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Abstract: We consider the problem of reconstructing a surface from scattered points sampled on a
physical shape. The sampled shape is approximated as the zero level set of a function. This function
is defined as a linear combination of compactly supported radial basis functions. We depart from
previous work by using as centers of basis functions a set of points located on an estimate of the
medial axis, instead of the input data points. Those centers are selected among the vertices of the
Voronoi diagram of the sample data points. Being a Voronoi vertex, each center is associated with a
maximal empty ball. We use the radius of this ball to adapt the support of each radial basis function.
Our method can fit a user-defined budget of centers: The selected subset of Voronoi vertices is
filtered using the notion of lambda medial axis, then clustered to fit the allocated budget.

Key-words: Computer Graphics, Surface Reconstruction from Scattered Data, Radial Basis Func-
tions, implicit function.
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Reconstruction à l’aide de fonction de bases radiales
centrées sur des sommets de Voronoi

Résumé : Nous nous intéressons au problème de reconstruction de surface à partir de données
éparses mesurées sur un object réel. La surface de la forme échantillonnée est approximée comme le
niveau zéro d’une fonction. Cette fonction est définie comme une combinaison linéaire de fonctions
radiales à support compact. Nous nous démarquons des travaux précédents en localisant les centres
des fonctions radiales prés du médial axis au lieu de les placer sur les points de données. Nos centres
sont choisit parmi un sous ensemble des sommets du diagramme de Voronoi des points de données.
Chaque centre, étant un sommet de Voronoi, peut être associé au rayon de la sphere maximale centrée
sur lui. Nous utilisons ce rayon pour adapter le support de chaque fonction de base. Notre méthode
est paramétrée par le nombre de centres désiré : l’ensemble des sommets de Voronoi sélectionnés
est filtré, en utilisant la notion de λ -medial axis, puis clusteré pour ne sélectionner, à la fin, que le
nombre de centres définit par l’utilisateur.

Mots-clés : Reconstruction de surface, fonctions de base radiales, ensemble de points éparses,
fonction implicite
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1 Introduction
Recent improvements in automated shape acquisition has stimulated a profusion of surface recon-
struction techniques over the past few years for computer graphics and reverse engineering applica-
tions. Data collected from scanning processes of physical objects are often provided as large point
sets.

Reconstruction methods can be roughly classified as Voronoi-based and mesh-free. Voronoi
based reconstruction algorithms compute the Delaunay triangulation of the sample points, the dual
to the Voronoi diagram. A subcomplex interpolating the sampled surface is then extracted from the
Delaunay triangulation [AGJ02, AB98, AS00, CSD04, DGH01, DG04, ACK01, KSO04]. Detailed
surveys are presented in [CG04, Dey04]. In the mesh-free approaches, the surface is approximated
or interpolated using explicit methods such as deformable models [DQ01, Set99], parametric meth-
ods such as NURBS, B-Spline [Far02] or implicit methods such as RBF or MLS (see [TO02] for a
survey). Among the many techniques developed for surface reconstruction with implicit methods,
the radial basis functions (RBF) approach has shown successful at reconstructing surfaces from point
sets scattered on surfaces of arbitrary topology [Buh03, Duc77, Isk04, Wen04].

Radial Basis Functions (RBF) were introduced by Broomhead and Lowe in the neural network
community [BL88]. Techniques based on radial basis functions are now common tools for geomet-
ric data analysis [FN80, LF99], pattern recognition [Kir01] and statistical learning [HTF01]. The
radial basis functions approach is volumetric in the sense that it approximates the input surface as
the zero level-set of a scalar 3D function. This function is expressed as a weighted sum of radial
functions, whose centers commonly coincide with the input data points. The function is constrained
to be zero on the input data points and to be non-zero on other points in order to avoid the trivial
constant solution. Given a set of centers, a set of constraint points and a type of radial basis func-
tion, reconstructing the sampled surface amounts to finding the set of weights which minimize a
least-squares error to fit the constraints.

Although Voronoi-based reconstruction has long been criticized for its computational burden,
recent developments in the implementation of fast algorithms have alleviated this issue. As an ex-
ample, computing the Delaunay of 50K points takes 1s using the CGAL library [FGK∗00]. Such
methods still depend on the quality of the sampling and on the differential and topological properties
of the surface. In particular, sparsity, redundancy, noisiness of the sampling, or non-smoothness
and boundaries of the surface makes the surface reconstruction a challenging problem. Besides,
Voronoi-based reconstruction methods often fail to produce watertight surfaces.

