in high-scale (mass production) and low-scope (fewer 
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varieties) production (i.e., whenever we need to have many varieties, using a DML will not be the right 

solution. Therefore, DMLs have high throughput and limited flexibility (Koren et al. 2010). 

The FMS paradigm has a changeable system structure and a fixed machine structure. Therefore, it can 

be used to solve the flexibility issue of the DMLs by providing the ability to produce varieties of goods 

in reasonable volumes. This can be done through general-purpose computer numerically controlled 

(CNC) machines, but it increases the overall system cost. Therefore, FMSs solve the flexibility issue 

but create high equipment costs and do not have high throughput like DMLs. 

On the contrary, the last manufacturing system paradigm is RMSs. It fills the gaps of both the previous 

paradigms by having the ability and flexibility of production when needed and as needed (ElMaraghy 

2005). As shown in Figure 12 below, DMLs (mass production) have a low scope and high scale 

(minimal varieties) while FMSs (mass customization) have a medium scope and medium scale. The Job 

Shop has a high scope and low scale (minimal quantity), and finally, RMSs can fit anywhere in the 

chart by adjusting scale and scope. 

 

Figure 12 Manufacturing systems paradigms positioning. 

The definitions and the objectives of the main three manufacturing systems paradigms, DML, FMS, 

and RMS, are summarized by (ElMaraghy 2005) in Table 3 below.  
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Table 3. Manufacturing systems paradigms (H. A. ElMaraghy, 2005). 

Paradigm Definitions and objectives 

Dedicated 

manufacturing 

lines (DMLs) 

 A machining system designed for the production of a specific part type at 

high volume. 

 Cost-effectiveness is the driver achieved through pre-planning and 

optimization. 

Flexible 

manufacturing 

systems (FMSs) 

 A Flexible Manufacturing System is an integrated system of machine 

modules and material handling equipment under computer control for the 

automatic random processing of palletized parts. 

 The objective is to cost-effectively manufacture several types of parts, 

within pre-defined part families that can change over time, with minimum 

changeover cost, on the same system at the required volume and quality. 

Reconfigurable 

manufacturing 

systems (RMSs) 

 A Reconfigurable Manufacturing System is designed for a fast change in 

structure to quickly adjust production functionality and capacity, within a 

part family, in response to changes in market requirements. 

 The objective is to provide precisely the functionality and capacity that is 

needed when it is required. 

 

2.6 Cyber-Physical Systems (CPSs) 

One of the main challenges of Industry 4.0 is CPSs (Chen 2017), which is defined by the US National 

Science Foundation (NSF) as the tight conjoining of and coordination between computational and 

physical resources (NSF 2018). Lee et al. investigated the challenges that faced CPSs and found that 

the main problem is the fact that the data generated from different sources have orientations. Current-

day abstraction systems do not work when it comes to the calls and thread methods. Other challenges 

from the system-design and architecture perspective, specifically computer networking, make current 

manufacturing systems incompatible with CPS (Lee 2008). (Lv et al. 2019) applied a CPS model to an 

automated electric vehicle using a ML approach. The method optimized different CPS parameters to 

improve different performance objectives, such as dynamic vehicle performance, and drivability, along 

with varying styles of driving. The results validate the feasibility and effectiveness of the proposed 

CPS-based method for three driving techniques, which are aggressive, moderate, and conservative (Lv 

et al. 2019). 

The new achievements in the information technology domain, especially in communication, wireless 

network, and cloud computing, help smart factories to benefit from the information and data that comes 

from different production sectors. Information from various manufacturing components, such as 

machines, and maintenance log files, can now all be integrated into one single system called CPS, which 

is the backbone of smart manufacturing. Advanced sensors and communication technologies allow for 

the monitoring of manufacturing components and the support of decision-making by using advanced 

data processing, mining, and analysis methods. Therefore, we can define CPS as the technologies that 

are used to manage the interconnected systems between the physical components and computational 
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resources (Baheti et al. 2011). While (Lee et al. 2013) introduced recent advances in manufacturing 

informatics related to big data, cyber-physical-systems, predictive manufacturing systems, and Industry 

4.0 and stated that due to the lack of smart analytical tools, many manufacturing systems are not 

prepared to deal with big data because it involves more than just connecting machines to sensors or 

connecting machines to each other. It provides users with the vision needed to make improved decisions. 

They also enhanced the manufacturing information system with 5C roles, which are (1) connection 

(networks and sensor), (2) cloud (data availability), (3) content (meaning and correlation), (4) 

community (social and sharing), and (5) customization (value and personalization). (Lee et al. 2014) 

Introduced a cyber-physical system framework for self-aware and self-maintaining machines, which is 

defined as a system that can self-assess its degradation and strengths and make smart maintenance 

decisions to avoid possible problems. Because the CPS is still in the initial phases of expansion, it is 

important that we define CPS enablers. Cloud computing, IoT, and big data (see Figure 13) are examples 

of CPSs. Each of these terms is introduced in the following sections. 

 

Figure 13. Cyber-Physical System structure (Gölzer et al., 2015). 

2.7 Internet of Things (IoT) 

Within the last decade, with the new technology enhancement in the domains of communication and 

sensors, there has been vast amounts of work in the fields of CPS and the IoT (Sun 2012, Li et al. 2018). 

A simple definition of the IoT is that it is a system in which objects with sensors in the physical space 

are connected to the internet through wired or wireless network connections (Babiceanu et al. 2016). It 

is highly expected that everything around us, like devices, mobile systems, and objects, will be 

connected through the IoT, which will transform our big world into one big network. These emerging 

technologies will enable not only human but also the automated decision makers to deal and 

communicate with physical equipment and grant them the capabilities of collecting, storing, sending, 

and receiving generated data (Mashal et al. 2015). 
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For the manufacturing domain, physical devices like sensors, cameras, readers, and actuators will be 

connected through the IoT. Together, the IoT and CPS are forming a state-of-the-art smart 

manufacturing system (Peruzzini et al. 2017). With the implementation of this system in manufacturing 

processes, a series of achievements and profits are expected to be made, such as process automation, 

efficiency increases, improved automatic control, improved maintenance, the exchange of information 

in real time for decision support, the ability to monitor overall manufacturing operations within the 

supply chain, and the ability to communicate and exchanging information within manufacturing 

facilities and the supply chain (Wang et al. 2015). Within the framework of the IoT in manufacturing, 

cyber-physical networks of smart devices are sensing, gathering, sending, and receiving data and 

considered to be the link between physical objects and the internet. Cyber-physical devices are also 

called “smart objects.” They use several technologies that are merged, such as communication 

technologies, sensing technologies, internet protocols (IPs), and embedded devices, to form complete 

systems in which physical and digital worlds meet and continuously interact and form a new paradigm 

in the manufacturing field (Borgia 2014). As considered by (Qiu et al. 2015), the IoT provides a way to 

share information about all manufacturing operations at all available manufacturing levels in real time. 

The proposed model contains three parts: (1) physical devices, (2) information infrastructure, and (3) a 

DSS (decision support system). 

 

2.8 Cloud Computing (CC) 

The idea of cloud computing was introduced in the late 2000s, and it has been massively improved over 

the last few years as a result of the significant increase in the number of applications that require the 

cloud computing technology to operate. Sharing components and services is the key to cloud computing, 

which significantly contributes to Industry 4.0 (Moghaddam et al. 2018). The cloud computing concept 

assumes that everything is a service even it is processor resource as shown in Figure 14. That is why 

we talk about software are software as a service, or SaaS, in cloud computing. In cloud computing, we 

consider hardware as a service (HaaS), infrastructure as a service (IaaS), platform as a service (PaaS), 

and so on (Mikusz 2014). 

Compared to other domains, the manufacturing domain was late in getting the benefit of the huge 

capabilities offered by cloud computing technology. In the last few years, researchers and 

manufacturers in the industry domain started to use this technology as one of the most significant 

enablers for the new paradigm of the fourth manufacturing revolution of Industry 4.0 (Mourtzis et al. 

2014). 
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Figure 14. Cloud Computing (“Cloud Computing,” 2016). 

Therefore, it is essential for researchers and manufacturers to have a clear definition of cloud 

manufacturing. Hence, during the literature survey, two definitions were found. Firstly,  (Li et al. 2010) 

defined cloud manufacturing as a “computing and service-oriented manufacturing model developed 

from existing advanced manufacturing models and enterprise information technologies under the 

support of cloud computing, the Internet of Things, virtualization and service-oriented technologies, 

and advanced computing technologies.” On the contrary, the second definition gives more information 

about the processes and resources than the first. It was written by (Xu 2012), who defined cloud 

manufacturing as a “model for enabling convenient, ubiquitous, on-demand network contact to a shared 

pool of configurable manufacturing resources (e.g., manufacturing software tools, manufacturing 

equipment, and manufacturing capabilities) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.” This enables users to access the cloud whenever 

required and request services at any stage of the product lifecycle, starting from design, development 

and manufacturing to testing and even management (Xu 2012). With an increased concentration on 

using cloud technology in both design and manufacturing activities, a new combined process called 

cloud-based design and manufacturing (CBDM) was proposed by (Wu et al. 2015). This new CBDM 

concept considers the access to the shared distributed manufacturing facilities and resources within the 

reconfigurable manufacturing lines, which is expected to have a significant productivity improvement, 

such as improvements to production efficiency, the ideal allocation for resources, and last but not least, 

reductions on overall product lifecycle costs. The CBDM system and any other similar cloud 

manufacturing concept in the same domain are expected to have a specific computing concept and 

component, such as the following (Wu et al. 2015):   
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 CPS collects real-time data to be stored on the cloud. 

 Controlling and monitoring the whole production process remotely. 

 Resources to be shared and utilized. 

 Everything as a service XaaS, for example, SaaS, PaaS, HaaS, and IaaS services. 

 Having global access for the gathered data by the cloud-based distributed file system. 

 Having high capabilities for communication and Sharing information like what we have in 

social media. 

 Having high capabilities to store, analyze, and process big data with efficient search techniques. 

 

2.9 Big Data Analytics for Healthcare 

The rapid growth and expansion of digital healthcare data started to play a key role in the development 

of healthcare research and operations. This secured a variety of tools that collect, analyze, manage, and 

integrate large amounts of different structured and unstructured data generated by existing healthcare 

systems. The healthcare aspects such as care delivery, disease exploration, and personalized medication, 

can be improved by utilizing the BDA, but the research development and enhancement rate in this 

domain is still delayed by some vital issues and challenges that limit the success due to the limited 

capabilities of handling the vast amount of complex data that has a high velocity, high volume, and high 

variety. (Fang et al. 2016) Proposed the key techniques, challenges, and future guidelines for the BDA 

in health informatics and summarized the main challenges into four Vs (velocity, volume, veracity, and 

variety). They also proposed efficient data-processing techniques for BDA in healthcare, such as data 

collection, storage, analysis, and decision-making support. 

Meanwhile (Belle et al. 2015) proposed the key challenges involved in the implementation of BDA in 

healthcare, with a focus on some specific data types, such as image, signal, and genomics data. 

(Dimitrov 2016) reviewed the medical internet of things (mIoT) and BDA in the healthcare domain, 

which introduces the digital health adviser (personalized health coaches) utilizing the new technologies 

such as devices that monitor health indicators frequently, devices that auto manages treatments or 

devices that monitor real-time health information when a patient self-administers a therapy.  
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CHAPTER 3. RESEARCH METHODOLOGY 

 

3.1 Overview 
To achieve the objective mentioned above, big data analytics tools, varying data science approaches, 

such as machine learning, artificial intelligence, deep learning, and neural networks, statistical 

association rule discovery models, and experiment design tools, such as factorial design, are applied. 

Advanced data structures, such as the graphical databases used in social media applications, will be 

employed to allow for the efficient handling and analysis of vast amounts of complex systems data. The 

Spark Ecosystem and multi-agent systems (MASs) can be employed. The state-of-the-art reconfigurable 

manufacturing system (iFactory) available at the IMS centre will be utilized in testing and verifying the 

developed methodology. 

Usually, for data that is not a big data, data analysts are able to complete data mining and machine 

learning using popular standard, tools such as Weka, Python, and R (Pedregosa et al. 2011) (Hall et al. 

2009), which are popular languages for data analytics due to the big number of components that are 

ready and available to help in solving their data issues. The ability of these standard tools is limited by 

data size, type, and processing capabilities because they can only be used to process structured data on 

single machines. Other machines are required to handle large volumes of data to form multi-core 

processors or more powerful machines. However, moving data from one machine to another is time-

consuming. Therefore, Apache Spark (Zaharia et al. 2016) is one of the most actively developed open 

source ecosystems among data tools, big or small. It is used for high volumes and varieties of data (big 

data). To help to address these issues, Spark provides data analysts with a great, integrated engine that 

is both fast and easy to use, which is actively increasing the handling performance in the machine 

learning processing (streaming, and real-time query handling) at a high scale. Data specialists are 

spending most of their time preparing their data instead of building the needed models to solve their 

data issues. To help solve this issue, Spark provides libraries for machine learning that simplify, scale, 

and easily integrate with the other tools, such as those in the Hadoop Ecosystem and MAS (Joseph 

Bradley 2016). 

In the following sections, I explain the research plan and the methodologies used in both manufacturing 

systems and healthcare systems. 

 

 

3.2 Research Plan 

The research plan shown in Figure 15 shows the commonalities and differences between the two 

domains (manufacturing and healthcare). Both areas start with the data mining stage to extract problem 
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classes, and this is followed by labelling all data with the discovered classes. Then the needed data 

preprocessing is implemented to prepare the datasets for the next phase, which is features handling. 

Feature handling is the main difference between the two domains because, in manufacturing systems, 

feature extraction is implemented as convolutional neural networks (CNN) and utilized for extracting 

the unknown features map while in the healthcare domain, the features are already known and the main 

objective is to select only the highly-relevant features. Therefore, ranker and wrapper feature selection 

methodologies are implemented. Finally, the prediction model and data classification are developed for 

both domains utilizing the proper techniques. In manufacturing systems, the developed model for defect 

detection using CNN is presented as a case study number one, which is detailed in chapter four, section 

two in this work. Meanwhile, for healthcare, two models for personalized breast cancer treatment are 

developed. One is presented as a case study number two (using supervised machine learning), which is 

detailed in chapter five, section two, and the other one is presented as a case study number three (using 

semi-supervised machine learning), which is detailed in chapter five, section three. 

Data MiningBig Data Analytics 
For Complex 

Systems

Data Labeling

Data 
Preprocessing

Feature 
Extraction

Model Building

Wrapper Feature 
Selection

Ranker Feature 
Selection

Data
Classification

Defects Detection 
in Manufacturing

Personalized Breast 
Cancer Treatment

Case # 2 Chapter 5.2
Supervised Learning

Case # 3 Chapter 5.3
Un/Semi-Supervised 

Learning

Case # 1 Chapter 4.2 
Convolutional Neural 

Network (CNN)
 

Figure 15. Research plan. 

The following part shown in Figure 16 is the high-level IDEF0 graphical function model for the big 

data analytics of complex systems (in both domains). It illustrates the elements of the proposed research, 

which include inputs, outputs, mechanisms, and controls. The inputs are the big data sources, and the 
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outputs are the prediction outputs and the decision support actions. Utilizing all available mechanisms, 

such as big data tools, supercomputers, and IoT. 
Design Methodologies (IDEF0)

17

Historical
Data

Cloud
Computing

Real Time 
Decision Support

Super 
Computer

Internet of
Things

Data Base
Spark

Data

Intelligent 
RecommendationA0

Complex 
System Data

Time Cost

Decision Making 
Model using Big 
Data, IoT, and AI 

methods and tools

 

Figure 16. IDEF0 for big data analytics for both domains. 

The following IDEF0 shown in Figure 17 is the Detailed IDEF0 for big data analytics for complex 

systems (in both domains). It starts with data mining to study the system data and the historical data 

based on the features to identify the problem classes. Then labelling all the available input data with the 

figured classes is done. To create a classification model, the data should be normalized. Therefore, the 

data preprocessing stage is required to have normalized classes ready for the prediction model by 

scaling, resizing, and resampling the input data. This is followed by ether feature extraction or feature 

selection to limit the number of features to only the high-relevant features that are used to build the 

prediction model. The final stage is the data classification stage that is responsible for the final real-

time decision making after having the needed and proper training, validating, testing, and optimizing 

the prediction model. 
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Figure 17. Detailed IDEF0 for big data analytics for both domains. 
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Another way to represent this research is through the Zachman framework (Zachman 1987), which is a 

holistic design approach. This method capsulate the architecture and the foundation in large complex 

design activities. The framework is concerned with answering many questions, like what, when, who, 

how, where, and why for each step of the activities, starting with the enterprise model (conceptual) and 

moving to the system model (logical), and finally the technology model (physical). Figure 18 below 

shows the detailed framework. 

Model Data What 
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How 
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Where 

People 

Who 

Time 
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Research 
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Student 

(Me) 

Committee 
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Design Data 

Model 

Spark, 

iFactory, and 

Statistics  
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Student 

(Me) 

Supervisor 

Summer 

15 

summer 

19 

Big Data 

Analytics tools 

Figure 18. Zachman framework. 

