
28TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2019 TOULON, FRANCE)

A Metamodeling Approach to Teaching

Conceptual Modeling "at Large"

Ana-Maria Ghiran

Babeș-Bolyai University,

Business Informatics Research Center

Cluj-Napoca, Romania anamaria.ghiran@econ.ubbcluj.ro

Cristina-Claudia Osman

Babeș-Bolyai University,

Business Informatics Research Center

Cluj-Napoca, Romania cristina.osman@econ.ubbcluj.ro

Robert Andrei Buchmann

Babeș-Bolyai University,

Business Informatics Research Center

Cluj-Napoca, Romania robert.buchmann@econ.ubbcluj.ro

Abstract

In the authors' university there is a challenge, with respect to Conceptual Modeling topics,

of bridging the gap between bachelor-level studies and research work. At bachelor-level,

Conceptual Modeling is subordinated to Software Engineering topics consequently making

extensive use of software design standards. However, at doctoral level or in project-based

work, modeling methods must be scientifically framed within wider-scoped paradigms -

Design Science, Enterprise Modeling etc. In order to bridge this gap, we developed a

teaching artifact to present Conceptual Modeling as a standalone discipline that can

produce its own artifacts, driven by requirements in a variety of domains. The teaching

artifact is an "agile modeling method" that is iteratively implemented by students. The key

takeaway revelation for students is that a modeling language is a knowledge schema that

can be tailored and migrated for specific purposes just like a database schema, to

accommodate an application domain and its modeling requirements.

Keywords: Agile Modeling Method Engineering, Metamodeling, Teaching Conceptual

Modeling, Resource Description Framework

1. Introduction

In this paper's context, "Conceptual Modeling at large" refers to a wider, domain-agnostic scope

for the discipline and practice of (diagrammatic) Conceptual Modeling, compared to the

popular perception that modeling is a "means to an end" ancillary to Software Engineering

activities - a viewpoint that has been crystallized by standards supporting model-driven

software engineering. The longstanding conference series on Conceptual Modeling (ER),

although often presenting software engineering applications, generally manifests a wide

scope - from philosophical foundations [1] to application areas beyond software

engineering – e.g., Enterprise Architecture Management [2].

In the authors' university the students graduating bachelor programs in Business

Information Systems or Computer Science come in contact with conceptual modeling

topics as chapters subordinated to one or another of several software engineering

disciplines (e.g., ER diagrams for database design, UML for documenting requirements

analysis or system design). At the same time, a wider and deeper understanding is required

in research work (project-based industry collaborations, doctoral and postdoctoral studies,

mailto:email.address@domain.com

ANA-MARIA GHIRAN ET AL. A METAMODELING APPROACH TO TEACHING CONCEPTUAL MODELING "AT LARGE"

some master dissertations). Especially in industry collaborations domain-specificity tends

to be a key requirement (e.g., in smart process automation), whereas in master or doctoral

studies it is not sufficient to wear the hat of a "user" (who takes a modeling language for

granted), but it is often necessary to be capable of design research in context – i.e., to

expand standards, to hybridize standards or to develop agile modeling tools for specific

experiments, contexts and requirements.

This gap in understanding and abstraction is comparable to the one between "database

users" (who operate with data records, while taking a system or database design for

granted) and those able to migrate or deploy their own database for evolving needs. While

for database courses this gap is easily bridged (even during the same semester), it is not the

same for conceptual modeling topics which are dispersed as "aspects" of other disciplines

(database design, object-oriented programming, requirements engineering).

To solve this problem, in our master programs we aim to stimulate lateral thinking by

showing that a modeling language is a knowledge schema that can be tailored and migrated

in the same sense as a database schema, to ensure the semantic space that is required for a

particular application domain or information system (i.e., its purpose is not limited to

graphical documentation). Software Engineering is thus repositioned as an application

domain that benefits from standards reflecting best practices and consensus; at the same

time, a more general notion of "model value" is introduced - one that transcends application

domains and follows the learning design recommendations published in [3].

This is what we call "teaching Conceptual Modeling at large" – it prepares students for

an extended understanding of model value and of modeling methods as engineered

artifacts, while establishing pragmatic relations between modeling and Design Science,

Knowledge Management & Representation and Method Engineering.

A minimalist modeling method, to be described in this paper, was designed as a

teaching artifact. It showcases to students: (i) a modeling method's building blocks through

minimal examples that can be prototyped quickly in a modeling tool; and (ii) the

conceptualization and implementation process based on the Agile Modeling Method

Engineering framework [4] to enable the agile migration of a modeling prototype assuming

evolving requirements. Therefore, the research question for which this artifact was

developed is How can we teach Conceptual Modeling in a way that reveals the “knowledge

schema” nature of a modeling language, regardless of application domain and amenable

to agile evolution?

