1,466 research outputs found

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Design Pattern Modeling with Constraint Relaxation

    Get PDF
    Metamodeling is a widely applied technique in the field of graphical language engineering. Environments supporting metamodeling aid rapid and flexible domain-specific modeling language (DSML) definition and utilization. In software engineering, design patterns are efficient solutions for recurring problems. With the proliferation of DSMLs, there is a need for domain-specific design patterns to offer solutions to problems recurring in different domains. The aim of this paper is to illustrate a concept that integrates modeling patterns into a metamodeling environment. The introduced approach utilizes the modeling functionalities of the environment; a visual design pattern metamodel, a system architectural metamodel extended with textual constraints are introduced. Furthermore, design patterns are validated against relaxed constraints defined in the metamodel to only allow the creation of patterns that can be extended to valid instance models

    Tackling Traceability Challenges through Modeling Principles in Methodologies Underpinned by Metamodels.

    Full text link
    Traceability is recognized to be essential for supporting software development. However, a number of traceability issues are still open, such as link semantics formalization or traceability process models. Traceability methodologies underpinned by metamodels are a promising approach. However current metamodels still have serious limitations. Concerning methodologies in general, three hierarchical layered levels have been identified: metamodel, methodology and project. Metamodels do not often properly support this architecture, and that results in semantic problems at the time of specifying the methodology. Another reason is that they provide extensive predefined sets of types for describing project attributes, while these project attributes are domain specific and, sometimes, even project specific. This paper introduces two complementary modeling principles to overcome these limitations, i.e. the metamodeling three layer hierarchy, and power-type patterns modeling principles. Mechanisms to extend and refine traceability models are inherent to them. The paper shows that, when methodologies are developed from metamodels based on these two principles, the result is a methodology well fitted to project features. Links semantics is also improved

    An Active Pattern Infrastructure for Domain-Specific Languages

    Get PDF
    Tool support for design patterns is a critically important area of computer-aided software engineering. With the proliferation of Domain-Specific Modeling Languages (DSMLs), the adaptation of the notion of design patterns appears to be a promising direction of research. This paper introduces a new approach to DSML patterns, namely, the Active Model Pattern infrastructure. In this framework, not only the traditional insertion of predefined partial models is supported, but interactive, localized design-time manipulation of models. Optionally, the infrastructure can be adapted to handling transactional tracing information as well as transactional undo and redo operations. Possible realizations of the framework are also discussed and compare

    Model Continuity in Discrete Event Simulation: A Framework for Model-Driven Development of Simulation Models.

    Get PDF
    Most of the well known modeling and simulation methodologies state the importance of conceptual modeling in simulation studies and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to howto move from a conceptual model to an executable simulation model. Besides, existing modeling and simulation methodologies do not typically provide a formal method for model transformations between the models in different stages of the development process. Hence, in the current M&S practice, model continuity is usually not fulfilled. In this article, a model driven development framework for modeling and simulation is in order to bridge the gap between different stages of a simulation study and to obtain model continuity. The applicability of the framework is illustrated with a prototype modeling environment and a case study in the discrete event simulation domain

    Analytical metadata modeling for next generation BI systems

    Get PDF
    Business Intelligence (BI) systems are extensively used as in-house solutions to support decision-making in organizations. Next generation BI 2.0 systems claim for expanding the use of BI solutions to external data sources and assisting the user in conducting data analysis. In this context, the Analytical Metadata (AM) framework defines the metadata artifacts (e.g., schema and queries) that are exploited for user assistance purposes. As such artifacts are typically handled in ad-hoc and system specific manners, BI 2.0 argues for a flexible solution supporting metadata exploration across different systems. In this paper, we focus on the AM modeling. We propose SM4AM, an RDF-based Semantic Metamodel for AM. On the one hand, we claim for ontological metamodeling as the proper solution, instead of a fixed universal model, due to (meta)data models heterogeneity in BI 2.0. On the other hand, RDF provides means for facilitating defining and sharing flexible metadata representations. Furthermore, we provide a method to instantiate our metamodel. Finally, we present a real-world case study and discuss how SM4AM, specially the schema and query artifacts, can help traversing different models instantiating our metamodel and enabling innovative means to explore external repositories in what we call metamodel-driven (meta)data exploration.Peer ReviewedPostprint (author's final draft

    A Metamodeling Approach to Teaching Conceptual Modeling at Large

    Get PDF
    In the authors\u27 university there is a challenge, with respect to Conceptual Modeling topics, of bridging the gap between bachelor-level studies and research work. At bachelor-level, Conceptual Modeling is subordinated to Software Engineering topics consequently making extensive use of software design standards. However, at doctoral level or in project-based work, modeling methods must be scientifically framed within wider-scoped paradigms - Design Science, Enterprise Modeling etc. In order to bridge this gap, we developed a teaching artifact to present Conceptual Modeling as a standalone discipline that can produce its own artifacts, driven by requirements in a variety of domains. The teaching artifact is an agile modeling method that is iteratively implemented by students. The key takeaway revelation for students is that a modeling language is a knowledge schema that can be tailored and migrated for specific purposes just like a database schema, to accommodate an application domain and its modeling requirements

    Systematic Transformation Development

    Get PDF
    Despite the pivotal significance of transformations for model-driven approaches, there have not been any attempts to explicitly model transformation languages yet although a number of benefits are to be gained. First, transformation developers may change the design of their transformation languages by modeling, rather than programming. Second, they may use environments to create transformations that are customized with respect to the input and output languages involved. In this paper, we use a running example to identify, discuss, and demonstrate some of the above advantages. In particular, we explore and suggest ways to systematically support developers in creating transformation languages by means of semi-automated metamodeling
    corecore