611 research outputs found

    Dyakonov Surface Waves: Anisotropy-Enabling Confinement on the Edge

    Get PDF
    The title “Dyakonov surface waves: anisotropy enabling confinement on the edge” plainly sets the scope for this chapter. The focus here is on the formation of bounded waves at the interface of two distinct media, at least one of them exhibiting optical anisotropy, which are coined as Dyakonov surface waves (DSWs) in recognition to the physicist who reported their existence for the first time. First, the general aspects of the topic are discussed. It also treats the characterization of bounded waves in isotropic-uniaxial multilayered structures, allowing not only the derivation of the dispersion equation of DSWs but also that of surface plasmons polaritons (SPPs), for instance. Furthermore, the interaction of such surfaces waves, with the possibility of including guided waves in a given planar layer and external sources mimicking experimental setups, can be accounted for by using the transfer matrix formalism introduced here. Finally, special attention is devoted to hyperbolic media with indefinite anisotropy-enabling hybridized scenarios integrating the prototypical DSWs and SPPs

    Electromagnetic surface waves guided by the planar interface of isotropic chiral materials

    Get PDF
    The propagation of electromagnetic surface waves guided by the planar interface of two isotropic chiral materials, namely materials \calA and \calB, was investigated by numerically solving the associated canonical boundary-value problem. Isotropic chiral material \calB was modeled as a homogenized composite material, arising from the homogenization of an isotropic chiral component material and an isotropic achiral, nonmagnetic, component material characterized by the relative permittivity \eps_a^\calB. Changes in the nature of the surface waves were explored as the volume fraction f_a^\calB of the achiral component material varied. Surface waves are supported only for certain ranges of f_a^\calB; within these ranges only one surface wave, characterized by its relative wavenumber qq, is supported at each value of f_a^\calB. For \mbox{Re} \lec \eps_a^\calB \ric > 0 , as \left| \mbox{Im} \lec \eps_a^\calB \ric \right| increases surface waves are supported for larger ranges of f_a^\calB and \left| \mbox{Im} \lec q \ric \right| for these surface waves increases. For \mbox{Re} \lec \eps_a^\calB \ric < 0 , as \mbox{Im} \lec \eps_a^\calB \ric increases the ranges of f_a^\calB that support surface-wave propagation are almost unchanged but \mbox{Im} \lec q \ric for these surface waves decreases. The surface waves supported when \mbox{Re} \lec \eps_a^\calB \ric < 0 may be regarded as akin to surface-plasmon-polariton waves, but those supported for when \mbox{Re} \lec \eps_a^\calB \ric > 0 may not

    Surface quality and surface waves on subwavelength-structured silver films

    Get PDF
    We analyze the physical-chemical surface properties of single-slit, single-groove subwavelength-structured silver films with high-resolution transmission electron microscopy and calculate exact solutions to Maxwell’s equations corresponding to recent far-field interferometry experiments using these structures. Contrary to a recent suggestion the surface analysis shows that the silver films are free of detectable contaminants. The finite-difference time-domain calculations, in excellent agreement with experiment, show a rapid fringe amplitude decrease in the near zone (slit-groove distance out to 3–4 wavelengths). Extrapolation to slit-groove distances beyond the near zone shows that the surface wave evolves to the expected bound surface plasmon polariton (SPP). Fourier analysis of these results indicates the presence of a distribution of transient, evanescent modes around the SPP that dephase and dissipate as the surface wave evolves from the near to the far zone

    Ultrasonic Non-Destructive Testing of Fibre Reinforced Composites

    No full text
    This thesis focuses on the application of high frequency ultrasound as a tool for performing non-destructive testing for pultruded fibre reinforced composite (FRC) rods. These composite rods are popular in the manufacturing, construction and electrical industries due to their chemical, electrical and strength properties. Such FRCs are manufactured on automated production lines that operate day and night. Non-destructive testing techniques are desired to quickly and accurately detectmanufacturing flaws such as coating thickness irregularities and surface cracks. Layers and cracks can present as large changes in acoustic impedance and will strongly reflect ultrasonic waves. Combined with their low cost, east of use and absense of potentially harmful radiation, ultrasound has proven popular worldwide for Non-Destructive Testing. Finite Element Analysis (FEA) was employed to investigate the propagation of ultrasonic waves through layers of material to simulate a thickness measurement and the ability of ultrasound to measure thicknesses was proven. Experimental work was conducted on two fibre reinforced composite samples with varying thickness coatings of plastic and paint. The thickness was measured accurately using immersion transducers at 50MHz and a resolution of 20ÎŒm was attained through the use of matched filtering techniques. Surface acoustic waves, particularly Rayleigh waves were investigated using FEA techniques so that the generation, scattering and detection of such waves was understood. This lead to the development of methods for detecting surface cracks in glass using Rayleigh waves and these methods were successfully used in experimental work. Wave propagation in fibre reinforced composites was modelled and experimentally investigated with the results confirming theoretical expectations. Finally a Rayleigh wave was launched onto a fibre reinforced composite sample however the amount of energy leakage into the water was so great, due to the acoustic impedance of water, the detection of the wave was prevented. The conclusion reached was that an immersion setup was not appropriate for launching a travelling Rayleigh wave

