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Abstract

Business Intelligence (BI) systems are extensively used as in-house solutions to

support decision-making in organizations. Next generation BI 2.0 systems claim

for expanding the use of BI solutions to external data sources and assisting the

user in conducting data analysis. In this context, the Analytical Metadata (AM)

framework defines the metadata artifacts (e.g., schema and queries) that are

exploited for user assistance purposes. As such artifacts are typically handled

in ad-hoc and system specific manners, BI 2.0 argues for a flexible solution

supporting metadata exploration across different systems.

In this paper, we focus on the AM modeling. We propose SM4AM , an RDF-

based Semantic Metamodel for AM. On the one hand, we claim for ontological

metamodeling as the proper solution, instead of a fixed universal model, due to

(meta)data models heterogeneity in BI 2.0. On the other hand, RDF provides

means for facilitating defining and sharing flexible metadata representations.

Furthermore, we provide a method to instantiate our metamodel. Finally, we

present a real-world case study and discuss how SM4AM , specially the schema

and query artifacts, can help traversing different models instantiating our meta-

model and enabling innovative means to explore external repositories in what

we call metamodel-driven (meta)data exploration.
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1. Introduction

Traditional BI systems enable data analysis to support decision-making.

Their wide acceptance is greatly owed to the user-friendly front-ends (typically

OLAP) built on top of data conforming to a predefined data model (e.g., multi-

dimensional schemata). BI tools also exploit metadata (e.g., queries) to provide5

user assistance (e.g., query recommendations) such that even non-technical users

are able to use such front-ends. With the arrival of Big Data, BI 2.0 aims to ex-

pand the analysis scope beyond the in-house data sources, that are traditionally

used by BI tools, and consider publicly available data on the web and exter-

nal sources. Although non-controlled and heterogeneous, external data sources10

should be analyzed in the same fashion (e.g., with a pivot table) as in traditional

BI settings. Typical examples of external sources are social networks, forums,

and Open data1 that provide data in semi-structured (e.g., JSON, XML) and

non-structured (e.g., textual) formats and use different (meta)data models. To

overcome this heterogeneity, BI 2.0 promotes the use of Semantic Web (SW)15

technologies for representing and consolidating data semantics as well as for

exchanging data [1]. As new possibilities attract an increasing number of indi-

viduals and groups of non-expert users (e.g., [2]), BI 2.0 emphasizes the need

for user assistance so that users are as autonomous as possible in their anal-

ysis. Thus, metadata become an important asset to track system usage (e.g.,20

by storing queries) and enable user assistance (e.g., interactive personalization).

Different perspectives of BI 2.0 are discussed as Ad-hoc and Collaborative BI

[3], Self-Service BI [2], Open BI [4], Situational BI [5], Exploratory OLAP [1]

and others.

Although recent trends advocate for the exploitation of metadata artifacts25

(e.g., schema and queries) to assist the user, the modeling, organization, and

1https://okfn.org/opendata/
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management of these artifacts are typically not systematically addressed and

still handled in system-specific manners [6]. Nevertheless, as BI 2.0 requires

interaction between systems, using metadata to capture the common seman-

tics and support the automation of processes becomes a priority. As a first30

step in this direction, the Analytical Metadata (AM) framework [6] has been

proposed and, based on a survey of the current state-of-the-art, it defines the

user assistance process, the needed metadata artifacts as well as their process-

ing to enable automatic user assistance when exploring and analyzing data in

the context of BI 2.0. The AM artifacts also need to be shared/reused and35

automatically processed across different systems.

Data and metadata modeling approaches are widely applied in software en-

gineering and database domains to enable systematic data organization and

automation. Likewise, modeling of AM is necessary and highly desired, espe-

cially considering the BI 2.0 context. Indeed, some recent approaches already40

model certain AM artifacts. For instance, instead of keeping queries in logs,

[7] represents queries according to a query metadata model and stores them in

a common repository. However, strict modeling in BI 2.0 is hardly applicable

due to the high level of heterogeneity of models and sources, e.g., relational and

graph data models. Relevantly, semantic (or knowledge) graph models (i.e.,45

RDF(S) and OWL) can represent several types of schemata [8] and due to their

flexibility they are the cornerstone of the SW for creating the web of Linked

Data [9]. Thus, semantic graphs are good candidates for handling structured

and semi-structured sources in a unified way and, today, these formalisms are

the basis of Ontology-Based Data Access (OBDA) [10], the main approach to50

tackle the so-called Variety Challenge in Big Data [11] (e.g., see [10] and [12]).

Thus, we follow this spirit to capture the semantics of AM artifacts in an

RDF-based metamodel. Note, however, the AM is not an artifact to perform

data integration, but a set of metadata artifacts to facilitate metadata exchange

between different systems that must interact. Thus, we first advocate for linking55

the metadata models of independent systems via metamodeling. This approach,

even if well-known in Software Engineering, is overlooked in the SW. We use

3



RDF [13] to represent metadata as a semantic graph that can be shared and

reused across different systems via Linked Data. We use the metamodel abstrac-

tion level due to the heterogeneity of models. The RDF Schema vocabulary [14]60

built on top of RDF enables the representation of different ontological modeling

layers (see [15]). Hence, our approach is ontological metamodeling [16] for BI

2.0 metadata and it includes a method defining steps to instantiate a metamodel

with (existing) models that, in turn, have instances. To discuss the benefits of

the approach, we present a case study. Overall, the main contributions of our65

work are as follows:

• We present the Semantic Metamodel for Analytical Metadata (SM4AM ),

an RDF-based metamodel for AM. The metamodel formalizes metadata

artifacts needed to enable systems interaction and user assistance in BI

2.0.70

• Given the challenge of metamodeling in RDF, we provide a method defin-

ing detailed steps on how to instantiate the metamodel for system-specific

metadata models.

• We present a case study where we apply our approach to interlink two

independent real-world data sets in order to allow cross-domain analysis.75

This case study shows the benefits of using SM4AM to, first, link their

models via metamodeling and then, use such links to reduce the amount of

(meta)data to be explored, in a metamodel-driven (meta)data exploration.

The present paper is a significant extension of an earlier workshop paper

[17]. We extended and simplified the metamodel, added a detailed method for80

the metamodel instantiation, and presented a case study to show the practical

benefits of SM4AM . In particular, Sections 1, 2, 5, 6, and major part of Section

3.3 are completely new, while the other sections are significantly updated.

The rest of the paper is organized as follows. Section 2 presents a motivating

example and Section 3 explains related work and the necessary prerequisites85

to understand our approach. Then, the complete metamodel is presented in
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Section 4. Section 5 defines a method comprising of steps for instantiation of

an ontological metamodel and Section 6 elaborates on the application level case

study. Finally, Section 7 concludes the paper.

2. Motivating Example90

To exemplify a BI 2.0 scenario, let us consider a journalist named Joe who

investigates development of countries. He is focusing on two real-world data

sources from Linked Data that are illustrated in Figure 1. One data source

is World Bank Linked Data (WBLD)2 that provides data about countries and

World Bank (WB) projects supporting countries around the world. The other95

data source is DBpedia3 that is an RDF representation of data published on

Wikipedia and covers a wide range of topics.

RDF link
Legend Data 

Source

Metadata 
Source

WikipediaWorld Bank Open Data

WBLD
QB

DBpedia

LSQ174M 
280K 

2M 
740K 

SM4AM

QueryTriples

Figure 1: Motivating Example and Case Study Settings

Instead of simple explorations such as keyword search provided by WB and

Wikipedia, using their RDF representation we want to enable wider querying

possibilities, as typically done in BI. However, exploring such data sets is chal-100

lenging as the data exposed are not known in advance by the user. Thus, Joe

must first identify the relevant subset of his interest (e.g., population of coun-

tries) which is tedious due to the (meta)data volume. In the SW, this search is

done by explorative querying over the available metadata. Specifically, WBLD

contains 174 million triples, where 280 thousands are metadata, while DBpedia105

2http://worldbank.270a.info/.html
3http://wiki.dbpedia.org/
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contains more than 2 million triples about countries such as country description,

name(s), and geographical coordinates. Thus, discovering what data is available

in these data sources is complicated for a user such as Joe. Although reusing

existing queries over DBpedia could help, it is still hard to find the country-

related ones as there are 740,000 available queries. Clearly, these tasks require110

significant manual efforts.