 

3.3 Manufacturing System 

In this section, the workflow of the manufacturing system model is depicted as follows: 

 

3.3.1 Big Data Predictive Analytics Workflow 

The workflow for the big data analytics predictive model is shown in Figure 19 starts with the data 

sources as an input for the model, such as historical data, data streams, and the data extracted from the 

system. This data should be validated for any missing or invalid values or even outliers. After the 

validation process, the data should be preprocessed using many techniques, such as normalization, 

augmentation, and filtering. This ensures that we have clean, valuable data ready for use. Then we apply 

the predictive model that will assist in decision making utilizing AI and machine learning 

methodologies, such as CNN and supervised, unsupervised, and semi-supervised machine learning. The 

predictive model sometimes requires additional data processing, such as data scaling, data resizing, and 

data resampling, to deal with issues such as over sampling and under sampling. Finally, for improved 

representation, the output decisions will be stored, and the results can be represented using data 

visualizations methods. 
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Figure 19. Big Data analytics predictive workflow. 

 

3.3.2 IDEF0 for Manufacturing System 

The following part is the high-level IDEF0 graphical function modelling for smart manufacturing 

systems shown in Figure 20. It describes the main activities of the proposed research in the 

manufacturing system domain, including all the inputs, outputs, mechanisms, and controls. The inputs 

are the big data sources, such as sensor data, system data, historical data, and log files, and the outputs 

are the error fixes, quality checks, and decision support actions. Utilizing all available mechanisms, 

such as big data tools, supercomputer, CPS, and IoT. 
Design Methodologies (IDEF0)

16

Real Time 
Decision Making 

Model

Sensor Data

Log Files
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Cloud
Computing
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System Data

Time Cost
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Figure 20 IDEF0 for smart manufacturing system. 
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The detailed IDEF0 for this part of the research is shown below in Figure 21. It starts with data mining 

to analyze the input data, such as sensor data, historical data, and log files. Considering the product 

status (good or bad) to figure out the problem classes, which are defected or non-defected products 

using the product images. Then the product images are labelled as 1  

for non-defected products or 0 for defected products. A few thousand images are captured by the 

inspection station camera, but that is not enough for training the model. Therefore, the next step is to 

apply data preprocessing augmentation to increase the number of images from only 5,000 images to 

20,000 images, 10,000 images of each class. This is done by flipping, rotating, and resizing the images. 

Then applying the CNN to utilize transfer learning by implementing the resnet-50 and a 3 by 3 kernel 

matrix with one stride, and using the RELU and SoftMax activation functions to extract a features map. 

Then the prediction neural network model is built using sickitLearn and TensorFlow libraries to build 

a fully-connected specific number of layers. Finally, to classify the data and make a decision, either the 

product is good or bad. 
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Figure 21. Detailed IDEF0 for the smart manufacturing case study. 
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There are several steps within the data classification part, as shown in Figure 22 below. Starting with 

the model training using a split ratio of 70% for model training, 20% for model validation, and 10% for 

model testing. The training phase involves the utilization of forward/backpropagation to improve the 

learning rate by changing the weight matrix. This step is followed by model tuning by utilizing the 

batch size and the number of epochs, model optimization using the ADAM optimizer, model 

regularization using deferent dropouts, and finally, validating and testing the model to ensure that it is 

neither over-fitted nor under-fitted before applying the final classification to the not-seen sample 

(samples not used in training nor in the validation) for decision making. 



40 
 

 

Figure 22. IDEF0 for data classification part. 
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3.3.3 Convolutional Neural Network (CNN) 

CNN is a typical application of deep neural networks. They consist of input layers, multiple hidden 

layers, and output layers. Typically, the hidden layers of a CNN consist of multiple convolutional layers, 

activation functions, pooling, fully-connected, and normalization layers (see Figure 23). The CNN 

proves itself with reliable performance in processing media files, such as images and videos (Liu et al. 

2017). CNN requires high computational power. It works very well with GPUs and can utilize 

supercomputer resources in such a way that the training phase is highly efficient. Nowadays, CNN is 

among the best learning tools that have been utilized in many fields, such as handwriting recognition, 

facial recognition, image recognition, and speech recognition, to name just a few. 

 

Figure 23. Convolution neural network (CNN) layers (Jermyjordan 2019). 

A CNN is a multi-layer structure that is built with two types of layers, convolutional layers and 

subsampling layers that are connected alternatively (Goodfellow et al. 2016). Generally, the 

convolution layer’s function is to extract features from the 2D data. Then these features are mapped in 

the sampling layers. Similar to a NN, CNN uses an activation function to achieve scale invariance. 

The training procedure for CNN is similar to that of a standard NN. The first step is the feed-forward 

propagation of the information to extract features by applying filters. In the second step, the error 

between the expected and actual values is calculated, and backpropagation is done to minimize the error 

(Bengio 2009). 
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3.4 Healthcare 

In this section, the workflow of the health informatics model is depicted as follows: 

3.4.1 IDEF0 for Healthcare 

 

Figure 24. IDEF0 for the healthcare section (gene biomarkers). 
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Above is the IDEF0 for the healthcare section of this research Figure 24. It starts with the raw data from 

the patients’ clinical data records. After an intensive investigation, the model was designed based on 

the clinical data to determine which health informatics problem will be studied. After completing the 

proper data mining, the model idea, which is the treatment survivability for five-year interval survival 

patients, came up, and six classes of records were identified. The second phase is to label the patient’s 

gene expression samples with the six new classes from phase one. Each sample has about 25,000 gene 

expressions. This will result in the accumulation of about 2,433 data points about patient clinical 

information and about 25,000 gene expressions for each patient, which will give more than 60,000,000 

gene expressions. 

This model uses a one-versus-rest algorithm to handle the multi-class problem. This leads to an 

imbalanced class dataset. Therefore, we applied several data preprocessing techniques to handle this 

issue, including oversampling with synthetic data, resampling, cost-sensitive classification, and 

SMOTE. This ensured that the data was normalized and ready for the next stage. 

This massive number of features will be handled by two stages of feature selection. The first one is 

using ranker (filter) feature selection, such as Info-Gain, as given in Equation 2, which checks whether 

the correlation of the class with the most relevant features is higher than a specific threshold and 

removes redundancy, noise, and irrelevant features. This will reduce the number of features from about 

25,000 genes to around a few hecto-genes, which is still too many, and it ignores the interactions 

between the features. That is why the second method of feature selection is applied. The second method 

is the Wrapper feature selection, whereby the relations between features are considered using a greedy 

learning algorithm, which removes or adds one feature at each stage to best improve (or least degrade) 

the cost function. It is using either backward or forward elimination. Backward elimination starts with 

all features (n, n-1, n-2, …, 1) and progressively remove features one by one (never adding any) while 

forward elimination starts with an empty set (1, …, n-2, n-1, n) and progressively adds features one by 

one (never removing any). After applying the wrapper feature selection, the number will be reduced 

from hecto-genes (hundreds) to a deca-genes (tens), or even less. 

 

𝐼𝐺((𝑋|𝑌)) = 𝐻(𝑋) − 𝐻((𝑋|𝑌))   Where X is the set of features that  

maximize the entropy of the class vector Y. 

 

 

(2) 

Finally, the last step is the classification stage whereby the gene biomarkers are used to classify the 

different classes using well-known classifiers, such as support vector machine (SVM), naïve Bayes, and 

random forest — utilizing split ratio as 10-fold cross-validation. Kernel techniques are used to implicitly 

transfer the data to a higher dimension where the data is separable. These techniques are better known 

as kernel tricks. Optimizers are used to handle overfitting and lead to improved performance efficiency. 
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Dropout and ADAM techniques are used in this phase. A final result is a small number of biomarker 

genes for predicting proper treatment therapy for the patient based on his or her genes. 

As noticed, the core part of the final step is the classification process. As mentioned above, the following 

several classifiers are utilized. 

 

3.4.2 Naive Bayes classifier 

The Naive Bayes method is a supervised learning classification method based on Bayes’ theorem and 

the conditional independence assumption (Mitchell 2005). For a given training data set 𝑇 =

((𝑥1, 𝑦1), (𝑥2, 𝑦2), … … (𝑥𝑖 , 𝑦𝑖)) with label 𝑦, 𝑦𝑖 = 𝑐1 , 𝑐2, … … 𝑐𝑘 , 𝑖 = 1,2, … …  𝑁 assume there are 𝑆𝑙 

possible values for 𝑥𝑙 , 𝑙 = 1,2, … …  𝑛 ; and there are K possible values for Y. Naïve Bayes first learns 

the joint probability distribution 𝑃(𝑋, 𝑌) of the input and output by the conditional probability 

distribution based on the conditional independence assumption: 

   

𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗) = 𝑃(𝑋(1) = 𝑥(1), … … , 𝑋(𝑛)) =  𝑥(𝑛)| 𝑌 = 𝑐𝑗 

             = ∏ P(X(l) = x(l))

n

l=1

 j = 1,2, … K 

  

( 3 ) 

 

Then, based on the learned model, the output label y with the biggest posterior probability for the given 

input x can be calculated via Bayes’ Theorem: 

𝑃(𝑌 = 𝑐𝑗|𝑋 = 𝑥) =  
𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗) 𝑃(𝑌 = 𝑐𝑗)

∑ 𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗) 𝑃(𝑌 = 𝑐𝑗)𝑗

 
( 4 ) 

And  

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗
𝑃(𝑌 = 𝑐𝑗) ∏ 𝑃(𝑋(𝑙) = 𝑥(𝑙)

𝑙 |𝑌 = 𝑐𝑗)   ( 5 ) 

 

The use of a naïve Bayes classifier is a common method for classification because it is easy to 

implement with high efficiency. 

3.4.3  Support Vector Machine (SVM) 

SVM is a computational supervised learning method for small sample classification (Widodo et al. 

2007). Algorithmically, SVM builds the best separating hyperplane 𝑓(𝑥) = 0 between datasets by 
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solving a constrained quadratic optimization problem. To do so, based on the structural risk 

minimization (SRM) (Schölkopf et al. 2002).  

𝑦 = 𝑓(𝑥) = 𝑊𝑇 + 𝑏 = ∑ 𝑊𝑖 𝑥𝑖

𝑁

𝑖=1

 + 𝑏 

 

( 6 ) 

where 𝑊 is an N-dimensional vector and b is a scalar. The optimal separating hyperplane is the 

separating hyperplane that creates the maximum distance between the plane and the nearest data, that 

is, the maximum margin, as shown in Figure 25. By converting the optimization problem with Kuhn-

Tucker condition into the equivalent Lagrangian dual quadratic optimization problem, the classifier 

based on the support vector can be obtained. 

SVM has been widely accepted as a reliable classifier. It can be used to incorporate different kinds of 

kernels to implicitly move data into a higher dimension where the samples points are more separated. 

The idea behind implicitly transferring data into a higher dimension using dot products is to avoid the 

use of costly transferring functions (Liu et al. 2018). 

 

 

Figure 25. The optimal hyperplane for binary classification by SVM (Liu et al. 2018). 
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CHAPTER 4. MANUFACTURING SYSTEMS APPLICATION 

 

4.1 Overview 
In a modern manufacturing facility, a vast amount of different types and formats of data, like structured, 

unstructured, and semi-structured, are being generated continuously. Big-data analytics is a new area 

of computational intelligence that offers new theories, techniques, and tools for processing and 

analyzing large datasets. It is a discipline of growing interest and importance. Data mining can provide 

significant competitive advantages to manufacturing organizations by exploiting the potential of large 

data warehouses. Thus, our objective in this part of the research is to develop a new method or tool for 

gathering, analyzing, and processing big data (structured or non-structured) that is generated through 

Industry 4.0 systems (e.g., machine sensors or log files) that support manufacturing system lifecycle 

management from conception to actual manufacturing through advanced knowledge discovery tools. 

The new tool will also support manufacturers’ decisions sustainably and economically in designing and 

operating their manufacturing systems. Existing methods were not developed to handle big data. The 

proposed method will be able to handle big data by using modern data structures and data storage 

methods, such as graphical databases, and develop data-driven methodologies to solve manufacturing 

problems using mining techniques (Roy et al. 2014). 

Some benefits of using big-data analytics techniques are shown in Figure 26 below, such as improving 

preventive maintenance, enabling condition monitoring to manage equipment effectiveness, and 

increasing manufacturing efficiency while reducing material and energy consumption (NIST 2018).    
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• 5% reduction in energy costs.
• 10% reduction in water consumption.
• 5% decrease in batch cycle time.
• 10% improvement in machine reliability.

 

Figure 26. Benefits of big-data analytics techniques (NIST, 2018).  
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4.2 Case Study 1 

Big Data Analytics for Defects Detection in Manufacturing Systems (Industry 

4.0). (Abou Tabl et al. 2019) 

 

4.2.1 Abstract  

Modern manufacturing systems generate a large amount of data. Current trends in smart data analytics 

include the extraction of information from big data to make real-time manufacturing and operational 

decisions. This researcher presents a new model for smart decision-making for complex manufacturing 

systems. The model was developed and implemented on the iFactory, a reconfigurable smart 

manufacturing system located in the Intelligent Manufacturing Systems Centre (IMSC) at the 

University of Windsor. This learning factory, which is Industry 4.0 ready, includes many of the needed 

cyber-physical components and sensors. To implement smart (Industry 4.0) manufacturing IoT 

enablers, the sensor readings are streamed through a cloud supercomputer, and a big-data analytics 

learning model is applied for real-time decision-making. Big datasets of product image were gathered 

from the product inspection station. The IoT is represented by the reading of the individual product 

serial numbers using a camera as the sensor. Cloud computing is utilized in two ways: the first one 

consists of holding a large amount of data that is used to train the model, and the second is the execution 

of the model. A Compute Canada supercomputer was utilized for storing big data and executing the 

model to test it. To achieve satisfactory performance regarding the execution speed, it was necessary to 

implement a parallel architecture over a set of nodes with several cores for each. The number of nodes 

and cores can be configured based on the amount of data and the required decision-making speed. In 

this case, four nodes with 16 cores each, with 100 GB of memory per CPU (core) were utilized to hold 

the data and run a specially-developed convolution neural network (CNN) model. The CNN model was 

implemented to extract the features from the images and learn at the same time. The model was tested 

in a real-time environment and achieved a decision accuracy of up to 96.75%. 

4.2.2 Problem Definition 

Reducing the deep learning training time and achieving timely prediction with big data are significant 

problems that deter scientists from considering the use of artificial intelligence (AI) in their complex 

systems. This case study sheds light on the use of deep learning with transfer learning to accelerate the 

training time and achieve accurate prediction. This chapter is focused on the use of deep learning in a 

complex system to detect products with defects and sort them using a robotic system based on decisions 

made by an AI application. The dataset that was gathered for this work consists of 20,000 images for 

line products. The products are different variants of a specific product. The dataset is divided into 10,000 

normal images and 10, 000 defected images. The images are labelled as normal or defected, as denoted 

by 0 and 1, respectively. The objective is to develop a real-time decision-making prediction model that 
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is scalable, reliable, and fault-tolerant to make the iFactory model Industry 4.0 compatible. This was 

done by applying the main Industry 4.0 key enablers, such as big-data analytics, CPSs, cloud computing, 

and the IoT. 

 

4.2.3 Introduction 

In the current digital transformation industrial era, Industry 4.0 has been receiving researchers’ attention 

with the goal of automating production line decisions. The main idea is to utilize revolutionary AI 

capabilities, big-data availability, and deep learning technologies on production lines to diagnose any 

incident and take proper action. Current manufacturing complex systems (MCS) have been widely used 

to reduce the setup costs of restructuring production lines. However, the current MCS modules are not 

based on AI and, hence, cannot learn and adapt to the modern industrial environment to make a real-

time decision. Moreover, MCS does not employ cloud computing, big data, or the IoT, which limits its 

ability to be expanded and used beyond its restricted design. To achieve this, the main modules must 

connect to an online server (supercomputer) that has big-data analytics and machine-learning 

capabilities. 

In this research, we considered iFactory, which is a state of art learning factory that is located in an 

intelligent manufacturing system laboratory, which is one-of-a-kind of North America (ElMaraghy et 

al. 2012), as shown in Figure 27. It demonstrates the innovative physical integration of the different 

product lifecycle phases: iDesign, iFactory, and iPlan. The iFactory module in the IMS lab provides 

engineers, students, and researchers with a practical learning and training experience and offers a high 

possibility to transfer a concrete outcome to the industry. iFactory is an application of a reconfigurable 

manufacturing system (RMS). In this study, we enhance the iFactory module to fully implement 

Industry 4.0 enablers by streaming the sensor readings through the IoT and the cloud to a big-data 

analytics learning model for real-time decision-making. Based on lab-made learning modules that are 

illustrated in the case studies, we improved iFactory skills to monitor, diagnose, and predict unusual 

events, such as product defects. iFactory is used as a base model and integrated with the capabilities of 

AI, big data, the IoT, and could computing. 
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Figure 27. iFactory at IMS lab, University of Windsor. 

