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TOPOLOGICAL DESIGN OF MULTIPLE VIRTUAL PRIVATE NETWORKS 

 UTILIZING SINK-TREE PATHS 
 

Anotai Srikitja, PhD 
 

University of Pittsburgh, 2004 
 
 

With the deployment of MultiProtocol Label Switching (MPLS) over a core backbone 

networks, it is possible for a service provider to built Virtual Private Networks (VPNs) 

supporting various classes of services with QoS guarantees. Efficiently mapping the logical 

layout of multiple VPNs over a service provider network is a challenging traffic engineering 

problem. The use of sink-tree (multipoint-to-point) routing paths in a MPLS network makes the 

VPN design problem different from traditional design approaches where a full-mesh of point-to-

point paths is often the choice. The clear benefits of using sink-tree paths are the reduction in the 

number of label switch paths and bandwidth savings due to larger granularities of bandwidth 

aggregation within the network.  

In this thesis, the design of multiple VPNs over a MPLS-like infrastructure network, 

using sink-tree routing, is formulated as a mixed integer programming problem to 

simultaneously find a set of VPN logical topologies and their dimensions to carry multi-service, 

multi-hour traffic from various customers. Such a problem formulation yields a NP-hard 

complexity. A heuristic path selection algorithm is proposed here to scale the VPN design 

problem by choosing a small-but-good candidate set of feasible sink-tree paths over which the 

optimal routes and capacity assignments are determined. The proposed heuristic has clearly 

shown to speed up the optimization process and the solution can be obtained within a reasonable 

time for a realistic-size network.  
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Nevertheless, when a large number of VPNs are being layout simultaneously, a standard 

optimization approach has a limited scalability. Here, the heuristics termed the Minimum-

Capacity Sink-Tree Assignment (MCSTA) algorithm proposed to approximate the optimal 

bandwidth and sink-tree route assignment for multiple VPNs within a polynomial computational 

time. Numerical results demonstrate the MCSTA algorithm yields a good solution within a small 

error and sometimes yields the exact solution. Lastly, the proposed VPN design models and 

solution algorithms are extended for multipoint traffic demands including multipoint-to-point 

and broadcast connections.      
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1. Introduction 
 

1.1. Introduction 

Virtual Private Networks (VPNs) provide a private and dedicated environment over a 

shared private or public network infrastructure. In general, a VPN appears to its clients as if it is 

a dedicated private network, with exclusive use of the intermediate infrastructure, but in reality 

the shared resources are used among different types of traffic. VPNs were originally built to 

interconnect PBX and Centrex facilities oriented toward voice services in the framework of 

nation-wide networks [40]. With the advent of standard broadband technologies such as the 

asynchronous transfer mode (ATM) and frame relay, a deployment of VPNs supporting 

integrated service for voice, data and video applications together over a service provider’s 

network appears to be economically appealing since it allows high-speed access with 

performance and Quality of Service (QoS) guarantees.  

Another notable alternative is offering VPN services over the public Internet. The 

Internet is considered to be the most ubiquitous public data-centric network. During the past 

several years, there has been an overwhelming demand for broadband services driving the 

Internet to support almost all types of traffic. Public and private IP networks have promptly 

launched new mission critical and real-time applications which cannot tolerate unpredictable 

losses as well as require bandwidth and latency guarantee. Departing from existing “best effort” 

paradigm, the Next Generation Internet (NGI) aims to provide QoS guarantee such that a specific 

level of service performance can be assured. Two frameworks have been developed by the 

 11



Internet Engineering Task Force (IETF) community including the Integrated and Differentiated 

service models. However, the NGI has recently been geared toward the deployment of the 

Differentiated service (DiffServ) model and the Multiprotocol Label Switching (MPLS) packet 

forwarding technique, which together make it possible for QoS provision to be done in a scalable 

manner in terms of better manageability of bandwidth granularities and connection types. Based 

on these frameworks, the QoS-based VPNs can be built on top of an NGI infrastructure to offer 

different QoS guarantee to user-applications. A draft standard for VPN services over the Internet 

has been developed by the IETF organization [11, 35].  

 

1.2. Next Generation Internet Architecture 

The Multiprotocol Label Switching (MPLS) technique provides a connection-oriented, 

QoS-based approach to the NGI together with a traditional, connectionless, best-effort approach. 

MPLS uses the label swapping based forwarding similar to frame relay and ATM to handle IP 

traffic regardless of lower layer technology. It specifies functionalities for the efficient 

designation, routing, forwarding, and switching of IP traffic flows through the network. MPLS is 

an ongoing solution developed for the core IP backbone network. Considering that the demand 

for transmission bandwidth will be gigantic in upcoming years, the core IP architecture is 

expected to run over the Optical Transport Network (OTN). Therefore, the bridging of IP-based 

technologies such as MPLS and those in OTN such as Dense Wavelength Division Multiplexing 

(DWDM) network or optical circuits of synchronous optical network (SONET) is necessary.  

At the DWDM (Dense Wavelength Division Multiplexing) layer, multiprotocol lambda 

(or wavelength) switching (MPLambdaS) proposed in [7] will extend the label-switching 

concept to include wavelength-routed and switched lightpaths. Potentially, it will resolve the 
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electronic-switched bottleneck. With MPLambdaS, a logical topology (completing any-to-any 

connectivity) consists of wavelength paths will be built to carry IP packets on top of WDM 

physical network composing of optical crossconnect (OXC) or optical add-drop multiplexer 

(OADM). However, a large channel granularity of the wavelength capacities ranging from 10 

Gbps to 40 Gbps may be too large for end-to-end traffic profiles. Another concern is scalability 

arising from building such connectivity is that a large number of unique wavelength channels are 

necessary. For this reason, Generalized MPLS (GMPLS) [9, 60] has been standardized for the 

next generation optical Internet, which supports multi-granularity of switching types including 

fiber-, waveband- and lambda-switching in the optical domain. In other words, GMPLS is 

equipped with the ability of tunneling MPLS label switched paths (LSPs) which provision 

optical flows with mutli-granularity and a mechanism of assigning generalized labels to bundled 

consecutive wavelengths into a waveband or a whole fiber. GMPLS also incorporates switching 

in a finer granularity where the label switched path can be time division multiplexed (TDM) 

optical circuits of synchronous optical network/digital hierarchy (SONET/SDH).      

Overall, to this end, in the NGI architecture, it is very promising that the IP layer will be 

overlayed on top of MPLS/MPLambdaS/GMPLS switching layer which will again sit on top of 

underlying optical physical infrastructure. Once the infrastructure is in place, the network 

management problem is then to determine how to efficiently map various virtual/logical 

topologies on top of each other. This problem has been done in the past in circuit-switched, 

frame relay and ATM networks. Considered to be a relatively longer-term procedure, logical 

topology design will provision virtual networks and determine the optimal configuration in both 

route and capacity/granularity wise.   
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1.3. Problem Statement  

In a traditional Internet, traffic is forwarded based on destination IP address along the 

shortest possible routes computed based on traffic-insensitive-link metrics which does not 

always make good use of available network resources. This shortcoming is overcome by 

deploying labeling-switched technologies, e.g. MPLS, where traffic routes can be provisioned 

for QoS assurance using an MPLS explicit-path routing feature where the routing/forwarding 

path can be fixed/predetermined. Under the NGI architecture, QoS-based VPNs can be 

efficiently built over carrier network where the VPN logical topology is composed of a set of 

explicit LSPs. In MPLS, an explicit LSP can be thought of as virtual trunks carrying aggregation 

of IP traffic like a Virtual Path Connections (VPC) in ATM network. In supporting QoS-based 

VPNs over the NGI infrastructure using MPLS, one main issue is to provide a performance 

guarantee to coexisting VPNs having different service classes and topologies. A prerequisite to 

delivering QoS service guarantees is to have a good network design with proper traffic 

engineering, otherwise the network must be over-dimensioned which is not a cost effective 

strategy and yields a low network utilization. 

In general, a QoS-based VPN design must consider multiple performance metrics such as 

call blocking, packet loss and delay and other QoS measures at the traffic layer. Within an MPLS 

domain, one can create a sink-tree, that is a directed routing tree ending at one network node (an 

egress node), to route an aggregate traffic demand through it. This makes the design of QoS-

based VPNs in the NGI different from those of circuit-switched networks and connection-

oriented packet networks such as ATM where a point-to-point path is used. In other words, with 

MPLS, it is possible to create multiple logical sink-trees carrying traffic of multiple VPNs. Note 

that traffic of different VPNs with the same QoS requirement may be carried on the same routing 
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tree and may/may not share network bandwidth. A big question is how to construct a tree and 

how to incorporate it in the network design model. 

The goal of this research is to propose a mathematical model and solution algorithm for 

QoS-based VPN design over a core NGI backbone network supporting MPLS. In this thesis, the 

VPN design problem is modeled as a mixed integer programming (InP) problem assuming a 

linear capacity cost structure. The objective of the InP model is to minimize the cost of laying 

out a VPN supporting different traffic types and service classes on a given topology while 

meeting QoS requirements. Realizing sink-tree routing paths, the proposed model aims to find an 

optimal layout for multiple VPNs supporting multi-service classes for different time periods 

(multi-hour periods) considering that the traffic demand may vary during the course of the day. 

Bandwidth aggregation at different levels will also be considered in the link capacity allocation. 

The followings are assumed to be known including a physical topology and its bound on the 

maximum link capacity, a capacity cost, a traffic demand matrix of all VPNs and their QoS 

profiles.  

The VPN design utilizing sink-tree routing paths turns out to be NP-complete problem. 

One cannot expect to find a time efficient algorithm to obtain the exact solution to the problem. 

Several search methods have been attempted in the past for similar InP problems including 

branch and bound, greedy heuristics, simulated annealing, and genetic algorithm techniques. The 

brand and bound technique has reported to give an exact solution but in general is too time 

consuming. The greedy heuristics can be fast but may easy get stacked in local minima which 

results in far-from-optimal solution. The main body of this thesis then aims to find an efficient 

solution method to the multiple VPN design problem which can be applicable for large networks 

of realistic sizes. 
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Major contributions of this dissertation are as follows 

• The design of multiple VPNs over MPLS-like infrastructure network, using sink-tree 

routing, is formulated as a mixed integer programming problem to simultaneously 

find VPNs logical topologies and their dimension to carry multi-service, multi-hour 

VPNs traffic.  

 

• A heuristic path selection algorithm is proposed to scale the VPN design problem by 

choosing a small-but-good candidate set of feasible sink-tree paths to solve the 

optimization problem over. The proposed heuristics introduces a new selection 

criteria which limiting a number of links used in a tree other than a number of hops 

used in a point-to-point path selection. 

 

• Minimum-Capacity Sink-Tree Assignment (MCSTA) algorithm is devised to 

approximate optimal bandwidth and sink-tree route assignment for multiple VPNS in 

a polynomial computational time.  

 

• Variations of THE MCSTA algorithm are considered including MCSTA_APL, 

MCSTA_SPL and MCSTA_DPL algorithms which employ a resource utilization index 

as criteria in a group demand ordering. 

