238 research outputs found

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    All-optical aggregation and distribution of traffic in large metropolitan area networks using multi-Tb/s S-BVTs

    Get PDF
    Current metropolitan area network architectures are based on a number of hierarchical levels that aggregate traffic toward the core at the IP layer. In this setting, routers are interconnected by means of fixed transceivers operating on a point-to-point basis where the rates of transceivers need to match. This implies a great deal of intermediate transceivers to collect traffic and groom and send it to the core. This paper proposes an alternative scheme based on sliceable bandwidth/bitrate variable transceivers (S-BVTs) where the slice-ability property is exploited to perform the aggregation of traffic from multiple edges �� -to-1 rather than 1-to-1. This approach can feature relevant cost reductions through IP offloading at intermediate transit nodes but requires viable optical signal-to-noise ratio (OSNR) margins for all-optical transmission through the network. In this work, we prove through simulation the viability and applicability of this technique in large metro networks with a vertical-cavity-surface-emitting laser-based S-BVT design to target net capacities per channel of 25, 40, and 50 Gb/s. The study reveals that this technology can support most of the paths required for IP offloading after simulation in a semi-synthetic topology modeling a 20-million-inhabitant metropolitan area. Moreover, OSNR margins enable the use of protection paths (secondary disjoint paths) between the target node and the core much longer than primary paths in terms of both the number of intermediate hops and kilometers.European Union H2020 project PASSION, grant no. 780326 (http://www.passion-project.eu/)

    Topology overlays for dedicated protection Ethernet LAN services in advanced SONET/SDH networks

    Get PDF
    The explosion of information technology (IT) services coupled with much-increased personal and scientific computing capabilities has resulted in great demand for more scalable and reliable networking services. Along these lines, carriers have spent large sums to transition their legacy\u27 SONET/SDH voice-based networking infrastructures to better support client-side Ethernet data interfaces, i.e., next-generation SONET/SDH (NGS). In particular, a key addition here has been the new virtual concatenation (VCAT) feature which supports inverse multiplexing to \u27split\u27 larger connection requests in to a series of independently-routed \u27sub-connections\u27. As these improved infrastructures have been deployed, the design of new Ethernet over SONET/SDH (EoS) services has become a key focus area for carriers, i.e., including point-to-point and multi-point services. In light of the above, this thesis focuses on the study of improved multi-point EoS schemes in NGS networks, i.e., to provision robust \u27virtual LAN\u27 capabilities over metro and wide-area domains. Indeed, as services demands grow, survivability considerations are becoming a key concern. Along these lines, the proposed solution develops novel multi-tiered (partial) protection strategies. Specifically, graph-theoretic algorithms are first proposed to interconnect multi-point node groups using bus and minimum spanning tree (MST) overlays. Next, advanced multi-path routing schemes are used to provision and protect these individual overlay connections using the inverse-multiplexing capabilities of NGS. Finally, post-fault restoration features are also added to handle expanded failure conditions, e.g., multiple failures. The performances of the proposed multi-point EoS algorithms developed in this research are gauged using advanced software-based simulation in the OPNET ModelerTM environment. The findings indicate that both the bus and MST overlays give very good performance in terms of request blocking and carried load. However, the MST-based overlays slightly outperform the bus-based overlays as they allow more efficient topology designs. In addition, the incorporation of dynamic load state information in the selection of bus and/or MST overlays is also very beneficial as opposed to just using static hop count state. Furthermore, inverse-multiplexing is highly-effective, yielding notably higher carried loads when coupled with load-balancing sub-connection routing. Finally, results also show that post-fault restoration is also a very effective means of boosting EoS LAN throughputs for partially-protected demands, consistently matching the reliability of full-protection setups.\u2