Because big data is characterized by the three Vs (volume, velocity, and variety), the use case of 

iFactory will cover these three factors. The data generated from the sensors, cameras, and log files exist 

in differing formats, which achieves the product variety point. At the same time, the fast data generation 

from the sensors and log files demonstrates that the data is generated at a high velocity. Moreover, the 

vast amount of data generated by the sensors and cameras shows the volume characteristic. 

In this work, a new intelligent iFactory that satisfies the need of Industry 4.0 elements and the ability to 

train from provided data, run on the cloud, be equipped with IoT sensing devices, and return real-time 

decisions are designed. The model consists of three components: An IoT component, where the data is 

acquired using a camera for capturing product images and their serial numbers to identify each product. 

The deep learning component is the brain of the system, whereby the system is trained and makes 

decisions. The procedural component is the one in which the decision-making will be performed to 

segregate normal or defected products. 

This chapter has the following parts: a background section that includes a survey of the related literature, 

a materials and methods section with an explanation of the data gathering and preprocessing steps, a 

model architecture section about the methods and techniques, a results section, which includes 

performance and accuracy measurement results, and finally, a conclusion section. 
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4.2.4 Background  

In today’s competitive manufacturing environment, manufacturers are facing challenges in dealing with 

big-data issues, such as rapid decision-making for improved productivity, quality, and system 

sustainability. Manufacturing systems are not ready to manage and obtain the benefits of big data due 

to the lack of decision-making methods and tools. Manufacturers are forced to adopt smart decision-

making methods and tools for big data and be responsive and adaptive to the current dynamic market, 

fluctuating demands, and continuous technology development. Recent technological developments in 

the manufacturing domain are forcing the arrangement of CPS, where the information is gathered from 

all related sources. The information is carefully monitored and coordinated between the physical factory 

networked machines on the manufacturing floor and the cyber computational areas. Therefore, to make 

these networked machines perform more robustly, efficiently, and collaboratively, this information 

needs to be stored, processed, and analyzed. As a result, the manufacturing industry is now changing to 

a new paradigm, which is smart manufacturing (Industry 4.0), as seen in Figure 28. It started from a 

project for advanced manufacturing ideas in 2011 that was sponsored by the German government (Xu 

et al. 2018). The first industrial revolution occurred at the end of the 18th century through the 

implementation of mechanical production using water and wind power. The second industrial 

revolution was in the 20th century and involved the implementation of mass production using electrical 

energy. The third industrial revolution was at the beginning of the 1970s and involved the use of 

electronics and information technology. Nowadays, the new paradigm of the fourth industrial revolution 

based on cyber-physical systems (CPSs) (Lu 2017, Lu 2017) will have different sorts of complexity, 

namely, the complexity of structure, the complexity of data, the complexity of products, and complexity 

through interaction. The new revolution involves using new technologies, such as cloud computing, 

CPS, big data, and the internet of things (IoT), Some of these technologies and processes are already 

being implemented in domains other than manufacturing and reaching high degrees of maturity, like 

cloud computing in the domain of computer technologies. These new technologies are not yet highly 

implemented in the manufacturing domain. The main challenge in applying these tools in the 

manufacturing domain is the high cost of investing in new equipment while removing outdated ones.  
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Figure 28 History of the four industrial revolutions. 

 

4.2.4.1 Cyber-Physical Systems (CPS) 

One of the main challenges faced in Industry 4.0 is CPS (Chen 2017), which defined by the U.S. 

National Science Foundation (NSF) as the tight conjoining and coordination between computational 

and physical resources (NSF 2018). (Lee et al. 2014) investigated the challenges that faced CPS and 

found that the main challenge is the fact that the generated data from different sources have orientations. 

Current-day abstraction systems do not work when it comes to the calls and thread methods. Other 

challenges from the system design and architecture perspective, specifically computer networking, 

make current manufacturing systems incompatible with CPSs (Lee 2008). (Lv et al. 2019) applied a 

CPS model on an automated electric vehicle using a machine-learning approach. The method involved 

optimizing various CPS parameters to improve different performance objectives, such as dynamic 

vehicle performance, drivability, and energy, along with different driving styles. The results validate 

the feasibility and effectiveness of the proposed CPS-based method for three driving styles which are 

aggressive, moderate, and conservative (Lv et al. 2019). 

 

4.2.4.2 Internet of Things (IoT) 

Within the last decade, with the new technological enhancements in the domains of communication and 

sensors, there is much effort to be done in the fields of CPS and the IoT (Sun 2012, Li et al. 2018). A 

simple definition of the IoT is that it is a system in which the objects within the physical space are 

connected to the internet through wired or wireless network connections through the use of the sensors 

attached to these objects (Babiceanu et al. 2016). It highly expected that everything around us, like 

devices, mobile systems, and objects, will be connected through the IoT, which will transform our big 
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world into one big network. This emerging technology will enable not only human but also the 

automated decision makers to deal and communicate with the physical equipment with the capabilities 

of collecting, storing, sending, and receiving generated data (Mashal et al. 2015). 

 

4.2.4.3 Cloud Computing (CC) 

The cloud computing concept appeared in the late 2000s and has been highly improved in the last few 

years, resulting from the significant increase in the number of applications that require cloud computing 

technology to operate. Sharing components and services is the key to cloud computing and significantly 

contributes to Industry 4.0 (Moghaddam et al. 2018). The cloud computing concept is that everything, 

even it is processing resources, such as central processing unit (CPUs) and graphics processing unit 

(GPUs), can be shared as services. That is why when we talk about software in relation to cloud 

computing, we talk about software as a service (SaaS), and for hardware, we talk about hardware as a 

service (HaaS). In cloud computing, we also discuss infrastructure as a service (IaaS), platform as a 

service (PaaS), and so on. We can consider anything (X) as a service (XaaS) (Mikusz 2014). 

 

4.2.5 Materials and Methods 

In the current inspection method, the iFactory inspection station camera captures the positioning of each 

product and makes a decision about whether it is good or bad. This is done locally using the PLC 

programming unit. The objective of this research is to utilize Industry 4.0 capabilities by using all I4.0 

enablers instead of the former method. This process is done on a big-data analytics platform without 

losing the concept of I4.0. This is done by capturing images of the product and transferring them to a 

big-data platform on a supercomputer. The image preprocessing and decision-making are done remotely 

on the supercomputer. Then the results are instantly displayed in front of the end user. Choosing a big-

data platform has become a significant requirement due to the increase in the volume of data and the 

need for timely decision-making. 

The determination of product quality is classified into two main classes: a normal class in which the 

image of the product does not have any evidence of a defect, and a bad class in which the image shows 

some defects in the product. A CNN based on Tensorflow is utilized as an efficient classification tool 

to make such decisions. Moreover, due to the fine details and similarities in the dataset, transfer learning 

is used based on the Resnet-50 pre-trained model by uploading its weight matrix to our model (kaggle 

2019). 

4.2.5.1 Scope and applicability to upgrading existing Manufacturing Systems 

The scope of this part of the research covers manufacturing systems with low, medium, and high 

production volumes for product families and variants. It also covers the big data with its variety 
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(structured, non-structured, or even semi-structured), volume (up to terabytes and zettabytes), and 

velocity (even real-time data). This research is applicable to new manufacturing systems and can also 

be used to upgrade existing manufacturing systems that have limitations. New manufacturing systems 

will be prepared and equipped with the required communication hardware and software that enable 

entire manufacturing facilities to share their resources with the IoT within the cloud. Also, some existing 

manufacturing systems can easily be equipped with the proper hardware and software to have the same 

capabilities as the new systems. For example, it is easy to install cameras and sensors in existing 

manufacturing systems and connect them to the internet and share the data for decision-making 

purposes. This can be done because the data captured from the installed cameras and sensors is analyzed 

to discover, qualify, and organize related information then present it to factory workers to help them 

make data-driven decisions to optimize the manufacturing process. Then real-time analytic actions are 

taken to enhance and improve production process quality and control observations. This process is 

already implemented in some industry fields, such as what is implemented for EigenInovations, as 

shown in Figure 29 (EigenInovations 2019), but still, there is a lack of research publications in this 

domain. 

 

 

Figure 29. Upgrading existing manufacturing systems (EigenInovations 2019). 

The current style of manual inspection in manufacturing systems can be time-consuming, ineffective, 

expensive, and sometimes, unsafe. Most of the quality checks involve visual inspections to guarantee 

that all parts are in the right locations, have the right colours or shapes, and are free from faults. For that 

reason, IBM proposed the use of artificial intelligence technology called IBM Visual Insights to quickly 

resolve quality problems, minimize escape rates, decrease the number of required manual inspections, 

improve the effectiveness of quality inspectors, and advance overall throughput across multiple 

industries. They indicated that the implementation of IBM Visual Insights has some benefits, such as 



55 
 

reducing the cost of quality inspection, reliability improvements for the inspection process, reductions 

in inspection time, and root-cause analysis and problem resolution improvements (IBM 2019). 

Modern manufacturing systems are becoming increasingly interconnected and complex, and they are 

generating new challenges that automation can address, such as quality checks at machines and 

inspection stations. Similar to other businesses, Intel’s long term automation vision for smart 

manufacturing is based on the realization that big-data analytics can dramatically increase efficiency, 

productivity, quality, and safety and decrease costs. Utilizing computing power and the IoT to have an 

automated control system with real-time data that is stored on off-line systems as big-data servers for 

future analysis and real-time decision-making by transforming data into actionable information. As 

proposed by Intel, real-time/non-real-time data analytics is shown in Figure 30 (Steve Chadwick 2016).  

 

Figure 30. Real-time /Non-real time data analytics (Steve Chadwick 2016). 

While real-time monitoring using data analytics for the quality rules is applied to real-time process data 

to determine whether it is feasible to continue production of a product, whether it requires rework, or 

whether it should be scrapped. Rapid responses to problems also increase uptime, accelerate output, 

and save money, as shown in Figure 31 (Steve Chadwick 2016). 

 

Figure 31. Real-time monitoring using data analytics (Steve Chadwick 2016). 
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(Moyne et al. 2017) proposed the use of big-data analytics for smart manufacturing in semiconductor 

industries and defined smart manufacturing as the enhancement of manufacturing operations through 

the integration of systems, connecting cyber and physical capabilities, and capturing the advantages of 

information, including big-data growth, by applying big-data analytics for improver prognostics and 

diagnostics. This will be done by improving current capabilities, such as fault detection, and adding 

new capabilities, such as predictive maintenance. The essential big-data factors are data quality and 

analytic techniques for achieving high-quality solutions. Due to the highly complex and dynamic 

equipment and processes, as well as issues in manufacturing data size and quality, it is emphasized for 

use in next-generation fault classification and detection and predictive maintenance. 

 

4.2.5.2 Data Acquisition 

In this phase, the camera (with a resolution of 1024 by 1024 DPI) is mounted to a base in the inspection 

station of the iFactory and used to capture product images. These images are in RGB (red, green, and 

blue) format. The number of acquired images is 20,000 to build a sufficient dataset; these images are 

transferred to a supercomputer and split into training, validating, and testing datasets. The training 

dataset images are labelled using natural language processing with a precision of 99% accuracy. Then 

after the datasets are processed, they are fed into the machine-learning model.  

In Figure 32, two samples of normal and bad classes are illustrated. The left image is the normal class, 

and the right image is the defected one. The labelled dataset and images make the problem a supervised 

machine-learning classification problem. The normal class is labelled as good and represented by 1, and 

the defected class is labelled as bad and represented as 0. The number of samples in each class is 

balanced and set to 10,000 images. 

 

Figure 32. Normal class, good image (left), and defected class, bad image (right). 

Good Bad 
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4.2.5.3 Pre-processing 

The preprocessing phase prepares the images to fit within the machine-learning model to retrieve the 

best features quality. In this phase, the images are normalized by scaling them down to 512 by 512 

pixels. Then all image channel values are normalized to be between 0 and 1. This is done by dividing 

all pixels’ values by the highest pixel value, which is 255. The reason for this is to remove the variation 

in channel values and accelerate the convergence of the machine-learning model. In the second phase, 

image augmentation is performed to increase the number of images and minimize the probability of 

overfitting. The augmentation is done by randomly and horizontally flipping a certain proportion of 

images and rotating them by 45 degrees. The features acquired for each batch are captured by cropping 

the image from the centre and rescaling it to 224 by 224 pixels. The labels of images are either normal 

or bad and represented in one hot encoding vector by 1 or 0, respectively. 

 

4.2.6 Model Architecture - Methodologies and Model Design  

The model consists of three phases: the first phase is to read the dataset that is stored on a 

supercomputer. In the second phase, pre-trained model weights from Resent-50 are utilized as initial 

weights in our model. Resnet-50 consists of 227 layers, which makes the machine-learning model deep. 

Our model is trained from end-to-end layers (without freezing layers) to capture the fine details of each 

class and extract discriminative features between both of them. Each layer in the Resnet-50 consists of 

a convolution layer, a max-pooling layer, a ReLU activation function, as given in Equation 8, and a 

dropout optimization technique. The first layer of the network is replaced with an input layer, and the 

last layer is chopped and replaced with two fully-connected class layers. The SoftMax nonlinearity 

activation function given in Equation 9 is applied with a binary cross entropy loss function. The state-

of-the-art method called ADAM (a method for stochastic optimization method), which is stochastic 

gradient descent, is used to optimize the loss function.  Figure 33 shows a sample of layers of CNN.  

 

Figure 33. Structure of convolutional neural networks (CNN) (FreeCodeCamp, 2019). 

Good

Bad
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The reason for using a CNN is its efficiency in feature extraction by multiplying images with a certain 

kernel or filter. The main unit of layers consists of a convolution layer that extracts the feature by 

multiplying the image with a certain size of the kernel. Convolution preserves the spatial relationship 

between pixels by learning image features using sliding small squares of input data. The kernel filter 

slides from the left of the image to the right of the image with one or two overlapping pixels or stride. 

In this model, the kernel size was a 3 by 3 matrix, which is also called a filter. Changing the values of 

the filter matrix will produce different feature maps for the same input image. Figure 34 shows the 

extracted features when a canny filter is used.  

 

Figure 34. Input image with its different feature maps. 

The second layer is the pooling layer, and the main purpose of this layer is to train the model about the 

object regardless of its place in the images. For example, if a max-pooling layer is used with 2 by 2 for 

every four cells, then the maximum numerical value is computed and inserted into the pooled feature 

map. Then the activation functions, such as ReLU and SOFTMAX, shrink the output number that is 

produced from the former layers. These numbers form the weight matrix of the neural network. The 

goal is to find the best weight matrix that minimizes the loss function, which is binary cross entropy 

loss function which is given in (Equation 7): 

 

𝐶𝐸 =  − ∑ 𝑡𝑖 𝑙𝑜𝑔(𝑠𝑖)
𝐶′=2
𝑖=1 =  −𝑡1 𝑙𝑜𝑔(𝑠1) + (1 − 𝑡1) 𝑙𝑜𝑔(1 − 𝑠1)   ( 7 ) 

 

The loss function measures the difference between the input and the predicted output. The used 

activation function is Rectified Linear Unit ReLU. As shown in Figure 35, ReLU is an element-wise 

operation (applied per pixel) and replaces all negative pixel values in the feature map with zero. The 

purpose of ReLU is to introduce nonlinearity to our ConvNet because most of the real-world data we 

would want our ConvNet to learn would be non-linear. Convolution is a linear operation–element-wise 
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matrix multiplication and addition function, so we account for nonlinearity by introducing a non-linear 

function like ReLU (Hahnloser et al. 2000).   

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑚𝑎𝑥 ( 0 , 𝑖𝑛𝑝𝑢𝑡 ) ( 8 ) 

   

 

Figure 35. Rectified Linear Unit RELU. 

The weight matrix keeps updating using forward propagation and backward proportion. The last fully 

connected layer with two classes is used with softmax (Boltzmann 1868) as shown by the following 

equation. 

𝛼(𝑥𝑗) =
𝑒

(𝑥𝑗)

∑ 𝑒(𝑥𝑖)
𝑖

   
( 9 ) 

where 𝛼 is the output of the activation function, 𝑥𝑖 is the weight matrix of layer j, and 𝑥𝑗 is the output 

of layer i. as shown in  Figure 36 below. 

 

Figure 36. Softmax activation function. 

These two classes (bad and good) are denoted in order as 0 and 1. The number of layers used is 227 

because the model was built based on the idea of transfer learning using the Resnet-50 pre-trained 
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model. However, Resnet -50 was trained from scratch, and all weight matrix values were discarded for 

the sake of improved learning (kaggle 2019).  

4.2.7 Tuning the Model Hyper parameters 

The hyper parameters are tuned in this approach by observing the accuracy of performance. The number 

of epochs is set to stop early with the max accuracy score set to 99%, and the model training is done 

after 10 epochs with the targeted accuracy. Differing batch sizes of 20, 40, and 60 images per batch 

were used. The dropout value was set to 0.2 to prevent overfitting and improve accuracy. The learning 

rate is tuned using a learning rate scheduler with a base learning rate of 1e-7 worm up to 5 epochs 

(0.001) then cool down to a minimum learning rate of 1.E-15. However, the best learning rate for which 

the best accuracy is achieved was 0.001. The optimizer used to minimize the loss function was ADAM. 