 

• The VPN design model is extended for multipoint traffic demands including 

multipoint-to-point and point-to-multipoint connections. Multiple broadcast trees as 

well as a single broadcast tree are considered for point-to-multipoint connections.   
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1.4. Organization  

The remainder of this thesis is organized as follows. Chapter 2 will develop a background 

on VPNs in general to their requirements and functionalities of each component, then MPLS will 

be reviewed and explained in detail on how QoS-based VPN can be built over NGI backbone 

through the use of MPLS. Various aspect related to QoS-based VPN design over NGI 

architecture will also be thoroughly discussed. Chapter 3 presents previous work on virtual 

network design for circuit-switched and ATM networks. This is to give a review on a traditional 

design model for a virtual network used in the literature, since, from a design perspective, the 

concept of virtual networks in general can be applied to VPNs. Chapter 4 discusses the proposed 

design model for QoS-based VPN over an MPLS network. A detailed description will be given 

of the MPLS VPN design issues, that illustrate how they differ from a traditional design model, 

and discuss the design criteria used to develop the model. Then, mathematical models are 

proposed. Chapter 5 introduces a path selection heuristics aiming to scale the VPN design 

problem by choosing a small-but-good candidate set of feasible sink-tree paths. Chapter 6 will 

highlight the efficient solution algorithm called Minimum-Capacity Sink-Tree Assignment 

(MCSTA) devised to solve the problem of the multiple VPNs design. Performance of the solution 

algorithm will be thoroughly illustrated by comparing with branch and bound algorithm. Then, 

Chapter 7 shows extended VPNs design model and approximation algorithms for multipoint 

traffic including multipoint-to-point and broadcast connections. Finally, chapter 8 will conclude 

the thesis and address future works.                 
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2. VPN Background 
 

This chapter aims to provide a general perspective on VPNs in terms of service 

requirements and frameworks. The following sections will give a background on MPLS and how 

it will be used to facilitate the implementation of VPN services in NGI. Then, the main issues 

relating to the design of QoS-based VPNs over the NGI supporting MPLS are discussed.  

 

2.1.  VPN Overview 

More specifically in this context, the term “Virtual Private Network” will be used to refer 

to a class of services that use a shared network infrastructure to emulate the characteristics of a 

private network. These characteristics can be expressed in terms of performance, reliability, 

security and quality of service. Note that many VPNs will typically co-exist over the same 

network infrastructure.  

2.1.1. Requirements of VPN Services 

The main attribute of a VPN service is a resource guarantee (i.e. network bandwidth and 

buffer space) offered by a service provider to emulate the characteristics of a dedicated network 

span over its customer sites. The VPN may be required to support voice and video as well as data 

applications in an economic fashion. In addition, for a customer whose sites locate on different 

operator domains, interoperability and service integration are desirable. In general, the main 

requirements of a VPN service can be grouped into four categories: economic, management, 

performance, and security.    

 18



(a) Economic Perspective 

The main incentive for implementing VPN service is its economic benefits. Cost savings 

are realized through efficient bandwidth management, service integration and network 

management costs. Implementing and maintaining private networks, which often have complex 

topologies, are expensive because it involves expensive leased lines, long-distance dial-up, and 

switched services. Besides the cost of expensive equipment, operational costs can be saved by 

outsourcing the management and maintenance equipments to a service provider. This implies 

that the network design and management responsibilities are the VPN service provider’s 

obligations. The service provider must allocate bandwidth to multiple VPNs on its infrastructure. 

This must be done in such a way that its revenue is maximized as well as meeting user-traffic 

profile criteria. Additionally, VPN services may allow companies to pay only for actual usage 

with no idle line. 

(b) Management Perspective 

At present, the increasing number of dispersed remote offices and mobility of workers 

makes private networks management difficult because individual networks may use different 

protocols, different applications, different carriers and different network management systems. 

This may involve both wire-line and wire-less network data services. Moreover, interfacing 

between two VPNs can be difficult. For some customers, interoperability and compatibility are 

key criteria for VPN services. Additionally, VPN services must provide customers with simple 

and homogeneous management of various end-to-end connections. More specifically, on-

demand end-to-end connections should be available. 
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(c) Performance Perspective 

Real-time and multimedia applications such as voice and video by nature require a 

certain level of performance (i.e., bandwidth and latency) and QoS guarantees. VPN services 

should allow user access to high bit-rate bandwidth and support variable-bit-rate traffic where a 

fluctuation in peak demand is expected. A minimum set of resources should be allocated to 

assure a given QoS level to a customer. A VPN should assure bandwidth and QoS level similar 

to that of a dedicated network. Additionally, for critical applications that rely on network 

availability such as military and financial services, in case of a network failure, a network 

recovery/restoration scheme must be implemented (e.g., through a traffic rerouting) to protect the 

VPN services from being disconnected.    

(d) Security Perspective 

Another important requirement for VPN services is a security provision. A VPN should 

provide a level of security similar to that of real private network. It must guarantee to keep 

transmitted data strictly confidential (e.g., through data encryption processes) as well as to 

prevent unauthorized users from gaining access to network-attached resources (e.g., through 

user-validation processes) or VPN resources.    

 

2.1.2. VPN framework  

From a design perspective, the concept of a virtual network in general can be applied to 

VPNs. The notion of virtual networks has long been used to refer to a logical network layout 

over several network architectures including circuit-switched and ATM networks. In [26, 27], 

the common generic definition of a virtual network is explained based on the potential 
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applications. Three broad categories can be classified namely: service oriented, user oriented, 

and management oriented virtual networks.  

In a service oriented virtual network, separated virtual networks can be implemented for 

different service classes having different QoS requirements over the same physical infrastructure 

to simplify QoS management. Generally, the bandwidth allocation/dimension of various virtual 

networks should provide sufficient Grade-of-Service (GoS) (e.g., connection blocking 

probability) and fairness to different service classes.  

In a user oriented virtual network, a separate virtual network is created for a group of 

users who have specific requirements (e.g. guaranteed throughput, customized control 

algorithms, resource management under user control, increased security and reliability, group 

tariff, etc.). The potential applications in this category are VPNs and multi-point connections.  

Management oriented virtual networks are created to facilitate management functions 

such as fault-management and call admission control functions. For example, a separate backup 

virtual network can be created to provide protection against a network failure such as network 

node and link failures. Similarly, a separate virtual network can be built for signalling functions.   
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2.1.3. VPN Components  

A VPN is composed of three main components namely: virtual trunks, VPN nodes and 

access nodes [40] (see Figure 2.1). Here, the term virtual trunk refers to a logical transport entity 

or a logical link between VPN network elements. It should be noted that a virtual trunk may be 

composed of one or more lower layer links (i.e. physical network links). There are two types of 

virtual trunks, namely access virtual trunks and inter-nodal virtual trunks. An access virtual trunk 

is a log  an access node and a VPN node. An inter-nodal virtual trunk is a logical 

link between the VPN nodes. An access node is the point where traffic from customer sites is 

multiplexed and injected into the VPN. The access node is sometimes referred to as an ingress 

node. VPN nodes are where virtual trunks are terminated or originated within the network. It 

could be a switched or cross-connect point of an end-to-end connection.   

 

ical link between

 

Figure 2.2: Overlay of VPN over a service provider network 
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Figure 2.2 shows an example of an overlay VPN on top of a service provider network. A 

node in the overlay VPN represents a VPN node and a link is a logical VPN link or VPN virtual 

trunk which consists of one or more link(s) in a service provider network. As shown in this 

example, the logical VPN link A and (B, C) consists of two and three links, respectively, in the 

can be changed or adjusted by network management depending on how the network is designed 

 Multiprotocol Label Switching (MPLS) technology simplifies the packet forwarding 

functio

lower-layer network. An actual path taken by a virtual trunk, over a service provider network, 

and engineered.     

 

2.2. MPLS Background 

n at the core of an IP network using a connection-oriented mechanism inside the 

connectionless IP networks. With MPLS, the standard destination-based hop-by-hop forwarding 

paradigm is replaced with a label-swapping forwarding paradigm, which is based on a simple 

short-label exact match. Thus, a packet can be forwarded at a very fast speed.  

2.2.1. MPLS components 

The MPLS network architecture consists of MPLS-capable routers, called label-switching 

routers (LSRs), in the MPLS domain, and MPLS edge routers at the edge where packets enter 

and exit the MPLS domain, called MPLS ingress and egress routers respectively. The MPLS 

ingress router will map the packet, as it enters the MPLS domain, to a corresponding forwarding 

equivalence class (FEC) and a label-switched path (LSP) based on the IP header. Figure 2.3 

shows an example of packet forwarding in MPLS service provider network. Typically, traffic 

from customers originated from a customer edge (CE) router will enters and exits the MPLS 

domain at a provider edge (PE) routers (or LSRs). As packets from CE router-A, which are 
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destined to CE router-C, enter the MPLS network, PE router will assign them with the FEC-1. 

The packets will be forwarded in the same manner to the exiting PE router that connects to a 

destined router (CE router-C, in this example). The LSP is the path through which packets of a 

particular FEC will be forwarded and is set up for each route through the MPLS network. Then, 

based on a corresponding LSP identifier, a short fixed-length label is assigned as the packet is 

forwarded to the next hop. Note that a label is treated as a local significant identifier, thus, label 

swapping is done at the LSR as a packet is forwarded through the MPLS network. Consequently, 

the packet is simply forwarded along the LSP using only the label assigned to it.  

 

 

 

Figure 2.3: Mapping packets into a FEC forwarding class. 
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2.2.2. Forward Equivalent Class 

Forward Equivalent Class (FEC) is defined in the MPLS standard as a group of packets 

which is forwarded in the same manner (e.g., over the same path, with the same forwarding 

treatment). FEC can be used to classify packets in different granularities. For example, based on 

an address prefix classification, FEC can be associated with packets going to a particular 

destination or, in conjunction with different types of services, it can be associated with packets to 

a destination with a distinct service class.      

If a FEC is created to identify all packets going through the same egress LSR, packets 

from different ingress LSRs in the same FEC will be forwarded through the same LSP structure 

exiting at a particular egress LSR. The LSP in this case is a multipoint-to-point path forming a 

logical sink-tree structure. Traffic from different sources exiting at the same egress node can be 

aggregated within the MPLS network. Different levels of traffic aggregation are possible in the 

MPLS domain. Through traffic aggregation, the total number of labels that need to be distributed 

and managed can be reduced, thus making MPLS scalable and manageable for a backbone 

network. 

2.2.3. Label Assignment and Binding 

Each LSR along the LSP must negotiate a label that will be used for each FEC with its 

upstream and downstream neighbors. A downstream label assignment is used by default where 

the downstream LSR assigns a label for each FEC and the label binding information is 

distributed to its upstream LSR. LSRs will use a Label Distribution Protocol (LDP) to exchange 

label/FEC binding information. Different label distribution protocols, e.g. RSVP-TE and CR-

LDP [3, 8, 44, 73], might be used for different purposes or in various circumstances [75].  
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With label/FEC binding information, each LSR creates a forwarding information base 

(FIB), a database that contains the label mapping of its incoming and outgoing links for each 

FEC. The LSR will use a label of an incoming packet as an index to the FIB to find the outgoing 

link and if a new label is needed for the packet. The label/FEC binding must be renegotiated 

when needed or dynamically (for example, when a forwarding path is changed) and the FIB must 

be updated accordingly. 

 A label-switched path (LSP), a path that is taken by packets within the same FEC, can be 

selected based on different routing algorithms. For a particular FEC, the route selection may be 

based on a hop-by-hop routing or an explicit routing. In a hop-by-hop routing, each LSR 

independently choose the next hop for each FEC. A standard routing protocol used in existing IP 

networks such as RIP (Routing Information Protocol) and OSPF (Open Shortest Path First) can 

be used to select the next hop. However, to support different service requirements, a LSP may be 

established on a route different from a shortest path. Therefore, the information on the service-

related properties of each link must be known and used

2.2.4. Route Selection in MPLS 

 at each router to calculate an optimal 

ute for each FEC.   