    Efficient communication using multiple cycles and multiple channels

    Get PDF
    Initially, the use of optical fiber in networks was to create point-to-point links. Optical paths were not altered once they were setup. This limits the ability of the network to respond to changing traffic demands. There were expensive solutions to handle dynamic traffic. One could set up multiple paths for additional traffic. Alternately, traffic that did not have a dedicated optical path needed to be received, the next hop found electronically, and then transmitted again. Current research in optical networking is looking to minimize or even eliminate electronic packet processing in the network. This will reduce the numbers of transmitters, receivers, and processing hardware needed in the network. If a signal can be kept entirely optical, new signal formats can be added to the network by only upgrading systems sending or receiving the new format. Research is currently looking at hardware designs to support electrically changing optical paths, and algorithms to route the optical paths. The topic of this work is the routing algorithms. We wish to keep cost as low as possible, while being able to recover quickly from or completely hide hardware failures. Several strategies exist to meet these expectations that involve a mix of handing routing and failure at the optical or at the electronic layer. This dissertation considers the use of cycles or rings in both establishing optical connections in response to connection requests, and electronic routing on optical cycle\u27s setup when a network is built. Load balancing is an important issue for both approaches. In this dissertation we provide heuristics and integer linear program (ILP) that can be used to find cycles in a network. We report on experiments showing the effectiveness of the heuristics. Simulations show the importance of load balancing. In the case of electronic routing, we setup cycles in the network which allow nodes on the cycle to communicate with each other. We select cycles so that they have two properties. One property is that all node pairs appear on at least one cycle. The other property is that each cycle contains a cyclical quorum. The first property allows for a network to support all-to-all communication entirely in the optical domain. The second property allows for quorum based distributed systems to send a message to an entire quorum in an all optical one-to-many connection. The use of quorums makes distributed systems efficient at tasks such as coordinating mutual exclusion or database replication. There is a need for the optical layer of the network to provide support for keeping latency of this type of communication low because as designers have scarified the benefits of using quorums in higher latency networks. Combined with light trails, cycles based on quorums requires fewer transmitter and receivers than light-paths to support all-to-all traffic

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    A survey of multicasting protocols for broadcast-and-select single-hop networks

    Full text link

    Topological Design of Multiple Virtual Private Networks UTILIZING SINK-TREE PATHS

    Get PDF
    With the deployment of MultiProtocol Label Switching (MPLS) over a core backbone networks, it is possible for a service provider to built Virtual Private Networks (VPNs) supporting various classes of services with QoS guarantees. Efficiently mapping the logical layout of multiple VPNs over a service provider network is a challenging traffic engineering problem. The use of sink-tree (multipoint-to-point) routing paths in a MPLS network makes the VPN design problem different from traditional design approaches where a full-mesh of point-to-point paths is often the choice. The clear benefits of using sink-tree paths are the reduction in the number of label switch paths and bandwidth savings due to larger granularities of bandwidth aggregation within the network. In this thesis, the design of multiple VPNs over a MPLS-like infrastructure network, using sink-tree routing, is formulated as a mixed integer programming problem to simultaneously find a set of VPN logical topologies and their dimensions to carry multi-service, multi-hour traffic from various customers. Such a problem formulation yields a NP-hard complexity. A heuristic path selection algorithm is proposed here to scale the VPN design problem by choosing a small-but-good candidate set of feasible sink-tree paths over which the optimal routes and capacity assignments are determined. The proposed heuristic has clearly shown to speed up the optimization process and the solution can be obtained within a reasonable time for a realistic-size network. Nevertheless, when a large number of VPNs are being layout simultaneously, a standard optimization approach has a limited scalability. Here, the heuristics termed the Minimum-Capacity Sink-Tree Assignment (MCSTA) algorithm proposed to approximate the optimal bandwidth and sink-tree route assignment for multiple VPNs within a polynomial computational time. Numerical results demonstrate the MCSTA algorithm yields a good solution within a small error and sometimes yields the exact solution. Lastly, the proposed VPN design models and solution algorithms are extended for multipoint traffic demand including multipoint-to-point and broadcasting connections

    Quasi-passive optical infrastructure for future 5G wireless networks: pros and cons

    Get PDF
    In this paper, we study the applicability of the quasi-passive reconfigurable (QPAR) device, a special type of quasi-passive wavelength-selective switch with flexible power allocation properties and no power consumption in the steady state, to implement the concept of reconfigurable backhaul for 5G wireless networks. We first discuss the functionality of the QPAR node and its discrete component implementation, scalability, and performance. We present a novel multi-input QPAR structure and the pseudo-passive reconfigurable (PPAR) node, a device with the functionality of QPAR but that is pseudo-passive during steady-state operations. We then propose mesh and hierarchical back-haul network architectures for 5G based on the QPAR and PPAR nodes and discuss potential use cases. We compare the performance of a QPAR-based single-node architecture with state-of-the-art devices. We find that a QPAR node in a hierarchical network can reduce the average latency while extending the reach and quality of service of the network. However, due to the high insertion losses of the current QPAR design, some of these benefits are lost in practice. On the other hand, the PPAR node can realize the benefits practically and is the more energy-efficient solution for high reconfiguration frequencies, but the remote optical node will no longer be passive. In this paper, we discuss the potential benefits and issues with utilizing a QPAR in the optical infrastructure for 5G networks.This work has been funded by the Spanish project TIGRE5 CM (grant number S2013/ICE 2919), the EU H2020 5G Crosshaul project (grant number 671598), and the Australian Research Council’s Discovery Early Career Researcher Award (DECRA) funding scheme (project number DE150100924). The authors would also like to acknowledge the support of the Center for Integrated Systems, Stanford University, and Corning Incorporated. for the development of this work
    • …
    corecore