The remainder of the paper is organized as follows: Section 2 outlines the requirements

for the proposed teaching artifact and provides an overview on the proposed solution.

Section 3 presents the teaching artifact and method. Section 4 discusses observed

outcomes. Section 5 comments on related works. The paper ends with conclusions.

2. Problem Statement and Solution Summary

By analyzing past project challenges (of the authors' own experience or those documented

in [5]), several meta-requirements have been distilled for the proposed teaching artifact.

These are synthesized in Table 1 together with their motivation (Rationale), paralleled by

suggestions on how they were addressed (Solution Approach).

 Traditionally, there has been a significant gap between these requirements and the

dominant perception of students on diagrammatic Conceptual Modeling, as acquired

during bachelor studies. Most of our master students come from Business Information

Systems or Computer Science bachelor programs, with a minority (<10%) from Business

Administration programs. Their experience with modeling is dominated by UML and ER

diagrams (or BPMN, for a minority of Business Administration students) – however even

these are employed strictly as graphical documentation for bachelor theses (typically with

drawing tools providing diagramming "templates").

 The value of models as purposeful knowledge representation is thus lost or diluted in the

common use case of system documentation. We aim to reinforce that value by repositioning a

modeling language as a knowledge schema that supports easily demonstrable pragmatic goals

– model queries, rule-based mechanisms or interoperability to enable model-driven

engineering. The graphical representation thus becomes only a superficial layer for rich

ISD2019 FRANCE

knowledge structures. By raising the abstraction level, modeling goals are attached to

paradigms such as Design Science or Knowledge Management, thus suggesting theoretical

frames for students who want to further pursue research on these topics. "Model quality" also

comes into discussion, since it is linked to "purpose" and modeling method "requirements"

(which may also evolve).

Table 1. Requirements on the proposed teaching artifact and means of addressing them

Requirement Solution Approach Rationale

A. To position
Conceptual
Modeling as a

Design Science
approach

The notion of "modeling method" [6] (including a

modeling language) is introduced as an artifact

subjected to its own engineering process driven by

"modeling requirements".

The engineering process produces specific deliverables

guided by situational requirements and evaluation

criteria (derived from generic criteria proposed in [7]).

Students should gain the ability to

create and customize modeling

methods that are purposeful and

situational, and to productively

prototype them in the form of

modeling tools.

B. To position

Conceptual

Modeling within

the Knowledge

Management

paradigm

Considering the existing works on revisiting Nonaka's

knowledge conversion cycle [8] through the lens of

Conceptual Modeling (e.g., [9]), modeling is presented

as a means of Knowledge Externalization for which

software engineering is one of many possible

application areas. The "knowledge representation"

quality of models is stressed by showcasing the ability

of applying semantic queries on models, employing the

Resource Description Framework (RDF) [10] as a

model storage format.

Students should gain the ability of

tailoring a modeling method for

Knowledge Externalization purposes,

to satisfy knowledge retrieval

requirements (semantic queries or

reasoning). A modeling language

must be understood as a knowledge

schema that can be migrated just like

a database schema (with models

taking on the role of "records").

C. To emphasize

domain-specificity

as a common

situational

requirement

Inspired by the existing tradition in domain-specific

language development and domain engineering [5,11],

the approach highlights means of assimilating domain-

specificity in modeling languages, or to apply such

specificity to all building blocks of a modeling method.

Students should gain the ability of

extending standard modeling

languages or to create new ones, for

domain-specific purposes and having

in mind the knowledge retrieval goals

(model queries and possible

interoperability with model-driven

systems).

D. To reveal the

agility potential of

modeling methods.

The Agile Modeling Method Engineering [4]

methodology is employed to evolve a modeling method

through two iterations driven by additive requirements,

with the help of fast prototyping (metamodeling)

platforms.

Students should gain the ability to

evolve a modeling tool according to

changing requirements.

In addition to the requirements summarized in Table 1, several pragmatic goals have

been distilled from feedback on earlier attempts to design our teaching artifact [Error!