 In an explicit routing [ in s LSR or an egress LSR, will 

select t

ro

6], a s gle LSR, generally an ingres

he route to establish a LSP. For example, an egress LSR may compute an entire path for a 

tree ending at it. The explicit routing capability facilitates QoS service support and traffic 

engineering over MPLS networks. With explicit routing, each traffic stream between an ingress 

and egress node-pair can be individually routed through a preferred path. Thus, it allows a path 

that can satisfy the QoS requirement of a traffic stream (e.g., a path with enough bandwidth) to 

be explicitly identified. Note that the QoS profile of a traffic stream may be specified in 
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experimental bits of the MPLS label attached to a packet. As a packet is forwarded along a 

predetermined LSP, it can be treated in an appropriate manner such that its QoS requirement is 

maintained. Using an explicit routing mechanism, a set of defined paths may be set up through 

the MPLS network for certain traffic streams for various traffic engineering purposes. For 

example, one path may be preferred over another to allow load-balancing across multiple links. 

In general, traffic engineering can be implemented over an MPLS network to support load 

balancing, dynamic fall over to backup paths, or re-optimization of traffic routes for better 

network resource utilization and transport performance. 

 

2.3. QoS-based VPN over NGI 

Over a IP backbone network, building QoS-VPNs can be easily deployed with MPLS. 

Multiple VPNs can be constructed on the same network through the use of different MPLS 

Forward Equivalent Classes (FECs). As mentioned earlier, FEC is used to define traffic that will 

be forward in the same manner through a MPLS network. Thus, different FECs could be used to 

classify traffic from different VPNs which may or may not use the same forwarding path and 

may or may not share a portion of network bandwidth. One example, shown in Figure 2.4, is to 

define different FECs for VPNs traffic destined to different egress routers.  VPN-1 traffic exiting 

at the same egress PE router is assigned to FEC-1 while packets of VPN-2 are assigned to FEC-

.  In this case, a label switched paths (LSPs) of FEC-2 forms a directed inverted tree rooted at 

the egress node (or sink-tree). In allocating network bandwidth to VPNs, note that, the 

bandwidth of a path segment after a merger point can be shared by traffic within one VPN. In 

other words, traffic multiplexing can be achieved naturally. Here, the term bandwidth 

2
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aggregation will be used interchangeably with bandwidth sharing and statistical bandwidth 

multiplexing throughout the paper.     

 

Figure 2.4: QoS-VPN implementation over MPLS core network. 

 

2.4. VPN Design Issues over NGI 

The major challenges in deploying QoS-based VPNs over the Internet are delivering 

perform

capacity provisioning and routing coexisting VPNs having different service classes and 

ance guarantee and security assurance to a degree that is comparable to a real private 

network. Deploying MPLS over an IP network makes it easier for VPN services to provide 

performance at the required level. Since MPLS is designed to have a traffic engineering 

capability, provisioning for QoS guarantees to traffic in different classes of service are possible. 

In terms of security, the goal is to protect VPN data from maliciously or accidentally 

misconduct. The IP Security Protocol (IPSec) [49] was developed for this purpose.  

Assuring performance of VPN services, a service provider has to be concerned with 
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topologies over the same network infrastructure. Furthermore, in VPN design, one must be 

concerned with scalability and manageability in order to be able to support a large number of 

custom

ring, otherwise the network must be largely over-

provisi

ers. In another words, a well-designed VPN must be easy to manage and at the same time 

attain bandwidth efficiency. Over a MPLS network, this means that the number of label switched 

paths (LSPs) and required labels must be kept small. In term of capacity efficiency, different 

levels of traffic aggregation may be considered. For example, one may consider aggregation of 

traffic from different VPNs belonging to the same service class or aggregation of traffic from 

VPNs exiting at the same egress node. Finally, another concern a VPN designer must deal with is 

fault management. A VPN must be equipped with traffic restoration functions and an adequate 

amount of spare capacity to protect VPN traffic in case of a network failure.        

In summary, a prerequisite to delivering QoS service guarantees is to have a good 

network design with proper traffic enginee

oned which is not a cost effective strategy and yields a low network utilization. In doing 

so, a matrix of traffic demands that must be handled by a network must first be determined. This 

can be computed from all SLAs (Service Level Agreements), between customers and service 

providers, which identify various classes of service and specify how much traffic in each service 

class a user is allowed to send. Then, the VPN management system can run the network 

engineering/design algorithms to determine how traffic should be efficiently mapped onto an 

existing network topology while maintaining an optimal use of network resources.  

In general, a QoS-based VPN design must consider multiple performance metrics such as 

call blocking, packet loss and delay and other QoS measures at the traffic layer. One unique 

aspect of MPLS is that a packet forwarding path can be a sink-tree path, that is a directed routing 

tree ending at one network node (an exit/outgoing node). This makes the problem of QoS-based 
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VPN design in the NGI different from those of circuit-switched networks and connection-

oriented packet networks such as ATM. In other words, with MPLS, it is possible to create 

multiple logical sink-trees carrying traffic of multiple VPNs. Note that, the traffic of different 

VPNs with the same QoS requirement may be carried on the same routing tree and may/may not 

share network bandwidth. A fundamental problem is how to construct a tree and how to 

incorporate it in the network design model. 

In MPLS, two types of traffic connections must be supported, and thus to be considered 

in a design perspective, including point-to-point and multipoint connections. Multipoint 

connections include broadcast (point-to-multipoint), merge (multipoint-to-point), composite 

(point-to multipoint and multipoint-to-point) and full multipoint (multipoint-to-multipoint). In 

addition to the traffic type, different QoS classes should be considered. Two frameworks are 

proposed by the IETF to be used for NGI namely the Integrated and Differentiated service 

models. In the Differentiated service model, for example, QoS classes are composed of premium 

service, assured service and best-effort service. In the premium service class, packet loss, delay 

and delay jitter must be bounded. The traffic of this class requires an absolute bandwidth 

guarantee. In the assured service class applications have the ability to tolerate a certain amount of 

delay and loss. For this traffic class, a mean bandwidth guarantee is needed along with a 

statistical delay bound. The best-effort service class corresponds to current Internet service with 

no QoS guarantees. Another aspect that should be addressed in a QoS-based VPN design model 

is the probability of call return. In certain service classes, many end-user applications such as 

Web-based applications or voice telephony applications tend to have an automatic call retry or 

repeat attempt feature. When a requested call/connection is first rejected, there is a certain 
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probability that the rejected call/connection will be retried. The portion of call return traffic will, 

erefore, increase the amount of traffic offered to the VPN.  

 

th
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e each point-to-point demand pair is independently given a logical link that may be 

 

3. Virtual Network Design 
 

VPNs over a circuit-switched or an ATM network, are often viewed as a logical mesh 

network with point-to-point demands between node pairs. A logical full-mesh is a topology 

wher

routed over multiple switched-points. A switched-point is a cross-connect switch in a circuit-

switch network and an ATM switch in an ATM network. VPN design over a circuit-switched 

network differs from an ATM network in several ways. First, in a circuit-switched network, 

transmission subsystems in different levels are related in a hierarchy, while, in an ATM 

network, there is no such hierarchical structure. However, a non-hierarchical network design 

can be applied over a circuit-switched network operating with non-hierarchical routing. 

Another difference addressed in VPN design is capacity structure. In a circuit-switched 

network, link capacity is calculated in a unit derived from a unit of a trunk capacity in a 

lower hierarchy, whereas, in an ATM network, link capacity can be varied in a finer 

granularity.   

 This chapter first presents a summary on circuit-switched network VPN design. Next, 

ATM network VPN design will be discussed in greater detail since its characteristics and 

design criteria are somewhat similar to VPN design over a NGI network. Lastly, works on 

MPLS-based VPN design are then reviewed.  
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3.1. VPN Design over Circuit-Switched Network 

 For circuit-switched networks, a large body of literature exists on dimensioning 

etworks under end-to-end 

blocking constraints.  In the multi-hour network dimensioning problem [5], the optimization 

model takes into account the fact that traffic flow demand can vary substantially during the 

day and thus yields different periods of peak demand between any node-pair in the network. 

Compared to dimensioning a network based on the maximum busy hour, the multi-hour 

network design can significantly reduce network cost. The multi-hour dimensioning problem 

can be reduced to a single problem, or a sequence of single-hour problem [5]. Using a 

technique of non-differentiable optimization, a solution approach to the mathematical model, 

for two-level networks, with a linear cost objective function, is proposed by [28-30]. For 

large networks with more complex hierarchies, this approach is not considered efficient. 

hierarchical and non-hierarchical networks. Both single-hour and multi-hour models are 

considered. Most of the literature formulates the dimensioning problem for circuit-switched 

networks as a non-linear optimization problem. Several solution approaches are proposed by 

iterating between solving a set of non-linear equations and a solution of linear programs [5, 

33]. 

 For a traditional hierarchical telephone network, a trunk dimensioning is usually done 

to minimize the total network cost while meeting the grade-of-service requirements which 

can be stated in terms of a blocking probability on the final trunk groups. The papers [70-72, 

80] considered the optimal dimensioning of a hierarchical network for a single traffic 

demand matrix over a single-hour period. Since the blocking probability on the final trunk 

groups does not represent the actual grade of service as perceived by the users, Beshai and 

Horn [13] proposed a dimensioning algorithm for hierarchical n
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Girard, Lansard and Liau applied an LP relaxation technique to solve a dual problem of the 

multi-hour dimensioning model. 

 

affic that is carried by two different trunk groups. One well-known approach in 

dimensioning nonhierarchical networks is the Unified Algorithm (UA), a heuristic method, 

developed for dynamic nonhierarchical routing (DNHR), and used in AT&T network design 

linear variables and thus make UA computationally efficient for a large network. Several 

 The dimensioning problem in a non-hierarchical network is different from one in a 

hierarchical network since user traffic is represented as a flow that is dynamically routed 

through the network. Secondly, a grade of service constraint cannot be directly expressed as a 

link blocking probability but is given in term of an end-to-end blocking probability. In 

addition, there is no difference between high usage and final trunk groups. Katz [46] 

dimensioned nonhierarchical networks by trying to find a set of feasible flows in which the 

end-to-end blocking probabilities are equalized as much as possible. The model assumes that 

the network cost is minimized subjected to uniform grade-of-service constraints. 

Dimensioning a nonhierarchical network is modeled as a multicommodity flow problem in 

[5, 12, 52]. The flow is optimally routed over an uncapacitated network to minimize the 

capacity cost of carrying the flow on links. The cost function is shown to be a complex 

nonlinear function of link capacities with linear flow constraints.  

In Berry’s work [12], the traffic demand is divided into the first-offered and overflow

tr

[5]. The Unified Algorithm is used for both trunk-dimensioning and routing optimization 

based on a multi-hour traffic engineering approach. The heuristics are devised to replace non-

papers [16, 41] have studied dimensioning of adaptive routing networks based on residual 
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capacity. The heuristics is proposed for a multi-hour optimization with fixed size of trunk 

group.    

 The circuit-switched network design work discussed above only considers traffic 

having point-to-point connections in single- and multi-rate connections including [33, 48]. In 

[61], the authors address circuit-switched network design with multipoint connections, 

particu

t stage is to maximize traffic concentration by solving a dimensioning 

problem aximum spanning tree paths. The second stage is to try to move 

some p uted over costly and long paths to more direct links.         

