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Abstract—Although a variety of algorithms have been pro-
posed for surface reconstruction from point clouds a lot of real
world data sets cannot be reconstructed satisfyingly. In this paper
we present a new reconstruction pipeline that can handle noisy
point clouds with insufficiently sampled features, surface bound-
aries, nearby surface sheets, non orientable surfaces and even
self intersecting surfaces. We combine and improve techniques
for normal estimation, denoising and surface tessellation into
a robust reconstruction scheme. Wherever possible we locally
estimate necessary process parameters to adapt to the point cloud
and to avoid user input. We demonstrate the superiority of our
approach on several difficult data sets.

I. INTRODUCTION

Today we find more and more projects that acquire huge
amounts of real world 3d data. Airborne laser scanners allow
the reconstruction of landscape and the roofs of houses on a
grand scale. Vans with mounted camera systems scan the street
level of whole towns. Huge amounts of photographs can be
collected automatically from the web allowing for very detailed
3d reconstructions of popular sites. In all these techniques the
financial budget limits the quality of the acquired 3d data,
which is full of noise, outliers, holes and other problems.

Although there is a huge amount of techniques that recon-
struct surfaces from noisy point clouds, the generated surfaces
of these real world data sets are typically not satisfying. In
this work we proposed a new surface reconstruction scheme
that can cope with much more difficult input data as known
approaches. Our surface reconstruction pipeline can handle in-
homogeneous samplings, noise, sharp features, nearby surface
sheets, self-intersections, boundaries and even non-orientable
surfaces. Minimal user input is necessary, making it very useful
to the community.

An overview of our approach can be found in the next
section, which is followed by the related work section. The
following sections detail the three stages of our reconstruction
pipeline. The result section shows that our approach can handle
difficult input data much better than the state-of-the-art in
surface reconstruction.

II. OVERVIEW

In this paper we propose the surface reconstruction pipeline
illustrated in Figure 1. The input is a point cloud P given as
a list of 3d points. We denote a single point by ~p. The first
stage (described in section IV) estimates the tangential space
of each point for denoising and normal estimation. We use N
to denote the list of point normals and ~n~p for the point normal
of ~p.
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Fig. 1: Overview of the surface reconstruction pipeline.

The second stage (see section V) finds a globally consistent
orientation of the estimated normals but does not touch the
points themselves. The tessellation algorithm in the third
stage (see section VI) constructs a triangular approximation
of the surface. The denoised points serve as vertices in the
tessellation. The tessellator can use the oriented normals or
optionally ignore their orientation.

Although new techniques are developed for each stage, we
see an important contribution in the proposed combination of
the stages. Wrongly estimated normals or wrongly propagated
normal orientation can be corrected during the surface tessel-
lation by exploiting topological consistency.

All stages build on point neighborhoods, which we
compute with the approximate nearest neighbor library
[AMN∗98]. The neighborhood of a point ~p is denoted by N~p
and the neighbors ~qi.

III. RELATED WORK

We can only touch the large amount of previous work
related to the three stages of our scheme.

Local Surface Estimation Existing methods can be
classified in numerical methods and methods based on Voronoi
diagrams. Numerical methods are preferred due to easier
implementation and faster running times. Hoppe [HDD∗92]
proposed to estimate the local tangent plane by applying a PCA
to the k-neighborhood around a given point ~p. In the discussion
section he mentioned that one strategy to adjust the parameter
k controlling the neighborhood size would be to analyze the
behavior of the eigenvalues when the value of k is changed. If



k is chosen to small the eigenvalues start to become instable,
if k is chosen to large the third eigenvalue corresponding to
the direction of lowest variation (normal direction or thick-
ness) starts growing. He also proposed a method for solving
the normal orientation problem by consistent propagation of
normal orientation. We improve this method in section V.

Pauly et al.[PKKG03] use the normal of a fitted plane
or alternatively the gradient of an additionally fitted bivariate
polynomial. The main difference to Hoppe’s approach is the
use of a distance decaying exponential weighting function
inspired by Levin’s work [Lev03]. In [OBA∗03] general 3D
quadrics, bivariate quadratic polynomials in local coordinates
and piecewise quadric surfaces are used as local shape func-
tions. Similar to our approach they propose to separate points
from different surface sheets at sharp features by clustering.
Mitra et al.[MNG04] propose to use the points within a ball of
radius r instead of a fixed number of neighboring points. They
also propose an iterative method to estimate an optimal radius
assuming zero mean noise with given standard deviation.

The Voronoi based technique in [AB99] shows that the line
from the pole of point ~p to the point ~p itself can be used as
an approximation to the surface normal at this position. Later
the big Delaunay ball method [DG04],[DS05] was proposed
as an improvement to handle noisy point cloud data. One large
drawback of these methods is the computation of Voronoi
cells which can be quite difficult and slow especially in the
context of extremely large data sets produced by state-of-the-
art scanning technologies.