4.2.8 Results  

A supercomputer was utilized to test this application using Apache Spark, which is an open source 

general-purpose cluster computing framework. Spark also provides an interface for programming 

clusters with data parallelism and fault tolerance. The model was executed on a Compute Canada 

supercomputer in a cluster with four nodes known as Cedar. Each node has 16 cores and 100 GB of 

memory per CPU. The data was split into training (70%), validation (20%), and testing (10%) datasets. 

The model was tested with different batch sizes, such as 20, 40, and 60 images. The results are given in 

Table 4, which shows the performance measurements, such as the accuracy and loss of the 

classification. Accuracy is known as the percentage of the number of correctly classified images divided 

by the total number of images, while loss is defined as the least square function that takes the square 

root of all the added-up squared differences between the prediction value and the actual value for each 

sample. All the experiments were conducted using big-data processing tools and parallel computing 

using Apache Spark with Python. By using a different number of nodes (to measure the scalability of 

the system), more data will be processed in less time than ever. 

Table 4. Results (Accuracy and loss) With different batch sizes, Epochs, and Drop out. 

Batch size 
Dropout 0.1 0.2 

# of Epochs 5 10 15 5 10 15 

20 
Accuracy 55.87% 76.85% 95.84% 80.68% 96.78% 96.75% 

loss 69.35% 51.82% 0.99% 43.18% 2.17% 5.61% 

40 
Accuracy 51.27% 72.56% 93.79% 73.23% 92.45% 94.99% 

loss 69.25% 51.61% 9.09% 40.41% 10.99% 0.25% 

60 
Accuracy 48.16% 60.96% 88.91% 55.78% 62.45% 89.41% 

loss 68.95% 65.41% 14.96% 69.32% 60.87% 21.63% 
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4.2.8.1 Performance  

The data was split into training (70%), validation (20%), and testing (10%) datasets. The performance 

was measured based on how many images can be processed per epoch per time. It was noticed that with 

increases in batch size, accuracy and training time decreased. However, using a small batch size takes 

a long time but results in high accuracy. We used a batch size of 60 with 10 epochs, and each epoch 

lasted approximately 7 minutes, but 62.45% accuracy was achieved. However, when we used a batch 

size of 20 with the same number of epochs, each epoch lasted 20 minutes, and 96.78% accuracy was 

achieved. 

 

4.2.8.2 Accuracy with Different Batch Size and Dropout 

In this experiment, the accuracy was measured based on the batch size with a dropout of 0.1. It is noticed 

that with the increase in batch size, the training time decreases and accuracy increases. The number of 

epochs was set to 5, 10, and 15. The best results were achieved for 12 epochs with a batch size of 20 

and 95.84% accuracy. The best learning rate was 0.001. Figure 37 depicts the results based on the 

accuracy, batch size, and a number of epochs when dropout was 0.1. 
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Figure 37. Results based on the accuracy, batch size, and the number of epochs with dropout 0.1. 

In this experiment, accuracy is measured based on batch size with differ dropout of 0.2. It is noticed 

that with increases in batch size, the training time decreases but accuracy increases. The number of 

epochs was set to 5, 10, and 15. The best results were achieved when the number of epochs was 10 with 

a batch size of 20, 96.78% accuracy, and the same learning rate as in the above experiment. Figure 38 

shows the results based on the accuracy, batch size, and a number of epochs, and drop out was 0.2. 
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Figure 38. Results based on the accuracy, batch size, and the # of epochs with dropout 0.2. 

4.2.9 Conclusion 

Industry 4.0 is a modern global trend is sustainable manufacturing systems. The main contribution of 

this research is in implementing a key enabler for Industry 4.0, which is big data analytics using AI. 

The proposed method can be used in optimizing manufacturing processes among a wide variety of 

industries. The successful implementation of this research in manufacturing facilities will lead to not 

only the realization of cost savings in these facilities but also the achievement of feasible sustainable 

systems.  

The pipeline alike method starts with the training of the model on the acquired data of both good and 

defected product images from the production line. The data is preprocessed and normalized to enhance 

overall machine-learning performance. The trained data is located on a supercomputer and 

synchronized with the production line in real-time. The production line takes a picture of each product 

item and sends it to the server to be classified using the trained machine-learning model. If an image is 

classified as defected, then the server will instruct the production line to take the proper action, such as 

sending the item to an alternate station. The integrated models have a high-performance level, with up 

to 97% of accuracy for detecting defected parts. The model is a real-time decision-making machine that 

is connected to a supercomputer and implemented all the missing I4.0 enablers in the iFactory system. 

In order to classify a product as defeacted or normal, I used a novel classification procedure based on 

nueral network methodology to achieve a real-time decision making in manufacturing system. In 

addition, I also collected the data from the production line and trained the model through cloud servers 

before taking the decision. This is a novel contribution because it is the first transparent research attempt 

to automate decision-making in a manufacturing setting.  
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CHAPTER 5. HEALTH INFORMATICS APPLICATION 

 

5.1 Overview  
Recently, the advancement in genetic sequencing and gene expressions tools boost the study of the 

human genome. Human genes play roles in daily activities and can be a cause or a result of any disease. 

Breast cancer is not an exception, and the study of the human gene in relation to it assist in the early 

detection, diagnose, and the treatment of the disease. Breast cancer was classified into five molecular 

subtypes by the genetic analysis (Perou et al. 2000) (Prat et al. 2011), then, later on, (Curtis et al. 2012) 

classified breast cancer into 10-molecular subtypes based on the genetic activities. The vast amount of 

genetic data requires different pre-processing and analysis methods, the number of human genes is 

estimated to be around 25,000 coding genes and about 22,000 for non-coding genes, those genes have 

a different way of transcriptions which is known as transcripts, where the total number of known 

transcripts is 198,002 (Biostars 2019). The relationships among those genes themselves and the other 

molecules, proteins, motives, and conditions complicate the computational model for studying any 

genes. The newer generated genomic data over the public studies and dataset on the internet makes this 

problem to be considered as a Big data problem. 

 The literature shows many integrative machine learning models for breast cancer treatment, subtypes, 

and survival. However, this is the first model that analyses the genes in treatment-survival data. This 

case study proposes a machine learning model that learns from the big data of gene expressions and 

guide the treatment of the patient throughout five years’ survival interval. 

The main contribution of this chapter is the novel algorithm that is followed in order to classify a multi-

class outcome based on a large number of features.  
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5.2 Case Study 2  

 

A machine learning approach for identifying gene biomarkers guiding the 

treatment of breast cancer. (Tabl et al. 2019) 

 

5.2.1 Abstract—Objective  

Studying breast cancer survivability among different patients who received various treatment therapies 

may help us understand the relationship between the survivability and treatment of patients based on 

the gene expression. In this work, we present a classification system that predicts whether a given breast 

cancer patient who underwent through hormone therapy, radiotherapy, or surgery will survive beyond 

five years after treatment. Our classifier is a tree-based hierarchical approach that groups breast cancer 

patients based on survivability classes. Each node in the tree is associated with treatment therapy and a 

subset of genes that can best predict whether a given patient will survive for more than 5 years after that 

particular treatment. We applied our tree-based method to a gene expression dataset about 347 treated 

breast cancer patients and identified potential subsets of biomarkers that can predict survivability with 

high accuracy levels, ranging from 80.9% to 100%. We investigated the roles of many biomarkers 

through a literature review and found that certain biomarkers are strongly related to breast cancer 

survivability. 

 

5.2.2 Background 

Despite the fast increase in the breast cancer incidence rate, the survival rates have also increased due 

to improvements in the treatments because of new technologies (Miller et al. 2016). Breast cancer, 

however, is still one of the leading causes of cancer-related death among women worldwide. The 

survival rates vary among the various treatment therapies that are currently used, which include surgery, 

chemotherapy, hormone therapy, and radiotherapy. Nevertheless, each patient’s response to a specific 

treatment varies based on some factors that are being investigated (Miller et al. 2016). 

Traditional laboratory techniques like CAT scans and magnetic resonance imaging (MRI) have been 

proven to be useful. However, they offer very little information about the mechanism of cancer 

progression. On the contrary, advances in DNA microarray technology have provided high throughput 

samples of gene expression. Machine learning approaches have been utilized to detect breast cancer 

treatment or survivals (Tang et al. 2017) (Zeng et al. 2018) (Mangasarian et al. 2000) (Cardoso et al. 

2016) (Abou Tabl et al. 2017). many researchers have used DNA microarray technology to study breast 

cancer survivability (Mangasarian et al. 2000) (Cardoso et al. 2016) (Abou Tabl et al. 2017). Analyzing 

gene expression among breast cancer patients who undergo varying treatment types deepens the current 
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understanding of the disease’s progression and prognosis. Many features complicate the computational 

model; the number of features is usually significantly larger than the number of samples, which is 

known as the curse of dimensionality problem, in which standard classifiers overfit the data, and hence, 

perform poorly. Therefore, feature selection techniques are proven to alleviate the curse of 

dimensionality by removing irrelevant and/or redundant features.  

Zou et al. proposed a maximum Relevance maximum distance feature selection approach mRMD. The 

method uses Pearson's correlation coefficient to measure the Relevance between the subgroup of 

features and the class. The selection criteria balance the accuracy with stability when selecting the 

features. The authors compared the dimensionality reduction method with both filter and wrapper 

feature selection types, and the results show that mRMD outperformed different features selection 

method of each type (Zou et al. 2016). We compared mRMD with mRMR on the wrapper phase of 

feature selection, while the accuracy of random forest on the selected features of each method was very 

close, mRMR overall selected less number of potential biomarkers with 47 genes compared to 60 genes 

of the mRMD, Hence, we utilized mRMR in this model to obtain a handful smaller size of potential 

biomarkers for further analysis.   

Tang et al. predicted a tumour location in breast tissue based on feature selection method where the 

features are RNA-Seq and miRNA data (Tang et al. 2017), they enhanced the prediction of the standard 

classifiers to be around 93% in average. While Zeng et al. investigated a potential miRNA biomarker 

for breast neoplasm with around 80% accuracy (Zeng et al. 2018). Mangasarian et al. utilized a linear 

support vector machine (SVM) to extract 6 out of 31 clinical features. Their dataset contains samples 

from 253 breast cancer patients. The model involved classifying the samples into two groups: (1) the 

node-positive group in which the patients have some metastasized lymph nodes, and (2) the node-

negative group for patients with no metastasized lymph nodes. Those six features were then used in a 

Gaussian SVM classifier to classify patients into three prognostic groups: negative, middle, or positive. 

The researchers found that patients in the negative group had the highest survivability. Most of these 

patients had received chemotherapy treatment (Mangasarian et al. 2000). 

Using samples from patients with high-risk clinical features in the early stages of breast cancer, Cardoso 

et al. proposed the use of a statistical model to determine the necessity of chemotherapy treatment based 

on clinical data (Cardoso et al. 2016). In one of our earlier works, we built a prediction model based on 

various treatments without defining the period of survivability (Abou Tabl et al. 2017); that is, given a 

training dataset consisting of gene expression data of BC patients who survived or died after receiving 

a treatment therapy, we built a classification model that is used to predict whether a new patient will 

survive or die. In another work, we have implemented an unsupervised learning approach to find the 

separation between the treatment-survival classes (Tabl et al. 2018), the model is grouping different 

classes together in building the tree model while defining the border between the different groups of 
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classes. Paredes-Aracil et al. built a scoring prediction system for 5 and 10 years of survivability periods 

for different BC subtypes. The cohort of their study includes 287 patients from a Spanish region. The 

patients have received different therapies with sometimes mixed of them (Paredes-Aracil et al. 2017), 

which makes it difficult to relate the genomic activities to a specific therapy during the survival 

prediction. 

 In this present work, we extended an earlier work (Tabl et al. 2018) to predict which BC patients will 

survive beyond five years after undergoing a given treatment therapy. The classifier is built on top of a 

feature selection model that identifies the genes that can be used to best distinguish among patients in 

differing survivability classes. To the best of our knowledge, this work is the first supervised machine 

learning method is built to predict the BC five survivability for each therapy.   

 

5.2.3 Materials and Methods 

We used a publicly-accessible dataset that contains samples for 2,433 breast cancer patients (Pereira et 

al. 2016) (Curtis et al. 2012). The gene expression profiles were totally processed and normalized 

(Curtis et al. 2012). After studying the given data and selecting only patients who have received one 

type of treatment, a set of six classes were identified as the base of this work. These classes are the 

mixture of each treatment: surgery (S), hormone therapy (H), and radiotherapy (D) with a patient status 

as living (L) or deceased (D). The numbers of samples (patients) for each class in the proposed model 

are shown in Table 5. Data from a total of 347 patients were included in this work. To avoid overfitting, 

we performed the filter feature selection first for each class, before running the wrapper feature selection 

or even the classification model on all the samples from all classes. The number of genes after the two 

feature selection steps for each class are reported in Table 5.  

 

Table 5. list of classes with the number of samples in each class, with the number of genes for each class after filter feature 

selections. 

Class Number of samples 
Number of genes after filter 

feature selection 

Number of genes after 

wrapper feature selection 

Living and Radio (LR) 132  

1771 

 

8 
Living and Surgery (LS) 130 

Living and Hormone (LH) 20 80 9 

Deceased and Hormone (DH) 6 20 10 

Deceased and Radio (DR) 19 227 14 

Deceased and Surgery (DS) 40 197 6 

Total 347 2295 47 
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Based on the available data, only three treatment therapies are covered in this study: surgery, hormone 

therapy, and radiotherapy. Our model uses hierarchical classifiers to classify one-versus-the-rest 

classes. The classes are imbalanced. Hence, standard classification methods will yield poor performance 

results. The pipeline starts with feature selection methods like Chi-square (Mantel 1963), and 

information gain (IG) that are applied to limit the number of significant features (genes). A wrapper 

method is also utilized to obtain the subset of genes that best represents the model by using minimum 

redundancy maximum relevance (mRMR) (Peng et al. 2005), as a feature selection method. This step 

is followed by several class balancing techniques, such as the synthetic minority over-sampling method 

(SMOTE), resampling, and cost-sensitive to balance the number of classes before applying different 

types of classifiers, such as naive Bayes (Domingos et al. 1997) and decision tree (random forest) 

(Breiman 2001). Finally, a small number of biomarker genes is recognized for predicting proper 

treatment therapy for the patient. To the best of our knowledge, this work is the first prediction model 

that is built on the combination of the treatment and survivability of the patient as a class. 

The patient class distribution for the studied model is shown in Figure 39, which shows the percentages 

of samples within each class. It is clear that there are differences between classes that require class 

imbalance handling techniques to achieve fair classification. 

 

 

 

Figure 39. Patient class distribution. 

 

5.2.3.1 Class Imbalance 

This model uses a one-versus-rest scheme to tackle the multi-class problem, which leads to an 

imbalanced class dataset at each node of the classification model because of the differences in sample 

sizes.  Standard classifiers are bias to the class with higher number of samples ( the major class)  in a 
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way usually they tend to select the major class class over the minor class (Elkarami et al. 2016) .  

Differences in class priorities due to the sample is a common problem in machine learning, nonetheless, 

the dataset in this work is a non-blanced dataset. Therefore, we applied the following techniques to 

handle this issue: 

 

5.2.3.1.1 Over-sampling with synthetic data 

Oversampling the minority class by using synthetic data generators. Several algorithms are used to 

achieve this. We used one of the most popular ones, SMOTE (Chawla et al. 2002). 

 

5.2.3.1.2 Using a cost-sensitive classifier 

Using penalizing models that apply additional weight to the minority class to achieve class balancing. 

This, in turn, biases the model to pay more attention to the minority class than others. The algorithm 

utilized in this work is called Cost-Sensitive Classifier in the Weka machine learning tool using a 

penalty matrix to overcome the imbalance (Núñez 1988). 

 

5.2.3.1.3 Resampling 

Replicating the dataset can be using one of two methods: (1) adding copies of the data instances to the 

minority class, which is called over-sampling (2) deleting some instances of the majority class, which 

is called under-sampling. We used the over-sampling technique (Gross 1980). 

5.2.3.2 Feature Selection 

The gene expression dataset contains 24,368 genes for each of the 347 samples. Because of the curse 

of dimensionality, it is difficult to classify the dataset in its current form. Thus, engaging in feature 

selection is essential to narrow down the number of genes to a handful at each node. Chi-square and 

Info-Gain are applied to select the best information gain of the selected genes, this step (Which is 

usually called filter feature selection) will drop down the number of genes to a couple of hundreds based 

on the correlation between each class and the gene expressions based on the default correlation threshold 

in WEKA. After that, mRMR is applied to identify the best subset of significant genes. mRMR (Which 

is usually considered as a wrapper feature selection) is an algorithm that is commonly used in greedy 

searches to identify the characteristics of features and correctly narrow down their relevance.  