Reference source not found.]:

• Minimalism: The development of the modeling method should be demonstrable

in 2 meetings x 3 hours each, plus an additional meeting for discussion (to map the

hands-on experience on theoretical background provided by lectures, also

suggesting potential extensions for student homework). The modeling language

should introduce no more than 3 concepts (and necessary relations), thus reducing

the complexity to a "Hello world" kind of demonstration – however one that

minimally touches all building blocks and is still aligned with the meta-

requirements in Table 1;

• Intuitive constructivism: Hands-on experience of students should clash against

their dominant preconceptions in order to generate transformations across the

educational objectives specified by Bloom's framework [13] - Knowledge,

Comprehension, Application, Analysis, Synthesis, and Evaluation. Students with

heterogeneous background should be able to follow and replicate the

demonstration;

• Domain-specificity (without domain expertise) should manifest in various

aspects of the modeling method, suggesting further means of expanding this

specificity. However, specificity should be minimal to avoid prerequisite domain

expertise and distractions pertaining to domain understanding;

ANA-MARIA GHIRAN ET AL. A METAMODELING APPROACH TO TEACHING CONCEPTUAL MODELING "AT LARGE"

• Generalizability (only loose coupling to software engineering): The proposed

artifact should be detached from model-driven software engineering standards

(UML, ER). At the same time, it should be re-attachable to software engineering

purposes through means that illustrate the "models are knowledge" principle (i.e.,

model queries instead of the tight coupling of code generation);

• Familiarity: Existing modeling experience should be leveraged through analogies

(to e.g., activity modeling), further suggesting how students could develop their

own customization of existing standards.

The teaching artifact introduced to satisfy these requirements is a modeling method that

is demonstrated and evolved in two iterations together with students. Following this,

students also implement as exam projects their own modeling method/tool, for their choice

of domain and requirements (possibly extending the provided demonstration).

Therefore, the proposed artifact can be considered a modeling method "embryo" –

sufficiently rich to showcase the core principles of Agile Modeling Method Engineering

and, at the same time, open-ended for further expansion or generalization. The building

blocks of this artifact are shown in Figure 1, each mapped to their enabling technologies

(free versions for educational purposes are available for all of these):

a. ADOxx [14], a metamodeling platform on which modeling methods may be

implemented, including notation, syntactic rules, semantics or model-driven

functionality;

b. GraphDB [15], an RDF graph database server with ontological capabilities (to store

models as knowledge graphs);

c. ADOxx-to-RDF [16], a plug-in for converting diagrammatic models in machine-

readable RDF graphs, regardless of the modeling language used to create them; the

graphs are stored in GraphDB to expose model content to semantic queries

(SPARQL [17]) from arbitrary clients;

d. ADOScript, the built-in scripting language of ADOxx for implementing model-

based functionality.

Fig. 1. Building blocks and enablers of the proposed teaching artifact

3. Methodology and Artifact

3.1. Application Domain and Method

The research method underlying this work is subordinated to the Design Science research

paradigm [18] – i.e., we designed an artifact (a "modeling method") that is needed to

improve a problem context - to enable master students to think not only as users of

established modeling tools (taken for granted and bound to a modeling procedure), but also

as creators guided by specific requirements in a narrow application domain.

 Thus the artifact is iteratively built to defuse the fallacies and to satisfy the

requirements formulated in Section 2, enabling new innovation competences in our

Information Systems study programs, as well as an open-ended understanding of the

benefits of Conceptual Modeling.

ISD2019 FRANCE

The application domain targeted by the teaching artifact is the Internet of Things, for

which Conceptual Modeling can be used not only for traditional goals (e.g., system design),

but also as a knowledge representation technique that is amenable for both analysis by

humans and semantic processing by machines.

The proposed modeling method is introduced in relation to Knowledge Management

requirements in a maintenance company. A knowledge base must accumulate diagnosing

or repair procedures mapped on maintained devices and their diagnosing sensors. A

modeling tool is required to build this knowledge base in diagrammatic form.

The teaching method is based on live demonstration of small implementation

increments immediately followed by the same operation executed by students. The

progress has a "gradual revealing" nature, with metamodeling theorization provided only

at the end or in parallel lectures, to reflect back on experience and comparisons with known

modeling tools or languages. Each modeling method building block is showcased by a

minimal example enriched across two iterations in the two meetings. Exercising material

is provided between the meetings (so that the second one is more productive).

The tool development method employed for hands-on exercising is a simplification of

the Agile Modeling Method Engineering methodology. This is an iterative metamodeling

approach where each iteration starts with the definition of domain knowledge and modeling

requirements and ends with the deployment of a usable modeling tool (more details on its

phases are available in [4]). This methodology is reduced here to its design and

implementation phases, quickly leading to an intuitive and usable result even in the absence

of introductory metamodeling theorization. The two iterations are exemplified in this

paper, with the initial iteration satisfying the constraint of "not more than 3 concepts".