In order to facilitate the querying, Joe can use SM4AM to lead the search

over the sources, in what we call metamodel-driven (meta)data exploration. In

particular, linking the WBLD and DBpedia metadata to SM4AM can enable

Joe to directly identify the schema information for WBLD data (this metadata115

is defined using the QB vocabulary [18]), as well as to retrieve what other

users searched about countries by reusing queries over DBpedia (metadata query

artifacts for DBpedia are defined using the LSQ vocabulary[7]). The metadata

of these two data sources are now linked through SM4AM and this facilitates

identifying the corresponding metadata artifacts respectively. Also, note that120

not all metadata need to be linked to SM4AM but those artifacts to be exploited

by Joe. This way, the amount of (meta)data triples and queries that Joe should

explore prior to identifying his data of interest is drastically reduced, e.g., from

174 millions of total triples to 210 metadata elements for WBLD (i.e., relevant

schema information). This setting is also used for the case study in Section 6125

where we present further insights. The same principles can be applied to other

cases where metadata are exposed using SW technologies and different RDF

vocabularies such that they can be linked to SM4AM .

3. Background and Related Work

In this section, we introduce the background and discuss the related work130

necessary for understanding our approach. We first provide details about AM.

Then, we explain the SW technologies and their role in BI 2.0. Finally, we focus

on metamodeling as our choice for representing AM and discuss related work.
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ANALYTICAL METADATA

Figure 2: Analytical Metadata Artifacts

3.1. Analytical Metadata

The AM framework is presented in [6] explaining the role of AM for the135

user assistance in BI 2.0. It includes the AM taxonomy, defined according to a

survey, that represents a set of metadata artifacts for this context. Each artifact

is a concept that can be used for assisting the user with data analysis such as

OLAP. Thus, the taxonomy consists of typical metadata artifacts related to

traditional approaches (e.g., a query) and alternative ones (e.g., traceability140

metadata) that come from new BI 2.0 approaches. Figure 2 illustrates the AM

artifacts classified into system-related and/or user-related artifacts.

In our context, a data source can be described by the AM artifacts that

are defined as follows. Vocabulary defines a data set business terms and their

relationships. It represents the end-users day-by-day vocabulary and their map-145

pings to the data set schema. Schema represents the data model while Profiling

metadata capture technical characteristics of the data set. Traceability meta-

data describe information about where the data come from and transformations

made. Further, Query represents a user inquiry for certain data (disregarding

the form it takes), Query log is a list of all queries ever posed, and Session is150

a sequence of queries posed by the user performing a certain analysis. Prefer-

ences refer to the user preferences about the result set selection (e.g., the year

of analysis) and/or representation prioritization (e.g., visualization chart). Fi-

nally, Statistics captures data usage indicators (e.g., most queried piece of data)

while Characteristics capture the explicitly stated information about the users155

(e.g., name, job position, etc.).
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Due to the high variety of data sources in BI 2.0, the metadata models

between different systems are typically heterogeneous. Thus, there is a need

for a common yet flexible solution that enables identification and correlation

of metadata concepts while supporting a high degree of customization entailed160

by the specific systems. Consequently, first, for any two data sources to be ex-

plored jointly their metadata artifacts must be aligned. The overall objective of

SM4AM is to facilitate this task. Following good habits in Software Engineer-

ing, we formalize it at the metamodel abstraction level and using RDF -based

formalisms.165

3.2. Resource Description Framework

The means for flexible (meta)data representation range from XML4 to se-

mantically rich but computationally complex approaches such as the OWL5

ontology language. OWL is the most expressive of them all, and provides pow-

erful reasoning capabilities that comes at the cost of computational efficiency.170

Deactivating reasoning entails less expressivity but enables wider adoption and

fosters sharing and reusing of (meta)data, as claimed in the principle of least

power used by the SW [19]. Accordingly, in our approach we follow the strategy

of RDF(S)-based vocabularies. Hence, we do not fully exploit the reasoning

services provided by semantic graphs. Instead, we use their embedded seman-175

tics to create machine-readable annotations that facilitate the automation of

exchanging metadata. Even if we considered OWL in our approach, we would

use it as a vocabulary (in the spirit of RDF(S)), while exploiting its advanced

reasoning capabilities is beyond the scope of this paper and remains for future

work.180

As BI 2.0 settings bring extremely large metadata volumes, computational

efficiency, sharing, and reuse are major priorities. Thus, following the princi-

ple of least power, our choice is RDF(S) as it provides sufficient expressivity

4http://www.w3.org/XML/
5http://www.w3.org/TR/owl2-overview/
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regardless of its simplicity. RDF constructs are very flexible for capturing data

semantics as most information can be naturally represented as RDF triples and185

IRIs. A triple consists of a subject, a predicate, and an object, and represents a

directed binary relationship (a predicate) between two resources (a subject and

an object), e.g., see line 2 in Figure 3, or a resource (a subject) and a literal (an

object), e.g., see line 3 in Figure 3.6 The subject and predicate are represented

with IRIs7 that enable their unique identification, while the object can be an190

IRI or a literal value. A set of triples form an RDF graph. RDF vocabular-

ies are used to define the semantics of IRIs and enable their (re)use across the

(Semantic) Web. As discussed in [9], RDF is a standardized data model where

data access is simplified as data are self-describing, thus supporting the same

concepts reuse in independent systems.195

1 ex:MDLevel rdf:type ex:SchemaComponent .

2 ex:refArea rdf:type ex:MDLevel .

3 ex:refArea ex:areaCode "08034"^^xsd:decimal .

Figure 3: Class and Instance Concept Example

The primary vocabulary for modeling in RDF is RDF Schema (RDFS) [14],

which is an extension of the RDF vocabulary. Although quite simple, RDF

and RDFS (jointly referred as RDF(S)) represent formalisms that can be used

for data integration, mappings of business and technical terms, incorporation

of external and heterogeneous sources, and other. In the context of metadata,200

we particularly outline the typing possibilities via the rdf:type property. As in

an RDF graph both data and metadata with their classes and instances are

stored together, defining data types is convenient to semantically distinguish

the metadata and data instances. For instance, [20] uses data type links to

extract the schema from data. RDF8 graphs are queried with the SPARQL205

6All prefixes used throughout the paper are available at http://www.essi.upc.edu/

~jvarga/sm4am_materials/sm4am_prefixes.txt
7http://en.wikipedia.org/wiki/Internationalized_resource_identifier
8For the sake of simplicity, note that from here on RDF should be read as RDF(S).
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query language [21]. It applies pattern matching techniques to retrieve sub-

graphs (i.e., set of triples) that fit the pattern (i.e., the query). Furthermore,

SPARQL supports federated queries9 for retrieving results from more than one

data source. It provides a powerful framework for working with RDF graphs.

For a diverse environment such as BI 2.0, even existing non-RDF metadata210

repositories can be included if an RDF middleware for ontology-based data

access is created. Furthermore, RDF is widely applied in the Linked Data

initiative which is accepted by a significant number of participants including

both companies, e.g., Thomson Reuters10, and public government institutions,

e.g., the European Union11. An overview of Linked Data and RDF can be found215

in [9]. Linked Data interlinking principles can also be applied to correlate the

metadata of different systems in BI 2.0. Note that indeed RDF is already a mean

for capturing different types of metadata (e.g., describing music, images, videos,

etc.)12. Finally, an important characteristic of RDF models is that they can be

extended by following the good practices of ontology evolution techniques (e.g.,220

see [22]). Novel concepts can be incorporated and the metamodel can evolve

according to the needs. This mechanism is already used in SW environments

and BI 2.0 systems can strongly benefit from it.

3.3. Metamodeling

The heterogeneity of models for metadata artifacts (e.g., queries) in BI 2.0225

hinders the use of a single metadata model [6]. Thus, our idea is to represent

the AM artifacts at the metamodel abstraction level capturing the common se-

mantics. Then, the system-specific metadata models can be defined as instances

of the metamodel elements, both when creating new or enriching the existing

models. Indeed, a metamodel is convenient for the settings where heterogeneous230

models can be created as instances of the metamodel [16]. Moreover, rather than

9http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/
10https://www.thomsonreuters.com
11http://ec.europa.eu/digital-agenda/en/open-data-0
12http://dublincore.org/
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classical metamodeling that defines linguistic metatypes that models must con-

form to, using RDF enables us to perform ontological metamodeling13 such that

ontological metamodel types do not require literal conformance at the model

level [23]. Such an approach provides the flexibility needed for BI 2.0. We next235

dive into details on ontological metamodeling and position our approach with

respect to the related work.