In the trial to find the best feature selection wrapper method to select handful gene biomarker for each 

class, we applied both mRMD 2.0 and mRMR on the filtered genes on each class. mRMD outperformed 

mRMR fourth and the fifth node as seen in Table 6, while mRMR performed better in the second and 

third. Both classifiers had 100% of accuracy in the first node, but the lower number of selected genes 

in that node using mRMR made it more efficient.  
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Table 6. illustrates the results of using mRMD 2.0 vs mRMR on each node then applying random forest classifier on each 

node. 

 

Node 

mRMD mRMR 

# of Biomarkers Accuracy # of Biomarkers Accuracy 

DH VS Rest 20 100.00% 10 100.00% 

DR VS Rest 13 99.47% 14 100.00% 

LH VS Rest 4 98.25% 9 100.00% 

DS VS Rest 13 98.69% 6 97.90% 

LR VS LS 10 81.29% 8 80.90% 

Total # of Biomarkers 60  47  

 

 

5.2.3.3 Multi-class Classification Model 

We applied a multi-class approach, the one-versus-rest technique. This approach involves classifying 

one class against the remaining classes and then removing that class from the dataset. Afterward, we 

selected another class to classify it against the rest, and so on. Using this greedy method to find the 

starting node, the method involves classifying all possible combinations, such as DH, against the rest, 

then DR against the rest, and so on for all six classes. Afterward, the best starting node is selected as 

the root node for the classification tree based on the best performance. 

Several classifiers were tested to achieve these results, including random forest, support vector machine 

(SVM), and naive Bayes, random forest outperformed the others and has shown a better classification 

power for the hierarchical model. Therefore, we used it in all nodes. The classification model was built 

using 10-fold cross-validation. The data is divided into 10 equal folds of samples, then the learning 

method will loop 10 times, at each time, it will learn from 90 folds, and test on the remaining (left out) 

fold. At each time in the loop, it will take out a unique fold that has not been shown up in the previous 

loop steps as a left out. The 10-fold modules will increase the learning samples to 90% of the samples, 

while it will test on 100% of the samples. The sample will be classified around 9 times; the class is 

voted more will be considered as the predicted class. The accuracy and other performance 

measurements are calculated based on the testing folds; therefore, the accuracy here is a testing 

accuracy.   

5.2.4 Results and Discussion 

The developed multi-class model also shows the final results for each node and the performance 

measures that were considered, such as accuracy, sensitivity, F1-measure, and specificity. Moreover, it 

also shows the number of the correctly- and incorrectly-classified instances in each node. 
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In Figure 40, the root node is DH against the rest that gives 100% accuracy. The second node is obtained 

after removing the DH instances from the dataset and then classifying each class against the rest. The 

best outcome was DR, which had an accuracy level of 100%. We repeated the same technique for the 

third node, finishing with LH with an accuracy of 100%. Then DS in the fourth node with an accuracy 

of 97.9%, sensitivity is 96.9%, and specificity is 100% because all the DS samples were correctly 

classified. In the fifth node, which is the final one, we have LR and LS. The accuracy drops down to 

80.9% because it is difficult to distinguish between the living samples in both.  

Our method was used to identify the 47 gene biomarkers that are listed in Table 7. Functional validation 

was conducted, and biological Analysis was provided for some genes by studying the information 

provided in the literature. The genes marked as blue are those that were considered for further biological 

relevance (see the discussion in the next section). 

Table 7. Gene biomarkers for each class versus the rest at each node. 

 DH DR LH DS LR and LS 

G
en

es
 

 

AKIP1 

 

ASXL1 

 

DA874553 

 

ICOSLG 

 

C14orf166 

FGF16 WIPI2 AKT1S1 SAR1A ZFP91 

AA884297 ASAP1 CPPED1 PRPS1 BU753119 

CDC42BPG ZNF121 BLP FBRSL1 ARPC3 

UPF3B METTL2A ARFGAP2 INPP5F OSTC 

FAM114A1 FAM170B VAMP4 SFMBT2 AI376590 

OR2G6 BG944228 CT47A1   OR2B3 

ANKLE1 PDCD7 CLASRP   DSCAM 

MGA ATL1 CD36     

C14orf145 TRPC5       

  FOSB       

  AL71228       

  BF594823       

  FBXO41       

 

 

At each node, we tried different standard classifiers to select the classifier with the best accuracy at that 

node, as seen in Table 8; random forest outperformed the other classifiers in all nodes. The accuracy at 

the difficult node 5 still down compared to the other nodes. However, we can see a significant 

improvement in this node as it is 80.9% comparing to the second best 77.1% accuracy using SVM with 

a linear kernel. In node 4, where the accuracy is 97.9% for the random forest, the other classifiers 

performed with very low 79.06% accuracy for the second best, which is SVM with radial basis function 

kernel. Bayesian classifier had the second best performance in the first, second, and third nodes with 

99.47%, 96.3%, 92.4% accuracies in order. SVM with polynomial degree 3 kernel had an average 

performance in all nodes compared to the other classifiers.  
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Figure 40. Multi-Class classification model with performance measures. 
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Table 8. Comparison of the standard classifiers at each node of the proposed model. 

 

Node 

 

SVM 

Linear 

 

SVM 

Polynomial 

 

SVM 

RBF 

 

Bayesian 

Naive Bayes 

 

Random 

Forest 

DH VS Rest 98.41% 98.68% 97.35% 99.47% 100% 

DR VS Rest 94.46% 95.78% 91.56% 96.3% 100% 

LH VS Rest 89.47% 92.4% 88.3% 92.4% 100% 

DS VS Rest 75.65% 77.23% 79.06% 75.92% 97.9% 

LR VS LS 77.1% 74.81% 76.72% 76.34% 80.9% 

 

 

5.2.5 Biological Insight 

A combination of gene regulation analysis and biological analysis have been done to validate some of 

the biomarker genes. Biological validation was carried out using relevant literature (Katoh et al. 2014) 

(Kechavarzi et al. 2014) (Sabe et al. 2009) (Bamberger et al. 1999) (Allegra et al. 2012) (Caballero et 

al. 2014) (Qiu et al. 2015) (Nam et al. 2015) (Dombkowski et al. 2011) (Tommasi et al. 2009). 

Figure 41 is a multi-dimensional representation of the plot matrix for the six biomarker genes found in 

Node 4 for the DS class versus the remaining ones, as an example. The figure also shows the relations 

among the six genes. It is clear from the class column that the samples are separable. The values in x-

axis represent the gene expression values in the column side, where the y-axis represents the gene 

expression values at the raw side.  
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Figure 41. Node Four DS vs. Rest with six genes relations matrix. 

In the first node, FGF16 gene is a member of the fibroblast growth factors (FGFs) family, which is 

involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug 

resistance, and angiogenesis (Katoh et al. 2014). Figure 47 shows that the gene expression of FGF16 is 

up-regulated and the gene expression of UPF3 is down-regulated in the DH samples compared to the 

rest of the samples. UPF3 is a regulator of nonsense transcripts homolog B (yeast). Kechavarzi et al. 

found that UPF3 is one of the actively-upregulated RNA-binding proteins identified in nine cancers in 

humans and their cancer relevant references, and breast cancer is one of them (Kechavarzi et al. 2014). 

In the second node, ASAP1 is shown to be a breast cancer biomarker; it is precisely correlated to its 

invasive phenotypes that have not been accurately identified (Sabe et al. 2009). Sabe et al. reported that 

ASAP1 is abnormally overexpressed in some breast cancers and used for their invasion and metastasis. 

As shown in Figure 42, ASAP1 has a strong coefficient correlation with FBXO41 in the DR samples, 

but it is less correlated with the remaining samples, as shown in Figure 43. Figure 48 shows that the 

Class
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FBRSL1

INPP5F
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genetic expression of ASAP1 is down-regulated in the DR samples compared to the remaining samples. 

FOSB is a member of the AP-1 family of transcription factors. Bamberger et al. concluded that sharp 

differences in the expression pattern of AP-1 family members are present in breast tumours, and fosB 

might be involved in the pathogenesis of these tumours (Bamberger et al. 1999). As shown in Figure 

44, FOSB has a strong correlation coefficient with AL71228 in the DR samples, but it was not found to 

be correlated to the remaining samples, as shown in Figure 45. 

In the third node, the VAMP4 gene is a target for some cellular and circulating miRNAs in neoplastic 

diseases, such as miRNA-31. In any case, it has been confirmed that cellular miRNAs are involved in 

the development of breast cancer (Allegra et al. 2012). As shown in Figure 44, VAMP4 has a strong 

coefficient correlation with ARFGAP2 in the LH samples, but it is less correlated to the rest of the 

samples, as shown in Figure 45.  Figure 46 shows that the genetic expression of VAMP4 is down-

regulated in the LH samples compared to the remaining samples while the gene BLP is up-regulated in 

the LH samples compared to the remaining samples. CT47A1 is one of seven cancer/testis genes in the 

CT class. CT genes are significantly overexpressed in ductal carcinoma in situ DCIS (Caballero et al. 

2014). 

In the fourth node, Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) was found to be a direct target 

of miR124 in breast cancer (Qiu et al. 2015). Nam et al. stated that ICOSLG is a potential biomarker of 

trastuzumab resistance in breast cancer, which affects the progression of the disease (Nam et al. 2015). 

Regarding the fifth node, Dombkowski et al. studied several pathways in breast cancer. They found that 

ARPC3 reveals extensive combinatorial interactions that have significant implications for its potential 

role in breast cancer metastasis and therapeutic development (Dombkowski et al. 2011). Zinc finger 

protein 91 homolog ZFP91 is a methylated target gene in mice. It was identified through methylated-

CpG island recovery assay-assisted microarray analysis (Tommasi et al. 2009). 
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Figure 42. Circos plot for the biomarker genes in node number two for the DR samples based on the correlation coefficient 

among genes expressions (p<0.05). 

 

 

Figure 43. Circos plot for the biomarker genes in node number two for the Rest samples based on the correlation coefficient 

among genes expressions (p<0.05). 
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Figure 44. Circos plot for the biomarker genes in node number three for the LH samples based on the correlation coefficient 

among genes expressions (p<0.05). 

 

Figure 45. Circos plot for the biomarker genes in node number three for the Rest samples based on the correlation coefficient 

among genes expressions (p<0.05). 
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Figure 46, Figure 47, and Figure 48 show three of the five nodes for each class against the rest boxplot 

for the gene biomarkers. The plots also show the up-regulated and down-regulated genes. Most of the 

biomarkers exhibit clear discrimination between the expression values for a specific class sample versus 

the remaining samples in the classification node. Many of those biomarkers have outliers, and some of 

those outliers’ values are in the opposite direction of other class, such as the outliers for the UPF3B 

gene in the “Rest” class versus the “DH” class in the first node, as shown in Figure 47. Some others are 

in the same direction as those of the other class, such as the outliers for the ZNF121 gene in the “Rest” 

class versus the “DR” class in the second node, as shown in Figure 48.Some have outliers in both 

directions, such as the outliers for the ARFGAP2 gene in the “Rest” class versus the “LH” class in the 

second node, as shown in Figure 46. The outliers that are in the same direction do not interfere in 

distinguishing the two classes, even though they may misguide the classifier in other scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. Boxplots for the nine biomarker genes in node number three show the minimum, first quartile, median, third 

quartile, and maximum gene expression values for each group of samples (LH vs Rest). 
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Figure 47. Boxplots for the 10 biomarker genes in node number one show the minimum, first quartile, median, third quartile, 

and maximum gene expression values for each group of samples (DH vs Rest). 
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Figure 48. Boxplots for the 14 biomarker genes in node number two show the minimum, first quartile, median, third quartile, 

and maximum gene expression values for each group of samples (DR vs Rest). 
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5.2.6 Conclusion 

The use of a machine learning model for identifying gene biomarkers for breast cancer survival is a 

significant step in determining the proper treatment for each patient and will potentially increase 

survival rates. This study analyzes the gene activities of the survival versus deceased for each therapy, 

and the potential biomarkers will help to identify the best therapy for the patients based on their gene 

expression test. This model has very high accuracy levels, and it uses a hierarchical model as a tree that 

includes one-versus-rest classifications. 

The computational model pulls sets of biomarkers for patients who received different treatments. These 

biomarkers can be used to distinguish whether the patient survived or died in a five-year time window 

for specific treatment therapy. Related literature was used to verify the relationships between these 

biomarkers and breast cancer survivability. 

Future work includes testing these gene biomarkers in biomedical labs. This novel model can be 

improved to be used to identify the proper biomarker genes (signature) for different cancer types or 

even in cases in which patients need or have received more than one type of therapy. Considering 

additional patient data will enable researchers to cover all missing treatments. With this considerable 

data size, big data tools, such as Hadoop and Spark, can be utilized to devise an enhanced model. 
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5.3 Case Study 3 

 

A novel approach for identifying relevant genes for breast cancer survivability 

on specific therapies. (Tabl et al. 2018) 

 

5.3.1 Abstract  

Analyzing the genetic activity of breast cancer survival for a specific type of therapy provides a better 

understanding of the body responds to the treatment, and helps select the best course of action and while 

leading to the design of drugs based on gene activity. In this work, we utilize supervised and non-

supervised machine learning methods to deal with a multi-class classification problem in which we 

label the samples based on the combination of the 5-year survivability and treatment; we focus on 

hormone therapy, radiotherapy, and surgery. The proposed non-supervised hierarchical models are 

created to find the highest separability between combinations of the classes. The supervised model 

consists of a combination of feature selection techniques and efficient classifiers used to find a potential 

set of biomarker genes specific to response to therapy. The results show that different models achieve 

different performance scores with accuracies ranging from 80.9% to 100%. We have investigated the 

roles of many biomarkers through the literature and found that some of the discriminative genes in the 

computational model such as ZC3H11A, VAX2, MAF1, and ZFP91 are related to breast cancer and 

other types of cancer. MARK2 and ROBO1 both are found in the same classification and in several 

pathways. 

 

5.3.2 Background  

Breast cancer has a very high 5-year relative survival rate (90%) compared to other cancers, including 

pancreas (8%), lung (18%), and liver (18%). However, breast cancer still accounted for 30% all new 

cancer cases in women in 2015; furthermore, it is the leading cause of cancer death for women from 

ages 20 to 59 years in the United States (Miller et al. 2016). 

A gene signature in cancer as a predictor for treatment and survival was investigated in earlier works 

(Chiaretti et al. 2004) (Van De Vijver et al. 2002), in which Chiaretti et al. proposed a non-supervised 

model in 33 adult patients with T-cell acute lymphocytic leukemia (T-ALL). They found that a single 

gene interleukin 8 (IL-8), is strongly associated with resistance to first-line treatment and that three 

genes (CD2, TTK, and AHNAK) are highly predictive of outcome in uniformly treated adults with T-

ALL (Chiaretti et al. 2004). De Vijver et al. used a multivariable Cox regression analysis model on a 

database of 295 breast cancer patients who have a gene-expression signature associated with poor versus 
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prognosis. They found that the prognosis profile was a key predictor of the clinical outcome (Van De 

Vijver et al. 2002).  

Chang et al. obtained a wound-response signature from 295 early breast cancer patients. They assume 

that the features of the molecular program of normal wound healing might play a key role in cancer 

metastasis. The proposed method investigates those signature genes expression in cancer patients. They 

found that both overall survival and distant metastasis-free survival are markedly diminished in patients 

whose tumours expressed the wound-response signature compared to tumours that did not express this 

signature. A gene expression centroid of the wound-response signature acts as a prospectively assigning 

a prognostic score. Unsupervised hierarchical clustering (“molecular subtypes”) and supervised 

predictors of metastasis (“70-gene prognosis signature”) established prognostic signatures. It also 

suggested that the wound-response signature improves risk stratification independently of known 

clinicopathologic risk factors (Chang et al. 2005).  

Pederson et al. employed a genetics specialist embedded within a multidisciplinary breast clinic, and 

studied the hereditary cancer risk to assist the decision-making in the cancer treatment. The study 

focuses on accelerating the surgery based on genetic information. That model was used to compare 

cancer care between 471 patients in 2012 and 440 patients in 2014; Before embedding a genetic 

counsellor and the following intervention, the results show that genetic counselling has influenced time 

to treatment in the 2014 cohort of patients. Recommendation for surgery such as bilateral mastectomy 

is made for women with mutations in TP53 and PTEN (Pederson et al. 2018). 

In this work, we extend an earlier method (Abou Tabl et al. 2017) that was used to predict the proper 

treatment therapy for better survivability, which is based on gene expression data in breast cancer by 

handling the multi-class problem using a greedy method of a one-versus-the-rest classification model. 

In our earlier model, the survival periods of the patients vary, while in the proposed model, the only 

patients are considered to be survived who lived for more than five years after receiving the treatment. 

We propose a hierarchical clustering approach based on Ward’s linkage to find better borders among 

the groups of different classes. We then apply standard classifiers on these clusters. The proposed 

method suggests that for treatment of breast cancer based on gene expression, the model categorizes the 

survivals and deaths because of breast cancer for each type of treatment by analyzing the genes that can 

distinguish these classes. 