3.2. Initial Iteration

The initial design phase starts with (i) sketching a mock-up of how diagrams should look

in the language being developed and (ii) identifying the distinct types for each element

present in the mock-up diagram. The types (node types and connector types) will form the

metamodel, introduced here as the "language vocabulary" or "knowledge schema", thus

simplifying the traditional notion of meta-modeling established in the MOF specification

[19] to one easily compared with the data records-data schema relation.

 Figure 2 shows such a diagram mockup depicting a rudimentary process flow (simple

sequence of maintenance steps), where each step can be connected either to a sensor or a

device it acts upon; sensors should be attachable to devices.

The language vocabulary is introduced as the aggregate answer to four questions: (i)

what types of nodes are used in the mock-up? (ii) what types of connectors are used? (iii)

what types of nodes should be linked by each connector (i.e., the domain and range of each

relation)? (iv) how should the types be unified in order to have a single domain and range

for each relation? (i.e., a generalization of the RESOURCE concept is introduced, to allow

a maintenance step to act on both SENSORs and DEVICEs).

Non-specialized wording is employed ("types/concepts", "connectors",

"generalization", "language vocabulary") to support Business Administration students

while at the same time allowing those with computer science background the mapping to

a more technical dialect ("classes", "inheritance", "metamodel").

Following this design, students are guided to stepwise implement it on the language

engineering component of ADOxx. Implementation phases are clearly distinguished by the

building block they address: (i) abstract syntax (the definition of types and their syntactic

constraints – i.e., domain, range, cardinality); (ii) notation (the custom graphic symbols

attached to each concept and connector); (iii) semantics (the meaning attached to each

symbol).

ANA-MARIA GHIRAN ET AL. A METAMODELING APPROACH TO TEACHING CONCEPTUAL MODELING "AT LARGE"

Fig. 2. Diagram mockup and derived language vocabulary

The importance of semantics is stressed as the core benefit of Conceptual Modeling in

contrast to free sketching/drawing. Human interpretation and machine interpretation are

thus distinguished – the first relying on expressive labeling and visual cues; the second

requiring machine-readable (possibly domain-specific) annotation properties that will be

exposed to model queries and model-driven systems. These properties must conform a

schema that can be tailored for each concept. In this case, to DEVICEs we add a TYPE

property (as a way of distinguishing meaning without having to add new graphical symbols

to the language) and a DOCUMENTATION property (a hyperlink to some device

documentation available outside the modeling tool). Both labels and annotations will later

become the basis of running semantic queries against the RDF graph structure that can be

derived from models (thus revealing their "knowledge" quality).

Figure 3 shows a model created with the initial modeling tool implementation.

Fig. 3. Model created with the initial language iteration

After the initial language implementation, the other two building blocks of a modeling

method are demonstrated: mechanisms and the modeling procedure. A minimal

demonstrative mechanism is scripted with the help of ADOxx's internal scripting language.

The script shown in Listing 1 captures the event of drawing a connector instance and writes

in a log file information about the created connector (which objects have been connected,

in what model). It showcases the machine-readable nature of models – through functions

ISD2019 FRANCE

that retrieve the objects and types associated to a modeling event (here, connector creation)

while at the same time accessing the external file system to produce output based on model

contents.

This is presented as a toy example of traditional model-driven approaches such as code

generation. It also introduces the third component of a modeling method, the "modeling

procedure" (i.e., the recommended steps for creating models). If the modeling procedure is

simple enough to be formalized as a sequence of modeling actions, a "reference sequence"

can be compared with logged sequences of various modelers with the help of similarity

metrics – e.g., Levenshtein distance. Recent works concerned with the effectiveness of

teaching Conceptual Modeling show a growing interest in measuring modeling actions as

means of assessing learning outcomes [20] (an approach that we label as "modeling

procedure analysis").

