279 research outputs found

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Proceedings, MSVSCC 2016

    Get PDF
    Proceedings of the 10th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2016 at VMASC in Suffolk, Virginia

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Adaptive Methods for Robust Document Image Understanding

    Get PDF
    A vast amount of digital document material is continuously being produced as part of major digitization efforts around the world. In this context, generic and efficient automatic solutions for document image understanding represent a stringent necessity. We propose a generic framework for document image understanding systems, usable for practically any document types available in digital form. Following the introduced workflow, we shift our attention to each of the following processing stages in turn: quality assurance, image enhancement, color reduction and binarization, skew and orientation detection, page segmentation and logical layout analysis. We review the state of the art in each area, identify current defficiencies, point out promising directions and give specific guidelines for future investigation. We address some of the identified issues by means of novel algorithmic solutions putting special focus on generality, computational efficiency and the exploitation of all available sources of information. More specifically, we introduce the following original methods: a fully automatic detection of color reference targets in digitized material, accurate foreground extraction from color historical documents, font enhancement for hot metal typesetted prints, a theoretically optimal solution for the document binarization problem from both computational complexity- and threshold selection point of view, a layout-independent skew and orientation detection, a robust and versatile page segmentation method, a semi-automatic front page detection algorithm and a complete framework for article segmentation in periodical publications. The proposed methods are experimentally evaluated on large datasets consisting of real-life heterogeneous document scans. The obtained results show that a document understanding system combining these modules is able to robustly process a wide variety of documents with good overall accuracy

    Drawing, Handwriting Processing Analysis: New Advances and Challenges

    No full text
    International audienceDrawing and handwriting are communicational skills that are fundamental in geopolitical, ideological and technological evolutions of all time. drawingand handwriting are still useful in defining innovative applications in numerous fields. In this regard, researchers have to solve new problems like those related to the manner in which drawing and handwriting become an efficient way to command various connected objects; or to validate graphomotor skills as evident and objective sources of data useful in the study of human beings, their capabilities and their limits from birth to decline

    Blood vessel detection in retinal images and its application in diabetic retinopathy screening

    Get PDF
    In this dissertation, I investigated computing algorithms for automated retinal blood vessel detection. Changes in blood vessel structures are important indicators of many diseases such as diabetes, hypertension, etc. Blood vessel is also very useful in tracking of disease progression, and for biometric authentication. In this dissertation, I proposed two algorithms to detect blood vessel maps in retina. The first algorithm is based on integration of a Gaussian tracing scheme and a Gabor-variance filter. This algorithm traces the large blood vessel in retinal images enhanced with adaptive histogram equalization. Small vessels are traced on further enhanced images by a Gabor-variance filter. The second algorithm is called a radial contrast transform (RCT) algorithm, which converts the intensity information in spatial domain to a high dimensional radial contrast domain. Different feature descriptors are designed to improve the speed, sensitivity, and expandability of the vessel detection system. Performances comparison of the two algorithms with those in the literature shows favorable and robust results. Furthermore, a new performance measure based on central line of blood vessels is proposed as an alternative to more reliable assessment of detection schemes for small vessels, because the significant variations at the edges of small vessels need not be considered. The proposed algorithms were successfully tested in the field for early diabetic retinopathy (DR) screening. A highly modular code library to take advantage of the parallel processing power of multi-core computer architecture was tested in a clinical trial. Performance results showed that our scheme can achieve similar or even better performance than human expert readers for detection of micro-aneurysms on difficult images