Radial basis functions, on the other hand, still have issues with picking the right non-zero con-
straints (to avoid disconnected components), and with efficiently computing the weights. Functions
with unbounded support give the best reconstruction results, but also lead to dense matrices. The
only viable solution to this problem so far is the multipole expansion for polyharmonic functions
developed by Carr et al. [CFB97]. Unfortunately this approach is notoriously intricate and difficult
to reproduce. Compactly supported functions lead to sparse matrices [Wen95]. However, finding
a proper support size for the functions in case of irregularly sampled surfaces is difficult. A recent
trend is to perform a set of local reconstructions, which may be mixed with quadric or higher-order
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4 Samozino, Alexa, Alliez & Yvinec

jet fitting, and to blend them using the partition of unity [TI04, OBS04]. Although a great deal of
effort has been put into the elaboration of multi-level techniques with local reconstructions to deal
with large data sets, less effort has been spent at improving the compactness of the representation
by center selection and optimization [CFB97, TI04, OBS04]. Besides, when the basis functions is
compactly supported, the computed function is only defined in the vicinity of the input data points.

1.1 Contributions
Our approach combines both worlds and eliminates some of the aforementioned shortcomings. The
sampled surface S is still reconstructed as the zero-level of a function f expressed as a linear com-
bination of radial basis functions. The main advance in our method is to use radial basis functions
centered at vertices of the Voronoi diagram of the data points. More precisely, centers of radial
basis functions are chosen among a subset of those Voronoi vertices, which are called poles. Under
certain sampling conditions, the poles are known to be closed to the medial axis of the sampled
surface S [AB98]. Furthermore, each pole is the center of a Delaunay ball hereafter called polar ball.
A polar ball is a maximal ball empty of sampled points. Such a ball is close to a maximal ball in
R3 \S. Considering that any smooth surface S can be viewed as the envelope of the maximal balls in
R3 \S, using poles as centers for radial basis functions is a rather natural idea. Furthermore, in our
reconstruction process, we use the radius of each polar ball as a guidance for choosing the support
of the corresponding basis functions. Hence, the support of each basis functions is locally adapted
to the geometry and topology of the sampled shape. Also, because the radius of each polar ball is a
good estimate of the distance between the pole and the sampled surface, we use this radius to set, as
additional constraints, the value of the function at the poles. This leads to a reconstruction technique
with the following features:

• The surface is represented as the zero-level set of a signed function, which is a good approxi-
mation of the signed distance field to the surface.

• The function is defined as a weighted combination of locally supported radial functions; The
number of functions is independent from the number of input points and typically significantly
smaller. The function can thus be evaluated faster than when using traditional (even compactly
supported) RBF.

• While the computation of the weights potentially incorporates all data points as constraints,
the size of the system matrix only depends on the number of centers, not on the number of
constraints.

• A filtering of the poles based on the notion of λ -medial axis allows the surface to degrade
gracefully with noise.

In comparison with Voronoi-based reconstruction, the most important advantages of our tech-
nique are the resilience to noise and the construction of a smooth watertight surface that approxi-
mates all data points. In comparison to the common compactly supported RBF, fewer centers are
used for the same accuracy. This leads to faster computation of the weights and faster evaluation of
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Reconstruction with VRBF 5

the functions. Using poles associated with their Voronoi ball radius as additional constraints leads
to a better approximation of the distance field to the surface, and to fewer topological issues such as
superfluous connected components away from the input points.

1.2 Overview
Our algorithm proceeds as follows: given a 3D point set scattered on a surface, we first compute
its Delaunay triangulation and the dual Voronoi diagram. Our algorithm then repeatedly refines a
subset of the Voronoi vertices. In the first stage, poles are extracted from the Voronoi vertices and
are classified as inside or outside. In the second stage, we select a user-defined number of centers,
m, among the set of poles. The selection is performed by filtering, then clustering the set of poles.
Poles are filtered in order to adjust the level of detail to the budget of centers and clustered in order
to achieve a center distribution nicely spread on the medial axis. We choose as radial basis function
a Gaussian-like function with a compact support [Wen95], where the support size is locally adapted.
As constraints, we impose the function f to be zero at the data points and to be non zero at the center
points. A value set at a center point approximates the signed distance from this point to the sampled
surface. The weights are obtained by computing the best least squares approximation of the function
f with respect to the constraint points.