5.3.3 Materials and Methods 

Samples from a publicly accessible dataset of 2,433 breast cancer patients and survivors are used in this 

approach (Pereira et al. 2016), After analyzing the given data, six classes were identified as the baseline 

of this work. These classes are the combination of each treatment (Surgery, Hormone therapy, 

Radiotherapy) with a patient status (Living or Deceased) The number of samples (patients) for each 

class are shown in Table 9, which indicates that a total of 347 patients are used in this work. 
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Table 9. Class list with the number of samples in each class. 

Class Number of samples 

Living & Radio (LR) 132 

Deceased & Radio (DR) 19 

Living & Hormone (LH) 20 

Deceased & Hormone (DH) 6 

Living & Surgery (LS) 130 

Deceased & Surgery (DS) 40 

Total 347 

 

 

Figure 49. The distribution of breast cancer subtypes samples in each class. 

Figure 49 depicts the distributions of the breast cancer subtypes samples in each class. The subtypes are 

well-distributed in each class, at least three subtypes are represented in each class, which means that 

the possibility of a correlation between subtypes and classes is very low.  
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Figure 50. The distribution of breast cancer subtypes samples in each treatment therapies samples. 

Based on the available data, only three treatment therapies are covered; they are Surgery, Hormone 

therapy, Radiotherapy (Figure 50). Our proposed model is a bottom-up hierarchical multiclass tree 

obtained using agglomerative clustering technique. The dataset contains imbalanced classes, a problem 

that is well-known in machine learning. The pipeline of the proposed model starts with feature selection 

methods, including Chi-square (Mantel 1963) and Info-Gain, which are applied for limiting the 

significant number of features (genes). A wrapper method is also used to obtain the best subset of genes 

that represent the model by utilizing mRMR (minimum redundancy maximum relevance) feature 

selection method (Peng et al. 2005). This was followed by applying several class balancing techniques 

such as SMOTE (Chawla et al. 2002), cost-sensitive (Núñez 1988), and resampling (Gross 1980) to 

balance the number of classes before applying different types of classifiers such as Nave Bayes 

(Domingos et al. 1997) and random forest (Breiman 2001). Finally, a small number of biomarker genes 

are identified for predicting proper treatment therapy. To the best of our awareness, this work is the first 

prediction model, which is built on the combination of treatment and survivability of the patient as a 

class.  

The patient class distribution is shown in Figure 51, which depicts the percentage of samples within 

each class. It is clear that there are significant differences between the number of samples of the different 

classes, which requires class balancing to achieve a fair calcification.  
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Figure 51. Percentages of patient class distribution. 

 

5.3.4 The bottom-up Multi-class Classification approach 

In our proposed bottom-up approach, we build five models based on the linkage type between classes. 

We start with six distinct datasets of samples responding to the six classes and then build a bottom-up 

fashion tree. The flowchart is illustrated in Figure 52, which shows the steps for obtaining the five 

models based on the distance between the classes.  
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Figure 52. Schematic representation of the proposed models based on the linkage type. 

In the first step, the distance matrix between all pairs of the six classes is calculated. Then, the two 

classes i and j with the minimum distance di,j are merged. As a result, we obtain a new distance matrix 

after merging the two closest classes (five classes), and the two classes with the minimum distance are 

merged until we obtain only a single class. 

The merging steps in the model are shown in Table 10. Step one shows the distance matrix between the 

six classes. In step two, classes C1 and C4 are merged since d1,4 is the smallest distance in the table, 

the two classes are merged and form a new dataset, which is the combination of the samples from these 

two classes. For simplicity, we call it class C14. In step 3, these new three classes are compared again 

in a pairwise fashion until only one class remains in step five. 
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Table 10. Computing the distance between each pair of classes; di,j is the distance between classes i and j. 

Step1: distance matrix between six classes Step 2: merging C1 and C4 

 

  C2 C3 C4 C5 C6 

C1 d1,2 d1,3 d1,4 d1,5 d1,6 

C2   d2,3 d2,4 d2,5 d2,6 

C3     d3,4 d3,5 d3,6 

C4       d4,5 d4,6 

C5         d5,6 

 

  C3 C5 C6 C14 

C2 d2,3 d2,5 d2,6 d2,14 

C3   d3,5 d3,6 d3,14 

C5     d5,6 d5,14 

C6       d6,14 

Step 3: merging C14 and C3 
Step 4: merging C143 

and C6 

Step 5: merging C1436 and 

C5 

 

  C5 C6 C143 

C2 d2,5 d2,6 d2,143 

C5   d5,6 d5,143 

C6     d6,143 

 

  C5 C1436 

C2 d2,5 d2,1436 

C5   d5,1436 

 

  C14365 

C2 d2,14365 

 

The distance matrix used in this work is the Euclidean distance. The Euclidean distance between two 

classes 𝑋 = {𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, 𝑦3, … … 𝑦𝑛} is defined as follows: 

𝑑 = |𝑥 − 𝑦| = √∑|𝑥𝑖 − 𝑦𝑖|2

𝑛

𝑖=1

 

 

( 10 ) 

 

There are several linkage methods to compute the distance between two clusters. Figure 53 shows some 

approaches that can be used, such as single linkage, complete linkage, average linkage, centroid linkage, 

and Ward’s linkage methods. Both single and complete linkages types rely on a pair of samples for 

determining the distance between two clusters, while the other three linkage types, average linkage, 

centroid linkage, and Ward’s linkage rely on all samples within each class for determining the distance 

between the classes.  
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Figure 53. The five linkage types: Single, Complete, Average, Centroid, and Ward’s linkage. 

 

Single linkage the distance between two clusters is the distance between the two nearest neighbour’s 

samples in such a way that two neighbours belong to different clusters. This can be formulated as 

follows: 

𝑑(𝐶𝑖, 𝐶𝑗) = 𝑚𝑖𝑛
𝑥∈𝐶𝑖 ,𝑦∈𝐶𝑦

𝑑(𝑥, 𝑦)  ( 11 ) 

 

Complete linkage evaluates the distance between two clusters based on the distance between the furthest 

neighbours, where each neighbour belongs to one of the clusters. This can be formulated as follows: 
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𝑑(𝐶𝑖, 𝐶𝑗) = 𝑚𝑎𝑥
𝑥∈𝐶𝑖 ,𝑦∈𝐶𝑦

𝑑(𝑥, 𝑦) ( 12 ) 

Average linkage, on the other hand, takes the average of the distances between all pairs of samples into 

account. In other words, the distance between two clusters using the average linkage method can be 

computed as follows: 

𝑑(𝐶𝑖, 𝐶𝑗) =
1

|𝐶𝑖| × |𝐶𝑗|
∑ ∑ 𝑑(𝑥, 𝑦)

𝑦∈𝐶𝑦𝑥∈𝐶𝑖

 
 

(13 ) 

   

Centroid linkage uses the distance between the centroids of the two classes 

𝑑(𝐶𝑖, 𝐶𝑗) = 𝑑(𝑥�̅�, 𝑦�̅�)         Where      𝑥�̅� =
1

𝑛𝑖
∑ 𝑥𝑖

𝑛
𝑖=1  ( 14 ) 

Ward’s linkage is one of the other approaches that use analysis of variance to evaluate the distances 

between clusters (Johnson 1967). Ward’s linkage minimum variance method is a special case of the 

objective function approach initially presented in (Ward Jr 1963). Ward’s linkage works as follows:  

Using analysis of variance (Anova) to evaluate the distances between clusters.  

Minimizing the sum of squares of any two (hypothetical) clusters that can be formed at each step, as 

follows:  

 

𝑑𝑖𝑗 =
𝑁𝑖 × 𝑁𝑗

𝑁𝑖 + 𝑁𝑗
√||𝑐𝑖 − 𝑐𝑗||2 

( 15 ) 

  

Where Ni and Nj are the numbers of samples in cluster i and j respectively, and Ci and Cj denote the 

centers of the clusters; ||.|| is the Euclidean norm.  

• The mean and cardinality of the newly merged cluster, k, is computed as follows:  

𝑐𝑘 =
1

𝑁𝑖 + 𝑁𝑗
𝑁𝑖𝑐𝑖 + 𝑁𝑗𝑐𝑗 

( 16 ) 

 

𝑁𝑘 = 𝑁𝑖 + 𝑁𝑗  ( 17 ) 



90 
 

5.3.5 Feature Selection 

The gene expression dataset contains 24,368 genes for each of the 347 samples. The problem of the 

curse of dimensionality makes it difficult to classify the dataset in its current form. Hence, feature 

selection is essential to narrow down the number of genes to a few genes at each node. Chi-square and 

Info-Gain are applied to select the best information gain of the selected genes, then mRMR (minimum 

redundancy maximum relevance) feature selection is applied to find the best subset of significant genes. 

mRMR is an algorithm commonly used in a greedy search to identify characteristics of features and 

narrow down their relevance correctly. 

 

5.3.6 Class Imbalance 

These five models utilize one-versus-rest to handle the multiclass problem, which leads to an 

unbalanced class dataset at each node of the classification model. Therefore, we applied several 

techniques to handle this issue, such as: 

 Oversampling: Oversampling the minority class by using synthetic data generators. There are 

several algorithms to achieve this; we used one of the most popular algorithms, Synthetic 

Minority Over-Sampling Technique (SMOTE). 

 Cost-sensitive classifier: Using penalized models that apply additional costs for the minority 

class to achieve class balancing. This, in turn, bias the model to pay more attention to the 

minority class. The algorithm used in this work is called Cost-Sensitive Classifier in Weka 

using a penalty matrix to overcome the imbalance. 

 Resampling: Replicating the dataset, which can be done by one of two methods. First, adding 

more copies of the data instances to the minority class, called over-sampling. Second, by 

deleting some instances of the majority class, called under-sampling. We used the oversampling 

technique.  

 

5.3.7 Classification 

After deriving the five models using the five linkage types to find the closest classes a hierarchical tree 

obtained using agglomerative clustering. The standard classifiers were applied to determine which 

biomarker genes are the most discriminative ones in terms of separating the classes in each branch of 

the tree.  

In order to train SVM classifying, libSVM library (Chang 2011) with linear kernel was utilized within 

a grid search algorithm to optimize the parameters of the classifier. After running the algorithm on the 

data, we found that Ward’s linkage method is the one that achieves better accuracy and most meaningful 

hierarchy, based on the six classes.  
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5.3.8 Results and Discussion 

The Ward’s linkage model shows the best performance measurements than the rest of the models. 

Moreover, it has a balanced tree of the treatment survival clusters, as shown in Figure 54, which leads 

to easier maintaining a different group of clusters. Table 11 shows the discriminative genes between 

each group of clusters in the tree. The results suggested that the separation between the clusters in the 

lower part of the tree is significantly high-performance scores between 99% - 100% for classifying the 

tree nodes. The accuracies of classifying nodes are 100% for DH vs. LH, and 99.2% for DS vs. LS. The 

scores remain high in the middle part of the tree with accuracy 99.6% for the left side which is (DH, 

LH) vs. LR, 99.5% for the right side which is DR vs. (DS, LS). While the scores drop down on the root 

of the tree where we classify the left side vs. the right side of the tree to 81.8% for classifying 2 clusters 

with many classes in each of them. The results for the four models are presented in the supplementary 

materials.  

In Ward linkage, the objective function is based on sum square error, is to minimize the within-cluster 

variance to improve the classification performance rather than reducing the distance between each pair 

of clusters. 
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Figure 54. Ward’s linkage model: classification model with performance measures. 
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Table 11. Ward ‘s linkage model: 37 biomarker genes. 

 DH vs. LH DS vs. LS LR vs. DH_LH DR vs. DS_LS 
LR_DH_LH vs. 

DR_DS_LS 

G
en

es
 

 

INO80 
CA334854 AA399560 AK130741 FAM108B1 

PAX7  TNFRSF6B AA884297 PDCD7 AI699581 

  AX746743 CR626459 TBX21 ZC3H11A 

  BU189136 VAX2 ATL1 DSCAM 

  PLEKHB2 ANO8 P2RX3 ZNF618 

  IL1RAPL2 ZBTB43   MARK2 

  DUSP21 RFT1   RPS7 

  NUFIP2 TSKU   EIF2C2 

  LIPJ     ROBO1 

  ARSK     IMAA 

  MAF1       

  PRKD2       

 

Figure 55 shows a multi-dimensional representation of the plot matrix for the five discriminative genes 

found in Ward’s linkage model for the node of DR class versus (DS, LS) class, as an example; the figure 

also shows the relations among the five genes with each other. It is clear that from the class column, the 

samples are separable with not much overlapping for the 2 clusters.  

 

Figure 56 shows the boxplot for some biomarker genes which indicates the minimum, first quartile, 

median, third quartile, and maximum gene expression values for each group of samples (DH vs. LH) 

and (DR vs. (DS, LS)). The gene expression of INO80 is slightly up-regulated in the DH samples 

comparing to the LH of the samples, TBX21 is also up-regulated in the DR samples comparing to the 

DSLS of the samples. While it shows that the gene expression of PAX7 is down-regulated in the DH 

samples comparing to the LH of the samples, AK130741 is also down-regulated in the DR samples 

comparing to the DSLS of the samples.  

For Ward’s Linkage model for the “DS” vs. “LS” node and as shown in Figure 57, CA334854 gene has 

a strong correlation coefficient with two genes AX746743 and IL1RAPL2 in the DS samples, while 

there is no significant correlation between them in the LS samples as shown in Figure 58. 
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Figure 55. Ward’s Linkage model DR vs. (DS, LS) Node with five genes relations matrix. 

 

 

 

 

Class

ClassATL1PDCD7P2RX3TBX21AK130741

ATL1

PDCD7

P2RX3

TBX21

AK130741
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Figure 56. Boxplot for the biomarker genes in Ward’s linkage model shows the minimum, first quartile, median, third 

quartile, and maximum gene expression values for each group of samples (DH vs. LH) and (DR vs. (DS, LS)). 
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Figure 57. Circos plot for the biomarker genes in Ward’s linkage model for the DS class samples based on the correlation 

coefficient among genes expressions (p<0.05). 

 

Figure 58. Circos plot for the biomarker genes in Ward’s linkage model for the LS class samples based on the correlation 

coefficient among genes expressions (p<0.05). 
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5.3.9 Biological Insight 

For the discriminative genes in DH vs LH node, INO80 and PAX7 genes are both involved in the 

regulation of epigenetic histone marks and chromatin remodelling (Gošev et al. 2017). As part of the 

analysis of epigenetic modifications around the INO80 interaction site, Mendiratta et al. studied the 

NO80 binding region of HOXC11 and PAX7 genes by ChIP with anti-H3K9ac and anti-H3k27me3 

followed by qPCR. In both, the cases studied, INO80 enrichment was correlated with H3K27me3 

(Mendiratta et al. 2016). Both of them also were reported in a protein-protein interaction network for 

cancer (Frenkel-Morgenstern et al. 2017). 

 Some of the fond gene in the computational model are related to breast cancer. Cai et al. studied the 

identify breast cancer susceptibility loci rs4951011 at 1q32.1 in intron 2 of the ZC3H11A gene; the 

three-genome study was conducted on patients from the Eastern Asians population, mainly Chinese and 

Koreans. They also found that Expression levels of the ZC3H11A gene were significantly higher in the 

tumour tissue than in adjacent normal tissue (p = 0.0049) in TCGA data. The function of ZC3H11A is 

not clear (Cai et al. 2014). 

VAX2 is a protein-coding gene that encodes a homeodomain-containing protein from a class of 

homeobox transcription factors which are conserved in vertebrates (Hallonet et al. 1998). Gu et al. 

identified the top 40 most correlated genes with similar methylation patterns calculated by Pearson 

correlation, VAX2 is one of them (Gu et al. 2013). VAX2 is found to be a transcription factor that 

regulates three genes (PLCB4, ADCY6, CNR1) in RNA tissue in response to chemotherapy in patients 

with operable breast cancer (Li et al. 2017).  

MAF1 displays tumour-suppressor activity. Surprisingly, blocking the synthesis of rRNA and tRNAs 

is insufficient to account for MAF1's tumour-suppressor function. MAF1 binds to the PTEN promoter 

to enhance PTEN promoter acetylation and activity. MAF1 down‐regulation unexpectedly leads to 

activation of AKT‐mTOR signalling, which is mediated by decreased PTEN expression (Li et al. 2016).  

ZFP91 serves as a positive regulator for MAP3K14 gene, causing its stabilization and activation. 

Overexpression of MAP3K14 has been associated with neoplastic growth such as in melanoma, 

pancreatic carcinoma, lung cancer, breast cancer, multiple myeloma and adult T-cell leukemia. ZFP91-

mediated stabilization may tolerate one of the mechanisms of MAP3K14 oncogenic activation (Paschke 

et al. 2014). 

Labhart et al. identified DSCAM as one of the target genes in breast cancer cells, which are directly 

regulated by the SRC-3/AIB1 coactivator (Labhart et al. 2005). Stuhlmiller et al. defined a signature of 

kinases that regulate MARK2, the kinases involved in significant changes for MIB binding after 48-hr 

lapatinib treatment for breast cancer cells (Stuhlmiller et al. 2015). ROBO1 is a cell adhesion receptor 

that is a survival and growth factor for breast cancer (Minn et al. 2005). Using cBioPortal (Cerami et 
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al. 2012), we investigated the pathway of genes on another breast cancer dataset (Network 2012), The 

three genes (DSCAM, MARK2m, and ROBO1) from node were found connected in the pathway shown 

in Figure 59. DSCAM, MARK2 was also reported to be in two pathways combined with RPS7 in 

Reactome pathway knowledgebase (Croft et al. 2013), the two pathways are Axon guidance (R-HSA-

422475) and Developmental Biology (R-HSA-1266738). The full information about these pathways 

and some other pathways in which the biomarkers are involved in them are included in Supplementary 

pathways. 