    Reduced model for the surface dynamics of a generally anisotropic elastic half-space

    Get PDF
    Near-surface resonance phenomena often arise in semi-infinite solids. For instance, when a moving load with a speed v close to the surface wave speed vR is applied to the surface of an elastic half-space, it will give rise to a large-amplitude disturbance inversely proportional to v − vR. The latter can be determined by a multiple-scale approach using an extra slow time variable. It has also been shown for isotropic elastic half-spaces that the reduced governing equation thus derived is capable of describing the surface wave contribution even for arbitrary dynamic loading. In this paper, we first derive the analogous evolution equation for a generally anisotropic elastic half-space, and then assess its applicability in the study of travelling waves in a half-space that is coated with a continuous array of spring-like vertical resonators or bonded to an elastic layer of different properties. Our results are validated by comparison with previously known results, and illustrative calculations are carried out for a fibre-reinforced half-space and a coated half-space that is subjected to a finite deformation

    The impedance boundary condition for acoustics in swirling ducted flow

    Get PDF
    The acoustics of a straight annular lined duct containing a swirling mean flow is considered. The classical Ingard–Myers impedance boundary condition is shown not to be correct for swirling flow. By considering behaviour within the thin boundary layers at the duct walls, the correct impedance boundary condition for an infinitely thin boundary layer with swirl is derived, which reduces to the Ingard–Myers condition when the swirl is set to zero. The correct boundary condition contains a spring-like term due to centrifugal acceleration at the walls, and consequently has a different sign at the inner (hub) and outer (tip) walls. Examples are given for mean flows relevant to the interstage region of aeroengines. Surface waves in swirling flows are also considered, and are shown to obey a more complicated dispersion relation than for non-swirling flows. The stability of the surface waves is also investigated, and as in the non-swirling case, one unstable surface wave per wall is found

    Anatomy of a Langmuir supercell event

    Get PDF
    Langmuir supercells (LS), which are Langmuir circulations (LC) extending over full water column depth during storms and revealed by high water column backscatter from surface-origin microbubbles and bottom-origin sediment, were discovered in 2003 during several months of measurements in 15 m of water near the coast of New Jersey. Both the structures themselves and the specific forcing conditions under which they occur have been documented elsewhere. This paper provides an account of the broader oceanographic setting of supercell events, focusing on conditions at the start and end. The start of events is associated with the presence of surface waves of intermediate type that “feel bottom” with amplitudes sufficiently large to resuspend sediment and achievement of three conditions for full-depth LC: an unstratified water column, La \u3c ∌0.3 and |Ra| \u3c 105, where Ra and La are dimensionless parameters derived from scaling of the wave-averaged momentum equation. Event cessation is associated with failure of one of the latter two conditions or the reappearance of stratification. There is no fixed order in which conditions necessary for full-depth LC are met or fail. Comparison with data from a deeper site off Georgia suggests that coherent full-depth Langmuir circulations will not generally be observed in unstratified water columns much deeper than 25–30 m, a depth determined primarily by the wavelength of surface waves generated by typical storms. We also document two features of LC acting in the surface layer of the stratified water column that existed prior to onset of the prototype LS event. First, LC confined to the surface layer generated first mode internal waves with frequency that of the stratified interior. Secondly, active surface layer LC did not act efficiently as direct agents of mixed layer deepening, which occurred primarily in two separate episodes of Richardson number lowered by increased shear. Instead, as a result of quasi-organized structure and enhanced vertical penetration relative to stress-driven turbulence, the primary role of LC may be to increase efficiency of momentum transfer to the surface layer, enhancing surface layer acceleration and contributing to onset of the shear instability that does deepen the surface layer

    Large scale mechanical metamaterials as seismic shields

    Get PDF
    MM acknowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement no. 658483. AK acknowledges funding from the European Union's Seventh Framework programme for research and innovation under the Marie SkƂodowska-Curie grant agreement no. 609402-2020 researchers: Train to Move (T2M). NMP is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM no. 279985 and ERC PoC 2015 SILKENE no. 693670), and by the European Commission under the Graphene Flagship (WP 14 Polymer Nanocomposites, no. 696656). FB is supported by BIHSNAM

    How to create analogue black hole or white fountain horizons and LASER cavities in experimental free surface hydrodynamics?

    Full text link
    Transcritical flows in free surface hydrodynamics emulate black hole horizons and their timereversed versions known as white fountains. Both analogue horizons have been shown to emit Hawking radiation, the amplification of waves via scattering at the horizon. Here we report on an experimental validation of the hydrodynamic laws that govern transcritical flows, for the first time in a free surface water channel using an analogue space-time geometry controlled by a bottom obstacle. A prospective study, both experimental and numerical, with a second obstacle downstream of a first one is presented to test in the near-future the analogous black hole laser instability, namely the super-amplification of Hawking radiation by successive bounces on a pair of black and white horizons within cavities which allow the presence of negative energy modes necessary for the amplification process. Candidate hydrodynamic regimes are discussed thanks to a phase diagram based on the scaled relative heights of both obstacles and the ratio of flow to wave speed in the upstream region.Comment: 19 pages, 19 figure
    • 

    corecore