Traditional Object Management Group (OMG) modeling infrastructure has

been the foundation for Model-Driven Development (MDD) and Model-Driven

Architecture (MDA) approaches that promote the use of four layers for model-240

ing [16]. These layers represent the following modeling abstraction levels: M0

– data, M1 – model, M2 – metamodel, and M3 – meta-metamodel. For each

two adjacent levels, the lower is an instance of the higher level. Thus, these

approaches follow the linguistic metamodeling where instances at the lower ab-

straction level strictly conform to the types of the higher level [23].245

An ontological classification defines the semantics of an element but does

not require literal syntactic conformance (e.g., an instance can have its own

structure and properties). Furthermore, it enables the definition of ontological

(i.e., semantic) types of elements within the same abstraction level [23]. Thus,

we aim for ontological RDF metamodeling of AM (see Sections 4 and 5 for250

details).14 In RDF, the class-instance relation between a meta class and a class,

and of a class with a class instance can be defined with the rdf:type property. As

discussed in [15], in this way we can distinguish between ontological metamodel

layers. In RDF modeling there is no restriction that an instance cannot be a

class at the same time. For example, in Figure 3 we can express that ex:MDLevel255

(i.e., a level in an MD schema) is a class instantiated by ex:refArea and an

instance of ex:SchemaComponent at the same time. However, the fact that an

RDF IRI can be, at the same time, a class and an instance yields basic modeling

13Considering that ontological metamodeling can be understood differently depending on

the approach, note that the present paper considers the meaning given in [16].
14In this context, we use the terms meta class for meta type and class for type.
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problems that have been formalised in terms of the Russell paradox formulated

within the set theory [24]. This is due to the fact that RDF modeling does260

not follow well-known Software Engineering modeling principles. Thus, it is

one of our objectives to provide foundations on how to properly use RDF for

ontological metamodeling.

An RDF ontological metamodel can significantly reduce the manual efforts

for aligning different data sets via metadata. For instance, we can automatically265

identify query elements in different systems [25] and align them via metamodel-

ing. Note that we propose an alternative to the traditional instance-based data

integration. Although querying is much more precise when materializing the in-

tegration of instances, it renders unfeasible in cases where the data is out of our

control, which is the main scenario of BI 2.0 [1]. Alternatively, we propose to270

start by aligning metadata artifacts (i.e., models). Importantly, our approach

facilitates the tedious task of ontology alignment as it involves only models,

which are typically much smaller in size than instances. Hence, using ontologies

for the metamodeling abstraction level drastically reduces the metadata search

space (i.e., the number of pair checks to identify what metadata elements link275

to each other) and facilitates the alignment of the metadata models. Note that

since RDF stores data and metadata together, once the models are aligned

querying the instances can be done via rdf:type. We define the search space

as the amount of (meta)data to be explored by the user. In the sequel, we

discuss the related work considering other perspectives on the relation between280

metamodels and ontologies (summarized in Table 1), as well as the existing BI

metadata metamodels (summarized in Table 2).

The use of metamodels for modeling ontologies. There is an OMG ini-

tiative for an Ontology Definition Metamodel (ODM). The initiative motivated

approaches such as [26] making their own ODM proposals and finally resulted285

in an official ODM specification by OMG [27]. While these approaches focus

on linguistic metamodeling and define language constructs at the M2 layer, our

approach is focused on the ontological metamodels where both metamodel and

model belong to the M1 layer.
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The use of ontologies to provide semantics for metamodels. Dis-290

cussions on the relation between ontologies and metamodels are surveyed and

presented in [28, 29, 30]. These approaches acknowledge the previous perspec-

tive by discussing the creation of domain ontologies that are used as a concrete

engineering artifact represented in a specific language. However, their emphasis

is on considering the notion of ontology in a more philosophical manner where295

an ontology defines concepts independently of a modeling language. This per-

spective results in foundational ontologies describing the real-world knowledge

without focusing on a particular modeling language. Examples of foundational

ontologies are the Descriptive Ontology for Linguistic and Cognitive Engineer-

ing [31] focusing on “the ontological categories underlying natural language and300

human common sense”15 and Unified Foundational Ontology [32] that can be

used to (re)design and evaluate conceptual modeling, including ontology repre-

sentation, languages. Moreover, approaches like [33] use ontologies to represent

language metamodels and support their semantic integration and map different

language metamodels. As such, these approaches can fit to the M3 layer since305

they can be used for defining the constructs used in a modeling language. Our

approach clearly differs from these approaches as we focus on the ontological

metamodeling of a domain ontology within the M1 layer.

Ontological engineering. These approaches focus on achieving desired

computational properties when using domain ontologies [29]. Here, the use of310

extensive ontologies with complex logical foundations can be computationally

expensive, leading to the use of lightweight ontologies and related languages

(e.g., OWL) [29]. For example, OWL 2 uses “punning”16 to support reason-

ing where a concept is interpreted as a class or an instance depending on the

context. As this can still be computationally expensive, RDF(S) can, although315

limited in its reasoning capabilities, be used instead. Computational efficiency

is crucial in our approach. Furthermore, reasoning is limited to the SPARQL

15https://en.wikipedia.org/wiki/Upper_ontology
16http://www.mkbergman.com/913/metamodeling-in-domain-ontologies/
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RDF(S) entailment17. As previously explained, our primary focus is on ex-

ploiting the machine-readable semantics embedded in RDF(S) rather than its

reasoning capabilities.320

Multi-level modeling. Recent approaches such as [34] argue about the

need for multi-level domain representation where a type of an element can be

defined within the subject domain. Hence, [34] builds upon the ontology-based

conceptual modeling language OntoUML. Such approaches focus on providing

new ontological foundations to explicitly support such language constructs that,325

as discussed above, belong to the M3 layer and differ from our approach. Other

multi-level modeling approaches such as [35], provide foundations (e.g., their

modeling language) for an arbitrary number of abstraction levels for both lin-

guistic and ontological metamodeling. As such they can fit to multiple modeling

layers. A challenge with such approaches is that the two kinds of metamodeling330

can be mixed causing confusion [23]. Our approach differs in that it has a fixed

number of domain abstraction levels, as well as that it uses RDF(S) as model-

ing language, which although less expressive is more widespread thanks to the

Linked Data initiative.

Table 1: Comparison of the kinds of approaches using ontologies and metamodels

Kind Layer
Language

specific

Traditional

infrastruct.

Fixed

#layers

Metamodels for ontologies Linguistic M2 3 3 3

Ontologies for metamodels
Knowledge/

Linguistic
M3 X 3 3

Ontology engineering Ontological M1 3 X X

Multi-level modeling
Linguistic/

Ontological
Multi 3 X X

SM4AM Ontological M1 3 X 3

Finally, we summarize the discussion on the related work by revising some ex-335

isting approaches in the traditional BI settings that already represent metadata

17https://www.w3.org/TR/sparql11-entailment/
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at the metamodel abstraction level. Most importantly, the Common Warehouse

Metamodel (CWM) [36] is a standardized solution for metadata modeling and

management, focusing on the schema, traceability, and vocabulary AM artifacts.

Another metamodeling solution is presented in [37] that focuses on the trace-340

ability between the data sources and the target schema and their relation with

the user requirements in the data warehouse context. Similarly, an approach

to model the user preferences and schema metadata is proposed in [38]. These

approaches are based on the classical modeling standards (e.g., UML, MOF)

that follow the strict modeling principle [23] where models must conform to the345

related metamodels. This is too restrictive for BI 2.0, and our approach provides

more flexible means to define the semantics to guide the metadata exploration.

Table 2: Comparison of the BI metadata metamodels
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CWM [36] 3 3 3

SM4AM 3 3 3 3 3 3 3 3 3 3 3

4. The SM4AM Metamodel

In this section we present SM4AM . We explain the general design principles

of the metamodel, elaborate on the metamodel elements, and exemplify the350

metamodel usage. Finally, we elaborate on the SM4AM definition in RDF.

4.1. The Metamodel Design

Considering that BI 2.0 is still in its infancy, many models of the AM artifacts

are yet to be defined. Therefore, we perform a top-down knowledge modeling

and, taking the high-level conceptualization of AM (see Section 3.1), represent355

the AM artifacts with a metamodel. Furthermore, instead of introducing new
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modeling constructs, the metamodel is formalized in RDF. Thus, SM4AM ben-

efits from the simple RDF metadata representation to increase the metadata

interoperability and interchange, while its limited semantic expressivity needs

to be compensated by following the method for SM4AM instantiation and use360

(see Section 5).