 

3.2. VPN Design over ATM 

ATM is a cell-based switched transport technology designed to support various 

services on broadband networks. The service classes, with different traffic characteristics, 

different qualities of service, and different bandwidth requirements and holding times, makes 

VPN design over ATM different from circuit-switched networks. To assure that the network 

resources are enough to provide different QoS guarantees, appropriate traffic engineering 

mechanisms are used in conjunction with a connection admission control (CAC) scheme. 

larly point-to-multipoint connections. The study was done to investigate the impact of 

tree selection on the optimal routing and network dimensioning problem in the presence of 

point-to-multipoint traffic. Their results suggest that to achieve route optimality, it is 

advisable to spread traffic evenly among trees with few links in common. On the other hand, 

for the optimal dimensioning, one should concentrate traffic on few trees having a small 

number of links with a large capacity. Applying the above results to a network design 

problem, a heuristics method was proposed by same authors in [62]. This is done in two 

stages. The firs

 using a set of m

oint-to-point traffic that is ro
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Among other things, the first has to do with a network capacity allocation to ensure that a 

network is equipped with enough capacity to support a certain traffic matrix. The CAC is 

used to

 characteristics can be 

grouped together and placed inside pre-established Virtual Path (VPs). The call setup time is 

reduced if there exists a virtual path with enough capacity between a requested node-pair 

since no extra processing tim red. This makes it easier for 

etwork management and control since it can be done at the VP level. The statistical 

mult P is possible and will give a better resource 

utilization. The role of virtual 

be done together to achieve 

the optim

 limit access to the network such that network resources are kept below an appropriate 

level such that QoS commitment could be given to all traffic connections admitted to the 

network. 

In ATM networks, multiple Virtual Channels (VCs) of the same

e at the intermediate nodes is requi

n

iplexing of VCs going through the same V

paths in ATM networks has been investigated in [1, 2, 14, 15, 

25, 47, 59, 79]. 

 

3.2.1. ATM VPN Design  

ATM VPN design mainly focuses on how a virtual path connection (VPC) could be 

efficiently layout on top of a physical network. The VPC overlay network or the logical 

network is where virtual channel connections will be routed. Determining the VPC route 

configuration and assigning VPC capacity are related and must 

um cost effective design. This can be formulated as an optimization problem which 

is usually large and complex since the number of possible VPC topologies typically grows 

exponentially with the network size. Moreover, VPC capacity allocation is itself a complex 
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problem due to different numbers and sizes of VCCs that can be efficiently packed into each 

VPC to fully utilize the network link capacity.   

In the literature, a design of a virtual network over ATM can be categorized into three 

possible architectures [26, 27, 40] based on how a “Virtual Network Link” (VNL) or “virtual 

trunk” is constructed. This is shown in Figure 3.1 where a VNL link may be composed of a 

single VP or multiple VPs and an end-to-end traffic is carried via VC. 

 

 

Figure 3.1:  ATM-VPN  link  structure 

 

a) Single-hop VP (SHVP) architecture  

In a SHVP architecture, a VNL ed of a single VP, and, for every traffic 

demand pair, there is a direct . The end-to-end connections 

ed through a VC traverses only one VP-hop and there is no transit node. Figure 3.2 

(b) shows an example of a SHVP design of 5-node network, shown in Figure 3.2 (a), with 

four switching nodes and one cross-connect node. A switching node is where traffic joins and 

leaves a network, and cross-connect node serves as a transit point of traffic inside a network. 

It is shown in Figure 3.2(b), in SHVP design, there are total of 6 direct VP/VNL links upon 

 is compos

VNL/VP link between them

multiplex
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which VC connections carrying demand traffic are multiplexed. In this case, the VNL/VP 

links represent bi-directional links.     

SHVP architecture is sometimes referred to as VP-mesh design where a VP route 

determines the optimal routing path. The VP capacity assignment is done based on a given 

traffic demand matrix. Since statistical multiplexing among multiple VCs going through 

different VPs is not possible, the total network bandwidth may not be optimal with this 

architecture. However, the connection setup time is reduced and an admission control 

proce

    

dure is simplified since each node appears to be one-hop apart from each other. 

 

                

                      

Figure 3.2: ATM  VPN  Design 

 

 38



b) Multi-hop VP (MHVP) architecture 

In a MHVP architecture, a VNL is composed of a single VP but a VC carrying 

aggregated traffic between each node pair may traverse one or multiple VP-hops. Hence, the 

VP capacity and route assignment optimization is done to attain a minimum total VN 

bandwidth cost for a given traffic demand matrix subject to Grade of Service (GoS) 

constraints (such as connection blocking probabilities). In an example of a MHVP design, 

shown in Figure 3.2 (c), there are 5 VP/VNL links and multiple VCs carrying traffic that 

traverses through them (in single or multiple VP-hop(s). Compared to the VP-mesh design, 

the required network bandwidth may be lower since statistical multiplexing among multiple 

VCs going through different VPs can be achieved. Nevertheless, VCs switching cost is 

introduced and the connection set-up time may be longer. Thus, in this case, a bandwidth cost 

must be trade off with a switching cost.   

cross-connect network where the bandwidth of VNL links can be managed within the 

c) VNL-optimization architecture  

In a VNL-optimization architecture, there is a direct VP between every traffic demand 

pair. A VC will go through one VP-hop but a VP may traverse many VNLs. Each VNL may 

carry multiple VPs. Thus, the VP-mesh design is realized as in the SHVP architecture. 

However, in this case, the bandwidth and route optimization is done for each VNL. An 

example is shown in Figure 3.2(d) where four VNL links are created to carry multiple-direct 

VPs/VCs carrying demand traffic between the four switching nodes.             

An important implication of the above architectures is that, in the SHVP and MHVP 

architecture, the core ATM backbone switching network is considered, while, in the VNL-

optimization architecture, the ATM switches are located only at the edge of the lower level 

 39



network and outside of the ATM domain. Most of the literature related to ATM VPN design 

considers either single-hop or multi-hop VP design cases.        

Compared to circuit-switched networks, dimensioning ATM networks is more 

difficult since multiple QoS measures for different service classes, such as cell loss and 

delay, must be considered in addition to call blocking and routing constraints. The concept of 

“effective bandwidth” [27, 56, 77] was introduced to represent service rates required by 

different VCCs of different service classes. Using the effective bandwidth concept, traffic 

flows with different characteristics and QoS requirements can be represented as being steady 

with a 

nd traffic demand. Every source and destination pair is 

viewed

deterministic bandwidth requirement. This largely simplifies the optimization model 

for ATM VPN design problem. ATM traffic demand at a call level is often modeled with 

Poisson arrival process. Thus, call-level traffic in an ATM network can be viewed as circuit 

switched multi-rate traffic [57] except that the ATM bandwidth can be arbitrary and does not 

derive from a basic bandwidth unit as in circuit-switched network. It was noted in [58] that 

classes with bandwidths in very different magnitudes should not have the same call blocking 

probabilities.  

 

3.2.2. ATM Virtual Path Network Design 

In logical Virtual Path (VP) based VPN design, previous work has been appeared on 

dimensioning SHVP (Single-hop VP) networks [22, 32, 36, 37, 42, 65, 66, 82] and MHVP 

(Multi-hop VP) networks [2, 4, 10, 19, 20, 50, 55, 67]. In SHVP network design, a separate 

VP is established for each end-to-e

 as being one-hop apart or, in another words, a logical full meshed of VPs is realized. 

Hence, each VC will only go through one VP and the end-to-end traffic streams are not 
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allowed to mix. A MHVP network design aims to optimize the total network bandwidth 

where VPs can be established between any node-pair other than a traffic demand node-pair. 

Therefore, VCs can be routed over multiple VPs. Noted that SHVP is a special case of 

MHVP. A major trade off with these two approaches is a switching cost versus a capacity 

cost. T

 VP network design including Medhi [64] and 

Bausch

a) Single-hour Single-hop VP Network Design 

ching nodes is called an “Expressed Pipe” [32]. A Digital Crossconnect System 

(DCS) ration and bandwidth allocations of 

ypically, the SHVP approach realizes an operational simplicity with no VC/VP 

switching cost associated but yields a higher capacity cost. In contrast, MHVP design can 

achieve lower bandwidth utilization but has to consider VC/VP switching cost.       

 As in circuit-switched network design, ATM VP network design can be optimized for 

a single-hour period or multi-hour period. In the literature, most of the work on VP network 

design is for a single-hour period [2, 4, 17, 19-22, 31, 32, 36, 37, 50, 65-68, 76, 82]. Only a 

few papers have considered multi-hour

ert [10]. 

In the literature [32, 65, 82] studied the problem of designing a logical ATM network 

(or packet-switched network) on top of a circuit-switched network. A logical link between 

ATM swit

system is assume to be used for dynamic reconfigu

the logical network. These papers develop a non-linear integer programming model to 

minimize the total average queueing delay. The average queueing delay is chosen as the 

indirect measure of buffer overflow probability to be minimized [32]. A Jackson network 

[51] (i.e., a network of independent M/M/1 queues) is assumed. [32] assumes a static, non-

bifurcated routing of traffic where routes are defined at system generation for each 

communicating node-pair. In [65, 82], a route for each demand pair is chosen from a set of 
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precalculated candidate routes. Solution techniques based on Frank-Wolfe’s steepest descent 

method are devised in [32, 82], while, in [65], the Lagrangian relaxation technique is used to 

obtain lower bounds on the delay.   

In [36, 37], a logical VP network design problem is formulated as a nonlinear integer 

programming problem. The proposed model aims to minimize the average call blocking 

probability with a constraint on available physical network resources for a given traffic 

demand matrix. A heuristic algorithm based on the greedy principle is developed to solve the 

problem where the path set used in each iteration is precalculated. The weakness of the 

city, with the use of leaky bucket regulator, the effective bandwidth 

simply 

proposed heuristic is that it could not establish bounds on the solution.  

Several works [22, 42, 66] address the VP route assignment problem over a physical 

topology of infinite capacity. A polynomial time algorithm is presented in [22] to 

approximate an optimal VP route assignment that minimizes the maximum link load. The 

formulation in [42] seeks to minimize the path bandwidth usage while satisfying link level 

Grade of Service (GoS) requirements. It is shown to over engineer the network and a lower 

bound cannot be obtained. In addition, the end-to-end GoS is not considered and can be 

higher than the expected link-level GoS.  

In [66], the problem of VP logical network design is formulated in the framework of 

multi-rate, circuit-switched, loss networks. The underlining assumption is that, for a very 

large network link capa

equals the mean rate.  Offered traffic is carried on routes which maximized network 

revenue.  
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b) Single-hour Multi-hop VP Network Design 

 The joint topology, capacity and routing assignment for multi-hop VP networks is 

presented in [2, 4, 55]. Lee and Yee assumed a discrete value of  logical link capacity and 

formulate the problem as a nonlinear mixed integer programming problem. The total cell loss 

rates of

f each source-

destination pair are considered.  

 The problems of virtual path dimensioning and virtual circuit routing assignment are 

jointly determined in the works by Cheng and Lin [16, 19, 20, 50]. Cheng and Lin [19, 20] 

formulated this problem as a non-linear nondifferentiable combinatorial optimization model 

to minimize the expected call blocking rate subject to call set-up time constraints for a given 

physical topology, physical link capacity and traffic demand matrix. In the formulation, the 

call setup time constraint is interpreted as the maximum number of physical links used by 

each VC. Cell loss requirements of VC connections are translated into an effective capacity 

requirement of the physical link, which is a function of a number of physical channels for a 

fixed bandwidth unit. In [20], a two-phase solution procedure is proposed to find a Pareto 

 all VPs is to be minimized. An integrality relaxation and a round-off scheme are used 

in the computational process. Ahn et al. [2] solved this problem by dividing the problem into 

two subproblems: (i) traffic flow optimization, and (ii) the VP-layout generation. The authors 

modeled the first subproblem as a mixed 0-1 integer linear programming which is NP-hard. 

