9 research outputs found

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    Master index of Volumes 21–30

    Get PDF

    Curve Reconstruction, the Traveling Salesman Problem, and Menger's Theorem on Length

    Get PDF
    We give necessary and sufficient regularity conditions under which the curve reconstruction problem is solved by a traveling salesman tour or path, respectively. For the proof we have to generalize a theorem of Menger [12], [13] on arc lengt

    Robust Surface Reconstruction from Point Clouds

    Get PDF
    The problem of generating a surface triangulation from a set of points with normal information arises in several mesh processing tasks like surface reconstruction or surface resampling. In this paper we present a surface triangulation approach which is based on local 2d delaunay triangulations in tangent space. Our contribution is the extension of this method to surfaces with sharp corners and creases. We demonstrate the robustness of the method on difficult meshing problems that include nearby sheets, self intersecting non manifold surfaces and noisy point samples

    Reconstruction with Voronoi Centered Radial Basis Functions

    Get PDF
    The dinosaur model is courtesy of Cyberware, other models being courtesy of the AIM@SHAPE shape repositoryWe consider the problem of reconstructing a surface from scattered points sampled on a physical shape. The sampled shape is approximated as the zero level set of a function. This function is defined as a linear combination of compactly supported radial basis functions. We depart from previous work by using as centers of basis functions a set of points located on an estimate of the medial axis, instead of the input data points. Those centers are selected among the vertices of the Voronoi diagram of the sample data points. Being a Voronoi vertex, each center is associated with a maximal empty ball. We use the radius of this ball to adapt the support of each radial basis function. Our method can fit a user-defined budget of centers: The selected subset of Voronoi vertices is filtered using the notion of lambda medial axis, then clustered to fit the allocated budget

    Surface Reconstruction from Unorganized Point Cloud Data via Progressive Local Mesh Matching

    Get PDF
    This thesis presents an integrated triangle mesh processing framework for surface reconstruction based on Delaunay triangulation. It features an innovative multi-level inheritance priority queuing mechanism for seeking and updating the optimum local manifold mesh at each data point. The proposed algorithms aim at generating a watertight triangle mesh interpolating all the input points data when all the fully matched local manifold meshes (umbrellas) are found. Compared to existing reconstruction algorithms, the proposed algorithms can automatically reconstruct watertight interpolation triangle mesh without additional hole-filling or manifold post-processing. The resulting surface can effectively recover the sharp features in the scanned physical object and capture their correct topology and geometric shapes reliably. The main Umbrella Facet Matching (UFM) algorithm and its two extended algorithms are documented in detail in the thesis. The UFM algorithm accomplishes and implements the core surface reconstruction framework based on a multi-level inheritance priority queuing mechanism according to the progressive matching results of local meshes. The first extended algorithm presents a new normal vector combinatorial estimation method for point cloud data depending on local mesh matching results, which is benefit to sharp features reconstruction. The second extended algorithm addresses the sharp-feature preservation issue in surface reconstruction by the proposed normal vector cone (NVC) filtering. The effectiveness of these algorithms has been demonstrated using both simulated and real-world point cloud data sets. For each algorithm, multiple case studies are performed and analyzed to validate its performance

    Reconstruction of surfaces from unorganized three-dimensional point clouds

    Get PDF
    In dieser Arbeit wird ein neuer Algorithmus zur Rekonstruktion von Flächen aus dreidimensionalen Punktwolken präsentiert. Seine besonderen Eigenschaften sind die Rekonstruktion von offenen Flächen mit Rändern, Datensätzen mit variabler Punktdichte und die Behandlung von scharfen Kanten, d.h. Stellen mit unendlicher Krümmung. Es werden formale Argumente angegeben, die erklären, warum der Algorithmus korrekt arbeitet. Sie bestehen aus einer Definition von 'Rekonstruktion' und dem Beweis der Existenz von Punktmengen für die der Algorithmus erfolgreich ist. Diese mathematische Analyse konzentriert sich dabei auf kompakte Flächen mit beschränkter Krümmung und ohne Ränder. Weitere Beiträge sind die Anwendung des Flächenrekonstruktionsverfahrens für die interaktive Modellierung von Flächen und eine Prozedur für die Glättung von verrauschten Punktwolken. Zusätzlich kann der Algorithmus leicht für die lokal beschränkte Rekonstruktion eingesetzt werden, wenn nur ein Teil des Datensatzes zur Rekonstruktion herangezogen werden soll.In this thesis a new algorithm for the reconstruction of surfaces from three-dimensional point clouds is presented. Its particular features are the reconstruction of open surfaces with boundaries, data sets with variable density, and the treatment of sharp edges, that is, locations of infinite curvature. We give formal arguments which explain why the algorithm works well. They consist of a definition of 'reconstruction', and the demonstration of existence of sampling sets for which the algorithm is successful. This mathematical analysis focuses on compact surfaces of limited curvature without boundary. Further contributions are the application of the surface reconstruction algorithm for interactive shape design and a smoothing procedure for noise elimination in point clouds. Additionally, the algorithm can be easily applied for locally-restricted reconstruction if only a subset of the data set has to be considered for reconstruction
    corecore