428 research outputs found

    TDMP-Reliable Target Driven and Mobility Prediction based Routing Protocol in Complex VANET

    Full text link
    Vehicle-to-everything (V2X) communication in the vehicular ad hoc network (VANET), an infrastructure-free mechanism, has emerged as a crucial component in the advanced Intelligent Transport System (ITS) for special information transmission and inter-vehicular communications. One of the main research challenges in VANET is the design and implementation of network routing protocols which manage to trigger V2X communication with the reliable end-to-end connectivity and efficient packet transmission. The organically changing nature of road transport vehicles poses a significant threat to VANET with respect to the accuracy and reliability of packet delivery. Therefore, a position-based routing protocol tends to be the predominant method in VANET as they overcome rapid changes in vehicle movements effectively. However, existing routing protocols have some limitations such as (i) inaccurate in high dynamic network topology, (ii) defective link-state estimation (iii) poor movement prediction in heterogeneous road layouts. In this paper, a target-driven and mobility prediction (TDMP) based routing protocol is therefore developed for high-speed mobility and dynamic topology of vehicles, fluctuant traffic flow and diverse road layouts in VANET. The primary idea in TDMP is that the destination target of a driver is included in the mobility prediction to assist the implementation of the routing protocol. Compared to existing geographic routing protocols which mainly greedily forward the packet to the next-hop based on its current position and partial road layout, TDMP is developed to enhance the packet transmission with the consideration of the estimation of inter-vehicles link status, and the prediction of vehicle positions dynamically in fluctuant mobility and global road layout.Comment: 35 pages,16 Figure

    The feasibility of obstacle awareness forwarding scheme in a visible light communication vehicular network

    Get PDF
    A vehicular-to-vehicular (V2V) communication is a part of a vehicular ad-hoc network (VANET) that emerges recently due to the heavy traffic environment. V2V is a frequently changing network since it implements vehicles as mobile nodes. The challenges in implementing V2V are the relatively short duration of possible communication and the uneven city environment caused by high rise buildings or other objects that distract the signal transmission. The limited transmitting duration between vehicles requires efficient coordination and communication. This work focuses on the utility of visible light communication in vehicular network (VLC-VN) in data transmitting and the obstacle awareness in the forwarding scheme based on our knowledge in previous researches. The result of evaluating the feasibility of VLC-VN forwarding in a freeway environment the transmission delay is lower than 1 second in 500 byte data transmission, however it reaches to only about 4% in throughput as a drawback

    Enhanced Load Balanced Clustering Technique for VANET Using Location Aware Genetic Algorithm

    Get PDF
    The vehicular Adhoc Network has unique charac-teristics of frequent topology changes, traffic rule-based node movement, and speculative travel pattern. It leads to stochastic unstable nature in forming clusters. The re-liable routing process and load balancing are essential to improve the network lifetime. Cluster formation is used to split the network topology into small structures. The reduced size network leads to accumulating the topology information quickly. Due to the absence of centralised management, there is a pitfall in network topology man-agement and optimal resource allocation, resulting in ineffective routing. Hence, it is necessary to develop an effective clustering algorithm for VANET. In this paper, the Genetic Algorithm (GA) and Dynamic Programming (DP) are used in designing load-balanced clusters. The proposed Angular Zone Augmented Elitism-Based Im-migrants GA (AZEIGA) used elitism-based immigrants GA to deal with the population and DP to store the out-come of old environments. AZEIGA ensures clustering of load-balanced nodes, which prolongs the network lifetime. Experimental results show that AZEIGA works appreciably well in homogeneous resource class VANET. The simulation proves that AZEIGA gave better perfor-mance in packet delivery, network lifetime, average de-lay, routing, and clustering overhead

    VANET: Performance Comparison of BNGF Method in Different Vehicular Traffic Scenarios