For completeness we list some key notions behind the radial basis functions in Section 2. Sec-
tion 3 details the main steps of our algorithm. We show several experimental results in Section 4.
Some work in progress and perspective directions are discussed in Section 5.

2 Background
Definition 1 The approximation problem is formulated as follows. Given {pi}i=1...n a set of n points
and n scalar numbers F = { fi}i=1...n, find a function f : R3 → R satisfying the approximation con-
dition:

f ∗ = argmin f E( f ), (1)

where E is the least squares error :

E( f ) =
n

∑
i=1

( fi− f (pi))
2 . (2)

In the RBF approach, the function f is defined from a class of basis functions Φ j : R3×R3 →R,
as a linear combination

f (x) =
m

∑
j=1

α jΦ j(x,c j), (3)

where
{

c j
}

j=1...m denotes a set of m center points and
{

α j
}

j=1...m denotes a set of unknown weights
to be solved for.
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6 Samozino, Alexa, Alliez & Yvinec

The reconstruction problem boils down to determine the vector α = {α1, . . . ,αn}, by solving a
linear system of equations resulting from the minimization of E (Eq.2) :

α =
[
Gt

P,ΦGP,Φ
]−1 Gt

P,ΦF, (4)

where matrix GP,Φ = [Φ(pi,c j)]i=1..n, j=1..m and F = [ fi]i=1..n.

In the following, the set of points, P, where the function value is specified a priori are called
constraints. The set P includes the data points where the function f should vanish by definition, i.e.
where all the fi should be zero. To avoid the trivial solution α =

−→
0 , during the minimization of E

in (2), several interior and exterior constraints are added where the function f does not vanish. For
each additional constraint point pk, we assign to f a signed value fk. This value is commonly the
approximated signed distance between pk and the sampled surface. The N constraints {pi}i=1..N are
now composed of the n input points and of the additional off-surface constraints where the function
f is specified.

Most approaches locate centers both at the input data points and at the off-surface constraints,
therefore the number of centers is such that m = N and the minimization process (1) reduces to
solving a N×N linear system which requires O(N3) machine operations and 0(N2) bits for storage.
Then, each evaluation of f (x) requires O(N) operations. This approach is therefore not suitable to
a number of constraints greater than several thousands. To reduce the computational complexity,
one first idea is to reduce the number of constraints. Notice that since most algorithms use the same
points as constraints and as centers, this also leads to center reduction. This approach is commonly
called center reduction in the literature.

Center reduction consists of optimizing the trade-off between fitting accuracy and number of
centers. A greedy algorithm is proposed in [CBC∗01]: centers are iteratively added at locations
where the fitting error is maximum until a satisfactory accuracy is reached. Another idea to further
reduce the number of centers while maintaining decent fitting accuracy is to relax the one-to-one cor-
respondence between the centers and the constraints. This approach, which we follow in this paper,
is called Generalized Radial Basis Functions (GRBF) in the neural networks community [PG89].
Let m be a user-defined number of centers, possibly located anywhere in space, and N the number
of constraints, such that m << N. The size of the matrix to be inverted and stored is now m×m, in-
dependently of the number of constraints. O(m) operations are now required for a single point-wise
evaluation. Each term of the matrix GtG being a sum of contributions arising from each constraint,
the number of constraints conditions the cost for assembling the matrix. This paper investigates one
of the most important degrees of freedom offered by the RBF method: the location of centers and
constraints to obtained a satisfactory trade-off between number of centers and fitting accuracy.
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Reconstruction with VRBF 7

3 Algorithm
The input data for our algorithm is a point set P = {pi}i=1..n ⊂ R3. All the input data points are
supposed to lie on the surface so the function value f is set to zero a these points:

fi = f (pi) = 0, ∀i = 1 . . .n. (5)

We structure this section by the main components of the reconstruction algorithm, namely the
choices made for the centers, for the constraints and for the radial basis functions.

3.1 Centers
Centers for RBFs are selected from the vertices of the Voronoi diagram of the input points. Selection
is performed by refining a set of candidates in three steps.

Pole Extraction Let O be a shape with a closed continuous boundary S = ∂O . A ball B, included
in R3/S, is said to be a maximal ball if there exists no other ball included in R3/S and containing
B.