ON_EVENT "AfterCreateModelingConnector"{

 CC "Modeling" GET_ACT_MODEL

 CC "Core" GET_MODEL_INFO modelid:(modelid)

 CC "Core" GET_CLASS_NAME classid:(classid)

 CC "Core" GET_OBJ_NAME objid:(fromobjid)

 SET sourcename:(objname)

 CC "Core" GET_OBJ_NAME objid:(toobjid)

 SET targetname:(objname)

 CC "AdoScript" FWRITE file:"C:\\log\\log.txt" text:("In model "+modelname+" you

created a connector of type "+classname+ " from object "+sourcename+" to object

"+targetname+"\n") append:yes}

Listing 1. ADOxx script for logging modeling actions

3.3. Advanced Iteration

Coming from initial modeling experiences in software engineering, students tend to

perceive modeling languages as invariants. However, agility principles, well established in

software engineering, may also be adopted for modeling languages/methods. This is

demonstrated in our teaching case by evolving the "modeling requirements", followed by

a quick reprotoyping of the modeling tool. Examples of requirements driving the new

iteration are the following:

a. The maintenance procedure should be more than a sequence of STEPs.

DECISIONs may also be necessary;

b. To avoid "construct overload" (cf. [21]), the ACTS_ON relation must be

specialized for sensors (READS_VALUE) and devices (ACTS_ON_DEVICE),

consequently reducing the processing effort in model queries;

c. To avoid visual cluttering, the modeling language should be partitioned in two

distinct types of models (the process and the resources); consequently, the

ACTS_ON connector is not only specialized, but also replaced with hyperlinks

between models;

d. To improve expressivity, domain-specificity should also be assimilated in notation

(as visual cues, plus the freedom to load preferred icons instead of the default

symbols);

e. To improve interoperability, domain-specificity should be assimilated in semantics

as well (sensors should have a live ADDRESS property that directly gives access

to their value stream).

Figure 4 shows diagrams created with the new iteration of the modeling tool.

ANA-MARIA GHIRAN ET AL. A METAMODELING APPROACH TO TEACHING CONCEPTUAL MODELING "AT LARGE"

Fig. 4. Models created with the second language iteration

Modeling standards, since they establish consensus, provide a foundation for model

compilers and roundtrip engineering. Since in this case we are advocating a non-standard,

unpredictable customization of a modeling language, the benefits of consensus do not

apply. However, software artifacts can still benefit from the knowledge captured in

diagrammatic form - by resorting to the Resource Description Framework.

For this purpose an ADOxx plug-in can convert any type of model (created with any

language/tool implemented on ADOxx) to RDF graphs according to certain transformation

patterns available in the literature [22]. The derived graphs are hosted by a graph database

and some simple model query examples are demonstrated, suggesting the possibility of

building client applications that are "aware" of model contents and their "knowledge

schema". This specific type of model-driven software engineering method has been

discussed in more detail in [23].

An example of a (SPARQL) query is provided here in Listing 2. It retrieves all the

devices inspected during a selected procedure and the components attached to them on any

decomposition level. Such examples are followed by discussion on the model queries made

possible by this advanced iteration – i.e., the new version of the modeling language

provides a richer knowledge schema/semantic space, not only visual customizations. At

this point RDF and semantic queries are not necessarily mastered by students - this is an

introductory example for a subsequent Knowledge Representation module that

complements the Conceptual Modeling module by delving into semantic technology.

SELECT ?device ?component

WHERE {

GRAPH :MaintenanceProcedure {?x :ActsOnDevice ?device.

 ?device :describedIn ?model}

GRAPH ?model {?component :BelongsTo+ ?device}}

Listing 2. SPARQL queries on agile model contents

ISD2019 FRANCE

4. Outcomes

The hands-on demonstration and exercise have proven successful in defusing the fallacies

detailed in Section 2 and in establishing a uniform baseline for students regardless of their

background. Success is mainly manifested in the sense that more sophisticated model-

driven thesis projects have been enabled, moving away from a "blueprint thinking" towards

lateral thinking, revealing a more general value and application possibilities for Conceptual

Modeling.

Relative to Bloom's taxonomy of educational objectives, we consider that confining

students to the role of users (of a modeling language) locks them in limited comprehension,

whereas the proposed teaching artifact opens new layers of: comprehension ("I understand the

role of knowledge schema that a modeling language fulfils, regardless of the application

domain"), analysis ("I can distinguish the building blocks of a modeling method, I know which

is affected by an agile change request"), synthesis ("I can synthesize a new method/tool based

on my knowledge of those building blocks"), application ("I can implement a domain-specific

modeling tool"), evaluation ("I can relate a modeling method to the requirements/purpose for

which it was built").

Regarding a quantified success of the approach, the proposal is part of a master exam

that reflects a normal distribution of grading and student interest, just like any other typical

exam (about 25% of students propose new domains and bring novelty in their exam

projects; 45% do not bother to innovate but are capable of extending the developed

prototype with new concepts, attributes, scripts; 30% show little interest or have difficulties

passing the exam – this is however not a discrepancy from other exams).