Denoising and Filtering Filtering techniques for sur-
faces can be divided into isotropic and anisotropic techniques.
One of the first fast isotropic method was described by Taubin
and works on triangulated surfaces. This work was later im-
proved by Desbrun et al. [DMSB99] to handle irregular meshes
by using a geometric flow analogy allowing for significant
smoothing in reasonable time even. The basic drawback of
isotropic filters is that no differentiation between correct data
and noise is made during smoothing. To preserve sharp features
the idea of anisotropic methods[DMSB00] is to modify the
diffusion equation in such a way that the local diffusion is
driven by the curvature tensor. Typically these kind of methods
are computationally expensive and rely on iterative numerical
solving techniques. Another very popular non-iterative edge-
preserving smoothing approach is bilateral filtering. Originally
described as a combined domain and range filtering technique
for images[TM98]. It was later adapted from Fleishman et
al.[FDCO03] and from Jones et al. [JDD03] for meshes and
then to point clouds and normals [JDZ04]. The basic idea of a
bilateral filter is that smoothing should take place over spatial
nearby values which also have similar functional values.

Surface Reconstruction There are three main ap-
proaches to surface reconstruction: surface fitting, surface evo-
lution and methods based on combinatorial structures like the
Delaunay tetrahedralization. Recently also statistical methods
have been proposed [JWB∗06].

Surface fitting can be split into local [HDD∗92],
[ABCO∗01], [FCOS05], [DS05], hierarchical [OBA∗03] and
global fitting. Two types of surfaces are commonly used for
fitting: MLS surfaces [ABCO∗01], [FCOS05], [DS05] and
implicit surfaces [HDD∗92], [OBA∗03]. The latter have the

problem that only closed surfaces can be reconstructed.

Among the evolution based methods are level set meth-
ods [Whi98], [ZOF01] and Poisson surface reconstruc-
tion [KBH06] which solves a partial differential equation with
a multi-grid solver. Also the Bayesian surface reconstruc-
tion [JWB∗06] is solved in an evolutionary fashion. All these
methods discard the original points and perform a resampling
and or remeshing of the estimated surface.

Our scheme is more related to the combinatorial methods
as it triangulates the original points. This has the advantage that
original surface features can be reconstructed better as shown
in the results section. Most existing methods are based on one
or two Delaunay tetrahedralizations of the point cloud [AB99],
[ACK01], [AGJ02], [DG03], [DG04], [KSO04]. The surface
triangles of the reconstruction are filtered from the triangles
in the tetrahedralizations, such that the original points are
tessellated. But the Delaunay tetrahedralization turns out to
be too time consuming for large data sets. The results section
shows that publicly available implementations have problems
at boundaries and nearby surface sheets. They can neither
handle self-intersections. The advantage of most combinatorial
approaches is that they can guarantee a topologically correct
and geometrically close reconstruction as long as the sampling
is dense enough.

Our approach builds on an approximate knn-graph that can
be computed efficiently. The tangential space at each point is
constructed from normals that are estimated in a preprocessing
stage. A local 2D Delaunay triangulation is used as filter. Then
we grow a tessellation that is maximally consistent with the
local Delaunay triangulations. A final hole closing step sews
the surface together at sharp features. This is similar in spirit
to the zippering approach proposed in [TL94]. Overall our
approach is very fast and can deal with extremely difficult
input data.

IV. LOCAL SURFACE ESTIMATION

Techniques to estimate local surface properties of a point
sampled surface S typically approximate S by fitting a simple
surface model M – for example a plane or a paraboloid –
to the neighborhood N~p of each point ~p in the point cloud P.
Assuming that the local approximation of S by M is sufficient
allows to estimate local surface properties of S directly from
M .

Crucial are the selection of the model M , the criterion to
choose a proper neighborhood and the numerical method used
to fit M to the neighbors ~qi.

The model M should be able to capture all relevant surface
properties of the local surface without having too much degrees
of freedom to avoid over-fitting especially if sample points are
perturbed by noise.

Intuitively, a good neighborhood criterion should select a
sufficient number of points within a small Euclidean distance
to the point ~p. To preserve sharp feature like edges and corners
it is important that neighboring points are selected only from
the surface sheet on which ~p lies. In the presence of noise
standard least squares fitting techniques are not recommended
because single outliers can have strong (quadratic) influence
on the achieved fitting results. A very popular modification



to least squares is the weighted least squares approach. This
method limits the influence of outliers by minimizing the sum
of weighted squared distances between the model and data
points. The weights are chosen in such a way that nearby points
are given larger weights than points which are far apart.

A. Normal estimation method

To produce very accurate normals our proposed estimation
procedure handles all the described issues with special care.
Before describing the whole algorithm, we first want to
explain the basic concept used in our method.
Figure 2 shows a difficult situation where standard methods
will fail to produce good results. The depicted example
contains sharp feature and several nearby surface sheets
falling into the neighborhood of the point selected for
normal estimation. Local surface models like planes or
second order surfaces are not able to approximate such a
complex neighborhood. Selecting a more complex surface
model which is able to deal with sharp edges or corners is
extremely difficult to fit. Choosing a smaller k or radius to
define the neighborhood typically doesn’t help near corners
and is limited by the minimal number of points needed for
fitting. Moreover decreasing k too much can have a negative
impact on the robustness in case of noise. Our method tries
to identify a better neighborhood for fitting by applying a
RANSAC approach [FB81].

Fig. 2: A difficult situation for normal estimation due to
three surface sheets falling into the neighborhood (circle)
queried by a knn-request with k = 15 for the large center
point. Left: result achieved by weighted least squares fitting
of a plane. Middle: example for a bad RANSAC sample for
τ = 6

15 (indicate by two small circles). This sample produces a
large error and would be rejected. Right: example for a good
sample producing a small error, resulting in a good normal.