SM4AM aims at capturing atomic building elements for the artifacts. Thus,

the AM artifacts are captured either directly, i.e., by a one-to-one mapping of an

artifact to the metamodel element, or indirectly where an artifact is represented

with more than one metamodel element. As some artifacts are more coarse365

grained than others (e.g., session vs. query), we also define complex metamodel

elements that organize some of the atomic building elements into structurally

organized collections (e.g., a schema organizing schema components). This way,

different system-specific metadata models can be created by instantiating atomic

elements that can be combined into an instance of a complex element. The370

complete metamodel is illustrated in Figure 4 and Table 3 summarizes how AM

artifacts are covered by SM4AM .

sm4am:usesSchema

sm4am:usesSchemaComponent

sm4am:UserCharacteristic

sm4am:DataExplorationAction

sm4am:PreferenceEvidence

sm4am:Evidence

sm4am:UserAction sm4am:UAList

sm4am:User

sm4am:UserGroup

sm4am:DataPreference

sm4am:PresentationPreference

sm4am:groupWith

sm4am:userWith

sm4am:belongsTo

sm4am:containsUA

sm4am:byUser

sm4am:isConnectedTo

sm4am:ManipulationAction

sm4am:PresentationAction

sm4am:System

sm4am:VocabularyTerm

sm4am:StatisticalRecord

sm4am:DataProperty

sm4am:TraceabilityEvidence

sm4am:DataSource sm4am:TraceOperation

sm4am:Schema sm4am:SchemaComponent

sm4am:containsSchemaComponent

sm4am:attribute

sm4am:mapsTo sm4am:relatesToSE

sm4am:connectedToSC

sm4am:SECollection

sm4am:containsSE

Figure 4: SM4AM : A Semantic Metamodel for Analytical Metadata

AM artifacts provide evidence for performing user assistance activities. AM

artifacts are related to the system, user, or both system and user. Therefore,
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the metamodel is designed around pieces of evidence about the system, user,375

or both. A piece of evidence is represented with the sm4am:Evidence abstract

meta class (i.e., meta class without instances) that is the super class for all

pieces of evidence. This abstract meta class is further sub-categorized into

two (also abstract) meta classes, sm4am:System representing a piece of evidence

related to the schema and sm4am:UserAction capturing both elements about380

explicit user actions over the schema (e.g., queries) and elements inferred from

these actions (e.g., user preferences). Each piece of evidence is related to the

schema while only sm4am:UserAction-related ones also affiliate to the user. The

sm4am:UserAction element is linked to sm4am:System via sm4am:relatesToSE

(i.e., relates to the system evidence) in order to capture situations when a user385

action relates to the system element, e.g., a preference over a vocabulary term.

Importantly, each piece of evidence can have attributes (i.e., sm4am:attribu-

te) which is how we model the situation where a property links a class with a

datatype. In RDF, the literal value cannot be linked to its datatype via rdf:type.

Thus, attribute properties are intended for relating a literal value with a class390

instance at the instance abstraction level, e.g., a value of a certain statistical

record. Concrete attribute properties and datatypes are defined/specified at

the model level. In the next subsections, we explain the remaining metamodel

elements and exemplify how to use the metamodel.

4.2. Schema-Related and User-Related Elements395

Schema-Related Elements. The schema AM artifact is modeled with the

following two meta classes: sm4am:SchemaComponent represents schema compo-

nents and sm4am:Schema refers to the schema as a whole organizing the compo-

nents. Each piece of evidence relates to these meta classes via sm4am:usesSche-

maComponent and sm4am:usesSchema properties, respectively. Both properties400

are need as a schema can have many schema components and a schema com-

ponent can be linked to many schemata, while a piece of evidence can relate to

either schema, schema component, or both. The sm4am:containsSchemaCompo-

nent property links the schema with schema components, while sm4am:connect-
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Table 3: Capturing AM Artifacts with SM4AM Elements

AM Artifact SM4AM element System/User-related

Vocabulary sm4am:VocabularyTerm System

Schema
sm4am:Schema

sm4am:SchemaComponent
System

Profiling metadata sm4am:DataProperty System

Traceability metadata
sm4am:DataSource

sm4am:TraceOperation
System

Query log sm4am:UAList System

Query

sm4am:PresentationAction

sm4am:ManipulationAction

sm4am:UAList

Both

Session sm4am:UAList Both

Preferences
sm4am:PresentationPreference

sm4am:DataPreference
Both

Statistics sm4am:StatisticalRecord Both

Characteristics

sm4am:UserCharacteristic

sm4am:User

sm4am:UserGroup

User

edToSC interlinks the schema components. This design is a generalization of a405

typical case where a complete integration schema, e.g., a database schema or an

RDF graph, consists of components that can be mutually connected, e.g., inter-

linked tables of a relational database or nodes of an RDF graph. The example

of schema instantiation for our motivating example (see Section 2) is illustrated

in Figure 8, Section 6.410

User-Related Elements. The (user) characteristics AM artifact is mod-

eled with the following meta classes. First, sm4am:UserCharacteristic stands for

a specific user characteristic. Second, sm4am:UserGroup models a group of users

18



with the characteristics to which it is linked via sm4am:groupWith. Third, a

user is represented with the sm4am:User meta class. The user can have sev-415

eral characteristics linked via sm4am:userWith, be connected to other users via

sm4am:isConnectedTo, and belong to a user group via sm4am:belongsTo. By

now, user characteristics have typically been overlooked in the BI area. Exist-

ing approaches mostly focus on the user actions (e.g., queries). Inspired by the

web recommender systems we believe that user characteristics are necessary to420

enable better user assistance possibilities in BI 2.0 [6]. Moreover, different social

networks emphasize the need for keeping track of the user interconnections. The

BI 2.0 systems need to follow this direction and benefit from these metadata for

the user assistance features.

Figure 5 exemplifies a simple metadata model and its instances for two jour-425

nalists exploring the motivating example data sources. In particular, the model

level exemplifies the members (ex:OrganizationMember instantiating sm4am:User)

of a non-profit organization (ex:NonProfitOrganization instantiating sm4am:User-

Group) that are interested in exploring the countries’ populations. A mem-

ber has an ID (i.e., ex:ID), a profession (i.e., ex:Profession), and a country of430

origin (i.e., ex:CountryOfOrigin) as instances of the user characteristics (i.e.,

sm4am:UserCharacteristic). Moreover, a non-profit organization gathers mem-

bers that are of certain professions and from certain countries. All model ele-

ments are interlinked with the related properties as illustrated in the figure. This

model has Joe and another journalist as instances of ex:OrganizationMember435

(i.e., ex:Joe and ex:Journalist2) with their IDs (i.e., ex:ID1 and ex:ID2, respec-

tively) and countries of origin (i.e., ex:Spain and ex:Denmark, respectively), who

are both journalists (i.e., ex:Journalist). These persons belong to a European

journalist organization (i.e., ex:EuropeanJournalists) that gathers the journalists

from Spain and Denmark.440

4.3. User-Action-Related Elements

Data-Exploration-Action-Related Elements. Several AM artifacts are

modeled by sub-classes of the sm4am:UserAction meta class as we explain in the
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ex:Professionex:OrganizationMember

ex:NonProfitOrganization
ex:memberProfession

ex:profession

ex:isMemberOf

ex:coMember

Metamodel

Model

Instance

sm4am:UserCharacteristicsm4am:User

sm4am:UserGroup
sm4am:groupWith

sm4am:userWith

sm4am:belongsTo

sm4am:isConnectedTo

ex:CountryOfOrigin

ex:ID
ex:hasID

ex:fromCountry

ex:participatingCountry

rdf:type

rdf:type

rdf:type

ex:Joe

ex:Journalist2

ex:EuropeanJournalists

ex:ID1

ex:ID2

ex:Journalist

ex:Spain

ex:Denmark

ex:coMember ex:coMember

ex:isMemberOf

ex:isMemberOf

ex:fromCountry

ex:fromCountry

ex:hasID

ex:hasID

ex:memberProfession

ex:memberProfession

ex:participatingCountry

ex:participatingCountry

ex:memberProfession

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

Figure 5: Example of User-related Elements

sequel. All user-action-related elements can be related to a user via sm4am:by-

User. The query, session, and query log AM artifacts are considered as data445

exploration actions representing the explicit user actions when analyzing data

(e.g., an operation in a query). As these artifacts are of different granularities

(e.g., a query log consists of queries) and we focus to capture the atomic elements

that can be composed in more complex structures, the sm4am:DataExploration-

Action meta class with its subclasses represent the atomic elements that can be450

organized in a user action list (i.e., sm4am:UAList). The subclasses are sm4am:-

ManipulationAction capturing the actions for data handling (e.g., change of data

granularity) and sm4am:PresentationAction describing the actions for data pre-

sentation (e.g., a diagram type selection). In general, what is to be considered

as an atomic element depends on the model instantiating the metamodel (e.g.,455
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a SPARQL operation can be part of a SPARQL query). A simple example of

query (i.e., sm4am:UAList) instantiation for our motivating example (see Sec-

tion 2) is illustrated in Figure 8, Section 6, while an example of a complete

query model instantiating SM4AM can be found in [25]. Note that examples

of remaining metamodel elements are analogous and extensive examples can be460

found in [39].

