21 research outputs found

    Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9°50′N

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q01006, doi:10.1029/2006GC001333.Recent advances in underwater vehicle navigation and sonar technology now permit detailed mapping of complex seafloor bathymetry found at mid-ocean ridge crests. Imagenex 881 (675 kHz) scanning sonar data collected during low-altitude (~5 m) surveys conducted with DSV Alvin were used to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR) Ridge2000 Integrated Study Site (9°50′N, “bull's-eye”). Data were collected during 29 dives in 2004 and 2005 and were merged through a grid rectification technique to create high-resolution (0.5 m grid) composite maps. These are the first submeter bathymetric maps generated with a scanning sonar mounted on Alvin. The composite maps can be used to quantify the dimensions of meter-scale volcanic and hydrothermal features within the EPR axial summit trough (AST) including hydrothermal vent structures, lava pillars, collapse areas, the trough walls, and primary volcanic fissures. Existing Autonomous Benthic Explorer (ABE) bathymetry data (675 kHz scanning sonar) collected at this site provide the broader geologic context necessary to interpret the meter-scale features resolved in the composite maps. The grid rectification technique we employed can be used to optimize vehicle time by permitting the creation of high-resolution bathymetry maps from data collected during multiple, coordinated, short-duration surveys after primary dive objectives are met. This method can also be used to colocate future near-bottom sonar data sets within the high-resolution composite maps, enabling quantification of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes.This work was supported by an NSF Ridge2000 fellowship to V.L.F. and a Woods Hole Oceanographic Institution fellowship supported by the W. Alan Clark Senior Scientist Chair (D.J.F.). Funding was also provided by the Censsis Engineering Research Center of the National Science Foundation under grant EEC-9986821. Support for field and laboratory studies was provided by the National Science Foundation under grants OCE-9819261 (D.J.F. and M.T.), OCE-0096468 (D.J.F. and T.S.), OCE-0328117 (SMC), OCE-0525863 (D.J.F. and S.A.S.), OCE-0112737 ATM-0427220 (L.L.W.), and OCE- 0327261 and OCE-0328117 (T.S.). Additional support was provided by The Edwin Link Foundation (J.C.K.)

    Waning magmatic activity along the Southern Explorer Ridge revealed through fault restoration of rift topography

    Get PDF
    International audienceWe combine high-resolution bathymetry acquired using the Autonomous Underwater Vehicle ABE with digital seafloor imagery collected using the remotely operated vehicle ROPOS across the axial valley of the Southern Explorer Ridge (SER) to infer the recent volcanic and tectonic processes. The SER is an intermediate spreading ridge located in the northeast Pacific. It hosts the Magic Mountain hydrothermal vent. We reconstruct the unfaulted seafloor terrain at SER based on calculations of the vertical displacement field and fault parameters. The vertical changes between the initial and the restored topographies reflect the integrated effects of volcanism and tectonism on relief-forming processes over the last 11,000-14,000 years. The restored topography indicates that the axial morphology evolved from a smooth constructional dome >500 m in diameter, to a fault-bounded graben, ~500 m wide and 30-70 m deep. This evolution has been accompanied by changes in eruptive rate, with deposition of voluminous lobate and sheet flows when the SER had a domed morphology, and limited-extent low-effusion rate pillow eruptions during graben development. Most of the faults shaping the present axial valley postdate the construction of the dome. Our study supports a model of cyclic volcanism at the SER with periods of effusive eruptions flooding the axial rift, centered on the broad plateau at the summit of the ridge, followed by a decrease in eruptive activity and a subsequent dominance of tectonic processes, with minor low-effusion rate eruptions confined to the axial graben. The asymmetric shape of the axial graben supports an increasing role of extensional processes, with a component of simple shear in the spreading processes

    Imaging Coral I: Imaging Coral Habitats with the SeaBED AUV

    Full text link
    The SeaBED autonomous underwater vehicle (AUV) is a new imaging platform designed for high resolution optical and acoustic sensing. This low cost vehicle has been specifically designed for use in waters up to 2000 m to carry out video transects, bathymetric and side-scan sonar surveys. In this paper we detail the systems issues associated with navigation, control, and imaging that led us to our particular hardware and software design choices so as to allow us to operate in shallow, shelf and ocean basin environments. We illustrate the strengths of our design with data obtained during two research cruises associated with mapping coral reefs off Puerto Rico and Bermuda. In both these cases, SeaBED was deployed in extremely challenging terrain associated off the shelf edge and was successful in returning high quality color imagery of deep coral habitats.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86034/1/hsingh-34.pd