The main idea of using RANSAC for fitting a model is to
randomly sample the smallest possible subset of points needed
to define a candidate of the model in a first step (e.g. two in
case of a line or three in case of a plane). In a second step
the quality of the candidate is evaluated by computing a cost
function involving the complete neighborhood of points. In
the basic version of RANSAC an apriori known threshold t is
used to divide the points into a set of inlier points (consensus
set) with a model distance smaller than t and a set of outliers.
The algorithm succeeds if a sufficiently large set of inliers is
found. Otherwise the two steps are repeated.
In our case two different types of outliers can occur: points
from different surface sheets and outliers in the classical
sense not representing a valid surface sample often produced
due to errors in the acquisition process. Many proposals are
made to improve the basic version of RANSAC considering
automatic parameter adjustments and improved cost functions,

see [TZ00] for more details.

Our implementation is based on three parameters k, τ and
dmax which are automatically adjusted as described in subsec-
tion IV-B. The first parameter k indicates the number of points
~qi in a neighborhood Np around a selected point ~p. τ defines
the percentage of expected inliers within a given neighborhood
Np. The minimal number of necessary RANSAC iterations can
be directly computed from k and τ .

First we define the probability psucc to sample three inliers
which define a valid plane from a set of k points with an inlier
probability of τ .

psucc =
τ · (τ · k − 1)(τ · k − 2)

(k − 1)(k − 2)
(1)

A lower bound M of necessary trials to sample at least one
valid plane within a fixed surety psurety of e.g. 99 percent can
be computed by the following formula

M ≥ log(1− psurety)
log(1− psucc)

(2)

as illustrated by the tree of all possible combination depicted
in Figure 3.
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Fig. 3: Filled circles represent a successful trial, empty circles
a fail. Arrows indicate the transition probabilities. The proba-
bility not to hit a valid plane at all after M trials is (1−psucc)M
and corresponds to the lowest path in the tree. All other paths
consist of one or more successful trials. The probability of
the lowest path should be less or equal to the required inverse
surety 1− psurety. Taking the logarithm on both sides of this
inequality and resolving for M yields the inequality for M
given in 2

To find the best candidate plane plbest we use a modified
version of the original cost function. Because we expect s =
τ ·k inliers we compute the error of a candidate as the sum of
squared distances between the nearest s points and the surface
of the candidate.

Although the normal of plbest is very close to the true
underlying surface for objects with low curvature and without
sharp features the quality of the estimation can be further
improved, especially in case of high curvature.



Combining the ideas of robust weighted least squares and
bilateral filtering, we use the plane plbest : ~nTbest~x+ dbest = 0
to assign a weight wi for each neighboring point ~qi in Np.

This weight is used to do a weighted least squares fit
of a higher order surface which can better deal with high
curvatures.

wi = e
−

(~nT
best

~qi+dbest)
2

hpl · e−
||(~qi−~p||2)

hp (3)

The first term penalizes the squared distance to the best plane
plbest, the second one penalizes the squared distance to the
point ~p which was used to define the neighborhood Np. The
parameters hp and hpl control the decay of the two exponential
functions. If no better motivated choice from the data is
available we propose to set hpl = 1

3 · ( ~nbest
T ~qm + dbest)

2 + ε
and hp = 1

3 ||(~qm − ~p||2 where ~qm is the inlier with the largest
distance to pbest. The ε is only added to avoid a division by
zero in the weight computation if the worst inlier has a zero
distance to the plane. This choice for hpl and hp ensures that
the influence of points outside of the inlier set is almost zero.

In our implementation we use a paraboloid in the form
pa : z = ax2 + bxy + cy2 + dx + ey + f . Therefore we first
need to find a local reference frame defined by an origin ~op
and a rotation matrix Rp. Using the weights wi the origin ~op
can be computed as the weighted mean of all ~qi ∈ Np. The
orientation of the local frame can be found by computing
the matrix of eigenvectors E of the weighted covariance
matrix of all points ~qi with i ∈ Np. The eigenvectors in
the columns of E should be sorted in descending order by
their corresponding eigenvalues to get Rp. This ensures that
the third column which represents the z axis of the local
coordinate frame is the direction of the smallest variance
around the weighted mean. After transforming the points ~qi
into the local frame using ~q′i = Rp · (~qi − ~op), weighted least
squares regression can be used again to fit the paraboloid into
the points ~q′i by minimizing the weighted squared z distances.

To measure the overall success of our fitting process which
is used in our automatic parameter adjustment procedure we
define the success rate sr as the ratio between the number
of ~q′i with a z distance to the paraboloid smaller than a
given threshold dmax and the number k of points in the
neighborhood.

sr =
number inliers defined by dmax

k
(4)

The normal direction of the paraboloid is given analytically by
the following vector (ax+ by + d, bx+ cy + e,−1)T divided
by its length and can be transformed back into global space
by multiplying with RTp . The described steps of the algorithm
are summarized in Figure 4.