Two genes from DS vs LS node were also reported in Rectome database, ARSK and PRKD2 were 

found in three pathways which are Sphingolipid metabolism (R-HSA-428157), Metabolism of lipids 

(R-HSA-556833), and Metabolism (R-HSA-1430728). See Supplementary pathways for more 

information. 

 

 

 

Figure 59. Network genes pathway that includes most frequently altered neighbour genes for (DSCAM, MARK2, ROBO1). 
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5.3.10 Conclusion 

In conclusion, a hierarchical clustering model based on Ward’s linkage found to be discriminative in 

drawing borders for survival treatments classes in breast cancer. Based on the gene expressions data, 

standard classifiers perform very well in the nodes of the clusters in the constructed hierarchical tree. 

The results suggest subsets of genes, in which, some of the genes in the same nodes are reported to be 

related in functions or pathways, and some of them are strongly related to breast cancer. ZC3H11 is 

highly statistically significant expresses in tumour tissue, VAX2 is associated with the response of 

chemotherapy in breast cancer, while MAF1 is a tumour suppressor, and ZFP91 is a positive regulator 

for MAP3K14 that is related with breast cancer. MARK2 and ROBO1 have coexisted in some 

pathways. Also, ARSK and PRKD2 have the same case. 

5.3.11 Supplementary Materials  

Table 12. Single linkage model: 41 biomarker genes. 

 DR vs. LS LR vs. DR_LS 
LH vs. 

DR_LS_LR 

DS vs. 

DR_LS_LR_LH 

DH vs. 

DR_LS_LR_LH_DS 

G
en

es
 

 

AK130741 

 

ACVR2B 

 

FAM126B 

 

FAM75D5 

 

FAM114A1 

TBX21 DSCAM BX119171 AI636666 CDC42BPG 

P2RX3 SDHD COBRA1 CSH2 C14orf145 

 VPS26A VAX2 RIPK1 ANKLE1 

 METTL6 TRIB1 SAR1A OR2G6 

 IGF1 N35251 PDXK UPF3B 

 RPS7 ATP10A BX093437 MGA 

 MLL3 Z38762   FGF16 

 UPF2 C15orf5   AKIP1 

 RUNDC2B LAMTOR1   AA884297 

  CAPN1       

 

Table 13. Complete linkage model: 31 biomarker genes. 

 
DH vs. 

LH 
LR vs. DH_LH 

DS vs. 

DH_LH_LR 
LS vs. DH_LH_LR_DS DR vs. DH_LH_LR_DS_LS 

G
en

es
 

 

INO80 

 

AA399560 

 

CA429430 

 

ARPC3 

 

RRAGC 

PAX7  AA884297 DA570923 TMEM128 FAM193B 

  CR626459 C1orf147 ACVR2B BG944228 

  VAX2 ZNF148 GYPC LHFPL1 

  ANO8 OR2B3 CAPN1 IL28RA 

  ZBTB43 ZNF43 X7.Sep FOS 

  RFT1 SYNE1 BX116795 MGC24103 

  TSKU       
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Table 14. Average linkage model: 34 biomarker genes. 

 DH vs. LH DS vs. DH_LH LS vs. DH_LH_DS LR vs. DH_LH_DS_LS 

DR vs. 

DH_LH_DS_LS_L

R 

G
en

es
 

 

INO80 

 

PQLC1 

 

BF739944 

 

TRAPPC10 

 

RRAGC 

PAX7  TRUB2 CEP164 ZC3H11A FAM193B 

  CDC42EP4 PSTPIP2 DSCAM BG944228 

  SOX18 DKFZp434K1323 ZNF579 LHFPL1 

  N53502 ARSK ARPC3 IL28RA 

  TLK1 WDR81 ACTN1 FOS 

    PRMT1 CNOT3 MGC24103 

      UBLCP1   

      PTMA   

      ZFP91   

      TAC4   

      PPIB   

 

 

Table 15. Centroid linkage model: 49 biomarker genes. 

 DS vs. LS LH vs. LR DS_LS vs. LH_LR 
DR vs. 

DS_LS_LH_LR 

DH vs. 

DS_LS_LH_LR_DR 

G
en

es
 

 

CA334854 

 

C15orf5 

 

FAM108B1 

 

METTL2A 

 

FAM114A1 

TNFRSF6B MANBA DR731427 FAM170B CDC42BPG 

AX746743 VAX2 BE646122 BG944228 C14orf145 

BU189136   ROBO1 PDCD7 ANKLE1 

PLEKHB2   ZNF234 FBXO41 OR2G6 

IL1RAPL2   DSCAM ZNF121 UPF3B 

DUSP21   MARK2 TRPC5 MGA 

NUFIP2   ZFP91 ASAP1 FGF16 

LIPJ   METTL6 ASXL1 AKIP1 

ARSK   C1orf147 ATL1 AA884297 

MAF1     FOSB   

PRKD2     WIPI2   

      BF594823   

      AL71228   
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Figure 60. Single linkage model: classification model with performance measures. 
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Figure 61. Complete linkage model: classification model with performance measures. 

A
cc

u
ra

cy
 1

0
0

%
S

p
ec

if
ic

it
y
 1

0
0
%

S
en

si
ti

v
it

y
 1

0
0
%

F
-M

ea
su

re
 1

0
0
%

D
H

L
S

L
H

D
R

D
S

L
R

A
cc

u
ra

cy
 9

9
.6

%
S

p
ec

if
ic

it
y
 9

9
.4

%

S
en

si
ti

v
it

y
 1

0
0
%

F
-M

ea
su

re
 9

9
.4

%

A
cc

u
ra

cy
 8

0
.0

%
S

p
ec

if
ic

it
y
 6

4
.1

%

S
en

si
ti

v
it

y
 8

9
.8

%

F
-M

ea
su

re
 8

4
.9

%

A
cc

u
ra

cy
 9

9
.7

%
S

p
ec

if
ic

it
y
 9

9
.7

%

S
en

si
ti

v
it

y
 1

0
0
%

F
-M

ea
su

re
 9

9
.1

%

6
2

0
1

3
2

1
9

4
0

1
3

2

C
A

4
2

9
4

3
0

ZN
F1

4
8

D
A

5
7

0
9

2
3

O
R

2
B

3

C
1

o
rf

1
4

7
ZN

F4
3

SY
N

E1

A
R

P
C

3
G

YP
C

TM
EM

1
2

8
C

A
P

N
1

A
C

V
R

2
B

X
7

.S
ep

B
X

1
1

6
7

9
5

R
R

A
G

C
LH

FP
L1

FA
M

1
9

3
B

IL
2

8
R

A

B
G

9
4

4
2

2
8

FO
S

M
G

C
2

4
1

0
3

IN
O

8
0

PA
X

7
 A

cc
u

ra
cy

 9
9
.6

%
S

p
ec

if
ic

it
y
 9

9
.2

%

S
en

si
ti

v
it

y
 1

0
0
%

F
-M

ea
su

re
 9

9
.5

%

A
A

3
9

9
5

6
0

V
A

X
2

R
FT

1

A
A

8
8

4
2

9
7

A
N

O
8

TS
K

U

C
R

6
2

6
4

5
9

ZB
TB

4
3



103 
 

 

Figure 62. Average linkage model: classification model with performance measures. 
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Figure 63. Centroid linkage model: The classification model with performance measures.  
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CHAPTER 6. CONCLUSION 

 

6.1 Overview 
In this chapter, the novelties and contributions of this work are highlighted. The significance and 

benefits are also discussed. The research plan and timeline are depicted. Then future work and the final 

conclusions are discussed at the end. 

 

6.2 Novelties and Contributions 

The novelties and contributions of this work include the following: 

6.2.1 Manufacturing Domain 

 The creation of an integrative model for modern systems that consists of big data, IoT, CPS, 

machine learning, and deep learning. These components are represented in a state-of-the-art 

model for a real-time decision-making process. 

 Adding the missing enabler (Big data analytics) that iFactory lacks to convert it for Industry 

4.0. 

 Deep leaning convolutional neural network, which is optimized by ADAM optimizer and 

regularized by drop-out approach for the internal nodes in the network, is introduced in the 

manufacturing domain for the iFactory product. The network was trained and refined by adding 

many layers using a greedy method to obtain the best structure that balances high-performance 

measurements without overfitting.  For the best of our knowledge, no one in the literature has 

applied the deep learning CNN using big data with a closed cycle in the manufacturing system. 

 The extraction of hidden features in the iFactory product using convolution layers in deep 

learning, which can be used to predict unusual situations, such as the production of defective 

products. The extracted features are visual features that can distinguish the fine looking 

(normal) product from the defected product. This decisive feature speeds up prediction 

performance by reducing the dimensionality of the learning data. 

6.2.2 Health Informatics Domain 

 As a health informatics contribution, a feature selection and supervised learning model was 

developed to identify gene biomarkers that are related to breast cancer survivability based on 

specific treatments. To the best of our knowledge, this is the first model that can guide 

survivability based on treatment. 

 The supervised model in the health informatics domain consists of state-of-art combination  

methods  of feature filtering using different rankers such as Information Gain and ChiSquare, 

wrapper feature selection method which is mRMR, and standard classifiers that greedily 
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optimized such as SVM and random forest. This combination of methods was structured 

hierarchically in tree nodes one versus rest model. The novelty of this unique combination has 

never been introduced in the literature, to the best of our knowledge.    

 The development of a hierarchical one-versus-rest model for predicting five-year survival based 

on the treatment and gene expression. Studying the genomic activities of five-year breast cancer 

survivors can provide the strength factors of resisting cancer in the body. The pulled-up genes 

from the computational model were validated using the literature, which confirms the findings. 

 The accuracy of the classification model in a healthcare application achieved high measurment 

compared to current classification literature for the same types of health outcomes.  

 The proposed prediction models in the health informatics domain outperformed other state-of-

the-art prediction models in the field. Various performance measurements are calculated such 

as sensitivity, specificity, and F-measure, as presented in chapter 4 for the manufacturing 

domain and in chapter 5 for health informatics domain. 

 Techniques to overcome Class-Imbalance (C-I) were presented to handle what is known as the 

curse of dimensionality problem, where the number of samples is much smaller than the number 

of features. 

 As a machine learning contribution, the use of the semi-supervised learning model is proposed 

to identify the borders between classes in the multi-class learning problem. 

 

6.3 Research Significance and Benefits 

6.3.1 Manufacturing Domain 

This research will contribute to the development of a key enabler for Industry 4.0, a big data decision-

making tool, as a modern global trend in sustainable manufacturing. The proposed method can be used 

to optimize manufacturing processes in a wide variety of industries. The successful implementation of 

this research in manufacturing facilities will lead to not only cost savings in these facilities but also the 

achievement of feasible sustainable systems.  

 The proposed model was designed and developed for gathering, analyzing and processing big 

data generated from complex manufacturing systems (structured or non-structured). 

 The model supports real-time decision-making and knowledge discovery using big data 

analytics and data mining methods.  

 The model is a key enabler for Smart Manufacturing (Industry 4.0) as a modern global trend in 

sustainable manufacturing. 

 Defects detection model using CNN. 

 Will not only lead to cost saving in manufacturing facilities but will also lead to the achievement 

of feasible, sustainable systems. 
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6.3.2 Health Informatics Domain 

The proposed methods are applied in the health informatics field, and modern systems are shown to be 

effective for the diagnosis and the treatment of cancer. Cancer survivability genes were pulled-up and 

proven to be related to disease development. The model can personalize treatment based on the patient’s 

genome. 

 Supervised ML and un/semi-supervised ML models with feature selection were developed to 

identify gene biomarkers that are related to breast cancer survivability based on specific 

treatments.  

 The work identified 47/37 gene biomarkers; a functional validation is done for genes by 

studying the gene cards. Some genes were found related to cancer in previous studies, while 

others are the new finding biomarkers that need more study and analysis. 

 The results show that a few numbers of gene biomarkers (gene signature) at each node that can 

determine the class with accuracy around 99% for survival living / deceased based on 

treatments which are vital to ensure that the patients will have the best potential response to a 

specific therapy. These signatures will be used as a predictor of survival in breast cancer. 

 

6.4 Limitations 

The main contribution of the manufacturing domain is converting the i3.0 into i4.0. However, the 

conversion process might not be straight forward to cover the whole manufacturing process. In addition 

to the lack of CPS technologies in some industrial areas, some challenges such as locating the sensors 

and cameras around the production line might not be partial or fully applicable in the whole 

manufacturing process. The infrastructure requirements are costly and might not be available in some 

factories. The availability of real data is hard to be found in manufacturing system domain, due to 

copyrights and privacy concerns from the owners who are reluctant to share the data publically.  

Since this area is new, the maintenance costs and plans are not clear and needed to be feasibly studied. 

The downtimes of different scenarios are not covered in this thesis. To convert the proposed method 

into commercial version. A well planned business models have to be analyzed before start implementing 

the changes. One last thing to consider that each manufacturing system has it is own properties, which 

means that the system should be profiled and studied well before adopting the proposed changes. 

For the health domain shortcomings, the potential pulled biomarker genes have to undergo wet-lab 

experiments to study the relevancy with cancer. These genes will interact with the other genes and 

drugs, a team from medical, pharmaceutical, biological domain have to team up to analyze the new 

found none reported to cancer genes before considering them in the diagnosis and treatment guidance.  
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6.5 Future Work 

In the manufacturing domain, CNN is applied to product images in the core model in the learning phase. 

The iFactory sensors generate different types of data, such as images, log files, and other signals. Text 

log files can potentially be analyzed using natural language processing (NLP) and fed into a learning 

module. NLP may add better modularity if it utilizes communication data among the iFactory modules 

in the learning and prediction phases. Signals from thermal sensors can be processed using signal 

processing techniques and added as an input layer to the CNN, which increase the learning domain of 

the module. The iFactory model is connected to the server as one unit. The model can be expanded to 

connect multiple iFactories and add manufacturing management systems to handle requests from 

multiple industrial sites. 

The bioengineering modules analyzed the biomarker gene expressions to predict survivability. The 

dataset has multiple sources of biological data, such as copy number alterations (CNAs), gene 

mutations, and insertion and deletion events (indels). These sources are known as multi-omics data. The 

proposed models can be improved by utilizing the multi-omics data in the learning and predictions 

phases. Genomics indels and mutations cause different body response to medication. Utilizing multi-

omics data may provide a comprehensive understanding of disease progression. 

Some important future work is to visualize the stored data, learning process, and the taken decisions in 

useful charts and dashboards. Data visualization is a hot topic nowadays, and its key strength is its 

ability to communicate through visual arts directly. The trends of the data regarding time can also be 

analyzed through time-series analysis. 

This novel model can be improved for use in the identification of proper biomarker genes (signature) 

for different cancer types or even in cases in which patients need or have received more than one type 

of therapy. Considering additional patient data will enable researchers to cover all missing treatments. 

With this considerable data size, big data tools such as Hadoop and Spark can be utilized to devise an 

enhanced model. 

 

6.6 Conclusion 

The main contribution of this thesis is the creation of an integrative modern industrial system that 

utilizes big data, machine learning, deep learning, the IoT, and super-computers for online decision 

making. These decisions vary from monitoring and detecting unusual situations and extracting hidden 

decisive features to predicting labels or the type of the instance (e.g., a breast cancer patient’s subtype 

or defected products). We applied the proposed methods in two domains, manufacturing systems and 

bioengineering. 
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In the manufacturing domain, the iFactory system was enhanced to add all Industry 4.0 enablers. The 

big data that is continuously generated by iFactory sensors and cameras were connected to the Compute-

Canada clusters where the learning system is hosted. A CNN deep learning approach was trained using 

previously-generated data, who receives the data (instance) online, can take the decision for the newer 

data, and update the learning system from the newer instances. The learning system can detect the most 

decisive hidden features of the instances (the product in this case). The decision will be made online, 

so the iFactory can react based on the decision. A full cycle of the deep learning CNN on big data for 

real-time decision is introduced as a closed cycle. The results show high performance with 97% 

accuracy to distinguish both classes, which are a normal product and the defective products. 