    Search methods for an autonomous underwater vehicle using scalar measurements

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution July 1996The continuing development of the autonomous underwater vehicle as an oceanographic research tool has opened up the realm of scientific possibility in the field of deep ocean research. The ability of a vehicle to travel to the ocean floor untethered, collect data for an extended period of time and return to the surface for recovery can make precise oceanographic surveying more economically practical and more efficient. This thesis investigates several scalar parameter searching techniques which have their basis in mathematical optimization algorithms and their applicability for use specifically within the context of autonomous underwater vehicle dynamics. In particular, a modified version of the circular gradient evaluation in the simulated environment of a hydrothermal plume is examined as a test case. Using a priori knowledge of the expected structure of the scalar parameter contour is shown to be advantageous in optimizing the search

    Formation of submarine lava channel textures : insights from laboratory simulations

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B03104, doi:10.1029/2005JB003796.Laboratory simulations using polyethylene glycol (PEG) extruded at a constant rate and temperature into a tank with a uniform basal slope and filled with a cold sucrose solution generate channels that are defined by stationary levees and mobile flow interiors. These laboratory channels consistently display the following surface textures in the channel: smooth, folded, lineated, and chaotic. In the simulations, we can observe specific local conditions including flow rate, position within the channel, and time that combine to develop each texture. The textures in PEG flows form due to relative differences in shear forces between the PEG crust and the underlying liquid wax. Minimal shear forces form smooth crust, whereas folded crust forms when the shear is sufficiently high to cause ductile deformation. Brittle deformation of solid PEG creates a chaotic texture, and lineated crust results from shear forces along the channel-levee margin. We observe similar textures in submarine lava channels with sources at or near the Axial Summit Trough of the East Pacific Rise between 9° and 10°N. We mapped the surface textures of nine submarine lava channels using high-resolution digital images collected during camera tows. These textural maps, along with observations of the formation of similar features in analog flows, reveal important information about the mechanisms occurring across the channel during emplacement, including relative flow velocity and shear stress.The cruise was funded by a grant to WHOI from the National Science Foundation (NSF) OCE-9819261, with additional funding provided by WHOI thorough the Vetlesen Foundation. The PEG experiments were funded by NSF OCE-0425073 in a grant to Tracy Gregg

    VLBL autonomous underwater vehicle navigation using a single transponder

    Get PDF
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis (Nav. E. and S.M. in Ocean Systems Management)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (leaves 73-75).(cont.) Therefore, accurate underwater navigation using a single location transponder would provide dramatic time and cost savings for underwater vehicle operations. This thesis presents a simulation of autonomous underwater vehicle navigation using a single transponder to create a virtual long baseline (VLBL). Similarly to LBL systems, ranges in a VLBL are calculated between the vehicle and the transponder, but the vehicle position is determined by advancing multiple ranges from a single transponder along the vehicles dead reckoning track. Vehicle position is then triangulated using these successive ranges in a manner analogous to a 'running fix' in surface ship navigation. Navigation data from bottom survey operations of an underwater vehicle called the Autonomous Benthic Explorer (ABE) were used in the simulation. The results of this simulation are presented along with a discussion of the benefits, limitations, and implications of its extension to real-time operations. A cost savings analysis was also conducted based both on the idea that a single surveyed beacon could be deployed for underwater navigation and on the further extension of this problem that the 'single beacon' used for navigation could be located on the ship itself.Acoustic long baseline (LBL) navigation systems are often used for precision underwater vehicle navigation. LBL systems triangulate the position of the vehicle by calculating the range between the vehicle and multiple transponders with known locations. A typical LBL system incorporates between two and twelve acoustic transponders. The vehicle interrogates the beacons acoustically, calculates the range to each beacon based on the roundtrip travel time of the signal, and uses the range data from two or more of the acoustic transponders at any point in time to determine its position. However, for accurate underwater navigation, the location of each deployed transponder in the array must be precisely surveyed prior to conducting autonomous vehicle operations. Surveying the location of the transponders is a costly and time-consuming process, especially in cases where underwater vehicles are used in mapping operations covering a number of different locations in succession. During these extended mapping operations, the transponders need to be deployed, surveyed, and retrieved in each location, adding significant time and, consequently, significant cost to any operation.by Cara E.G. LaPointe.Nav.E.and S.M.in Ocean Systems Managemen

    Interplay between faults and lava flows in construction of the upper oceanic crust : the East Pacific Rise crest 9°25′–9°58′N