Preference-Related Elements. The preferences AM artifact is modeled

with the preferences evidence (i.e., sm4am:PreferenceEvidence) category captur-

ing pieces of evidence for the personalization of the user data analysis that can

either be stated explicitly, or that can be implied from explicit user actions.465

They capture the pieces of evidence that enable personalization of the user in-

teraction with the system. We divide them into the following two categories,

sm4am:PresentationPreference capturing preferences regarding the data presen-

tation, typically visualization affinities, and sm4am:DataPreference modeling the

information about the data interests that can be exploited for the result per-470

sonalization and similar purposes.

Figure 6 depicts a simple presentation preference example for the metamodel,

model, and instance levels. The focus of the example is to illustrate the use of

an attribute. In particular, we capture Joe’s preference of using a certain chart

type when analyzing the population of countries in the motivating example. It475

has the ex:priority attribute property that links the preference expression with

a decimal value defining the priority used for the ranking of preferences.

sm4am:PresentationPreference ex:VPreferenceExpression ex:PreferredChart1

Metamodel Model Instancerdf:type

xsd:decimal ex:priority 5 ex:priority

rdf:type

Figure 6: Example of Preference Evidence Elements

User Action List Element. After explaining the atomic elements of user

actions, we now provide more details about the sm4am:UAList (i.e., user action

list) meta class for composing them into ordered lists that represent different480

concepts. For instance, a query can be represented as an ordered list of: i) one or
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more sm4am:ManipulationActions, ii) optionally one or more sm4am:Preference-

Evidence, and iii) one or more sm4am:PresentationActions. At the model level,

the instances of user action elements should instantiate attributes (e.g., the

ordering) to determine their organization inside of an instance of user action485

list. Furthermore, sm4am:UAList can be instantiated (at the model level) to

model sessions, query logs, and exploration patterns (e.g., querying patterns)

depending on the exploitation needs (e.g., query recommendation). The models

depend on the concrete systems and the use of user action list for our motivating

example (see Section 2) is illustrated in Figure 8, Section 6.490

4.4. System-Related Elements

Traceability-Related Elements. The traceability metadata AM artifact

is modeled with two subclasses of the sm4am:TraceabilityEvidence meta class

that represent atomic metamodel elements. The first one is sm4am:DataSource

capturing the source where the data come from. The second one is sm4am:Tra-495

ceOperation and it represents an operation that can be performed over data or

metadata before reaching the data/metadata repository. Note that the use of

sm4am:attribute at the model level is useful for indicating if the data source is in-

ternal/external and trusted/not-trusted. Moreover, it can be used to link to the

particular data values for the integration schema. An example of traceability-500

related elements can be that sm4am:DataSource is instantiated with a class of

Linked Open Data sources that, in turn, has DBpedia as its instance.

Profiling-Related Elements. The profiling metadata AM artifact is mod-

eled with the sm4am:DataProperty meta class representing technical quality

characteristics (e.g., cardinality values). These metadata are typically obtained505

from data profiling processing in order to enhance the user understanding of the

data set. Specific data properties are then defined at the model level depending

on the particular system. For instance, the cardinality of schema components

can be defined as an instance of data property.

Vocabulary-Related Element. The vocabulary AM artifact is modeled510

with the sm4am:VocabularyTerm meta class that represents a vocabulary entry
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as a building block for vocabulary construction. Moreover, the sm4am:mapsTo

property links two vocabulary terms and defines the mapping between them

(e.g., a synonym relation). The sm4am:VocabularyTerm meta class is instanti-

ated at the model level with the concrete vocabulary entry types (e.g., business515

terms) and their links that, in turn, have their instances.

Statistics-Related Element. The statistics AM artifact is modeled with

sm4am:StatisticalRecord as an atomic element for constructing statistics. As be-

fore, sm4am:attribute should be instantiated for linking statistical records with

their values. Then, the model level should be used to define the class represent-520

ing the type of statistical indicators (e.g., a schema component usage counter)

that are related to the specific numerical datatype as their value (e.g., decimal),

while the instance level keeps track of the indicator instances and their value.

Note that the values for the sm4am:StatisticalRecord-related metadata should

come from system monitoring.525

Complex System-Related Elements. After explaining the atomic system-

related elements, we provide more details about the sm4am:SEList (i.e., system

evidence list) meta class for composing them into ordered lists that represent

different concepts. Atomic elements are composed into a complex structure via

the sm4am:containsSE property. The attributes (i.e., sm4am:attribute) at the530

model level should be used to determine structural organization (e.g., order-

ing). For instance, we can have a complex trace composed of data sources and

traceability operations aligned in an ordered trace structure. Similarly, we can

also have a vocabulary composed of vocabulary terms, statistics composed of

statistical records, and a data profile composed of data properties.535

4.5. SM4AM and RDF

All meta classes in SM4AM are defined as instances of rdfs:Class. Further-

more, to be consistent with the RDF semantics and enable property typing

between metamodel and model levels, each property in SM4AM is considered

as both rdf:Property and rdfs:Class. This way, at the metamodel level it is used as540

property to link the meta classes and at the same time it can be instantiated at
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the model level with a property. Note that examples of similar property formu-

lation can be found in the QB [18] and QB4OLAP [40] vocabularies. Moreover,

as they are properties we also define their domain and range meta classes using

the rdfs:domain and rdfs:range properties, respectively. For the ease of distinc-545

tion between properties at different abstraction levels, the terms meta property,

property, or property instance refer to a property at the metamodel, model, or

instance levels, respectively. Finally, the concept of attribute in SM4AM repre-

sents a meta property that links a meta class with a data type. The concrete

data type should be defined at the model level and, therefore, this meta prop-550

erty defines only the domain while the range remains undefined. The definition

of sm4am:attribute is related to the sm4am:Evidence meta class in SM4AM . 18

5. A Method for Instantiating SM4AM

One of the challenges when using an RDF metamodel is to ensure that it is

used in compliance with the RDF specification and in a consistent way when555

creating system-specific metadata models. This is a lesson learned from our

experience with other RDF-based vocabularies (e.g., [40]) where we noticed

that they can be used in inconsistent manners. Thus, the precise steps about

how SM4AM should be instantiated must be defined, especially considering

the context of RDF (meta)modeling (see Section 3.3 for details of well-known560

problems that may appear if metamodeling is not properly bounded in RDF).

Hence, this method can be used as basis to implement other metamodels. The

ultimate goal is to enable as uniform as possible use of the metamodel and

thereby better exploitation possibilities of different models. We next consider

the instantiation steps at the model and instance levels.565

Model Level. The steps to define a model by instantiating SM4AM are

defined in Algorithm 1. The algorithm takes the set of <class, meta class>

tuples, the set of <property, meta property, domain, range> quadruples, and

18See http://www.essi.upc.edu/~jvarga/sm4am-page.html for all SM4AM triples.
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the set of <attribute, domain, range> triples as inputs and returns a set of the

resulting RDF triples. The input elements are retrieved by means of related570

get operations. In the sequel, we exemplify the results of Algorithm 1. Line

1 in Figure 7 exemplifies the class of organization member from Figure 5 as a

result of line 4 in Algorithm 1. Moreover, lines 2-4 in Figure 7 exemplify the

co-member property from Figure 5 as a result of lines 6 to 13 in Algorithm 1.