A more relevant outcome than the grading distribution is the fact that our master

students were for the first time able to publish scientific works on Conceptual Modeling

topics at prestigious international conferences: ENASE 2018 [23], ICEIS 2018 [24] CAISE

2018 workshops [25] and PoEM 2018 workshops [26]. Furthermore the learning curve for

junior researchers starting project work was shortened by an estimated 2 months for those

attending strictly this 3 meetings module or by 6 months for those following the full

program, which includes additional related topics: reflective comparison against well-

known modeling languages (e.g., the BEE-UP tool supporting UML, BPMN, ER, EPC and

Petri Nets [27]); further reading on the benefits of domain-specific or situational method

engineering [11,28]; exercises with graph databases and semantic technology. Of course,

this estimation is based on isolated cases as the module was only recently launched and we

do not have yet alumni data for a longitudinal survey – besides having alleviated the gap

between bachelor studies and design research, we also expect benefits pertaining to jobs

related to Business Process Management, Robotic Process Automation and related

interoperability scenarios.

5. Related Works

Recent works show growing preoccupation with deploying teaching methodologies for

Conceptual Modeling. A recent panel discussion made the following position statement

referring to Conceptual Modeling education [29]: "Supportive means such as text books,

case examples are hardly available. In many cases teaching may boil down to an art being

passed on to students. [...] (basic) courses are dominated by the coding exercise, i.e.,

students' efforts in mastering simulation software, or, to a lesser degree, statistics

associated with model elements or outputs. Hence little time is left for Conceptual

Modeling." The work at hand tries to address this discontinuity which, in the authors'

experience is often met between bachelor programs and more advanced studies or research

project work.

Works such as [20,30] employ analysis of modeling action logs to assess different

dimensions of learning and educational objectives when teaching software engineering-

oriented Conceptual Modeling (e.g., UML). Another work that quantifies UML model

creation errors by novices is [31]. In [32] authors proposed a tool for monitoring the

interactions and mistakes done during using an established modeling language. In

comparison, our work focuses on empowering students to take control over their modeling

method and tool, while being aware of and guided by a purpose and related requirements.

ANA-MARIA GHIRAN ET AL. A METAMODELING APPROACH TO TEACHING CONCEPTUAL MODELING "AT LARGE"

This work was also inspired by previous publications detailing teaching experiences

that make use of similar resources (i.e., ADOxx): the modeling tool presented in [33] is

much more complex and does not target our specific learning objectives (e.g.,

minimalism); the case of [34] is closer in scope to our work – however it is subordinated

to teaching software engineering (SQL generation from Entity Relationship diagrams). A

long-term teaching experience report oriented towards system architect practitioners,

rather than students, is presented in [35]. A generalized framework for teaching Conceptual

Modeling has recently been published in [36], using a revised variant of Bloom's taxonomy

as a motivational starting point. Our future work will provide further analysis of our

proposed artifact through the analytical lens established by that publication.

6. Conclusions

The paper introduced a minimalist modeling method as a teaching artifact that can be

created together with students, with the help of open use educational resources. Its qualities

are minimalism, intuitive constructivism, open-endedness, domain-specificity, detachment

from standard practices (while still showing relevance for Software Engineering). The

methodological and technological enablers of the proposed artifact are the Agile Modeling

Method Engineering framework, the Resource Description Framework and open use

available tooling supporting these frameworks.

The framework proposed very recently by [36] will be employed in the next phase of

our work to dissect the hereby proposed teaching artifact in terms of the knowledge and

cognitive dimensions of the revised Bloom taxonomy.

Future work will also be invested in defining variations of this artifact for other

domains and timeframes. Examples of candidate domains are Service Design (for

marketing experts) and Narrative Structure Analysis (for communication theorists).

We aim to further reshape this demonstration in order to fit the 2-3 hours frame

typically allowed in conference tutorials, as well as to fit it in the curriculum of the Next

Generation Enterprise Modeling summer school series [37].

References

1. Embley, D.W., Liddle, S.W. and Lonsdale, D.W.: Principled Pragmatism: A Guide to the

Adaptation of Ideas from Philosophical Disciplines to Conceptual Modeling. In: De

Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H.

(eds.) Advances in Conceptual Modeling. Recent Developments and New Directions (ER

2011), Lecture Notes in Computer Science, Vol. 6999, pp. 183-192. Springer, Berlin,

Heidelberg (2011)

2. Moser, C., Buchmann, R.A., Utz, W. and Karagiannis, D.: CE-SIB: A Modelling Method

Plug-in for Managing Standards. In: Mayr, H. C., Guizzardi, G., Ma H., Pastor O. (eds.)