Definition 2 Medial axis:
The medial axis M of S is the topological closure of the set of points of R3 that have at least two
nearest neighbors on S. Every point in M is the center of a maximal ball.

Definition 3 Voronoi diagram:
The Voronoi diagram of a point set P is a partition of the space in regions with the same closest point
in P. Every Voronoi cell corresponds to exactly one point pi and contains all points in the space that
are closer to pi than to any other points in P.

V (pi,P) = {x ∈ Ω : ∀q ∈ P ‖x− pi‖ ≤ ‖x−q‖}. (6)

For the problem of reconstructing surfaces from point sets, we assume that all points are sampled
on the surface. In 2D, it has been shown that if the sample is dense enough, all Voronoi vertices are
closed to the medial axis. However, a similar result does not hold in 3D, where some Voronoi vertices
may be located close to the surface and thus far from the medial axis, even when the sample density
goes to infinity. The notion of a pole was previously introduced to handle this problem.

Definition 4 Pole:
A vertex of the Voronoi cell, V (pi,P), of a sample point pi ∈ P is called a pole if :

• either it is the vertex vi of V (pi) that is the farthest from pi

• or it is the vertex wi of V (pi,P) that is the farthest from pi in the halfspace H−
i , set of points x

such that (vi− pi) · (x− pi)≤ 0.

RR n° 6033



8 Samozino, Alexa, Alliez & Yvinec

As a pole is a Voronoi vertex, there exists a maximal ball centered at each pole. This ball is called
a polar ball. Amenta et al. [ACK01] and Boissonnat and Cazals [BC00] show that under some
conditions the poles are close to the medial axis of the sampled shape. The conditions are that the
surface is smooth and the sampling is dense enough. More precisely, the sample has to be an ε-
sample. This means that for any point, x, on the surface, the distance from x to the sample is not
greater than ε times the distance from x to the medial axis. The poles are shown to exhibit interesting
properties:

• if vi is a pole of the cell V (pi,P), the direction vi pi is a good approximation of the normal at
pi;

• the radius of the Delaunay ball centered at vi is a good approximation of the distance from vi
to the sampled surface.

Let m be the user-defined budget of centers. Generally, the number of poles is greater than m,
and we must select m relevant poles as centers. If m is small, there is no hope to reconstruct very
small details and thus we need to remove the poles which correspond to the smallest details (which
are not distinguishable from noise). This task is performed by filtering the poles based on the notion
of the λ -medial axis. Notice that this filtering stage is different from the clustering stage, which
is designed to distribute the final budget of centers on the λ -medial axis with a proper sampling
density.

Pole Filtering A major problem arises when trying to approximate the medial axis of a sampled
shape from the Voronoi vertices of the data points: The medial axis is known to be highly unstable
with respect to small details of the shape. This means that even if two objects are very close with
respect to the Hausdorff distance, they may have very different medial axis (Fig.1). Thus, the set of
poles extracted from the Voronoi diagram of a sampled surface is very unstable with respect to noise
as well. Several approaches have been proposed to tackle this problem [AM96, DZ03]. In this paper
we follow the recent work of Chazal and Lieutier [CL05], which defines the notion of λ -medial axis.

For any point p, we denote by Γ(p) the set points of the boundary ∂O that are closest to p.

Γ(p) = {y ∈ ∂O,d(x,y) = d(x,∂O)} . (7)

The medial axis M of O can be viewed as the set of points x ∈O such that |Γ(x)|> 2. For each point
p, there is a smallest ball enclosing Γ(p). We define the real-valued function γ(p) as the radius of
the smallest ball enclosing Γ(p). The λ -medial axis Mλ is defined as :

Mλ = {p ∈O|γ(p) > λ} . (8)

Mλ is a closed subset of the medial axis. Moreover, the medial axis is obtained for λ = 0. Chazal
and Lieutier have shown that for any value for λ which is not a singular value of the map λ 7−→Mλ ,
the λ -medial axis of a surface is stable under small perturbations and can be estimated from a dense
sampling. Roughly speaking, restricting the λ -medial axis with increasing value of λ , smooths out

INRIA



Reconstruction with VRBF 9

Figure 1: Instability of the medial axis. Left: a smooth shape and its medial axis (black). Right: the
same shape with some bumps added and its (unstable) medial axis.

both small features and noise. We use this idea of medial axis filtering to smooth noise and adapt
the level of detail of the reconstruction to the allocated budget of centers. More precisely, this means
that we determine the value λ suitable to the sampled shape and to the budget of centers, and filter
out the poles which are not close to the λ -medial axis. To estimate if a pole v is close to the λ -medial
axis, we compute the radius γ(v) of the smallest ball enclosing the set Γ(v) of sample points closest
to v. Poles with radius γ(v) smaller than λ are discarded.

