1,723 research outputs found

    Big Data Analytics for Complex Systems

    Get PDF
    The evolution of technology in all fields led to the generation of vast amounts of data by modern systems. Using data to extract information, make predictions, and make decisions is the current trend in artificial intelligence. The advancement of big data analytics tools made accessing and storing data easier and faster than ever, and machine learning algorithms help to identify patterns in and extract information from data. The current tools and machines in health, computer technologies, and manufacturing can generate massive raw data about their products or samples. The author of this work proposes a modern integrative system that can utilize big data analytics, machine learning, super-computer resources, and industrial health machines’ measurements to build a smart system that can mimic the human intelligence skills of observations, detection, prediction, and decision-making. The applications of the proposed smart systems are included as case studies to highlight the contributions of each system. The first contribution is the ability to utilize big data revolutionary and deep learning technologies on production lines to diagnose incidents and take proper action. In the current digital transformational industrial era, Industry 4.0 has been receiving researcher attention because it can be used to automate production-line decisions. Reconfigurable manufacturing systems (RMS) have been widely used to reduce the setup cost of restructuring production lines. However, the current RMS modules are not linked to the cloud for online decision-making to take the proper decision; these modules must connect to an online server (super-computer) that has big data analytics and machine learning capabilities. The online means that data is centralized on cloud (supercomputer) and accessible in real-time. In this study, deep neural networks are utilized to detect the decisive features of a product and build a prediction model in which the iFactory will make the necessary decision for the defective products. The Spark ecosystem is used to manage the access, processing, and storing of the big data streaming. This contribution is implemented as a closed cycle, which for the best of our knowledge, no one in the literature has introduced big data analysis using deep learning on real-time applications in the manufacturing system. The code shows a high accuracy of 97% for classifying the normal versus defective items. The second contribution, which is in Bioinformatics, is the ability to build supervised machine learning approaches based on the gene expression of patients to predict proper treatment for breast cancer. In the trial, to personalize treatment, the machine learns the genes that are active in the patient cohort with a five-year survival period. The initial condition here is that each group must only undergo one specific treatment. After learning about each group (or class), the machine can personalize the treatment of a new patient by diagnosing the patients’ gene expression. The proposed model will help in the diagnosis and treatment of the patient. The future work in this area involves building a protein-protein interaction network with the selected genes for each treatment to first analyze the motives of the genes and target them with the proper drug molecules. In the learning phase, a couple of feature-selection techniques and supervised standard classifiers are used to build the prediction model. Most of the nodes show a high-performance measurement where accuracy, sensitivity, specificity, and F-measure ranges around 100%. The third contribution is the ability to build semi-supervised learning for the breast cancer survival treatment that advances the second contribution. By understanding the relations between the classes, we can design the machine learning phase based on the similarities between classes. In the proposed research, the researcher used the Euclidean matrix distance among each survival treatment class to build the hierarchical learning model. The distance information that is learned through a non-supervised approach can help the prediction model to select the classes that are away from each other to maximize the distance between classes and gain wider class groups. The performance measurement of this approach shows a slight improvement from the second model. However, this model reduced the number of discriminative genes from 47 to 37. The model in the second contribution studies each class individually while this model focuses on the relationships between the classes and uses this information in the learning phase. Hierarchical clustering is completed to draw the borders between groups of classes before building the classification models. Several distance measurements are tested to identify the best linkages between classes. Most of the nodes show a high-performance measurement where accuracy, sensitivity, specificity, and F-measure ranges from 90% to 100%. All the case study models showed high-performance measurements in the prediction phase. These modern models can be replicated for different problems within different domains. The comprehensive models of the newer technologies are reconfigurable and modular; any newer learning phase can be plugged-in at both ends of the learning phase. Therefore, the output of the system can be an input for another learning system, and a newer feature can be added to the input to be considered for the learning phase

    LEVERAGING BIBLIOGRAPHIC RDF DATA FOR KEYWORD PREDICTION WITH ASSOCIATION RULE MINING (ARM)

    Get PDF
    The Semantic Web ( Web 3.03.0) has been proposed as an efficient way to access the increasingly large amounts of data on the internet. The Linked Open Data Cloud project at present is the major effort to implement the concepts of the Seamtic Web, addressing the problems of in homogeneity and large data volumes. RKBExplorer is one of many repositories implementing Open Data and contains considerable bibliographic information. Th is paper discusses bibliographic data data, an important part of cloud data. Effective searching of bibliographic datasets can be a challenge as many of the papers residing in these databases do not have sufficient or comprehensive keyword information. In these cases however, a search engine based on RKBExplorer is only able to use information to retrieve papers based on author names and title of papers without keywords keywords. In this paper we attempt to address this problem by using the data mining algorithm Association Rule Mining (ARM ) to develop keywords based on features retrieved from Resource Description Framework (RDF) data within a bibliographic citation. We have demonstrate the applicability of this method for predicting missing keywords for bibliographic entries in several typical databases

    Towards risk-aware communications networking

    Get PDF

    MSPB: a longitudinal multi-sensor dataset with phenotypic trait measurements from honey bees

    Full text link
    We present a longitudinal multi-sensor dataset collected from honey bee colonies (Apis mellifera) with rich phenotypic measurements. Data were continuously collected between May-2020 and April-2021 from 53 hives located at two apiaries in Qu\'ebec, Canada. The sensor data included audio features, temperature, and relative humidity. The phenotypic measurements contained beehive population, number of brood cells (eggs, larva and pupa), Varroa destructor infestation levels, defensive and hygienic behaviors, honey yield, and winter mortality. Our study is amongst the first to provide a wide variety of phenotypic trait measurements annotated by apicultural science experts, which facilitate a broader scope of analysis. We first summarize the data collection procedure, sensor data pre-processing steps, and data composition. We then provide an overview of the phenotypic data distribution as well as a visualization of the sensor data patterns. Lastly, we showcase several hive monitoring applications based on sensor data analysis and machine learning, such as winter mortality prediction, hive population estimation, and the presence of an active and laying queen.Comment: Under review; project webpage: https://zhu00121.github.io/MSPB-webpage

    Exploratory Analysis of Dengue Fever Niche Variables within the RĂ­o Magdalena Watershed

    Get PDF
    Previous research on Dengue Fever have involved laboratory tests or study areas with less diverse temperature and elevation ranges than is found in Colombia; therefore, preliminary research was needed to identify location specific attributes of Dengue Fever transmission. Environmental variables derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) satellites were combined with population variables to be statistically compared against reported cases of Dengue Fever in the RĂ­o Magdalena watershed, Colombia. Three-factor analysis models were investigated to analyze variable patterns, including a population, population density, and empirical Bayesian estimation model. Results identified varying levels of Dengue Fever transmission risk, and environmental characteristics which support, and advance, the research literature. Multiple temperature metrics, elevation, and vegetation composition were among the more contributory variables found to identify future potential outbreak locations

    Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    Get PDF
    The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE
    • …
    corecore