Furthermore, lines 5-7 in Figure 7 exemplify the priority attribute from Figure575

6 as a result of lines 15 to 22 in Algorithm 1. Note that all input elements are

IRIs, except for the literal values of attributes at the instance level.

1 ex:OrganizationMember rdf:type sm4am:User .

2 ex:coMember rdf:type rdf:Property, sm4am:isConnectedTo .

3 ex:coMember rdfs:domain ex:OrganizationMember .

4 ex:coMember rdfs:range ex:OrganizationMember .

5 ex:priority rdf:type rdf:Property, sm4am:attribute;

6 rdfs:domain ex:VPreferenceExpression;

7 rdfs:range xsd:decimal .

8 ex:Joe rdf:type ex:OrganizationMember .

9 ex:Joe ex:coMember ex:Journalist2 .

10 ex:PreferredChart1 ex:priority "5"^^xsd:decimal .

Figure 7: Example of Model and Instance Level Triples

Instance Level. Once a model is defined, it can have its instances defined as

detailed in Algorithm 2. The algorithm takes the set of <class instance, class>

tuples, the set of <property, domain, range> triples, and the set of <attribute,580

domain, range> triples as inputs and returns a set of the resulting RDF triples.

The input elements are retrieved by means of related get operations. In the

sequel, we exemplify the results of Algorithm 2. Line 8 in Figure 7 exemplifies

the IRI for our journalist Joe from Figure 5 as a result of line 4 in Algorithm 2.

Moreover, line 9 in Figure 7 exemplifies the co-member property from Figure 5585

as a result of lines 6 to 11 in Algorithm 2. Finally, line 10 in Figure 7 exemplifies

the priority attribute from Figure 6 as a result of lines 13 to 18 in Algorithm 2.

The complexity of both algorithms is linear with respect to their input size.

Additional Considerations. In addition to creating new models, the use

of RDF enables linking of existing models with SM4AM as shown in Section 6.590
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Algorithm 1: Model Level Triples Definition Algorithm

Input: C, P, A ; // class, property, and attribute inputs, respectively

Output: triples ; // resulting triples

1 begin

2 triples = ∅;

3 foreach cInput ∈ C do

4 triples ∪= cInput.getClass() rdf:type cInput.getMetaClass();

5 foreach pInput ∈ P do

6 triples ∪= pInput.getProperty() rdf:type rdf:Property;

7 triples ∪= pInput.getProperty() rdf:type pInput.getMetaProperty();

8 if pInput.getDomain() is an instance of

pInput.getMetaProperty().getDomain() then

9 triples ∪= pInput.getProperty() rdf:domain pInput.getDomain();

10 else Throw property domain exception ;

11 if pInput.getRange() is an instance of pInput.getMetaProperty().getRange()

then

12 triples ∪= pInput.getProperty() rdf:range pInput.getRange();

13 else Throw property range exception ;

14 foreach aInput ∈ A do

15 triples ∪= aInput.getAttribute() rdf:type rdf:Property;

16 triples ∪= aInput.getAttribute() rdf:type sm4am:attribute;

17 if aInput.getDomain() is an instance of non-abstract sm4am:Evidence

subclass then

18 triples ∪= aInput.getAttribute() rdf:domain aInput.getDomain();

19 else Throw attribute domain exception ;

20 if aInput.getRange() is a datatype then

21 triples ∪= aInput.getAttribute() rdf:range aInput.getRange();

22 else Throw attribute range exception ;

23 return triples

This can be done by reverting the order of the steps in the algorithms above.

Furthermore, automation of the metadata processing is crucial to enable stable

populating of the metadata repository and further metadata exploitation, e.g.,

for the user assistance tasks. The metadata modeling is a starting point in this

direction. Nevertheless, although the automation is desired, in certain cases the595

user might still want to state some of these metadata manually, e.g., the expert

user can formulate her preferences manually and the system should support

this. Moreover, in addition to the elements explicitly captured in SM4AM ,
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Algorithm 2: Instance Level Triples Definition Algorithm

Input: C, P, A ; // class, property, and attribute instance inputs, respectively

Output: triples ; // resulting triples

1 begin

2 triples = ∅;

3 foreach cInst ∈ C do

4 triples ∪= tuple.getClassInstance() rdf:type cInst.getClass();

5 foreach pInst ∈ P do

6 if pInst.getDomain() is an instance of pInst.getProperty().getDomain()

then

7 triples ∪= pInst.getProperty() rdf:domain pInst.getDomain();

8 else Throw property instance domain exception ;

9 if pInst.getRange() is an instance of pInst.getProperty().getRange() then

10 triples ∪= pInst.getProperty() rdf:range pInst.getRange();

11 else Throw property instance range exception ;

12 foreach aInst ∈ A do

13 if aInst.getDomain() is an instance of aInst.getAttribute().getDomain()

then

14 triples ∪= aInst.getAttribute() rdf:domain aInst.getDomain();

15 else Throw attribute instance domain exception ;

16 if aInst.getRange() is a literal of datatype aInst.getAttribute().getRange()

then

17 triples ∪= aInst.getAttribute() rdf:range aInst.getRange();

18 else Throw attribute instance range exception ;

19 return triples

more metadata are contained implicitly. For instance, statistics about the user

actions can be retrieved by counting metadata instances and processing them.600

We consider this kind of metadata as derived metadata and it is up to the specific

systems how to exploit this possibility [6].

6. Application Level Case Study

To illustrate the applicability of our approach, we present a case study built

around the data sources from our motivating example (see Section 2). We first605

explain the case study design and internals. Then, we present the data collection

and analysis, and discuss the threats to validity.
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6.1. Case Study Design

The setup of the case study is illustrated in Figure 1 showing the logi-

cal relations between WBLD and DBpedia, their metadata and SM4AM. The610

schema metadata of WBLD are represented with the QB vocabulary [18] and the

SPARQL query metadata for DBpedia are represented with the LSQ vocabulary

[7]. Note, that SPARQL queries over DBpedia are available in the standalone

LSQ data set [7]. WBLD is also linked with DBpedia and contains DBpedia

country IRIs. In the case study, the QB metadata are linked to SM4AM en-615

abling discovery of schema metadata of the WBLD data sets. Likewise, the

LSQ metadata are linked to SM4AM enabling discovery of queries over DBpe-

dia. We bridge between both metadata artifacts through SM4AM . Moreover,

the WBLD to DBpedia links can be used to filter queries over DBpedia.

The objective of the case study is to show that the use of SM4AM can620

reduce the user efforts for exploring two independents data sources. In this

context, the research questions to be answered in our case study are:

RQ1. What are the manual efforts required for using SM4AM ?

RQ2. How much does the use of SM4AM reduce the user efforts for exploring

the data sources?625

The metrics related to the research questions are the number of triples

that need to be created and the search space that the user needs to deal with.

Method. To answer the research questions, we first explain how each of the

data sources relates to SM4AM . Here, we measure the effort to link them to

SM4AM . Then, we define the queries to retrieve the total volumes of relevant630

(meta)data and the volumes of (meta)data retrieved considering SM4AM . Based

on these results we discuss the user efforts for individual and combined analysis

of the case study data sources. The details are presented in the sequel.

6.2. Linking the sources to SM4AM

Figure 8 illustrates the triples linking SM4AM to QB and LSQ at the meta-635

data model level. QB and LSQ, in turn, link to their metadata instances and

data examples for the case study. Note that all these triples already exist, except
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for the ones between SM4AM and WBLD and LSQ that are discussed below.

We start linking QB model elements to the SM4AM schema elements.19 The

QB schema structure is defined by the indicators:structure element which further640

relates to the sdmx-measure:obsValue measure as data being analyzed, and the

sdmx-dimension:refPeriod (i.e., period), sdmx-dimension:refArea (i.e., area), and

property:indicator (i.e., analyzed indicator; population in this case) dimensions

representing data analysis perspectives. These components are linked with indi-

cators:structure via blank nodes (see [13]) as proposed by the QB vocabulary. To645

facilitate understanding QB, an exemplary instance, the population of Serbia

for year 2011, is provided (see [40] for more details on QB).

Next, the LSQ model is linked to SM4AM . The sm4am:UAList element is

linked to sp:Query with its subclasses. Again, we present an example, in this

case a query instance of sp:Select, which is, in turn, linked to the DBpedia650

IRI for Serbia. Linking to SM4AM is currently a manual process. The links

are created once and should be provided by the data publisher that is familiar

with the data source metadata such that the manual efforts only depend on the

number of necessary links. For instance, the case study setup in Figure 8 can

be achieved with the four triples presented in Figure 9, where lines 1-3 relate to655

QB (WBLD) and line 4 to LSQ (DBpedia).