B. Adaptive Parameter Adjustment

The three parameters which are automatically adjusted to
control the normal estimation are dmax, k and τ . Before
describing the adaptation in detail, we first want to give
some intuitions on how the RANSAC estimation process
is influenced by these values. The parameter dmax decides
whether a given point is close enough to a computed local
surface approximation to derive normal information. Choosing

Input:  p, k, τ, dmax

2. Compute number of RANSAC iterations M

1. Find k‐neighborhood Np of p

3. Counter  c := 0

4. Random sampling of three points ‐> candidate plane pl

5. Compute plane error from τ∙k nearest points ‐> keep best ‐> plbest
6. Increment c,  if c < M goto 4.

7. Compute bilateral weights wi for each point qi in Np using p and plbest

8. Find local frame by orthogonal weighted least squares regression
using points qi and weights wi

9. Transform points qi into local frame and fit paraboloid

11. Compute success rate sr using dmax

10. Take normal information from paraboloid and transform into global frame
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Fig. 4: Summary of normal estimation steps.

dmax = 0 will only allow to compute normals for points
which are lying exactly on the local surface. To be able to
handle noisy point clouds the value of dmax must be increased
to accommodate for the amount of noise present in a given
data set. So we propose to start with a small value for dmax

consistent with the smallest amount of noise present in the data
and keep this value constant until the number of new normals
which can be identified becomes too small. This number can
be observed by computing the success rate (see equation 4).
The initial value of dmax is identified by applying a bisection
search to find the smallest value for that parameter which can
achieve a success rate sr > 0.5 by random sampling. The
other two parameters are fixed at τ = 0.5 and k =

√
n during

this search where n is the number of points in the input point
cloud P.

The parameter k defines the neighborhood size and should
be adaptive to varying sampling densities. Typically a smaller
value is needed for homogeneously sampled regions. τ , which
defines the expected percentage of inliers, restricts the shape
of the neighborhood; large values of τ corresponds to round
patches. Both parameters together control the size of the
support set of points used within the fitting process. A proper
strategy is to start with large values for k and τ to identify large
and round patches first. The full picture on how the different
adjustment mechanisms act together is given as pseudo code
in Figure 5.

The first outer loop is used to slowly increase the parameter
dmax after each iteration until all points are processed. The next
inner loop varies the expected number of points per facet np
from kmax =

√
n down to kmin. This number is used in the

inner most loop to control the selection of k which is randomly
sampled between np and kmax. Then the parameter τ is set to
np

k .

Now the normal estimation begins by randomly selecting
an unprocessed point p from the point cloud and applying
the estimation procedure as described in IV-A. For each point
in the neighborhood of p the distance to the local surface
is computed. If this distance is smaller than dmax and also



smaller than all distances between ~p to previously found
surface approximations then the normal information for ~p is
computed and stored. These steps are repeated until all points
are processed or the success rate sr drops below 50%.

kmin :=12, kmax := sqrt(num points in point cloud)
find initial dmax
counter c := 0
do {

for( np: kmax -> kmin in ten steps) {
do {

random select k between np and kmax
τ := np / k
random select an unprocessed point p
ransac_estimation (p, τ,k,dmax) -> success rate, local surface

for all qi in neighborhood of p 
{

di := distance to local surface
if(di < dmax &&  local surface closer to qi than all 

previously found local surfaces )
{

derive new normal information for qi
}

}
} while (num unprocessed points > 0 && success rate > 0.5)

}
dmax := initial dmax * c;

while (num unprocessed point > 0)

Fig. 5: Pseudo code describing the parameter adjustment
procedure.

C. Denoising

If the data points are corrupted by noise we propose to
apply a feature preserving filtering technique to the points
before meshing. Because providing high quality normal in-
formation is the most import step, the main work here is
already done by our estimator. The simplest option to correct
noisy point positions is the projection of the points onto their
locally estimated surfaces. We also implemented the bilateral
position filtering described in [JDD03] and [JDZ04]. Here
the new position of a point ~p is computed as the weighted
mean of all projections of point ~p onto the local surface
approximations in the neighborhood of ~p. The bilateral weights
have a similar structure as our weights (compare 3) used in
the normal estimation procedure. They penalize the distance
between ~p and the neighboring point on the one hand and the
distance between ~p and its projection onto the local surface
approximation corresponding to the neighboring point ~q on
the other hand (see Figure 6 for a small example). The latter
can be different from the local surface of ~p if ~qi lies on a
different surface sheet e.g. on another side of a sharp edge.

V. SURFACE ORIENTATION

To provide a consistent normal orientation we use
an extended version of Hoppe’s normal orientation
algorithm[HDD∗92], because this algorithm is not restricted
to closed surfaces, like other proposed volumetric approaches.
Hoppe’s algorithm starts by creating a weighted symmetrized
knn-graph over all points in the point cloud P. The idea is to
start from a node in the graph with known normal orientation
and to propagate this knowledge along the edges of the
graph. In the original version each edge eij connecting the
neighboring points ~pi, ~pj with normals ~ni, ~nj is assigned a
weight wij with a value of 1− | < ~ni, ~nj > |. The weighting
function is designed to produce a large value for edges
connecting two points with large angular normal difference

Fig. 6: Left: point cloud of a sampled cylinder with radius
of 0.5. 40 % of points are corrupted by Gaussian noise with
σ = 0.02 in normal direction. Right: Same point cloud after
applying the bilateral filter using the normals of our RANSAC
estimator.