In the second domain, the breast cancer data set (METABRIC) was analyzed to predict the survivability 

and the best treatment for the patient. The model was built using big data analysis and machine learning 

techniques to make health-outcome predictions. The model can make an online prediction based on the 

genomic activity of the patient. The learning-system-extracted biomarker genes can be used to predict 

outcomes using gene expression data decisively. These supervised models can assist in the diagnosis 

and treatment of people with the disease and enhance the patient’s quality of life by reducing treatment 

trials by selecting the most effective treatment. The Tree model shows a high-performance 

measurements start with an accuracy of 100% for the first node where the DH class is distinguished 

from the rest. The specificity of the classification at this node is 100%, the sensitivity and F-measure 

both are 100%. At the second node where DR class is distinguished from the rest , all the performance 

measurements have 100%. The performance measurements at the third node where the LH class is 

distinguished from the rest, also have 100%.  While in the fourth node where the DS class is 

distinguished from the rest, The accuracy is 97.9%, the specificity is 100%, sensitivity is 96.9%, and 

the F-measure is 98.5%. Finally, in the last node where the model distinguishes the remaining two class 

LR and LS from each other, the accuracy is 80.9%, the specificity is 76.9%, the sensitivity is 84.8%, 

and the F-measure is 81.8%.      
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APPENDIX A: SAMPLE OF PATIENTS GENE EXPRESSION 

AND CLINICAL DATA 

 

Around 25,000 genes expression for almost 2,433 patients which are about 60,000,000 gene 

expression values.  

Table 16. A sample of the patient's clinical data. 

 Clinical Data 

 MONTHS STATUS SURGERY 
HORMONE 

THERAPY 
…. 

RADIO 

THERAPY 

CHEMO 

THERAPY 

Patient 1 140.5 Living MASTECTOMY YES …. YES NO 

Patient 2 84.63 Living 
BREAST 

CONSERVING 
YES …. YES NO 

Patient 3 163.1 Died of Disease MASTECTOMY YES …. NO YES 

Patient 4 164.93 Living MASTECTOMY YES …. YES YES 

Patient 5 41.37 Died of Disease MASTECTOMY YES …. YES YES 

Patient 6 7.8 Died of Disease MASTECTOMY YES …. YES NO 

Patient 7 164.33 Living 
BREAST 

CONSERVING 
YES …. YES YES 

Patient 8 22.4 Died of Disease MASTECTOMY NO …. YES YES 

Patient 9 99.53 
Died of Other 

Causes 

BREAST 

CONSERVING 
YES …. YES NO 

Patient 10 36.57 
Died of Other 

Causes 

BREAST 

CONSERVING 
YES …. YES NO 

Patient 11 36.27 Died of Disease MASTECTOMY NO …. NO NO 

Patient 12 132.03 Died of Disease MASTECTOMY YES …. YES NO 

Patient 13 163.53 Living 
BREAST 

CONSERVING 
YES …. YES NO 

Patient 14 164.9 Living MASTECTOMY NO …. YES YES 

Patient 15 14.13 
Died of Other 

Causes 
MASTECTOMY YES …. YES NO 

…. …. …. …. ….. …. …. …. 
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Table 17. A sample of the patient’s genes expression with desired classes. 

 Gene Expression 

 LIN52 PCOTH GRM1 SLC9A1 
…

. 
CD164 Class 

Patient 1 6.601455 6.615954 5.370035 9.356541 …. 7.222594 DR 

Patient 2 6.006671 5.640276 5.322082 9.364857 …. 6.523877 LR 

Patient 3 7.263404 5.807551 5.418732 11.19858 …. 6.687907 LS 

Patient 4 6.323518 5.455436 5.51028 9.199171 …. 5.688272 LS 

Patient 5 6.409583 5.572757 5.199104 9.334389 …. 5.845664 DS 

Patient 6 6.414613 5.721091 5.061777 9.529512 …. 5.870183 DH 

Patient 7 6.563254 5.449545 5.380782 8.887233 …. 5.712453 DS 

Patient 8 6.812145 5.645348 5.287389 8.90297 …. 5.751436 LH 

Patient 9 6.323518 5.455436 5.51028 9.199171 …. 5.688272 LS 

Patient 10 6.409583 5.572757 5.199104 9.334389 …. 5.845664 DS 

Patient 11 6.414613 5.721091 5.061777 9.529512 …. 5.870183 DH 

Patient 12 6.563254 5.449545 5.380782 8.887233 …. 5.712453 DS 

Patient 13 6.812145 5.645348 5.287389 8.90297 …. 5.751436 LH 

Patient 14 6.657678 5.635089 5.291151 9.858843 …. 6.44788 LS 

Patient 15 5.961513 5.551212 5.153493 9.508277 …. 5.802332 DS 

…. …. …. …. ….. …. …. …. 
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APPENDIX B: COMPUTE CANADA SETUP AND CNN CODE 

FOR MANUFACTURING SYSTEM (SAMPLE) 

 

A. Compute Canada Setup (Sample) 

 

module load python/3.6 

virtualenv $HOME/jupyter_py3 

source $HOME/jupyter_py3/bin/activate 

pip install jupyter 

echo -e '#!/bin/bash\nunset XDG_RUNTIME_DIR\njupyter notebook --ip $(hostname -f) --no-

browser' > $VIRTUAL_ENV/bin/notebook.sh 

chmod u+x $VIRTUAL_ENV/bin/notebook.sh 

pip install jupyterlmod 

jupyter nbextension install --py jupyterlmod --sys-prefix 

jupyter nbextension enable --py jupyterlmod --sys-prefix 

jupyter serverextension enable --py jupyterlmod --sys-prefix 

salloc --time=8:0:0 --ntasks=4 --nodes=4 --cpus-per-task=16 --mem-per-cpu=100G --

account=def-Ashraf srun $VIRTUAL_ENV/bin/notebook.sh 

 

B. CNN Code (Sample) 

 

!pip install opencv-python 

#!pip install opencv2 

!pip install keras 

!pip install gast 

!pip install --upgrade tflearn 

#!pip install tensorflow_cpu 

!pip install tflearn 

!pip install SinchSMS 

 

 

import cv2                   # working with, mainly resizing, images 
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import numpy as np          # dealing with arrays 

import os                    # dealing with directories 

from random import, shuffle  # mixing up or currently ordered data that might lead our network 

astray in training. 

from tqdm import tqdm       # a nice pretty percentage bar for tasks. Thanks to viewer Daniel 

BA1/4hler for this suggestion 

 

!pip install tqdm 

 

#TRAIN_DIR = 'train_n' 

GOOD_DIR = 'good_ash' 

BAD_DIR = 'bad_ash' 

TEST_DIR = 'final_test' 

IMG_SIZE = 512 

LR = 0.001 

 

MODEL_NAME = 'Ifact-()-().model'.format(LR, '2conv-basic') # just so we remember which saved 

model is which, sizes must match 

 

def create_train_data(): 

    training_data = [] 

    for img in tqdm(os.listdir(GOOD_DIR)): 

        label = [1.0,0.0] # 'good' 

        path = os.path.join(GOOD_DIR,img) 

        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) 

        img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))/255 

        training_data.append([np.array(img),np.array(label)]) 

     

    for img in tqdm(os.listdir(BAD_DIR)): 

        label = [0.0,1.0] #'bad' 

        path = os.path.join(BAD_DIR,img) 

        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) 

        img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))/255 

        training_data.append([np.array(img),np.array(label)]) 

    shuffle(training_data) 

    np.save('train_data.npy', training_data) 

    return training_data 
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def process_test_data(): 

    testing_data = [] 

    for img in tqdm(os.listdir(TEST_DIR)): 

        path = os.path.join(TEST_DIR,img) 

        img_num = img.split('.')[0] 

        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) 

        img = cv2.resize(img, (IMG_SIZE,IMG_SIZE)) 

        testing_data.append([np.array(img), img_num]) 

    shuffle(testing_data) 

    np.save('test_data.npy', testing_data) 

 

train_data = create_train_data() 

test_data = process_test_data() 

# If you have already created the dataset: 

#train_data = np.load('train_data.npy') 

 

!pip install tflearn 

!pip install tensorflow_cpu 

!pip install --upgrade tflearn 

 

krl = 3 

drp_out_per = 0.2 

epoc_n = 10 

bsize = 60 

 

import tensorflow as tf 

import tflearn 

from tflearn.layers.conv import conv_2d, max_pool_2d 

from tflearn.layers.core import input_data, dropout, fully_connected 

from tflearn.layers.estimator import regression 

 

tf.reset_default_graph() 

 

convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input') 

convnet = conv_2d(convnet, 32, 5, activation='relu') 

convnet = max_pool_2d(convnet, 5) 

#convnet = dropout(convnet, drp_out_per) 
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convnet = conv_2d(convnet, 64, 5, activation='relu') 

convnet = max_pool_2d(convnet, 5) 

#convnet = dropout(convnet, drp_out_per) 

 

convnet = conv_2d(convnet, 128, 5, activation='relu') 

convnet = max_pool_2d(convnet, 5) 

#convnet = dropout(convnet, drp_out_per) 

convnet = conv_2d(convnet, 256, 5, activation='relu') 

convnet = max_pool_2d(convnet, 5) 

#convnet = dropout(convnet, drp_out_per) 

 

convnet = conv_2d(convnet, 512, 5, activation='relu') 

convnet = max_pool_2d(convnet, 5) 

#convnet = dropout(convnet, drp_out_per) 

 

convnet = fully_connected(convnet, 1024, activation='relu') 

convnet = dropout(convnet, drp_out_per) 

 

convnet = fully_connected(convnet, 2, activation='softmax') 

convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', 

name='targets') 

 

model = tflearn.DNN(convnet, tensorboard_dir='log') 

 

if os.path.exists('().meta'.format(MODEL_NAME)): 

    model.load(MODEL_NAME) 

    print('model loaded!') 

train = train_data[:-30] 

test = train_data[-30:] 

X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1) 

Y = [i[1] for i in train] 

test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1) 

test_y = [i[1] for i in test] 

 

model.fit(('input': X), ('targets': Y), n_epoch=epoc_n, batch_size=bsize ,  

          validation_set=(('input': test_x), ('targets': test_y)),  

          snapshot_step=500, show_metric=True, run_id=MODEL_NAME)  
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C. CNN Testing Code (Sample) 

 

X_DIR = 'X' 

pic = 'X\\IMG_0225.JPG' 

import numpy as np 

from PIL import Image 

import matplotlib.pyplot as plt 

%matplotlib inline 

def create_X_data(var): 

    training_data = [] 

    label = [0.0,1.0] #'bad' 

    img = cv2.imread(var,cv2.IMREAD_GRAYSCALE) 

    img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))/255 

    training_data.append([np.array(img),np.array(label)]) 

     

    shuffle(training_data) 

    np.save('train_data.npy', training_data) 

     

    return training_data 

 

 

######### 

 

X_data = create_X_data(pic) 

print(len(X_data)) 

X_1 = [] 

X_1 = np.array([i[0] for i in X_data]).reshape(-1,IMG_SIZE,IMG_SIZE,1) 

Y = [i[1] for i in X_data] 

######### 

 

proba = model.predict(X_1) 

 

idxs = np.argsort(proba)[::-1][:2] 

y = "" 

if idxs[0][1]==1: 

    y="This is a Bad Product" 
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else: 

    y="This is a Good Product" 

 

image_path = cv2.imread(pic) 

 

plt.imshow(image_path) 

plt.title(y.upper()) 

plt.show() 

 

########### 

 

# Sending SMS to a phone number 

 

import time 

from sinchsms import SinchSMS 

 

number = '+1519300xxxx' 

 

message = y 

 

#client = SinchSMS('e241b001-5856-453d-8fdf-c6fb8cfb8ef1', 'kO5IPW8jA0ORnYBoTbG6WA==')  

client = SinchSMS('ce00e956-0ec9-47f7-9000-e68a6926a964', 'mN1Udit8NkeRdcpHSOb3mQ==') # 

Ashraf 

#client = SinchSMS('afc7e725-edeb-4d48-a2bb-5276c1bf118d', 'kGbF27vt/E6vNDMnNytqFA==') # 

Dr Waguih 

print("Sending '%s' to %s" % (message, number)) 

response = client.send_message(number, message) 

message_id = response['messageId'] 

 

response = client.check_status(message_id) 

while response['status'] != 'Successful': 

    print(response['status']) 

    time.sleep(1) 

    response = client.check_status(message_id) 

    print(response['status']) 
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D. CNN Web Cam Code (Sample) 

 

import cv2 

 

cap=cv2.VideoCapture(0) 

if cap.isOpened():  

    ret, frame=cap.read() 

    print(ret) 

    #print(frame) 

else:  

    ret=False 

     

     

########## 

 

 

imge1=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY  ) #cv2.COLOR_BGR2GRAY) 

plt.imshow(imge1) 

plt.title("color image ") 

plt.xticks([]) 

plt.yticks([]) 

plt.show() 

 

# save image 

status = cv2.imwrite('testImage.png',imge1) 

 

## If already ran please release the camera  

cap.release() 

del (cap) 

 

######## 

######## 

 

pic = 'testImage.png' 

X_data = create_X_data(pic) 

print(len(X_data)) 



131 
 

X_1 = [] 

X_1 = np.array([i[0] for i in X_data]).reshape(-1,IMG_SIZE,IMG_SIZE,1) 

Y = [i[1] for i in X_data] 

 

 

####### 

 

proba = model.predict(X_1) 

 

idxs = np.argsort(proba)[::-1][:2] 

 

y = "" 

if idxs[0][1]==1: 

    y="This is a Bad Product" 

else: 

    y="This is a Good Product" 

 

image_path = cv2.imread(pic) 

 

plt.imshow(image_path) 

plt.title(y.upper()) 

plt.show() 

 

 

# Sending SMS to a phone number 

 

import time 

from sinchsms import SinchSMS 

 

# Mostafa phone number 

 

number = '+1519300xxxx' 

message = y 

 

 

client = SinchSMS('ce00e956-0ec9-47f7-9000-e68a6926a964', 'mN1Udit8NkeRdcpHSOb3mQ==') 
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print("Sending '%s' to %s" % (message, number)) 

response = client.send_message(number, message) 

message_id = response['messageId'] 

 

response = client.check_status(message_id) 

while response['status'] != 'Successful': 

    print(response['status']) 

    time.sleep(1) 

    response = client.check_status(message_id) 

    print(response['status']) 

 

E. CNN Code Results (Sample) 

 

Training Step: 1659  | total loss: 0.17452 | time: 46.930s 

| Adam | epoch: 010 | loss: 0.17452 - acc: 0.9451 -- iter: 9940/10000 

Training Step: 1660  | total loss: 0.16441 | time: 53.279s 

| Adam | epoch: 010 | loss: 0.16441 - acc: 0.9671 | val_loss: 0.10440 - val_acc: 1.0000 -- iter: 

10000/10000 
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APPENDIX C: CLASS IMBALANCE TECHNIQUES FOR 

HEALTH INFORMATICS SYSTEM (SAMPLE) 

 

Class Imbalance 

 

The heath informatics models uses a one-versus-rest scheme to tackle the multi-class problem, which 

leads to an imbalanced class dataset at each node of the classification model. Therefore, we applied the 

following techniques to handle this issue: 

 

A. Over-sampling with synthetic data 

 

Oversampling the minority class by using synthetic data generators. Several algorithms are used to 

achieve this. We used one of the most popular ones, SMOTE. 

For example the run file for DH Vs Rest samples at node number five (N5) at case study number three 

for the single linkage shows: 

Scheme: weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 

Relation:     final_gene_5Y_class_347_DH_Rest-weka.filters.unsupervised.attribute.Remove-V-

R7175,23955,4653,7209,4676,3980,24369-weka.filters.unsupervised.attribute.Remove-V-R1-10,21-

weka.filters.supervised.instance.SMOTE-C0-K5-P517.0-S1 

Test mode:    10-fold cross-validation 

 

B. Using a cost-sensitive classifier 

 

Using penalizing models that apply additional weight to the minority class to achieve class balancing. 

This, in turn, biases the model to pay more attention to the minority class than others. The algorithm 

utilized in this work is called Cost-Sensitive Classifier in the Weka machine learning tool using a 

penalty matrix to overcome the imbalance. 

For example the run file for DHLHLR Vs DRDSLS samples at node number five (N5) at case study 

number three for the ward linkage shows: 
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Scheme:       weka.classifiers.meta.CostSensitiveClassifier -cost-matrix "[0.0 1.0; 1.1111 0.0]" -S 1 -W 

weka.classifiers.trees.RandomForest -- -P 100 -I 100 -num-slots 1 -K 1 -M 1.0 -V 0.001 -S 1 

Relation:     5_final_gene_5Y_class_347_DHLHLR_DRDSLS-

weka.filters.unsupervised.attribute.Remove-V-,785,1132, weka.filters.unsupervised.attribute.Remove-

V-R2,8,12-13,15,17,36,48,67,75,2243 

Test mode:    10-fold cross-validation 

 

Cost Matrix 

 0               1    

 1.11          0    

 

C. Resampling 

 

Replicating the dataset can be using one of two methods: (1) adding copies of the data instances to the 

minority class, which is called over-sampling (2) deleting some instances of the majority class, which 

is called under-sampling. We used the over-sampling technique. 

For example the run file for DH Vs LH samples at node number one (N1) at case study number three 

for the ward linkage shows: 

Scheme:       weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 1 -M 1.0 -V 0.001 -S 

1 

Relation:     1_final_gene_5Y_class_26_DH_LH_503_2_NB_2X 

Instances:    32 

Attributes:   3 

              INO80 

              PAX7 

              class 

Test mode:    10-fold cross-validation 
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