6.3. Case Study Data Collection and Analysis

WBLD/QB data collection. Table 4 shows the number of (meta)data

triples for WBLD20. Once linked to SM4AM , as previously discussed, its schemata

can be automatically retrieved with Query 1 and dimensions and measures with660

Query 2, respectively. Thus, the metadata artifact model (in this case, the data

set schema) can easily be retrieved guided by SM4AM .

19In particular, we use the data set about population of countries from WBLD available at

http://worldbank.270a.info/dataset/SP.POP.TOTL.html
20The values are rounded and retrieved from WBLD website

(http://worldbank.270a.info/about.html) or by querying the WBLD SPARQL endpoint.
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Figure 8: Case Study Internals

1 qb:DataStructureDefinition rdf:type sm4am:Schema .

2 qb:DimensionProperty rdf:type sm4am:SchemaComponent .

3 qb:MeasureProperty rdf:type sm4am:SchemaComponent .

4 sp:Query rdf:type sm4am:UAList .

Figure 9: Triples Adding SM4AM Semantics to QB (WBLD) and LSQ (DBpedia)

Query 1. Retrieve Schemata

1 SELECT DISTINCT ?schema

2 WHERE {

3 ?schema a ?modelSchema .

4 ?modelSchema a sm4am:Schema . }

Query 2. Retrieve Schemata Components

1 SELECT DISTINCT ?schemaComponent

2 WHERE {

3 ?schemaComponent a ?modelSchemaComponent .

4 ?modelSchemaComponent a sm4am:SchemaComponent . }
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Table 4: WBLD Triple Numbers

Total number of triples 174M

Metadata number of triples 280K

Number of data sets >9K

Number of schemata 59

Total number of dimensions 81

Total number of measures 70

Table 5: DBpedia Country-Related

Triple Numbers

Total 2,358,094

Average 11,019.13

Max 467,819

Min 1

WBLD/QB discussion. To analyze a data set on the SW, the user typ-

ically needs to get familiar with the data organization. This is typically done665

by learning about schema models or ontologies. However, retrieving only the

schema related triples can be a tedious task if the user does not know where to

start exploring. For example, the total number of triples in Table 4 indicates

that non-guided exploration is a burdensome task. However, these efforts can

be significantly reduced if the schemata have additional semantics linking their670

schema and schema components to SM4AM such that they can be automat-

ically retrieved. This way, the (meta)data search space is narrowed from 174

millions of triples (including 280 thousands of metadata triples) to 210 IRIs that

can be retrieved with Queries 1 and 2. Moreover, this is enabled with only three

additional triples (see Figures 8 and 9).675

DBpedia/LSQ data collection. WBLD keeps track of 214 countries and

provides their IRIs in both WBLD and DBpedia via owl:sameAs links (identi-

fying the same resources) that can be retrieved with Query 3. Thus, the user

can retrieve additional data (i.e., triples) about countries from DBpedia using

the DBpedia IRIs. Table 5 shows the total number of country-related triples,680

as well as average, maximum, and minimum number of triples per country for

the 214 countries on the DBpedia SPARQL endpoint.
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Query 3. Retrieve WBLD Countries

1 SELECT DISTINCT ?c ?cc

2 WHERE {

3 ?c a <http://dbpedia.org/ontology/Country> .

4 ?c <http://www.w3.org/2002/07/owl#sameAs> ?cc .

5 FILTER regex ( str(?cc), ’dbpedia.org’) }

Query 4. Retrieving

Queries Related to an IRI

1 SELECT DISTINCT ?query

2 WHERE {

3 ?query ?p ?parameter? .

4 ?query a ?modelQuery .

5 ?modelQuery a sm4am:UAList . }

Additionally, the LSQ data set includes more than a million queries where

approximately 740,000 are over the DBpedia endpoint. Moreover, Query 4 illus-685

trates how the SM4AM metadata can be automatically exploited in metadata

models where the query artifact is linked to SM4AM . Note that “?parameter?”

represents an IRI parameter that is used for the filtering of queries. In our

case study, it should be replaced with the DBpedia country IRI. This way, 1908

queries can be retrieved for 214 countries and Figure 10 illustrates the num-690

ber of queries per country. The maximum number of queries per country is 98

for Germany. The average is approximately 9 queries, while there are only 10

countries with no related queries. These queries include searches like what are

the country description, names, geographical coordinates, language, homepage,

images, DBpedia class types, etc.695

Furthermore, we analyze the result size for the queries previously retrieved.

We focus on the 1719 SELECT queries which are typically used for data explo-

ration and can retrieve more than one result. We consider the number of results

for the SELECT clause of the query and Figure 11 illustrates the percentage of

queries for result size ranges. It shows that half of the queries return at most700
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10 results, while there are approximately 15% in each of the ranges 11-20 and

21-50 results. Thus, 80% of the queries retrieve at most 50 results and only 5%

retrieve 10,000 or more results (note that 10,000 results per query is the default

limit on a SPARQL endpoint).

DBpedia/LSQ discussion. Retrieving additional data (i.e., triples) about705

countries from DBpedia can still be overwhelming if the user is not familiar with

the LSQ data model as illustrated in Table 5. Thus, instead of exploring all

the available triples related to a country, the user may be interested in other

users’ queries available in the LSQ data set. In this context, linking LSQ with

SM4AM brings the following benefits.710

First, the SM4AM semantics supports correlating the WBLD schema meta-

data with the DBpedia query metadata (i.e., LSQ) so that the user can reduce

the search space for finding the relevant queries. This supports reducing the

number of explored queries from 740,000 to approximately 9 queries per coun-

try on average. Second, the results in Figure 11 show that in most cases, the715

amount of query results is small and can be manually analyzed by the user.

Thus, reducing the number of queries reduces the data search space from ap-

proximately 2.3 million of country-related triples to at most 50 results in 80%

of the cases. Moreover, this is enabled with a single triple (see Figures 8 and 9).

Overall results summary. The case study shows that SM4AM can guide720

the search for (meta)data in both data sources and reduce the (meta)data search

space that the user needs to deals with. The summary of the search space

reductions with SM4AM is shown in Figure 12. As our approach is based on

SM4AM , the same principles can be applied to metadata models other than

WLDB/QB and DBpedia/LSQ. Reflecting on the research questions, the case725

study results show that the manual efforts for using SM4AM considered in RQ1

are small and require the creation of only four triples (see Figure 9). This is

due to our choice for ontological metamodeling. Thus, linking of an existing

metadata model to SM4AM can be done manually and it is performed only

once. Furthermore, the user efforts for exploring the data sources considered730

in RQ2 are significantly reduced by using SM4AM to narrow the (meta)data
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search space to only 210 schema-related IRIs for WBLD/QB and 9 queries per

country on average which retrieve at most 50 results in 80% of the cases for

DBpedia/LSQ. Intuitively, the user needs to explore much smaller volumes of

(meta)data to find the details she is looking for.735

WBLD all->schema LSQ Dbpedia queries narrowing Dbpedia Triples

All triples 174,000,000 All DBpedia queries740,000 Countries related triples2,358,094

Schemata IRIs (with SM4AM) 210 Queries per country average (with SM4AM)9 Max result size in 80% of the cases (with SM4AM)50

740,000

9
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10

100

1,000
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100,000

1,000,000

All DBpedia
queries
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Figure 12: Search Space Reductions with SM4AM

6.4. Threats to Validity

Construct validity. Regarding the metamodel, someone may wonder what

happens if a concept is not covered by SM4AM . However, the metamodel is

based on a survey providing the most typical metadata artifacts used in this

context. Furthermore, if required, the SM4AM extension is supported by means740

of ontology evolution techniques as suggested in Section 3. Although the case

study only covers part of the AM elements, the same metamodeling principles

can be followed for the remaining elements.

One threat may be whether a case study with RDF sources is representative

for BI 2.0. Nevertheless, although using the same formalism, the case study745

involves different (meta)data models/sources that reflect the heterogeneity of

BI 2.0. Furthermore, semantic formalisms are already used together with other

database technologies as in the case of ontology-based data access. This use

case is, in any case, representative for the Linked Open Data initiative, which

is per se a huge wealth of knowledge to be explored. Another threat could be750

whether semantic technologies can cope with the performance requirement of

BI 2.0. However, note that the volume of metadata is much smaller than data

volumes, and the related semantic tools are constantly improving to provide
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more efficient and scalable solutions.