    Virtuaalse proovikabiini 3D kehakujude ja roboti juhtimisalgoritmide uurimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneVirtuaalne riiete proovimine on üks põhilistest teenustest, mille pakkumine võib suurendada rõivapoodide edukust, sest tänu sellele lahendusele väheneb füüsilise töö vajadus proovimise faasis ning riiete proovimine muutub kasutaja jaoks mugavamaks. Samas pole enamikel varem välja pakutud masinnägemise ja graafika meetoditel õnnestunud inimkeha realistlik modelleerimine, eriti terve keha 3D modelleerimine, mis vajab suurt kogust andmeid ja palju arvutuslikku ressurssi. Varasemad katsed on ebaõnnestunud põhiliselt seetõttu, et ei ole suudetud korralikult arvesse võtta samaaegseid muutusi keha pinnal. Lisaks pole varasemad meetodid enamasti suutnud kujutiste liikumisi realistlikult reaalajas visualiseerida. Käesolev projekt kavatseb kõrvaldada eelmainitud puudused nii, et rahuldada virtuaalse proovikabiini vajadusi. Välja pakutud meetod seisneb nii kasutaja keha kui ka riiete skaneerimises, analüüsimises, modelleerimises, mõõtmete arvutamises, orientiiride paigutamises, mannekeenidelt võetud 3D visuaalsete andmete segmenteerimises ning riiete mudeli paigutamises ja visualiseerimises kasutaja kehal. Selle projekti käigus koguti visuaalseid andmeid kasutades 3D laserskannerit ja Kinecti optilist kaamerat ning koostati nendest andmebaas. Neid andmeid kasutati välja töötatud algoritmide testimiseks, mis peamiselt tegelevad riiete realistliku visuaalse kujutamisega inimkehal ja suuruse pakkumise süsteemi täiendamisega virtuaalse proovikabiini kontekstis.Virtual fitting constitutes a fundamental element of the developments expected to rise the commercial prosperity of online garment retailers to a new level, as it is expected to reduce the load of the manual labor and physical efforts required. Nevertheless, most of the previously proposed computer vision and graphics methods have failed to accurately and realistically model the human body, especially, when it comes to the 3D modeling of the whole human body. The failure is largely related to the huge data and calculations required, which in reality is caused mainly by inability to properly account for the simultaneous variations in the body surface. In addition, most of the foregoing techniques cannot render realistic movement representations in real-time. This project intends to overcome the aforementioned shortcomings so as to satisfy the requirements of a virtual fitting room. The proposed methodology consists in scanning and performing some specific analyses of both the user's body and the prospective garment to be virtually fitted, modeling, extracting measurements and assigning reference points on them, and segmenting the 3D visual data imported from the mannequins. Finally, superimposing, adopting and depicting the resulting garment model on the user's body. The project is intended to gather sufficient amounts of visual data using a 3D laser scanner and the Kinect optical camera, to manage it in form of a usable database, in order to experimentally implement the algorithms devised. The latter will provide a realistic visual representation of the garment on the body, and enhance the size-advisor system in the context of the virtual fitting room under study

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences

    Internal Defect Detection in Hardwood Logs With Fast Magnetic Resonance Imaging.

    Get PDF
    Identification of defects such as knots in logs before the cutting operation would allow lumber mills to maximize the value of lumber from each log. This dissertation presented images obtained from scanning an oak log with magnetic resonance imaging (MRI). The unique characteristics of MRI images of hardwood logs were noted and were used to derive a quick algorithm to isolate defects. Defect regions had some pixels that varied considerably in intensity from their neighborhood, providing a seed for initiating the defect region. There was an overlap between the pixel gray level of the defects and clear wood. Therefore, traditional thresholding techniques did not cleanly separate these regions. In this study, region-growing methods were used to extract the defects. The algorithm grew the defect region seed until the border-pixel gray levels approached the average level of the neighborhood. The region-growing methods obtained more accurate defect regions than thresholding methods because of the simultaneous consideration of gray level and adjacency information. Two methods of MRI imaging were considered: spin-echo and echo-planar. Spin-echo imaging provided clear, detailed images but required about 20 seconds of acquisition time, which was too slow to be used in a production environment. Echo-planar images could be acquired in about 1/2 second, which was fast enough for production, but the images were fuzzy and noisy. The dissertation presented an algorithm that found the defect regions in spin-echo images. Region-growing methods use a number of parameters and the best parameters were unique for each image. However, common image statistics could be used to predict the proper parameters. The dissertation also presented an algorithm that found most of the defect regions in echo-planar images. Enhancing the echo-planar images using common general-purpose image-enhancement techniques failed because the lack of discrimination allowed the process to smooth image structures as well as noise. By taking advantage of the structure of a tree, smoothing between MRI frames accomplished the goal of smoothing along homogeneous areas and not across image structures. This z-axis smoothing enhanced the echo-planar image visually and reduced the number of false alarm defect regions
    corecore