A heuristic approach is devised to find a VP-layout to satisfy connectivity, delay, and 

switching constraints as well as to minimize the switching and the call setup cost. This 

decomposition approach does not take into account the statistical multiplexing effect. Unlike 

[2, 55], Aneroussis and Lazar tried to maximize the total network revenue expressed as a 

weighted sum of carried demand. A combination of nodal constraints on the processing of 

signaling messages, and constraints on the VC blocking probability o
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o m solution, which is computed by relaxing the integrality constraints and applying a 

greedy heuristic.           

The trade-off between increased capacity costs and reduced control cost are shown in 

the work by Kim [50]. The author formulated the multicommodity integer flow model in 

which capacity cost, buffer and control/switching cost are to be minimized while meeting 

QoS and GoS requirements. The effective bandwidth used is based on Guerin’s 

approximation [39] for heterogeneous ON-OFF source and is applied to account for the cell 

level QoS. The formulation is shown to be a non-linear integer optimization problem of the 

ptimu

P-hard type. The solution can be approximated by applying the exterior penalty function 

method to solve the non-linear le traints.        

 delay-sensitive traffic class 

while

 source-

N

 prob m by relaxing integer cons

Oki and Yamanaka [67] attempted to find the optimum logical topology for ATM 

networks. Link addition and elimination techniques are used iteratively to minimize the 

network cost while satisfying end-to-end QoS requirements including a call blocking rate, a 

cell loss rate and delay bound of different service classes. The VPs and VCs are always 

routed using the shortest physical- and VP- hops respectively. The result from the 

computational procedure yields a non-optimal solution, consisting of VP logical topology 

and its assigned capacity for a given physical topology with infinite capacity. Their results 

suggest that a mesh-type VP topology be used for non-bursty

 a less-connected VP topology (i.e. logical ring topology) should be used for highly 

bursty traffic class to achieve a capacity gain from a statistical multiplexing.  

c) Multi-hour VP Network Design   

 Models and algorithms for multi-hour VP network design based on a SHVP approach 

are presented in [63, 64]. Separate VPs are established for different traffic classes and
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destin

roblem for MHVP network with nonhierarchical VC 

routin

 literature. Only 

recen

 more feasible solutions exist.         

ation pairs. Statistical multiplexing is allowed among traffic within the same VP. 

Different VPs passing through the same physical network link are deterministically 

multiplexed. In another words, each VP is assigned a bandwidth portion that is not shared by 

other VPs. A multi-hour solution is obtained by solving an optimization problem to 

determine the optimal VP layout and its dimension for each design hour separately.     

 The work by Bauschert [10] extends the Unified Algorithm (UA) [5] to solve the 

multi-hour ATM network design p

g. The design problem is formulated as a cost minimization model where both 

transmission costs as well as VP/VC switching cost are considered. A decomposition method 

is applied to obtain the solution. For a given physical network, the problem is solved by first 

finding the minimum cost VP layout which is assumed to remain unchanged for each design 

hour. Then, the optimal VC routing for each hour period is determined separately to 

compensate for the load variations subjected to meet the end-to-end call blocking constraints. 

 

3.3. MPLS Network Design 

Work on VPN design over a MPLS network is rarely found in the

tly has few works appeared on formulating optimization models to solve traffic 

engineering problem in general over MPLS networks. In [34], authors established integer 

programming formulations for flow assignment problem given a set of point-to-point LSPs. 

The model is extended to solve a capacity planning problem. The authors points out many 

assumptions made in the proposed models for further improvement including: (i) one-to-one 

relationship between traffic trunks and LSPs, (ii) no aggregation, de-aggregation and 

merging of LSPs. (iii) one or
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Topological design of a single VPN is formulated as a mixed-integer programming 

odel [69]. Point-to-point paths are used for a set of source and destination node-pairs. The 

authors developed a heuristic algorithms based on the branch-and-bound approach to 

approximate the optimal solution. A linear relaxation is done for link-path formulation and 

the lower bound is obtained by routing all pair demands through the shortest paths.   

The use of multipoint-to-point LSPs is proposed in [78]. The route selection, LSP 

creation and flow assignment problem are solved separately. The set of paths for traffic 

between all node-pairs are first determined then LSPs are created to include those paths. A 

constraint is used in LSPs selection to at least have two routes which do not share any single 

node to each ingress/egress node. LSP creation is modeled as 0-1 integer programming 

problem. Using pre-selected LSPs, another problem is formulated for flow assignment to 

minimize the maximum link load.    

 An integer programming formulation for the general VPN tree computation problem 

is proposed in [53] for the hose model where only the amount of incoming and outgoing 

traffic are declared for each VPN endpoints instead of all pair demands. In the model, the 

bandwidth reserved on a link must be equal to the maximum possible aggregate traffic 

between the two sets of endpoints connected by the link. Infinite network link capacity is 

assumed. A polynomial-time solution algorithm based on a breath-first search is developed 

for a special case when incoming and outgoing traffic for each VPN endpoint are equal. For 

arbitrary demand, an algorithm based on the primal-dual method is devised. The model is 

extended to the case when network links have capacity constraints in [54].   

A mixed integer multiobjective programming formulation of the VPN design problem 

is proposed in [23]. The model aims to minimize both resource usage and link utilization to 

m
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achieve a bandwidth cost savings while load balancing traffic across the network. The model 

is shown to h N a continuous 

pproximation algorithm to estimate the solution based on two main assumptions. First, the 

ggre

ave P-hard complexity, therefore, the author developed 

a

a gated demand must be infinitely divisible. Second, the aggregated demand can be 

routed over multiple routes. 
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ifferent VPNs. It is clearly shown that the 

desig

4.1. VPN Design Methodology 

The design of VPNs is a major part of the traffic engineering procedure which 

generally can be done offline to obtain VPNs optimal logical topology and virtual network 

link (VNL) dimension as illustrated in Figure 4.1. During an operational period, network 

management will monitor changes in traffic pattern, network topology or link cost metrics. 

optimization procedure to perform an offline recomputation. Note that, the optimization 

procedure can be done separately for each VPN or jointly for all VPNs.     

4. QoS-based VPN Design Model 
 
 

This thesis proposes mathematical formulations for the problem of designing multiple 

VPNs over a service provider IP infrastructure supporting MPLS to carry multi-service, 

multi-hour traffic from various customers. Here we exploit pre-computed sink-tree paths 

(multipoint-to-point paths) over which VPN traffic is routed in a MPLS core network. In the 

model, different levels of bandwidth aggregation/multiplexing occur across different service 

classes and routes within one VPN, but not across d

n problem formulations yield a NP-hard complexity. Therefore, numerical study is 

conducted for simple cases where only single-service, single-hour VPN traffic is considered. 

Obtaining the solution to this problem provides a benchmark measure and a guidance to 

solution feasibility.  

 

When it notices any changes that will affect the current settings, it will start a global 
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For QoS-based VPNs over MPLS, the proposed network design process aims to find 

the optimal logical sink-tree(s) and its dimension so as to minimize the total network cost 

while satisfying QoS constraints. Three main tasks are involved in the design process: (i) 

Tree generation/selection, (ii) Dimensioning and (iii) Routing Optimization. The first task 

involves generating a candidate set of logical trees for a given source and a set of 

destinations. The second task is to determine the amount of bandwidth allocated to each link 

in a tree whose bandwidth may/may not be shared by different VPNs traffic. The last task 

aims to find an optimal route assignment for a given traffic demand. In general, these three 

main tasks can be solved independently or jointly. 

The transport network topology and node locations (e.g. locations of MPLS edge 

routers and core routers) are used to generate a set of candidate multipoint-to-point tree paths 

which is then reduced to a feasible set based on traffic QoS constraints. For instance, a bound 

on maximum delay can be translated into a maximum hop limitation. This precomputed set 

of trees is used in an optimization model over which the optimal routes and capacity 

requirements are determined. The bandwidth allocation/dimension of the virtual network 

oS) (e.g., connection blocking probability) and 

fairness to different servi h constraints at the traffic 

layer inc

should provide sufficient Grade-of-Service (G

ces w ile satisfying several performance 

luding packet loss rate and delay. Here, the concept of “effective bandwidth” is 

exploited to represent a service rate required by each traffic connection in various service 

classes. Effective bandwidth calculation will encapsulate the QoS requirements in terms of 

packet loss rate and delay. Thus, by using the concept of effective bandwidth, traffic flows 

with different characteristics and QoS requirements can be represented as being steady with a 

deterministic bandwidth requirement. This simplifies our optimization model. Lastly, the 
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routing optimization will optimally assign a route to a traffic demand, given a set of 

candidate routes and link capacities. Other than minimizing cost of laying out a given traffic, 

a route a nment may also aim to balance the load across the network such that the number 

of over-utilized links and under-utilized link is reduced. 
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4.2. Issues in VPN Design over NGI 

Based on the proposed design approach, VPNs design problem is formulated as a 

mixed integer-programming model. The objective of the InP model is to minimize the cost of 

laying out a VPN of different traffic types and service classes on a physical network while 

meeting certain QoS requirements. The following are assumed to be known: (i) the physical 

topology and its bound on the maximum link capacity, (ii) capacity cost, (iii) the traffic 

demand matrix of all VPNs and QoS profiles. There are certain aspects which should be 

Figure 4.1: VPN traffic engineering procedure 
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addressed in designing VPNs over NGI and, thus, are included in the mathematical model 

formulation as discussed below. 

 

       

 

 be much 

easier when dealing with a large number of VPNs. For example, in a full-mesh design over a 

-node network, a point-to-point path will be assigned to every node-pair having demand 

between them. The total number of LSPs required in a full-mesh design is 

 

 

      (a)  Full-Mesh Design                                                              (b) Sink-tree Design 

Figure 4.2: Full-mesh versus sink-tree design 

 
 

4.2.1. Sink-tree LSP path 

As previously mentioned, a label switched path (LSP) in MPLS can be a multipoint-

to-point path, in here, referred to as a sink-tree path. One clear benefit of using as a sink-tree 

path is scalability in term of management since fewer LSPs must be created compared to 

using a point-to-point path between each demand pair. Thus, management can

 

                

N

2/)1( −⋅ NN . 

However, this number can be reduced to  paths using a sink-tree design. Figure 4.2 

displays a full-mesh versus sink-tree design for a 3-node VPN over an 8-node MPLS 

network. Assume that there is a directional demand of one unit between 3-node pairs in the 

VPN network and each ost. A full-mesh design 

N

link in the MPLS network has one unit c
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requires 6 LSPs compared to 3 LSPs in sink-tree design. Both designs use the same links in 

MPLS network. However, the full-mesh design has 14 unit cost while the sink-tree design 

has a cost of 12. The cost saving is a result of the capacity efficiency gain attained when 

traffic is merged in a sink-tree design.  

a path set is generated for each source and its 

destinations. This set is limited by a maximum hop-count allowed between each source-

destination pair such that the m to-end delay is bounded. Typically, the choice of 

a routing tree largely affects the capacity required, especially, if the bandwidth of traffic 

flows is aggregated and multiplexed when they are merged within the network. Note that, 

this is possible only for connections within the same service class, in which a statistical 

multiplexing can be achieved and a portion of allocated bandwidth can be shared. 

 

4.2.2. Tree Selection 

The choice of routing trees, over which traffic will be mapped, is important as it affects 

goodness of the solution obtained as well as a computational time. To reduce the problem 

size (and thus a computational time) for a large network, a precomputed candidate set of trees 

is used in the model over which the optimal routes and capacity assignment is determined. 