    Get PDF
    A Vehicular Ad hoc Network (VANET) is a wireless ad hoc network that is formed between vehicles on an on demand basis. A lot of research work around the world is being conducted to design the routing protocols for VANETs. In this paper, we examine the significance Greedy Forwarding with Border Node based approach for VANETs to optimize path length between vehicles in different traffic scenarios. This protocol is called Border Node Greedy Forwarding (BNGF) since it uses border nodes with Greedy Forwarding. We categorize BNGF as BNGF-H for highway and BNGF-C for city traffic scenarios. We have simulated this protocol using NS-2 simulator and calculated the performance in terms of end-to-end delay and packet delivery ratio. We compare both the methods for highway and city traffic scenarios. The result clearly show that the end-to-end delay for BNGF-C is significantly lower and packet delivery ratio is higher than BNGF-H

    Geographical forwarding algorithm based video content delivery scheme for internet of vehicles (IoV)

    Get PDF
    This is an accepted manuscript of an article published by IEEE Multimedia Communications Technical Committee in MMTC Communications – Frontiers on 31/07/2020, available online: https://mmc.committees.comsoc.org/files/2020/07/MMTC_Communication_Frontier_July_2020.pdf The accepted version of the publication may differ from the final published version.An evolved form of Vehicular Ad hoc Networks (VANET) has recently emerged as the Internet of Vehicles (IoV). Though, there are still some challenges that need to be addressed in support IoV applications. The objective of this research is to achieve an efficient video content transmission over vehicular networks. We propose a balanced video-forwarding algorithm for delivering video-based content delivery scheme. The available neighboring vehicles will be ranked to the vehicle in forwarding progress before transmitting the video frames using proposed multi-score function. Considering the current beacon reception rate, forwarding progress and direction to destination, in addition to residual buffer length; the proposed algorithm can elect the best candidate to forward the video frames to the next highest ranked vehicles in a balanced way taking in account their residual buffer lengths. To facilitate the proposed video content delivery scheme, an approach of H.264/SVC was improvised to divide video packets into various segments, to be delivered into three defined groups. These created segments can be encoded and decoded independently and integrated back to produce the original packet sent by source vehicle. Simulation results demonstrate the efficiency of our proposed algorithm in improving the perceived video quality compared with other approache

    Vehicular Ad Hoc Networks: Growth and Survey for Three Layers

    Get PDF
    A vehicular ad hoc network (VANET) is a mobile ad hoc network that allows wireless communication between vehicles, as well as between vehicles and roadside equipment. Communication between vehicles promotes safety and reliability, and can be a source of entertainment. We investigated the historical development, characteristics, and application fields of VANET and briefly introduced them in this study. Advantages and disadvantages were discussed based on our analysis and comparison of various classes of MAC and routing protocols applied to VANET. Ideas and breakthrough directions for inter-vehicle communication designs were proposed based on the characteristics of VANET. This article also illustrates physical, MAC, and network layer in details which represent the three layers of VANET. The main works of the active research institute on VANET were introduced to help researchers track related advanced research achievements on the subject

    Compressed fuzzy logic based multi-criteria AODV routing in VANET environment

    Get PDF
    Vehicular ad hoc networks (VANETs) are the core of intelligent transportation systems (ITS) to obtain safety, better transportation services, and improved traffic management. Providing more reliable and efficient on demand routing protocol is one of the main challenges in these networks research scope. This paper argues a compressed fuzzy logic based method to enhance Ad hoc on demand distance vector (AODV) routing decision by jointly considering number of relays, distance factor, direction angle, and vehicles speed variance. The proposed scheme is simulated in both freeway and urban scenarios with different number of vehicles using real time interaction between both OMNet++ and SUMO simulators. Simulation results show that the proposed approach can get better performance in terms of packet delivery ratio, throughput, mean delay, and number of sent control packets

    Performance improvement in geographic routing for vehicular Ad Hoc networks

    Get PDF
    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and spee
    corecore