and a low value for edges connecting points with nearly
parallel normal directions. Then the propagation is done
along the edges of the minimal spanning tree (MST) of the
original graph. While propagating normal orientation along
low curvature is in principle a good idea, this algorithm often
fails on meshes consisting of several sheets which are only
touching each other on sharp edges e.g. a tetrahedron.
The first improvement we propose is to start the propagation
from multiple points of known orientation instead of just
one. For closed surfaces often many known initial normal
orientations can be found automatically by computing the
convex hull of all points. The normals of each point on the
convex hull is initially orientated to point outside of the hull.
Another way to provide initial known orientation is by user
selection which typically should be the last option to simplify
manual correction in case of failure.
The second improvement we propose is a modification
concerning the edge weights and the way of how the correct
flip of a normal is found during the propagation along an edge
in the MST. Our idea is based on the observation that in case
of high curvature or across a sharp feature the correct normal
orientation can be found robustly by taking the location of
the local mean of nearby points into account. Instead of using
the sign of the dot product of the two normals ~ni and ~nj
for flipping decisions which is a good choice in case of low
curvature we use the consistent signed location (inside or
outside) of the mean ~m with regards to the to tangent planes
in case of high curvature. Therefore we define γi and γj
using the following equation

γα =
< ~nα, ~pα − ~m >

max(lij , ||~pα − ~m||)
(5)

where lij is the distance between the two point positions ~pi and
~pj of an edge. The second normal must be flipped in order to
achieve a consistent orientation if the product γi ·γj is smaller
than zero. An appropriate edge weight to prefer propagation
along high curvature would be wij = 1− |γi · γj |. Both ideas
can be combined by always selecting the criterion that results
in the smaller edge weight.

VI. SURFACE TESSELLATION

The goal of surface tessellation is to define a set of faces
with the input points as corner vertices. For simplicity we
restricted our approach to triangular faces.
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Fig. 7: Results of the five steps performed for surface tessellation. The noisy sampling of the Porsche model is very
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The basic idea of our surface tessellator is similar to
approaches that filter the triangles in the Delaunay tetrahe-
dralization of the point cloud. We took a different venue
though because of efficiency issues and in order to exploit the
robustly estimated surface normals. Furthermore, we wanted to
support sharp features and even self-intersecting sheets, where
Delaunay based approaches fail. Similar to the local surface
estimation we base the tessellator on the asymmetric k-nearest
neighbor graph (knn-graph). The resulting surface tessellation
does not depend on k as long as k is large enough to contain
all directed edges needed by the tangential Delaunay filter
described below. A value of k = 30 was sufficient even for
highly inhomogeneously sampled point clouds.

The process of surface tessellation can be interpreted as an
edge filter process that removes all directed edges from the
knn-graph until only the edges of the surface tessellation are
left. Actually, we first tried to enumerate all loops of length
3 in the knn-graph as possible candidate triangles and pass
them to a discrete optimization process similar to the one used
by Adamy et al. in [AGJ02] to resolve non-manifold areas.
Figure 7 b) shows that this leads to a combinatorial explosion.
The knn-graph contains in the order of 300 triangles per vertex
from which in average only six need to be selected. Therefore,
we used a greedy approach that is decomposed into four steps
which are illustrated in figure 7 c-f).

In the first step we construct for each input point in its
tangential space a local Delaunay triangulation and replace the
knn-neighborhood by the 1-ring neighborhood of the Delaunay
tessellation. In the second step we extract all triangles that are
consistent with the Delaunay filtered knn-graph. The third step
grows the still incomplete surface tessellation by exploiting a
priority queue (compare figure 7 e). There are still all triangles
missing that get flipped when projected into the tangential
space of its incident points. These triangles are introduced in
the final step that closes narrow holes by minimizing surface
area.

The surface tessellator uses the point normals. As for some
models it is very hard to find a consistent normal orientation,
we designed two versions of the surface tessellator, one that
exploits normal orientation and one that ignores it. This implies
that the sign of scalar products between normals as well as

the order of neighbors in 1-rings have to be ignored. In the
notation we distinguish the two versions with the subscripts
ori and nor. This approach allows us also to handle Moebius
strips and Klein bottles.

A. Tangential Delaunay Filter

The tangential Delaunay filter is computed separately for
each point ~p. The normal ~n~p defines a 2d tangential space
with ~p serving as origin. All ~qi in the knn-neighborhood
N~p are projected into tangential space. Then a 2d Delaunay
tessellation is computed and the original neighborhood is
replaced by the 1-ring in the 2d Delaunay tessellation.

a) b)

Fig. 8: Comparison of surface tessellations computed with a)
orthogonal projection to tangential space and b) our variant
based on neighbor location and normal.

The crucial part is the projection of the ~qi. An orthogonal
projection leads to the connection artifacts shown in figure 8 a).
Imagine that the tangential space is parametrized in cylindrical
coordinates by an angle φ and a radius r. In the modified
projection φi of ~qi is still computed from the orthogonal
projection but the radius is computed according to

ri = ||~qi − ~p| |/ω (〈~n~p, ~n~qi〉) , (6)

where ω measures how well the normals at ~p and ~qi fit together
based on the cosine c = 〈~n~p, ~n~qi〉 of the angle between the
normals. 0 is returned for orthogonal normals and 1 for parallel
normals. For the radius this implies that a neighbor with a very
similar normal is mapped to its 3d distance, whereas neighbors
with different normals are mapped further away. Far away



points are less probable to find their way into the Delaunay 1-
ring of point ~p, but they still allow to close the fan completely
if no better neighbor can be found in a similar direction.

For the definition of the normal quality one has to distin-
guish between the oriented and non oriented case:

ωori(c) =
1 + erf

(
qc
2

)
2

ωnor(c) =
1 + erf

(
q(2c2−1)

2

)
2

.