Given a physical network topology, 

aximum end-

                                               

            (a) Sink-tree with 1-hop depth                                          (b) Sink-tree with (n-1)-hop depth 

 
Figure 4.3: Sink-tree routing paths for n nodes 
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In tree selection, there exists a trade off, between minimizing an end-to-end delay 

requirement versus minimizing cost of link capacity. Illustrated in Figure 4.3 are two 

different choices of a sink-tree for n nodes. The depth of a tree is defined as the maximum 

distance between a root node and any leave node. Figure 4.3(a) show a sink-tree of 1-hop 

paths with a maximum depth of one. This choice of a tree yields a minimum delay between 

demand node-pairs, but, since 1-hop paths merge at the root node, no bandwidth aggregation 

is possible. In another extrem ith a depth of  yields a 

aximum bandwidth gain due to statistical multiplexing at almost all links. Different types 

of trees t (distance) path trees and Steiner trees (minimum-

cost tre

4.2.4. Call retry attempts  

One important aspect is the issue of call retry or repeat attempt. End-user applications 

such as Web-based applications or voice telephony applications tend to have an automatic 

call repeat attempt feature. Therefore, when a requested call/connection is first rejected, there 

is a certain probability that a rejected call/connection will be retried, as shown in Figure 4.4. 

 1−Ne, the tree shown in Figure 4.3(b) w

m

 including spanning trees, shortes

es) are among potential choices. 

4.2.3. VPN service classes  

In MPLS, different QoS classes will be supported. Here we consider the IETF 

Differentiated Services QoS classes of premium service, assured service and best-effort 

service. In the premium service class, packet loss, delay and delay jitter must be bounded. 

The traffic of this class requires an absolute bandwidth guarantee. In the assured service class 

applications have the ability to tolerate a certain amount of delay and loss. For this traffic 

class, a mean bandwidth guarantee is needed along with a statistical delay bound. The best-

effort service class corresponds to current Internet service with no QoS guarantees.   
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The probability of call return affects the amount of traffic seen at the access points of the 

network. More specifical e c mount of traffic offered 

to the V

ly, th all return traffic will increase the a

PN. Assuming that the probability of call retry is known, the network dimensioning 

must be adjusted to reflect the increase in actual offered traffic.   

p b = Probability of call block

p r = Probability of call return
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Figure 4.4 : Call repeat attempt feature 

 
 

t Connections 

Two types of traffic connections can be supported over MPLS and should be 

considered includ s and multipoint connections. Multipoint 

connections include broadcast (point-to-multipoint), merge (multipoint-to-point), composite 

(p int-to t-to oint) and full multipoint (multipoint-to-multipoint) 

[4 ]. W ns can be supported using multiple point-to-point 

connections,

good me o

allocate bandwidth to each segment of a selected route corresponding to different sets of 

connect o nnection, if only one source can be 

4.2.5. Multi-poin

ing point-to-point connection

o  multipoint and multipoin -p

3 hile multipoint connectio

 the resulting level of network resource utilization will be low. Thus, one seeks a 

thodology to efficiently map multipoint traffic t  candidate routes and wisely 

ions. For example, in a multipoint-to-p int co
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active at a time, the bandwidth allocated to a segment from the merge point to the 

d

portion of bandwidth that can be shared among different VPNs. Initially, the proposed 

re earch poin o s to he model for 

m

 

4.3. MPLS VPN design formulations  

Given a network topology, node location and link capacity, an optimization model is 

form at  physica r  by a g ph  where 

,  is a set of  nodes, links and maximum link capacity of the network respectively.  

ownstream point can be a maximum of all source-transmitted rates. This is not considered a 

s will focus on t-to-point connecti ns, then, extension t

ultipoint connections will be given.  

ul ed for VPN design. A l netwo k is represented ra  )( CLNG ,,

N L  and C

M ( NM ⊂

network. Thus, 

) is a set of edge nodes (edge routers) where traffic demands enter or exit the 

n 

used in the pro

MN − represents a set of core nodes (core routers). The complete notatio

posed formulations is given below. For each link Ll∈ , utilization factor lα  

on of the link capacity lC  to be allocated for VPN traffic. This utili ation limits the proporti z

factor may be used to protect certain links from being overly subscribed or subjected to 

potential congestion. For example, a smaller value of lα  may be assigned to links connecting 

to core-routers than ones connecting to edge-routers. This factor is assumed to be known.  

 

4.3.1. Notation  

L  Set of links in the network. 

N  Set of nodes in the network. 

M  Set of edge nodes in the network, .  NM ⊂

lC   Maximum capacity of  link Ll ∈  
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lα  Utilization factor of link Ll ∈   

K  Demand set index, MK ⊂  

kP  Set of feasible sink-trees ending at node Nks,ν ∈  spanning all nodes Mm∈  of  

 service class  of VPN   Ss∈ V∈ν   

ksD ,,ν  Set of point-to-point demand pairs in demand set Kk ∈  of service class Ss∈  of 

VPN  V∈ν  

d
kshB ,,,ν  Bandwidth requirem f demand pair ksDd ,,ν∈  of   

 service class Ss∈  of VPN  V

ent o

∈ν  during hour-period Hh∈  

lY  Sizing (topology) variables, specifically the capacity assigned to VPN traffic on   

link Ll ∈  

lψ   Cost of a capacity on link Ll ∈  (measured in units of $ per Mbps) 

Capacity at link  allocated to VPN  l
hU ,ν  Ll ∈ V∈ν  during hour-period 

  Demand-path routing decision variables 

or demand set

Hh∈  

p
kshX ,,,ν

 = 1  if  path s
kPp ,ν∈  is used f  Kk ∈  of  service class Ss∈  

  of VPN  V∈ν  during hour-period Hh∈  

  = 0 otherwise 

dp,γ  Link path incidence matrix 

 = 1   if demand pair ksDd ,,ν∈  of set Kk

l

∈  that uses path s
kPp ,ν∈   

  is directed using link Ll ∈   

 = 0   otherwise 
l

kshEB ,,,ν   Estimated BW requirement of all demand type Kk ∈  on link Ll ∈  of  service 

clas S  of VPN  Vs s∈ ∈ν  uring hour-period Hhd ∈  

( )ss QoSTBEqv ,,  Equivale andwidnt b th calculation function for traffic in service class Ss∈  

with requirement of bandwidth am

quality of service requirement )   

 

ount B  ( with traffic descriptor sT  and 

sQoS
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4.3.2. raffic demand 

A complete matrix of VPNs traffic demands is assumed to be given. It can be derived 

from all SLAs

T

 (Service Level Agreements), between customers and service providers. SLAs 

typically specify various classes of service and how much tr

is allowed to send. In another words, for each source-destination (ingress-egress) node-pair, 

the matrix of each VPN specifies the required bandwidth and its QoS parameters (i.e., end-

to-end delay requirem y jitter). Traffic demand  will be assigned a route based 

on its e

affic in each service class a user 

ent, dela ksD ,,ν

gress node Kk ∈ , where MK ⊂ is called the demand set index.  

4.3.3. Selection of candidate paths 

Feasible es or multipoint-sink-tre to-point paths are used in the optimization model 

where a traffic demand may be assigned. The feasible path set s
kP ,ν can be pre-computed for 

VPN ν  and service class s  having different QoS requireme

 ch are 

spann  trees rooted at egr

nts (i.e., maximum end-to-end 

delay requirement). A path s
kPp ,ν∈  is selected from candidate sink-tree paths whi

ing e Kk ∈ and spanning over all the edge nodes Mm∈ or a ess nod

subset of the edge nodes. A set of candidate paths can be generated by enumerating all 

distinctive spanning trees. Algorithms to determine such trees can be found in many places in 

the literature including [24]. The maximum end-to-end delay requirement is translated in to 

the hop-count limitation constraint. This constraint will limit the path set where only feasible 

The bandwidth requirements at each link are estimated based on an effective 

paths are selected from all candidate paths.   

4.3.4. Bandwidth calculation 

bandwidth calculation [39] where the traffic parameters such as connection peak rate and its 
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burstiness are taken into account. Two classes of services in a Differentiated Service model 

are considered including premium service and assured services.    

 ( i )  Premium service  

For premium service, each traffic connection is allocated a bandwidth equal to a 

source peak peakR . Assuming that  rate η  connections are multiplexed within one link, the 

total allocated bandwidth ( Eqv )        

  (4.1) peakREqv ⋅= η

where η  is derived from an inverse Erlang formulation such that a grade of service 

constraint (GoS) of a connection (i.e., connection blocking probability - bP ) is met. 

Specifically,  

 ),( bPaInvErlang=η  (4.2) 

here a  is a source utilization or the offered load of a connection. 

 

( ii ) Assured service 

Source traffic in the assured service class is characterized by its source peak rate -

peakR , utilization factor -

w

ρ , and mean burst period - b . In this case, the allocated bandwidth 

( Eqv )  is less than peR⋅η  , specifically     ak

{ }icmEqv ˆ,min ⋅′+⋅= ησαη  (4.3)  

where ( ) ( )πεα 2lnln2 −−′   given m= − a mean bit rate,  σ − a variance bit rate, and ε − 

buffer overflow probability.  The equivalent capacity estimation for each source   is 

 

iĉ

( )
apeaki 2

aaa
Rc

411
ˆ

2 ρ+−+−
=  (4.4) 
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where  

 ( ) ερ ln1−−=
B
ba  

It is assu −med that  buffer size and  B ε − e known. The number of 

connections multiplexed 

 packet loss ratio ar

η   can be found as o ulation. 

4.3.5. A VPN design model without  bandwidth aggregation 

Using a sink-tree routing path, traffic demands can be merged within the network, 

thus th ired b d separately for each 

demand-pair or multiplexed together within the same service class. The latter yields a 

reduction in the bandwidth required especially for traffic in the assured service class, due to a 

statistical multiplexing gain. The basic formulations are given below. The model assumes 

that the followings are given: (i) link utilization factor 

before fr m an inverse Erlang form

e requ andwidth after the merged point can be allocate

lα  and maximum link capacity , (ii) 

 and their route  for all VPNs in 

each hour period.      

em when bandwidth aggregation is 

le. The objective of the formulation is to minimize the total capacity cost in 

roviding service to all VPNs. For each VPN, service class, and hour period, constraint (1) 

le ly one path from a pre-computed set of feasible sink-tree paths ending at egress 

node  for each demand set  Constraints ) impose that capacity assigned at each 

ot be greater than a maximum uti  link capacity (

l

set of traffic demand pair ksD ,,ν  and bandwidth requirement kshB ,,,ν , (iii) a precomputed 

sink-tree path set  s
kP ,ν and a corresponding link path incidence matrix l

dp,γ . The formulation 

seeks to find each VPN link capacity allocation

C

d

 l
hU ,ν

p
kshX ,,,ν

 VPNBA model formulates the VPN design probl

not possib

p

se cts on

 k  (2) − (5.kP

link must n lization limit of ll C⋅α ). Note that, 

 constraint (2), the capacity calculation is done separately for each traffic demand-pair.  in
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Constraints (6) ire tha iables an  ca it− (7) requ t routing var d pac y assignment variables must be 

ositive. This formulation yields different route assignment and capacity allocation at 

ifferent hour-periods.  