Conceptual Modeling. Enterprise Architectures (ER 2017), Lecture Notes in Computer

Science, Vol. 10650, pp. 21-35. Springer, Cham (2017)

3. Strecker, S., Baumol, U., Karagiannis, D., Koschmider, A., Snoeck, M., Zarnekow, R.:

Five inspiring course (re-)designs. Business & Information Systems Engineering, 61(2),

241-252 (2019)

4. Karagiannis, D.: Conceptual Modelling Methods: The AMME Agile Engineering

Approach. In: Silaghi G. C., Buchmann R. A. and Boja C. (eds.), Informatics in Economy

(IE 2016), Lecture Notes in Business Information Processing, Vol. 273, pp. 3-19.

Springer, Cham (2018)

5. Karagiannis, D., Mayr, H. C., Mylopoulos, J.: Domain-specific Conceptual Modeling,

Springer International Publishing (2016)

6. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: Bauknecht, K., Tjoa, A.M.,

Quirchmayr, G. (eds.) E-Commerce and Web Technologies. EC-Web 2002, Lecture

Notes in Computer Science, Vol. 2455, pp. 182. Springer-Verlag, Berlin, Heidelberg

(2002)

7. Prat, N., Comyn-Wattiau, I., Akoka, J.: Artifact Evaluation in Information Systems

Design-Science Research-a Holistic View. In: Proceedings of the 19th Pacific Asia

Conference on Information Systems (PACIS 2014), AIS (2014)

ISD2019 FRANCE

8. Nonaka, I., von Krogh, G.: Perspective - Tacit Knowledge and Knowledge Conversion:

Controversy and Advancement in Organisational Knowledge Creation Theory.

Organisation Science 20(3), 635-652 (2009)

9. Karagiannis, D., Buchmann, R., Walch M.: How can diagrammatic conceptual modelling

support Knowledge Management? In: Proceedings of the 25th European Conference on

Information Systems (ECIS 2017), pp. 1568-1583 (2017)

10. W3C: Resource Description Framework – official website, http://www.w3.org/RDF.

Accessed June 24, 2019

11. Frank, U.: Domain-Specific Modeling Languages: Requirements Analysis and Design

Guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin J. (eds.)

Domain Engineering, pp. 133-157. Springer, Berlin, Heidelberg (2013)

12. Buchmann, R.A., Ghiran A.: Engineering the Cooking Recipe Modelling Method: a

Teaching Experience Report. In: CEUR-WS vol. 1999, paper 5 (2017)

13. Bloom, B. S.: Taxonomy of educational objectives: the classification of educational

goals: handbook I: cognitive domain, D. McKay (1956)

14. BOC GmbH: ADOxx metamodeling platform – official website,

http://www.adoxx.org/live/home. Accessed June 24, 2019

15. Ontotext: GraphDB - official website, http://graphdb.ontotext.com/. Accessed June 24,

2019

16. OMILab: ADOxx-to-RDF download page, http://austria.omilab.org/psm/content/

comvantage/ downloadlist?view=downloads. Accessed June 24, 2019

17. W3C: SPARQL 1.1 Query Language, http://www.w3.org/TR/2013/REC-sparql11-query-

20130321. Accessed June 24, 2019

18. Wieringa, R.J.: Design Science Methodology for Information Systems and Software

Engineering. Springer-Verlag Berlin Heidelberg (2014)

19. OMG: Meta-Modeling and the OMG Meta Object Facility, https://www.omg.org/ocup-

2/documents/Meta-ModelingAndtheMOF.pdf. Accessed June 24, 2019

20. Snoeck, M.: Conceptual modelling: How to do it right? In: Proceedings of 11th Research

Challenges in Information Science (RCIS 2017). IEEE (2017)

21. Moody, D.L., Heymans, P., Matulevičius, R.: Improving the effectiveness of visual

representations in requirements engineering: An evaluation of i* visual syntax. In:

Proceedings of 17th Requirements Engineering Conference, (RE 2009), pp. 171-180,

IEEE (2009)

22. Karagiannis, D. and Buchmann, R.A.: Linked open models: extending Linked Open Data

with conceptual model information. In Information Systems. Vol. 56, 174-197 (2016)

23. Buchmann, R.A., Cinpoeru, M., Harkai, A., Karagiannis, D.: Model-Aware Software

Engineering - A Knowledge-based Approach to Model-Driven Software Engineering. In:

Damiani, E., Spanoudakis, G., Maciaszek, L. (eds.) Proceedings of the 13th International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018),

pp. 233 – 240, ScitePress (2018)

24. Harkai, A., Cinpoeru, M., Buchmann, R.A.: Repurposing Zachman Framework Principles

for "Enterprise Model"-Driven Engineering. In: Hammoudi, S., Smialek, M., Camp, O.,

Filipe, J. (eds.) Proceedings of the 20th International Conference on Enterprise

Information Systems - Volume 2 (ICEIS 2018), pp. 682-689, ScitePress (2018)

25. Harkai, A., Cinpoeru, M., Buchmann, R.A.: The What Facet of the Zachman Framework:

a Linked Data-driven Interpretation. In: Matulevičius, R., Dijkman, R. (eds.) Proceedings

of CAISE 2018 Workshops, Lecture Notes in Business Information Processing, vol 316,

pp.197-208, Springer (2018)

26. Chis-Ratiu, A., Buchmann, R.A.: Design and Implementation of a Diagrammatic Tool for

Creating RDF Graphs. In: CEUR-WS vol. 2238, pp.37-48(2018)

27. OMiLAB: Bee-Up – official website: http://austria.omilab.org/psm/content/bee-up/info.

Accessed June 24, 2019

28. Bucher, T., Klesse, M., Kurpjuweit, S. and Winter, R.: Situational Method Engineering.

In: Situational Method Engineering: Fundamentals and Experiences. In: Ralyté J.,

Brinkkemper, S., Henderson-Sellers B. (eds.) IFIP — The International Federation for

Information Processing, Vol. 244, pp. 33-48. Springer, Boston, MA (2007)

ANA-MARIA GHIRAN ET AL. A METAMODELING APPROACH TO TEACHING CONCEPTUAL MODELING "AT LARGE"

29. van der Zee, D.J., Kotiadis, K., Tako, A.A., Pidd, M., Balci, O., Tolk, A. and Elder, M.:

Panel discussion: education on conceptual modeling for simulation – challenging the art.

In: Proceedings of the 2010 Winter Simulation Conference (WSC 2010). pp. 290-304.

IEEE (2010)

30. Bogdanova, D., Snoeck, M.: Domain Modelling in Bloom: Deciphering How We Teach

It. In: Poels, G., Gailly, F., Serral Asensio, E., Snoeck, M. (eds) The Practice of

Enterprise Modeling (PoEM 2017). Lecture Notes in Business Information Processing,

vol 305. pp. 3-17. Springer, Cham (2017)

31. Kayama, M., Ogata, S., Masymoto, K., Hashimoto, M., Otani, M.: A practical Conceptual

Modeling teaching method based on quantitative error analyses for novices learning to

create error-free simple class diagrams. In: Proceedings of 3rd Advanced Applied

Informatics (IIAI 2014), pp. 616-622. IEEE (2014)

32. Ternes, B., Strecker, S.: A web-based modeling tool for studying the learning of

conceptual modeling, Modellierung 2018, Gesellschaft für Informatik, pp. 325-328

(2018)

33. Bork, D., Buchmann, R., Hawryszkiewycz, I., Karagiannis, D., Tantouris, N.,Walch, M.:

Using Conceptual Modeling to support innovation challenges in Smart Cities. In:

Proceedings of IEEE 14th International Conference on Smart City (SmartCity 2016). pp.

1317-1324, IEEE (2016)

34. Glässner, T.M., Heumann, F., Keßler L., Härer, F., Steffan, A., Fill, H.G.: Experiences

from the Implementation of a Structured-Entity-Relationship Modeling Method in a

Student Project. In: Proceedings of the 1st International Workshop on Practicing Open

Enterprise Modeling within OMiLAB (PoEM 2017), Vol. 1999 (2017)

35. Muller, G.: Challenges in Teaching Conceptual Modeling for Systems Architecting. In:

Jeusfeld M., Karlapalem K. (eds.) Advances in Conceptual Modeling. ER 2015. Lecture

Notes in Computer Science, Vol. 9382. pp. 317-326, Springer, Cham (2015)

36. Bork, D.: A Framework for Teaching Conceptual Modeling and Metamodeling Based on

Bloom’s Revised Taxonomy of Educational Objectives. In: 52nd Annual Hawaii

International Conference on System Sciences (HICSS 2019), pp. 7701-7710 (2019)

37. OMILab: NEMO Summer School Series, http://nemo.omilab.org/2018/. Accessed June

24, 2019