(7)
In both cases we used the error function erf with the
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Fig. 9: Plot of ωori(c) for different values of q.

additional parameter q to tolerate small normal deviations but
significantly penalize large deviations. Figure 9 plots ω(s) for
different values of q. ω(c) is plotted over angle deviation which
runs from 0 to 180 degrees in the oriented case and from 0 to
90 degrees otherwise. In both cases the resulting plot families
are identical. In our experiments it turned out that q = 3
worked perfectly in figure 9 b) and all our examples. Changing
q between 2 and 5 did not affect the resulting tessellation
significantly.

The 1-ring of the local Delaunay tessellation can be com-
puted quite efficiently. One first sorts the neighbors cyclically
with respect to φi and checks whether there is a jump of
more than 180 degrees. In this case the ~p and the edges to the
corresponding neighbors are part of the convex hull and won’t
be touched by the following edge flipping process anymore.
For all remaining edges we perform a local Delaunay check,
i.e. we check whether the circumcircle of the triangle to the
left contains the distant neighbor of the triangle to the right.
We can even simplify the resulting computation by exploiting
the fact that ~p is the origin of the tangential space. If the local
Delaunay test fails, the edge can simply be removed. Thus
we can finally construct the Delaunay 1-ring by removing all
neighbors whose edges fail the local Delaunay test.

To avoid numerical problems with degenerate or very
regular point locations we jitter the points before performing
the tangential Delaunay filter with a noise amplitude of one
percent of the distance to nearest neighbor. Furthermore, we
discarded all neighbors that project to the origin and selected
among neighbors that project to the same φi only the one with
smallest ri.

The filtered neighbor graph is not symmetric and might
even miss some directed edges. The following steps of the
tessellator will remove further edges and may also introduce
some directed edges back to the 1-rings. To avoid closing large

holes in this process we set for each point the maximum length
lmax(~p) of reinserted directed edges to

lmax(~p) = h ·max
i
||~qi − ~p| |, (8)

where h is a parameter that should be chosen between 2 and 5.
In our examples we chose h = 2 for homogeneously sampled
point clouds and h = 4 for inhomogeneous samplings. Our
approach also works on homogeneous samples with h = 4,
but it would then close relatively large holes.

B. Search for Consistent Triangles

The tangential Delaunay filter reduced the neighbor graph
significantly as shown in figure 7 c). Now a potential 1-
ring has been constructed for each point. A point ~p with
neighbors ~qi, i ∈ N~p would like to have all triangles
(~p, ~q1, ~q2), . . . , (~p, ~qn−1, ~qn), (~p, ~qn, ~q1) in the final tessellation.
But the 1-rings of neighbors ~qi might demand for different
triangles. In flat areas of the surface all points agree simply
on the triangles of a Delaunay tessellation, but in 3d this is
not necessarily the case.

In this filter step we find triangles t consisting of three
points ~p1(t), ~p2(t) and ~p3(t), such that in each 1-ring of
the three points ~pj(t) the other two points ~p(j+1)%3(t) and
~p(j+2)%3(t) are adjacent 1-ring neighbors. In the orientated
case we also check for consistent 1-ring orders. The found
triangles are called consistent. Figure 7 d) shows the consistent
triangles for the Porsche model. The remaining boundary edges
around holes are marked in blue.

We explicitly allow consistent triangles to intersect each
other in order to support self-intersecting surface sheets. In the
next step we disallow introduction of further self-intersections.
Finally the hole filling process is allowed to close a hole with
self-intersections if it there is no possibility without.

C. Priority Queue Based Growing

The third step in surface tessellation is a typical region
growing algorithm. We define events that incorporate further
triangles into the set of consistent triangles one at a time.
After adding a new triangle we ensure that it is consistently
incorporated to the 1-rings of its incident points.

For each grow event we compute the quality of the newly
introduced triangle based on the number of missing directed
edges in the current neighbor graph and the geometric triangle
quality. All events inserted into a priority queue and executed
in order of decreasing triangle quality. After each event exe-
cution the events with changed triangle quality are discarded
and all possible new events inserted to the queue.

The goal of the growing step is to complete all 1-rings
with consistent triangles. Therefore we build the event queue
by iterating all 1-rings. Figure 10 shows the two types of grow
events that we allow: corner and edge grow events. The corner
grow event closes one opening in a 1-ring and removes the
dangling edges inside the opening. The edge grow shrinks an
opening by one triangle. The new triangle must be incorporated
also into the 1-rings of the incident neighbors. In figure 10 a)
these are ~q1 and ~q4 and in b) ~q1 and ~q2.

For all consistent triangles we know that they are part of
the 1-rings of their incident vertices. Therefore in figure 10 a)
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Fig. 10: The different grow events used to increase the number
of consistent triangles.

the directed edge (~q1, ~p) must already be in the neighborhood
of ~q1. We only need to check for the edge (~q1, ~q4) in the 1-
rings of ~q1 and ~q4. If the edge does not exist, we try to insert
it into the 1-rings of the neighbors. This is not possible if the
inner angles of the newly inserted triangle are blocked in the
1-rings of ~q1 or ~q4 by previously added consistent triangles.
Further consistency checks are that the new triangle must not

• flip its orientation in any of the incident tangential
spaces (only oriented case)

• introduce a self-intersection

• introduce a non-manifold edge

If one of the checks fails, the grow event is discarded. For the
manifold check we simply count the number of triangles per
edge. The self-intersection is check by collecting the poten-
tially colliding triangles with a kd-tree and then performing
a triangle-triangle intersection test. We modified the approach
of [DG02] by a special treatment for the case of corner or
edge adjacent triangles.