Pole Clustering The filtered set of poles now forms a set of possible centers, PC. Generally, the
size of PC remains larger than m, the user-defined budget of centers. In order to select m centers
from PC, we perform a k-means clustering over the set of possible centers [Mac67]. The goal is to
obtain a sampling of the λ -medial axis with a local sizing field at a pole vi proportional to the radius
of the polar ball r(vi). Therefore, we compute the centroid, c, of a clustering cell C as

c = ∑
vi∈C

ωivi, (9)

using for each pole, vi, a weight, ωi

ωi =
d(vi)
ρ(vi)

, (10)

where d(vi) denotes a quadrature term taking into account the actual pole density, and ρ(vi) de-
notes the desired local density. More precisely, and owing to the energy equi-distribution prop-
erty [DFG99], we know that the density function ρ(vi) must be proportional to 1

r(vi)d+2 to obtain a
cluster density matching the field r(vi) in a underlying space of dimension d. In our case d = 2,
because the filtered poles approximate the medial axis, which is a generically a two-dimensional
manifold. As for the quadrature term d(vi), we take it proportional to V (vi)

r(vi)
, where V (vi) is the vol-
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10 Samozino, Alexa, Alliez & Yvinec

Figure 2: Medial axis filtering on a 2D shape (blue). The λ -medial axis is depicted in black. Top left:
all extracted poles. Top right: pole filtering with parameter λ = 0.01. Bottom left: λ = 0.03. Bottom
right: λ = 0.05. To get a better sense of these parameters: the diagonal length of the bounding box
of the input point set is 1.4.

ume of the cell of vi in the Voronoi diagram of the filtered poles, and r(vi) is the polar ball radius
since each filtered pole vi roughly represents the area V (vi)

r(vi)
of the λ -medial axis.

After convergence of the clustering procedure, the centroid of each cluster is replaced by the
closest pole within its cluster, so that the final centers are guaranteed to be located near the medial
axis of the sampled surface.

3.2 Constraints
We take as constraints both the input points where the function f is specified to be zero, and a set of
additional constraints where f is specified to be non-zero. Recall that our goal is to consider as an
approximation of the shape the zero-level set of f . Therefore, we wish to define a signed function f
which is positive outside the shape, negative inside and with a non-zero gradient close to the sampled
surface. A good candidate is a function approximating the signed distance function to the sampled
shape where the distance is positive for points outside the shape and negative inside (Fig.4). At each
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Reconstruction with VRBF 11

Figure 3: Pole clustering on the Bimba model (100K input data points). 200K poles have been
extracted and clustered to 15K poles. Left: All poles (100K inside poles depicted in orange, 100K
outside poles depicted in green). Right: After clustering to 15K poles (8K inside depicted in red, 7K
outside depicted in green).

Figure 4: 2D shape (black) and the computed function. Colors range from cold color tones for
positive distance values to hot color tones for negative distance values.

RR n° 6033



12 Samozino, Alexa, Alliez & Yvinec

pole the radius of the polar ball corresponds to an approximation of its distance to the input point set.
Thus, poles can be used as a constraints in order to approximate a distance function to the sampled
surface. It remains however to determine the sign of this value, and therefore to classify the poles as
inside or outside.

Pole Classification Pole classification is the process of labeling the poles as inside or outside the
surface. Common approaches use an algorithm to propagate the pole labels through the graph built
from adjacency relationships between the poles. In our implementation, we classify the poles using
a variant of the algorithm proposed by Amenta [ACK01]. This variant, due to F.Cazals (internal
communication), is more efficient and more robust against to noise. During the classification process,
a location tag (inside, outside and undetermined) and a confidence value are attributed to each pole.
If the confidence of a pole is lower than a certain threshold, the pole will not be taken into account
as a constraint.

3.3 basis functions
The reconstructed surface is required to be independent of Euclidean transformation. The function
Φ is thus restricted to the set of radial functions :

Φ(x,ci) = φ(‖x− ci‖) (11)

where ‖.‖ denotes the Euclidean distance and φ : R+ → R.