 

VPNBA

p

d

 :  Minimize  l
Ll

l Y∗∑
∈

ψ  

Subject to : 

 (1) 1,,, =∑
∈ kPp

kshXν   ; for all Vp ∈ν , Hh∈ , Ss∈ , Kk ∈   

∈ ∈

( )∑ ∑ ⎟⎟⎜ ∗∗= pldl XQoSTBEqvEB ,, γ   

 ; for all 
⎠

⎞
⎜
⎝

⎛

ks kDd Pp
kshdpsskshksh

,,

,,,,,,,,,,
ν

ννν (2)   

V∈ν , Hh∈ , Ss∈ , Kk ∈ , Ll ∈  
  

 (3) ; for all l
h

Ss Kk

l
ksh UEB ,,,, νν ≤∑ ∑

∈ ∈
 V∈ν , Hh∈ , Ll ∈  

 
(4) l Y≤∑   l

V
hU

∈
ν , ; for all Hh∈ , Ll ∈  

ν

 (5) Y lll C⋅≤ α  ; for all  Ll ∈  
 

(6)   ; for all { }1,0,,, ∈p
kshXν V∈ν , Hh∈ , Ss∈ , Kk ∈ , kPp∈   

(7)      ; fo
 

 0≥lY r all Ll ∈  
 
 

4.3.6. VPNs design model with bandwidth aggregation. 

Here, the VPWBA design model is introduced when bandwidth of various traffic 

dem er ossible. Using a precomputed sink-tree 

routing path, traffic demands can be merged within the network, thus the required bandwidth 

fter the merged point can be allocated as the aggregated bandwidth of multiplexed traffic 

within the same service class. Here, the aggregation only occurs within a demand set destined 

ands is aggregated at a common link wh e p

a
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to the same ress node of a VPN.   eg In this case, the objective function and constraints are 

VPBNA except for constraint (2), where the total traffic demands routed on one 

ndwidth allocation.    

VPWBA :  Minimize  

similar to 
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4.4. Single-hour single-service class model 

The mixed-integer formulations for the VPN design problem, shown previously, have 

a NP-hard complexity. A simplified version of these formulations can be derived considering 

 hour-period  

model can be reduced to :    

 

only traffic demand of a VPN within one service class and . Thus, the VPNBA
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Obtaining a solution to SVPNBA and SVPWBA is easier than VPNBA and VPWBA. A 

pilot study was conducted by translating SVPNBA and SVPWBA using the AMPL model 

description language. Solution is obtained by running CPLEX 7.1 InP solver on a Sun 

Blade1000 workstation with 750 MHz processor and 2 gigabytes of memory. Branch and 

bound solution technique is employed.  

 

 

 

First, analysis was done on small networks with 8 and 10 nodes, (shown in Figure 

4.5), where 7 ingress/egress nodes have demand entering and exiting. Each link has OC-1 

capacity of 50 Mbps. The capacity is divided into smaller unit with a basic rate of 64 kbps 

and the link cost is the cost per capacity unit which is assumed to be equal for all links. The 

link utilization factor l

 

 

 

 

                (a) 8-node network                                 (b) 10-node network 

Figure 4.5 :  Small networks under study 

α , which is total capacity of link allocated to all VPNs traffic, is 

varied. Different dem nd patterns are generated including symmetric and asymmetric 

demand. In the symmetric demand (full-mesh demand) cases, all node-pairs within the set of 

edge nodes have a demand between them. In the asymmetric case, each VPN has asymmetric 

load of demand with nonzero demand only from a subset of network nodes.    The nodes with  

  

a

Edge Router

Core Router
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Table 4.1 : Comparison for different design cases 

  

nonzero demand were randomly selected. The offered load to the network can be fixed or 

varied according to discrete Uniform(1,5) distribution.   

For a small network, it is possible to include a precomputed path set that includes all 

possible trees spanning all edge routers. Thus, the optimal cost can be obtained as shown in 

Table 4.1. Overall, it is shown that the optimal costs obtained from a sink-tree design without 

bandwidth aggregation are not different from ones obtained from a full-mesh design. 

However, when bandwidth aggregation is possible using multipoint-to-point LSPs, the sink-

tree design introduces a cost saving approximately by 30-40 percent.  

In terms of com ber of technical 

variables and constraints. Thus, branch and bound process uses a larger number of simplex 

iterations solving a sink-tree model to find an optimal solution compared to a mesh-design 

model. For the same  about double for a 

sink-tree design without bandwidth aggregation when compared to the mesh design. Note 

(w/o BW aggregation) (with BW aggregation) 
Full-Mesh Design Sink-Tree(s) Design Sink-Tree(s) Design 

T

Iterations 
. of 

LSPs 

opology 
Optimal 

Cost 
Simplex 
Iterations 

No. of 
LSPs 

Optimal 
Cost 

Simplex 
Iterations 

No. of 
LSPs 

Optimal 
Cost 

Simplex No

Symmetric demand with fixed-load

8-node 104 54 56 104 241 8 56 473 8 

10-node 174 162 90 174 308 10 90 925 10 

Symmetric demand with variable-load

8-node 346 64 56 346 99 8 203 2,016 8 

10 10 -node 562 112 90 562 242 10 410 4,239 

Asymmetric demand with variable-load

8-node 166 42 33 166 101 7 105 319 7 

10-node 212 76 35 212 216 7 129 565 7 

plexity, a sink-tree design model has a large num

 problem size, the number of simplex iterations is
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from Table 4.1 that when bandwidth aggregation is considere design, the 

number of simplex iterations to solve for an optimal solution increases significantly. 

ate a c it of u  

the sma r of s an  LS ed fo VPNs . Th that 

the num  maintained for label mapping in a forwarding table at every LSR can 

be redu g si e LS is in es i er to  and ore 

scalable for a large backbone network when a large number of VPNs are coexisting.   

For medium to large networks, it is not p omplete set of 

recomputed path between all egress routers due to the complexity of the problem. This is true 

esh design and si

introduced to reduce the size of the problem. A hop limit constraint in a path set is rather 

practical since a demand should not be routed through a long path which violates a maximum 

delay bound. Moreover, since the 

be symm

d in the sink-tree 

The results in Table 4.1 illustr lear benef  using m ltipoint-to-point LSPs in

ll numbe  label d unique Ps requir r all  traffic is means 

ber of records

ced usin nk-tre Ps. Th  fact mak t easi manage , thus, m

ossible to include a c

for both full-m nk-tree design cases. Therefore, a hop limit constraint is 

main objective of a design model is to minimize a capacity 

cost, a path that is too long is generally not selected in the optimal solution because a demand 

that is routed through a large number of hops tends to consume more capacity.  

An application of sink-tree design for medium and large networks is then studied 

through another set of experiments where a hop limit constraint is enforced in a path set. 

Here, experiments were conducted over the two backbone networks shown in Figure 4.6 and 

4.7 with 15 and 55 MPLS routers where 10 and 21 of those are edge routers respectively. The 

first represents a medium-size network with OC-12 links while the latter is an actual high-

speed optical backbone network with OC-192 links. There are 4 VPNs and each VPN 

generates demand between 6 randomly selected edge routers. The demand generated could 

etric or asymmetric demand varied according to a discrete uniform  within   {10, 15,  
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Fig 6 : Tested  ne ith 15 routers  links 

 

ure 4. twork w  and 24

 

 

Figure 4.7 : Level-3 Network  with 55 routers and 62 links 
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Table 4.2 : Comparison for different design cases 

 

20, 25, 30} T1-unit rates. Characteristics of the traffic sources are assumed to be known 

=300 Kbps, =300 msec,( pR b ρ =0.2). Capacity will be allocated for each traffic sources such 

-5

gs is promoted through bandwidth aggregation at shared links.      

Moreover, it is observed that when demand traffic is not aggregated in a full-mesh 

design, traffic demand is simply routed through a shortest-path LSP. A sink-tree design, 

(with BW aggregation) 
Full-Mesh Design Sink-Tree(s) Design 

Topology 
Optimal 

Cost 
#Label / 
#LSPs 

# links used 
Avg. (Max) 

Optimal 
Cost 

#Label / 
#LSPs 

# links used 
Avg. (Max) 

Symmetric Demand

15-node 7587 120 / 87 5.79 ( 8 ) 6932 24 / 24 5.67  ( 8 ) 

55-node 34417 120 / 110 23.04 ( 32 ) 30936 24 / 24 22.25 ( 32 ) 

Asymmetric Demand

15-node 5467 80 / 64 5.65  ( 8 ) 5083 20 /20  5.45 ( 7 ) 

55-node 26999 108 / 86 20.83 ( 28 ) 24974 24 / 24 19.92 ( 27 ) 

that the connection blocking probability at the edge router will not exceed 10 . 

Table 4.2 compares the optimal solution obtained from a full-mesh design versus a 

sink-tree design. By utilizing sink-tree paths in the design, the cost can be reduced 

approximately by 10 percent for symmetric and asymmetric demand. It is clearly shown in 

all cases that fewer labels are required in a sink-tree design. Also, the number of LSPs is less 

when sink trees are used. From Table 4.2, one can observe that the optimal solution obtained 

from a sink-tree design yields a lower average number of links used as compared to a full 

mesh design in all cases. Besides, the maximum number of links used in sink-tree LSPs is 

smaller for the asymmetric demand case. These results indicate that the optimal sink-tree 

paths tend to share many links in common when possible. By sharing many links in common, 

capacity savin
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however, uses multipoint-to-point LSPs, and, thus, the optimal path between a source-

destination node pai  b sign when demand 

nds to be aggregated within the network.  

r may e longer than the one given by a full-mesh de

te

 

Full-Mesh Design 
Sink-Tree(s) Design 

(with BW aggregation) 
Topology 

Constraints Technical Variables Constraints Technical Variables 
Number of Number of   Number of Number of   

15-node 360 5448 3720 314496 

55-node 740 1188 9572 779248 

 
Table 4.3 : Problem size of Full-Mesh Design versus Sink-Tree Design 

 

 Even though, a sink-tree design successfully demonstrates a bandwidth gain over a 

full-me

ed from by the optimization process. Only a 

sh design, it may have a limited practicability in a large network due to its 

complexity. This fact could be comprehended when the complexity of mesh-design and sink-

tree design models is compared in term of number of constraints and technical variables (see 

Table 4.3). Even for a small network of 15 nodes, the number of constraints and technical 

variables are large compared to those in a full-mesh design. For the 55-node network, these 

numbers are much larger than the full-mesh design. The sink-tree design problem is more 

complex due to the fact that the size of pre-computed sink-tree paths is large since all 

possible tree-paths must be included. With a limitation in term of computational time as well 

as a memory space, the optimization process could be exhausted. Therefore, in order to apply 

a sink-tree design model to a realistic-size network, where a large number of VPNs demand 

are being deployed, the size of the problem should be reduced. One approach is to reduce the 

size of a precomputed sink-tree path to be search
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small set of candidate paths w n optimal solution should be 

include

 path is employed with and 

withou

 

hich are more likely to be used in a

d in the design model. By analyzing the optimal route assignment in various sink-tree 

design cases, it has been observed that the optimal trees agree on sharing as many common 

links when possible. Considering this, a heuristic path selection is proposed to scale down the 

sink-tree design problem by efficiently select a candidate tree having less number of links in 

it. The detail of heuristic path selection will be elaborated more in Chapter 5.  

        

4.5. Summary 

In this chapter, the MPLS-based multi-hour VPNs design problem is formulated as a 

mixed integer programming model when a sink-tree routing

t bandwidth aggregation. When VPNs is modeled using multiple logical sink trees, not 

only the number of label-switched paths is reduced but it also allows the possibility of 

bandwidth savings. Sample numerical results for different demand patterns shows that a sink-

tree design without bandwidth aggregation yields similar results as a full-mesh design where 

demand is simply routed along a shortest-path. However, when bandwidth aggregation is 

considered in a sink-tree design, demand was routed along a tree that is different from a 

shortest-path tree such that link capacity could be shared among multiple connections, and, 

therefore, the total capacity cost reduction is realized. An extensive analysis of the problem 

solutions suggests that the optimal trees agree on sharing many common links when possible. 