It remains to define the triangle quality Q(t) used to
prioritize the queue. It is on the number nins(t) of to be
inserted directed edges, the minimal interior angle αmin of
the triangle and the quality of the triangle normal ~n(t) with
respect to the normals at the incident points

Q(t) =
3− nins(t)

2
+ αmin(t) + min

j∈{1,2,3}
ω
(〈
~n~pj(t), ~n(t)

〉)
3 is the maximum value for nins and can arise in an edge grow
event. In figure 10 b) both directed edges from ~q2 and one from
~q1 might need to be added when introducing the new triangle.
Thus the connectivity term in the definition of Q(t) ranges
from 0 to 3/2. The largest value for αmin is π/3 ≈ 1 and the
normal quality lies in the range [0, 1]. Therefore, connectivity
and geometry contributions to Q(t) of similar size.

The region growing step closes most holes and only misses
triangles that cannot be added due to self-intersections, non-
manifold creation or triangle flips in tangential space. There are
actually several triangles of the latter kind that can be added
with the final hole fill step.

All points that are still disconnected after the region
growing step are classified as outliers and discarded.

D. Filling Holes

Holes can be easily found by navigating through the 1-
rings of the vertices. As we only added consistent triangles all
holes must be closed. The reason is that for each incoming
edge of a 1-ring a unique outgoing edge is found by following
the entered opening. The holes can be non-manifold though. A
non-manifold hole passes through several openings of the same
1-ring. This can be easily detected by sorting the indices of the
points on the boundary of the hole into a set data structure and
comparing the size of the set with the length of the hole. If both
are equal, the hole is manifold and non-manifold otherwise.

We resolved the non manifold holes by removing sets of
connected triangles in the non manifold 1-rings of vertices,
through that non manifold holes pass repeatedly, until only
one valid fan of triangles was left. We favored removal of
small sets of connected triangles with long edges in this non
manifold resolution process.

The remaining non-manifold 1-rings with several openings
become manifold if all holes are filled. As there is no guarantee
that each hole can be filled, we split the hole filling procedure
into a test and a tessellation step. With the test method we
check for each remaining non-manifold 1-ring whether all
holes at its openings can be closed. Actually, one hole may
remain. If two or more holes remain, we resolve the non
manifold 1-ring as described above.

After the cleaning of all non-manifold 1-rings we close
the closeable holes resulting in a surface tessellation that is
always a topological manifold with boundary, although it can
have geometric self-intersections.

Our hole tessellation itself is based on an ear-cutting
strategy. Ears are formed by three successive points along the
hole and define a triangle that cuts away the point in the center
of the ear. We allow the cutting of an ear with center ~p only
if

• the newly introduced edge is not longer than the
maximum allowed length lmax(~p) (see equation 8) and

• the ear triangle does not intersect any other triangle.

The second constraint is turned off in a second attempt when
self-intersecting surfaces are considered.

We implemented an exhaustive search for a valid hole
tessellation with minimal surface area as well as a greedy
approach that tries the ears in the order of increasing length
of the newly introduced edge. The greedy approach stops as
soon as the first valid triangulation has been found. The greedy
approach typically finds a hole with small surface area but is
not as good as the exhaustive search. We therefore filled all
holes with less than 10 vertices with the exhaustive search and
the rest with the greedy approach.

VII. RESULTS

A. Datasets and Basic Results

We use uniform random sampling and homogenous sam-
pling techniques to create synthetic test cases. The homoge-
nous sampling is done by a dart throwing method, which
produce random noise with blue noise characteristics. Noisy



models are created by adding synthetic Gaussian noise in
normal direction in a given percentage with zero mean and
a given standard deviation.

B. Quality of Local Surface Estimation

To measure, test and compare the quality of our local
surface estimator we generated several synthetic test cases with
known ground truth normal information. The test cases and the
ground truth information is provided by taking random samples
from existing surface meshes.

For each test case the mean and the standard deviation of
the absolute value of the angular error in degrees is computed.
Additionally, the angular error is color mapped onto the points
to get a better impression of the localization of normal errors
(see Figure 11). In a) the result of applying a weighted least
squares fit (WLS) of a paraboloid with a relatively small
neighborhood of k = 13 on the first test case is shown. In
planar regions and in regions of high degree of curvature good
results can be achieved. Sharp features typically cannot be
approximated sufficiently and produce larger errors.

The result of our method is depicted in b) the overall error
is smaller than in a). Typically a small number of points nearby
sharp edges can be found with a relatively high error. This
can be explained by the fact that our RANSAC estimator has
classified these points belonging to the other incident surface
sheet than the point was originally sampled from. This also
explains the relative high standard deviation in the error (see
Table I). In practical cases these normals can be assumed to
be correct.

In the second test case the WLS method has a better mean
error due to the large smooth regions but fails to correctly
estimate the normals close to the self intersection, what can
also be recognized in the large standard deviation of the
absolute angular error.

The third test case is a more illustrative example showing
the problems of the WLS method if k is chosen to high.

C. Surface Reconstruction Performance

We compare our surface reconstruction results with Poisson
surface reconstruction [KBH06], cocone [DG01], tight cocone
(tconone) [DG03] and robust cocone [DG04]. We chose these
schemes due to their availability and state-of-the-art perfor-
mance.