Internal validity. When searching for queries, it might happen that no755

or too many queries are retrieved. Furthermore, a query and/or its results

might not be of high quality. Nevertheless, the user still deals with much less

(meta)data volumes which certainly facilitates the current means for (meta)data

exploration. To improve the quality of the results, additional pre-processing

steps (e.g., using another filtering parameter in Query 4) and even query rec-760

ommendations algorithms can be applied. However, these issues are orthogonal

to the discussion here and out of our scope. Current state-of-the-art solutions for

these problems in the SW can seemingly be applied as complementary actions.

When analyzing case study steps a question may be whether queries could

have been written without SM4AM . While at the model level queries can and765

even should be customized, they could hardly be generalized for other models

as required by BI 2.0. In such case, the user is left with a large metadata search

space to discover the concepts to be used. Thus, SM4AM is needed for BI 2.0.

External validity. The question of generalizing the case study results

is another threat. However, using several already existing (meta)data sources770

provides evidence in this context. Furthermore, providing the metamodel usage

guidelines should further contribute in this direction. Metamodeling solutions

have already been widely used to support integration and information exchange,

and they are the foundations for our approach.

Reliability. To minimize the potential bias in the presentation of the ob-775

tained results, the case study steps and constructs have been validated by all

the authors of our approach. Furthermore, the public availability of all the used

(meta)data sources enables anyone to perform related analysis.

7. Conclusions

Motivated by the need to better support and assist the user experience in the780

context of BI 2.0, this paper presents SM4AM : an RDF-based metadata meta-

model. Using ontological metamodeling, SM4AM has been designed as a flexible
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solution that can be easily shared among heterogeneous systems. Being repre-

sented in a semantic-aware format, it supports the metadata processing semi-

automation. The practical benefits of SM4AM for narrowing the (meta)data785

search space in a metamodel-driven (meta)data exploration are shown on a case

study with two real-world data sets. The case study demonstrates that SM4AM

can be used not only with new metadata models but also with already existing

ones. Furthermore, we have discussed the need to follow an SM4AM instan-

tiation method to avoid potential well-known problems related to RDF and790

metamodeling.

Our approach proposes a compromise solution between the semantic expres-

sivity of SM4AM and the performance and flexibility requirements of BI 2.0.

Rather than providing strict constraints in the metamodel, SM4AM represents

a high level abstraction which should be used for correlating the same or similar795

concepts across different models. This facilitates the metadata discovery and

exploration, but it currently requires additional (manual) efforts for the com-

plete alignment of different metadata models. Overall, in this paper we have

shown that the SW and BI 2.0 should benefit from good habits from Software

Engineering (meta)modeling in order to organize and facilitate cross-domain800

access to the available (meta)data.
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[5] A. Löser, F. Hueske, V. Markl, Situational Business Intelligence, 2009, pp.

1–11.

[6] J. Varga, O. Romero, T. B. Pedersen, C. Thomsen, Towards Next Gener-825

ation BI Systems: The Analytical Metadata Challenge, in: DaWaK, 2014,

pp. 89–101.

[7] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, A. N. Ngomo, LSQ: The

Linked SPARQL Queries Dataset, in: ISWC, 2015, pp. 261–269.

[8] D. Skoutas, A. Simitsis, Ontology-Based Conceptual Design of ETL Pro-830

cesses for Both Structured and Semi-Structured Data, Int. J. Semantic Web

Inf. Syst. 3 (4) (2007) 1–24.

[9] C. Bizer, T. Heath, T. Berners-Lee, Linked Data - The Story So Far, Int.

J. Semantic Web Inf. Syst. 5 (3) (2009) 1–22.

[10] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati,835

Linking Data to Ontologies, J. Data Semantics 10.

37



[11] R. Bean, Variety, Not Volume, Is Driving Big Data Initiatives,

https://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-

data-initiatives/ (March 2016).

[12] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, S. Vansummeren, An840

Integration-oriented Ontology to Govern Evolution in Big Data Ecosys-

tems, Inf. Syst.

[13] R. Cyganiak, D. Wood, M.Lanthaler, Resource Description Framework

(RDF): Concepts and Abstract Syntax, http://www.w3.org/TR/2014/

REC-rdf11-concepts-20140225/ (2014).845

[14] D. Brickley, R. Guha, RDF Schema 1.1, http://www.w3.org/TR/

rdf-schema/ (2014).

[15] S. Koide, H. Takeda, MetaModeling in OOP, MOF, RDFS, and OWL, in:

SWESE, 2006.

[16] C. Atkinson, T. Kühne, Model-Driven Development: A Metamodeling850

Foundation, IEEE Software 20 (5) (2003) 36–41.

[17] J. Varga, O. Romero, T. B. Pedersen, C. Thomsen, SM4AM: A Semantic

Metamodel for Analytical Metadata, in: DOLAP, 2014, pp. 57–66.

[18] R. Cyganiak, D. Reynolds, The RDF Data Cube Vocabulary (W3C Recom-

mendation), http://www.w3.org/TR/vocab-data-cube/ (January 2014).855

[19] Tim Berners-Lee, Principles of Design,

http://www.w3.org/DesignIssues/Principles.html (last accessed July,

2016).

[20] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, D. Zhao, Semantic SPARQL

Similarity Search Over RDF Knowledge Graphs, PVLDB 9 (11) (2016)860

840–851.

[21] E. Prud’hommeaux, A. Seaborne, SPARQL 1.1 Query Language for RDF,

http://www.w3.org/TR/sparql11-query/ (2011).

38

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/vocab-data-cube/


[22] F. Zablith, G. Antoniou, M. d’Aquin, G. Flouris, H. Kondylakis, E. Motta,

D. Plexousakis, M. Sabou, Ontology Evolution: A Process-centric Survey,865

The knowledge engineering review 30 (1) (2015) 45–75.

[23] C. Atkinson, T. Kühne, Demystifying Ontological Classification in Lan-

guage Engineering, in: ECMFA, 2016, pp. 83–100.

[24] S. Koide, H. Takeda, Inquiry into RDF and OWL Semantics, in: JIST,

2016, pp. 15–31.870

[25] J. Varga, E. Dobrokhotova, O. Romero, T. B. Pedersen, C. Thomsen,

SM4MQ: A Semantic Model for Multidimensional Queries, in: ESWC,

2017, pp. 449–464.

[26] D. Gasevic, D. Djuric, V. Devedzic, MDA-based Automatic OWL Ontology

Development, STTT 9 (2) (2007) 103–117.875

[27] Object Management Group, Ontology Definition Metamodel Specification

1.1, https://www.omg.org/spec/ODM/1.1/PDF (last accessed May, 2018).

[28] B. Henderson-Sellers, Bridging Metamodels and Ontologies in Software En-

gineering, Journal of Systems and Software 84 (2) (2011) 301–313.

[29] G. Guizzardi, On Ontology, ontologies, Conceptualizations, Modeling Lan-880

guages, and (Meta)Models, in: DB&IS, 2006, pp. 18–39.

[30] N. Guarino, The Ontological Level: Revisiting 30 Years of Knowledge Rep-

resentation, in: Conceptual Modeling: Foundations and Applications - Es-

says in Honor of John Mylopoulos, 2009, pp. 52–67.

[31] S. Borgo, C. Masolo, Ontological foundations of DOLCE, in: Theory and885

applications of ontology: Computer applications, Springer, 2010, pp. 279–

295.

[32] G. Guizzardi, Ontological foundations for structural conceptual models,

CTIT, Centre for Telematics and Information Technology, 2005.

39



[33] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Rets-890

chitzegger, W. Schwinger, M. Wimmer, Lifting Metamodels to Ontologies:

A Step to the Semantic Integration of Modeling Languages, in: MoDELS,

2006, pp. 528–542.

[34] V. A. de Carvalho, J. P. A. Almeida, C. M. Fonseca, G. Guizzardi, Multi-

level Ontology-based Conceptual Modeling, Data Knowl. Eng. 109 (2017)895

3–24.

[35] J. de Lara, E. Guerra, Deep Meta-modelling with MetaDepth, in: TOOLS,

2010, pp. 1–20.

[36] Object Management Group, Common Warehouse Metamodel Specification

1.1, http://www.omg.org/spec/CWM/1.1/PDF/ (last accessed September,900

2016).
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