When the φ function has a unbounded support, the corresponding constraint equations lead to a
dense linear system. Recovering a solution is therefore tractable only for small data sets. In order to
obtain a sparse interpolation matrix, compactly supported RBFs have been introduced by Wendland
in [Wen95]. Other compactly supported RBFs (CSRBF) can be used for reconstruction as proposed
in [Sch95, Wu95]. As centers are poles, each center ci, has a corresponding to a scalar value, ri,
the radius of its polar ball. Our function of choice φ is compactly supported, and the support size si
for the function centered on ci is computed using to ri. The φ function (11) centered on ci is scaled
according to the local support si:

φi(‖x− ci‖) = φ(
‖x− ci‖

si
)∗ si. (12)

The basis functions chosen in our implementation is

φ(r) = (1− r)4
+(1+4r) (13)

where the symbol + means (x)+ = x if x > 0 and (x)+ = 0 otherwise.

3.4 Solver
The centers are the set

{
c j

}
j=1...m of m points in R3. The constraints are the set {pi}i=1...N of N

points where the value of f is known.

INRIA



Reconstruction with VRBF 13

Let G be the matrix [φ j(‖pi − c j‖)]i=1..N, j=1..m and F be the vector [ fi]i=1..N . The constraints
points {pi}i=1..N include both the n input points and the additional off surface points where we
specify the function f value.

G =

 φ1(‖p1− c1‖) . . . φm(‖p1− cm‖)
...

...
. . .

...
φ1(‖pN − c1‖) . . . φm(‖pN − cm‖)

 (14)

An approximation using the least squares method implies solving the system (4). With the new
notations, the system is

GtG ·α = GtF. (15)

The size of the matrix is m×m, where m is the number of centers. The use of compactly supported
functions φi leads to a sparse matrix with about 90% zero elements.

Assembling of the matrix Each term ai j of the matrix GtG is computed as a sum:

ai, j =
N

∑
k=1

φi(‖pk − ci‖)φ j(‖pk − c j‖). (16)

For each constraint p, we need to find the list lp of centers which contain p in their support. To avoid
searching exhaustively, we use a 3D Delaunay triangulation of the centers. The constraint p is first
located in the triangulation, then our algorithm search outwards from p in the triangulation until all
centers containing p in their support are found. For each pair of centers (ci,c j) contained in the list
lp, we add a term for p to ai j.

4 Results
We have implemented our algorithm in C++. The Voronoi diagram and Delaunay triangulation
are computed using the CGAL library [FGK∗00]. The linear system is solved using the TAUCS
library [Tol01]. We use an implementation of the marching cube algorithm [Blo94] to extract the
zero-level set of the reconstructed function . To evaluate the fitting accuracy, we use the Taubin
distance [Tau94] from the input points (17)

Err( f ) =
1
N

N

∑
i=1

(
fi− f (pi)
‖∇ f (pi‖

)2

. (17)

This distance is a first order approximation of the Euclidean distance between the input points and
the zero level set of the function f . Since the gradient can vanish or go to infinity with compactly
supported basis functions, we need to use a threshold S1 such that :

Errt( f ) =
1
N

N

∑
i=1

(
fi− f (pi)

Γ(‖∇ f (pi‖)

)2

, (18)
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14 Samozino, Alexa, Alliez & Yvinec

where :

Γ(‖∇ f (pi)‖) =
{

S1 i f g < S1
‖∇ f (pi)‖ i f S1 < g

Figure 5: Error function. 1/Γ function.

Figure 6 summarizes all steps of our algorithm on a 2D shape.
As a typical example for our algorithm, we detail the timings of each reconstruction step for the

omotondo model (80K points) (Fig.7).

1. point insertion in the Delaunay triangulation: 6.3s;

2. extraction of 16K poles: 2.75s;

3. classification (8K inside poles and 8K outside poles): 20s;

4. filtering and clustering to got 13k centers : 230s;

5. assembling the linear system: 674s;

6. solving the linear system: 78s.

In our current implementation, most of the time is spent assembling the linear system, specifically
finding all pairs of centers whose supports intersect a constraint. Although the use of a 3D Delaunay
triangulation avoids the naive exhaustive search, this part could be further optimized.