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06005, doi:10.1029/2006GC001399.The distribution of faults and fault characteristics along the East Pacific Rise (EPR) crest between 9°25′N and 9°58′N were studied using high-resolution side-scan sonar data and near-bottom bathymetric profiles. The resulting analysis shows important variations in the density of deformational features and tectonic strain estimates at young seafloor relative to older, sediment-covered seafloor of the same spreading age. We estimate that the expression of tectonic deformation and associated strain on “old” seafloor is ~5 times greater than that on “young” seafloor, owing to the frequent fault burial by recent lava flows. Thus the unseen, volcanically overprinted tectonic deformation may contribute from 30% to 100% of the ~300 m of subsidence required to fully build up the extrusive pile (Layer 2A). Many longer lava flows (greater than ~1 km) dam against inward facing fault scarps. This limits their length at distances of 1–2 km, which are coincident with where the extrusive layer acquires its full thickness. More than 2% of plate separation at the EPR is accommodated by brittle deformation, which consists mainly of inward facing faults (~70%). Faulting at the EPR crest occurs within the narrow, ~4 km wide upper crust that behaves as a brittle lid overlying the axial magma chamber. Deformation at greater distances off axis (up to 40 km) is accommodated by flexure of the lithosphere due to thermal subsidence, resulting in ~50% inward facing faults accommodating ~50% of the strain. On the basis of observed burial of faults by lava flows and damming of flows by fault scarps, we find that the development of Layer 2A is strongly controlled by low-relief growth faults that form at the ridge crest and its upper flanks. In turn, those faults have a profound impact on how lava flows are distributed along and across the ridge crest.The field and laboratory studies were supported by NSF grants OCE-9819261 (to H.S., M.A.T., and D.J.F.), OCE-0525863 (D.J.F. and S.A.S.), OCE-0138088 (M.P.), WHOI Vetlesen Foundation Funds (J.E., D.J.F., and S.A.S.). Additional support by INSU/CNRS to J.E. is also acknowledged

    A parallel hypothesis method of autonomous underwater vehicle navigation

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2009This research presents a parallel hypothesis method for autonomous underwater vehicle navigation that enables a vehicle to expand the operating envelope of existing long baseline acoustic navigation systems by incorporating information that is not normally used. The parallel hypothesis method allows the in-situ identification of acoustic multipath time-of-flight measurements between a vehicle and an external transponder and uses them in real-time to augment the navigation algorithm during periods when direct-path time-of-flight measurements are not available. A proof of concept was conducted using real-world data obtained by the Woods Hole Oceanographic Institution Deep Submergence Lab's Autonomous Benthic Explorer (ABE) and Sentry autonomous underwater vehicles during operations on the Juan de Fuca Ridge. This algorithm uses a nested architecture to break the navigation solution down into basic building blocks for each type of available external information. The algorithm classifies external information as either line of position or gridded observations. For any line of position observation, the algorithm generates a multi-modal block of parallel position estimate hypotheses. The multimodal hypotheses are input into an arbiter which produces a single unimodal output. If a priori maps of gridded information are available, they are used within the arbiter structure to aid in the elimination of false hypotheses. For the proof of concept, this research uses ranges from a single external acoustic transponder in the hypothesis generation process and grids of low-resolution bathymetric data from a ship-based multibeam sonar in the arbitration process. The major contributions of this research include the in-situ identification of acoustic multipath time-of-flight measurements, the multiscale utilization of a priori low-resolution bathymetric data in a high-resolution navigation algorithm, and the design of a navigation algorithm with a exible architecture. This flexible architecture allows the incorporation of multimodal beliefs without requiring a complex mechanism for real-time hypothesis generation and culling, and it allows the real-time incorporation of multiple types of external information as they become available in situ into the overall navigation solution

    Autonomous marine environmental monitoring: Application in decommissioned oil fields

    Get PDF
    Hundreds of Oil & Gas Industry structures in the marine environment are approaching decommissioning. In most areas decommissioning operations will need to be supported by environmental assessment and monitoring, potentially over the life of any structures left in place. This requirement will have a considerable cost for industry and the public. Here we review approaches for the assessment of the primary operating environments associated with decommissioning — namely structures, pipelines, cuttings piles, the general seabed environment and the water column — and show that already available marine autonomous systems (MAS) offer a wide range of solutions for this major monitoring challenge. Data of direct relevance to decommissioning can be collected using acoustic, visual, and oceanographic sensors deployed on MAS. We suggest that there is considerable potential for both cost savings and a substantial improvement in the temporal and spatial resolution of environmental monitoring. We summarise the trade-offs between MAS and current conventional approaches to marine environmental monitoring. MAS have the potential to successfully carry out much of the monitoring associated with decommissioning and to offer viable alternatives where a direct match for the conventional approach is not possible
    corecore