We performed a comparison on six data sets with all kinds
of difficulties. Their size, the number of triangles and holes
in our reconstruction and the running times are tabulated in
Table II. All point clouds except the laser range scan of
the church were sampled uniformly or homogeneously from
polygonal meshes in order to be able to compare to the
ground truth. Synthetic noise was add to the Porsche point
cloud yielding the most difficult reconstruction problem. We
actually used the original surface normals in this case such
that comparison to the cocone algorithm is not quite fair as it
cannot exploit the original normals. We always fed the Poisson
surface reconstructor with the same normals as our scheme. In
all examples we chose k = 2 and q = 3. The maximum length
parameter h was set to 2 for homogeneous sampling and to 4

for uniform samplings. For the Klein Bottle we ignored normal
orientation.

The resulting reconstructions are compared visually in
Figure 12. The first row of Figure 12 compares the two
differently sampled camel models. The close up of tail and
legs were taken from the uniform sample and the head from
the homogeneous sample. Our approach is the only one that
reconstructs the tail and the hooves, keeps the knees in separate
sheets and even reconstructs the mouth with extremely close
sheets perfectly. Please notice that the right head is not the
original mesh but our reconstruction. We always chose the best
result of the three cocone approaches in this visual comparison.
The other approaches typically worked significantly worse.

The second row shows the noisy test case. Our approach
reconstructs the original features of the surface best. The
right most image shows our reconstruction on the point cloud
without noise. The third row illustrates that our approach works
robustly also on large real world data and that it can handle the
complicated hole structure illustrated in the first two images.
The Poisson reconstructor was ignored as it cannot detect
boundaries. The two right most images compare our results
to the cocone approach that connects distant holes with large
triangles.

The last row shows the gear model on the left where the
Poisson reconstructor fails even on a homogeneously sampled
point cloud with original normals. The tight cocone nearly
worked well, but again only our scheme did not connect nearby
surface sheets. Finally, we show on the right the results on
the Klein Bottle, which also worked on a global scale for the
cocone algorithm but failed at the self-intersection. Our scheme
works perfectly and sews together the crossing layers perfectly.

Table II tabulates the running times on a Pentium 5 with
2GHz and 1GB main memory. The time for local surface
estimation depends on the amount of flat areas in the point
cloud and typically grows sub-linear in the number of input
points. The running time for the surface tessellator is mostly
linear in the number of points with a performance in the order
of 10,000 points per second. Compared to Poisson surface
reconstruction we are faster for small data sets and a bit slower
for larger ones. But our results are far more detailed. We only
give timings for the tight cocone as this was the fastest among
the three Delaunay based approaches, but its performance is
far slower than ours.

VIII. CONCLUSIONS

We proposed a new surface reconstruction pipeline that
can handle inhomogeneous samplings, noise, sharp features,
nearby surface sheets, self-intersections, boundaries and non
orientable surfaces with minimal user input. The runtime
performance allows to process very large point clouds. Both
our denoising / normal estimation as well as the surface
tessellator are important contributions by themselves.

In future work we plan to add further stages to our pipeline.
We think of a stage that samples the undersampled sharp
features by a technique similar to the edge sharpener [AFRS03]
but based on vertex normals. Also an edge flip optimizer and
an edge collapse simplifier can make direct use of the vertex
normals. Finally, we want to implement a streaming version
of our technique to handle huge point clouds.



(a) WLS paraboloid, k=13 (b) WLS paraboloid, k=13 (c) WLS paraboloid, k=50

(d) auto. RANSAC method (e) auto. RANSAC method (f) auto. RANSAC method

angular normal error: 0◦ 90◦

Fig. 11: Comparison of estimated normals to ground truth. The left test case contains sharp features like edges corners and
spikes and several sheets with different curvatures. In the middle a non-orientable surface is used. The critical regions lie in the
areas near to the self-intersecting surface sheets. On the right side a test case is depicted which illustrates the problems produced
by several nearby surface sheets.

left test case middle test case right test case
used method µ σ µ σ µ σ
WLS fit of paraboloid 7.49847 14.7163 1.4135 3.64514 14.7122 19.9111
our RANSAC estimation 2.58256 10.9735 1.84496 2.72814 3.82579 13.8575

TABLE I: Error comparison of estimated normals

model points triangles holes tlocal ttess tours tpoisson ttcocone

camel homogeneous 28926 57848 0 5.4 2.7 8.1 7.2 32.3
camel uniform 12000 24000 0 3.4 1.2 4.6 5.1 11.6
Porsche noisy 8001 15920 1 2.7 1.2 3.9 2.9 7.1
gears uniform 40000 57848 0 7.9 4.5 12.4 10.8 49.4
church scan 193601 383590 85 24.2 31.5 55.5 19.8 532.7
Klein Bottle 50400 100800 0 7.7 4.6 7.7 11.1 73.2

TABLE II: Size of data sets and runtime comparison for local surface estimation, surface tessellation, our approach, Poisson
surface reconstruction and tight cocone.
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Fig. 12: Visual comparison of our approach to Poisson surface reconstruction [KBH06] and the family of cocone algo-
rithms [DG01], [DG03], [DG04]. The camel model in the top row was sampled homogeneously (bottom half) and uniformly
(top half). All close up triples compare Poisson, cocone and ours. In the last row the first three images show the gear model
and the other the Klein Bottle with a close up of the self-intersection on the right.