The importance of our choice for the centers is shown graphically by Figure 8. We plot the error
against the number of centers for our method and for the common method where constraints and
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centers coincide. In the common method, the set of data points is subsampled and the off constraints
are taken along the normals estimated at the subsampled points.

Figure 9 illustrates several reconstructions of the Dinosaur with increasing number of centers.
As Fig. 10 depicts, our function is defined all over the space around the sampled shape. In

contrast, when compactly supported radial basis functions are centered at the input data points, the
function is only defined in a tubular neighborhood of the sampled surface.

The clustering step redistributes the centers among the set of poles as shown in figure 11.
The pole filtering step of our algorithm is useful to adapt the level of detail to the user-defined

number of centers (Fig. 12), as well as to improve robustness against noise (Fig. 13). It also shows
the effect of filtering when the allocated budget of centers is low.

Figure 13 illustrates an extreme example with a substantial amount of noise due to the misreg-
istration of three range maps. Moreover, the sampling is highly non isotropic and non uniform due
to the acquisition system. Figure 13 depicts the main stages of our algorithm applied to a noisy
point set sampled on a hand. Although noise in the input data points leads to misclassified poles, the
λ -medial axis is stable under such perturbations, and theses misclassified poles are filtered.

5 Conclusion
We have presented a new approach for reconstructing surfaces from scattered points, combining gen-
eralized radial basis functions and Voronoi-based surface reconstruction. In contrast to the Voronoi-
based approaches, our method creates a smooth and watertight surface, similarly to the RBF ap-
proaches. The resulting function is an approximation of the signed distance to the sampled surface
defined all around the sampled shape, instead of being defined only in a small neighborhood as
in previous work. Our approach relies on a theoretically sound framework for pole extraction and
λ -medial axis filtering. This framework provides us with reliable estimates of the normal at each
data point, with an approximation of the distance to the sampled surface at each pole, as well as
with a filtering method based on the stable λ -medial axis. As a result we can reduce the number of
parameters for our algorithm to two: the number of centers, and λ , used to filter the medial axis.

In terms of efficiency, the only stage which impairs scalability is the assembling of the final
matrix. We are expect to greatly improve this aspect by an optimized implementation or using
new geometric data structure. In our study the medial axis filtering stage allows us to adapt the
level of details to a user-defined budget of centers, the value for λ being fixed experimentally. In a
future work, we will investigate how to automatically adjust this parameter to accommodate for the
allocated budget of centers.
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Figure 6: The main steps of our algorithm on a 2D shape. From left to right: input data points (black),
all poles are extracted and classified from the Voronoi diagram (red inside, green outside), poles are
filtered, poles are clustered into centers, the 2D scalar function is computed and the zero-level set is
extracted (black).
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Figure 7: Reconstruction of the Omotondo model (80K points) with 13K centers. Fitting accuracy:
2.8×10−6. Left : the original model (gold); Right : the reconstructed surface (silver).
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Figure 8: Plot of the error against the number of centers (from 1K and 5K). The red curve corre-
sponds to the common method. The green curve corresponds to our method.

Figure 9: Reconstruction sequence of the Dinosaur with increasing number of centers. From left to
right: original, then reconstruction with 1K, 3K, 4K and 5K centers.
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Figure 10: Reconstructed function. The colors represent the function values (cold tones for positive,
hot tones for negative values and white for the zero values). Left: the reconstructed function for the
common approach; The function does not vanish only in a tubular neighborhood of the point set.
Right: the reconstructed function for our method.
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Figure 11: Knot model (6K input points). Left: centers and reconstruction without clustering (inside
centers with their polar balls are depicted in red, outside centers are depicted in green). Right: centers
and reconstruction with clustering (12K poles are clustered into 1K centers).
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Figure 12: Effect of the filtering step on the Julius model (80K input points). The number of centers
is m = 5K. Left: without filtering; Middle: poles filtered with λ = 0.01; Right: poles filtered with
λ = 0.02 (to get a better sense of these parameters, the diagonal length of the bounding box of the
input point set is 1.47).
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Figure 13: Noisy hand reconstruction. Left: noisy hand model (90K input points). The input points
result from registering three range maps. Middle left: inside poles with their polar balls (88K poles,
some of them being misclassified); Middle right: 2K centers after filtering and clustering (inside and
outside centers with their polar balls (resp. red and green); Right: reconstructed hand.
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