Thus, a simple but good heuristics could be applied by imposing a number of links used in 

the path selection procedure to reduce the problem size and improve performance in solution 

process.        
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5. Tree Selection Heuristics 
 
 

The VPN design model utilizing sink-tree routing paths is a complex problem. 

Finding optimal layout and capacity plan often involves enumerating a set of all possible 

routing tree paths. For example, if a routing tree is a tree spanning over all network nodes, 

the number of all distinct spanning trees can be as much as  )2( −NN  trees for a fully 

 

connected N-node network [24]. It is obvious that the problem size (i.e. the number of 

technical/decision variables) grows exponentially with the number of nodes. Therefore, 

applying a standard appro to  difficult and sometimes 

computationally prohibitive due to the com

The size of the optimization problem largely depends on number of candidate sink-

computation process and makes it possible to obtain a solution for a realistic-size network 

any network 

design problem

paths subjected to various optimization constraints. Nevertheless, when a pre-computed path 

number of trees to be searched over is much larger than the number of point-to-point paths. 

the new selection criteria which limit the number of links used in a tree rather than a number 

ach  solve such a problem is

plexity of the problem.  

trees to be searched over. Limiting the candidate set of sink-tree paths will speed up the 

within a feasible amount of time. This approach has been widely used in m

s, most of which focus on routing traffic demands over a set of point-to-point 

set is a multipoint-to-point or a sink tree path, several complicated issues arise since the 

Here, a tree selection heuristics is proposed to scale the VPN design problem by choosing a 

small-but-good candidate set of feasible sink-tree paths. The proposed heuristics introduces 

of hops used in a point-to-point path selection.   
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5.1.   Tree Selection Criteria 

When multiple point-to-point connections are mapped over a multipoint-to-point 

route, a merging of demand yields a large bandwidth reduction by multiplexing multiple 

demands. To minimize the total bandwidth usage of multiple VPNs utilizing multipoint-to-

point routes, traffic is concentrated on a small number of links. In another words, multiple 

optimal trees use as many links in common as possible to increase the gain in bandwidth 

aggreg

the problem size. However, when bandwidth 

aggreg

 tree are two critical factors in selecting a 

good candidate set of trees. By imposing the hop-count constraint, it sim

single-branch trees which may introduce an undesirable delay violation. When trees having a 

fewer number of links are chosen, bandwidth sharing is promoted.   

ation. This fact has been observed across multiple demand scenario including 

symmetric and asymmetric demand over different sizes of infrastructure networks. Therefore, 

with traffic concentration, it is advisable to install large capacities on a small number of links 

rather than installing relatively small capacities on many links. 

These observations suggest some guidelines in choosing good candidate tree paths to 

be search over in a VPNs design model. Typically, in a VPNs design model using a 

precomputed point-to-point path set, a hop limit constraint is introduced to impose a bound 

on the maximum delay as well as to reduce 

ation is considered in multipoint-to-point routes, the set of tree paths used in the 

optimal solution tend to use a small number of links. In view of that, heuristics is proposed to 

reduce problem size by shrinking the precomputed set of candidate tree paths by imposing a 

limit in number of links used in candidate trees, in addition to the hop-count limitation. Both 

the hop-count and the number of links used in a

ply avoids choosing 
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For N - node network, a tree spanning all nodes Nn∈ uses at most 1−N  links and a 

tree spanning a set of edge nodes Mm∈  ( NM ⊂ ) will use at least 1−M  links. Thus, a tree 

path will be selected only if it uses less than R  links where 11 −≤≤− NRM . The value 

of  R  will be depended on network topology. Note that for a small dense network the value 

of R  is closer to 1−M  but for a sparse medium-to-large network the value of R  is closer to 

1−N . Choosing a good number for R will greatly reduces the problem size especially when 

the network is large and the number of edge nodes is small compared to the number of 

network nodes. The proposed heuristics opts to select a fixed number of such a tree with the 

smalles

5.2.   Tree Selection Heuristics 

(iii)Tree ranking.  

 the node and link elimination phase, the network size is reduced by removing 

nodes and links that serve only as transit points of the traffic. The transit node is defined as a 

non-switched node where traffic can not be merged and a transit link is a link connected to a 

transit node. Specifically, the algorithm will delete a non-demand node having node-degree 

of two and replacing its links with a direct link between its neighbor nodes. With a node and 

t R value. Numerical results are presented to study the effect of the size-limited 

candidate tree set and measure an improvement in term of computational time used to solve a 

sink-tree design problem.      

 

A tree selection heuristics is proposed here. In addition to imposing a hop-count limit, 

the proposed heuristics will choose a fixed number of sink-tree paths by ranking trees based 

on the number of links used. Essentially, trees having a fewer number of links are preferred. 

The proposed heuristics tree selection algorithm (shown in Figure 5.1), operates in three 

phases: (i) Node and link elimination, (ii)Tree generation, 

In
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link el , the size of the problem size can be reduced considerably without changing 

the sol hat replaced deleted nodes and links, should be 

included in the candidate tree, both deleted nodes and links will be included in the candidate 

tree as well, and vice versa. Therefore, the optimal tree is still included in the set of candidate 

trees g n  By doing this, the number of all distinctive trees 

spanni tly reduced especially for a large-

and-sparse network having low average node-degree. Note that a similar approach was 

adopted for the design of survivable backbone networks [38], where the approach was termed 

meta-m

e trees spanning over a set of demand nodes 

are gen  finding a minimum-cost tree spanning over a sub set of 

nodes classical Steiner tree problem which is known to be an NP-

hard p is prohibitive given limited time and resources. 

Howev  des is a much easier task. 

Tree e u ]. Therefore, it makes 

much ll ble trees and, then, select “good” candidate trees to be 

optimized based on certain cost and criterion.  

ving N nodes and L links, all distinctive trees spanning over 

N nodes can be generated using a complete enumeration method. The number of all 

distinc rk has been proved to be

for a f l ical network, the number of 

distinctive spanning trees can be bounded by        

 

imination

ution. In other words, if a direct link, t

e erated from a reduced network.

ng over all edge routers Mm∈  can be significan

esh abstraction.   

In the tree generation phase, all distinctiv

erated. Given a cost function,

is similarly to solving the 

roblem. Solving such problem 

er, enumerating all distinctive trees spanning over a set of no

n meration could typically be done in a polynomial time [24

more sense to generate a  possi

In a network G(N, L), ha

tive spanning trees for a fully connected N-node netwo  2−NN  

u ly connected mesh network [18]. Generally, for a typ

tBBJ 00 ⋅=  (5.1) 
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Where is the incidence matrix of ork G with one row removed (i.e., 

reduced incidence matrix with N-1 independent rows) [74]. As an example, the number of all 

distinctive spanning trees for tested-networks, shown in Chapter 4, is computed and listed in 

Table 5.1. For 8-node network, there is a total of 60 distinctive trees but for the 55-node 

network this number could be as large as 20,466,224. It is obviously shown that the number 

of trees grows rapidly with the number of nodes. Nevertheless, when the node and link 

elimination is applied to the 55-node network having 62 links, the reduced network contains 

24 nodes and 32 links as shown in Figure 5.2 and total number of distinctive trees is reduced 

to 196,147. This reduction is nearly 100 times smaller. The benefit of node and link 

elimination process is especially significant for a network having low average node degree as 

is the case in North American backbone network. 

Additionally, the generated tree set is further reduced size with an introduction a hop-

count limit constraint. A tree is simply removed from the candidate set if the number of hops

between any node-pair beco hoosing the right value for 

the hop-count limit effects both the size of candidate trees set as well as a solution obtained 

from the optimization procedure. Using a sing e value of a maximum hop-count may not be 

ffective since it id fo  a node-pair 

separated by a single-hop away. Here, a hop-count l  is defined as a shortest distance 

between a demand r plus a hop-count factor n general, the value of hop count 

factor should be selected based on a network top  should be small for a dense 

network, and etwork.  

 

0B  the netw

 

mes larger than a hop-count limit. C

l

e is quite rig r a node-pair that is far apart and too loose for

imit

 node-pai (δ). I

ology, i.e., δ

large for a sparse n
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Begin : 
    /* Node and link elimination */    
 Let R = a set of nodes in a reduced network; 
    Initialize R = N;   
 for each non-demand nodes w ∈ (N−M) 
    {  if ( node-degree(w) ≤  2)  
         for node i, j adjacent to r,   
         {  replace link (i,r) and (r,j) with link (i, j); 
              let R = R − {r};   }    
    }    
 

    /* Tree generation */ 
 for all nodes R in a reduced network   
 {  let v = the size of possible candidate sink-tree Tk     

                             destined to node k; 
     while( size-of(T ) <  v )   k

  {  find a distinctive tree t spanning over a set of 
           demand nodes M ; 
           /* Hop-count limitation */ 
       for each destination node k ∈ M 
       for each demand-pair (s,d)∈ MxM where d = k, s ≠ k  
             if ( path-length p(s,k) < shortest distance q(s,k) + δ ) 
 k k           let T  = T  ∪ {t};  
        } 
 }  
 

 /* Tree ranking */ 
 for each sink-tree set Tk 

    {  for all  t∈ T   k

        let π(t) = tree rank based on the number of links used;         
            let u = the size of candidate sink-tree Gk ⊆ Tk ; 
          choose candidate of trees g∈ Gk of size u where  
        {π(g1), π(g2) …, π(gu)} ≤  {π(tu+1), π(tu+2), …, π(tv)};    
     } 

 
End 

Figure 5.1 : Heuristics Tree Selection Algorithm 
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Network The Number of Distinctive Spanning Trees 

 

 

 

8-node 60 

10-node 383 

15-node 112,252 

55-node 20,466,224 

Reduced 55-node 196,147 
 

Table 5.1: Number of Distinctive Spanning Trees 
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Lastly, in tree ranking phase, a set of feasible trees will be ranked based on the 

number of links used in a tree path. This process is done separately for each egress node to 

choose candidate trees ending at it. Specifically, a fixed number of trees having small weight 

(i.e. number of links) will be chosen to be used in an optimization procedure. Essentially, 

trees having less number of links are preferred.   

 

5.3. Performance Evaluation 

Consider the two backbone networks shown in Figure 4.5(b), 4.6 and 4.7 with 10, 15 

and 55 routers where 7, 10 and 21 of those are edge routers respectively. The first two 

represent medium-size networks with OC-12 links while the latter is an actual high-speed 

optical back each VPN 

generates demand between randomly selected edge routers. The demand generated could be 

symmetric or asymmetric demand varied uniformly within {10, 15, 20, 25, 30} T1-unit rate. 

Characteristics of the traffic sources are assumed to be known ( =300 Kbps, =300 

msec,

bone network with OC-192 links. There is a total of 4 VPNs and 

pR b

ρ =0.2). Capacity will be allocated for each traffic sources such that the connection 

blocking probability at the edge router will not exceed 10-5. The multiple VPNs design 

problem is solved using AMPL with CPLEX 7.1 InP solver running on a Sun Blade1000 

workstation with 750 MHz processor and 2 gigabytes of memory. A branch and bound 

solution technique is used. 

5.3.1. Effect of Number of Candidate Tree Paths 

The performance of the proposed path selection heuristics are compared in term of 

computational time measured by the real CPU time in seconds and the total capacity cost 
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obtained for different numbers of tree paths which is precomputed using the proposed tree 

selection heuristics. Complete numerical results are listed in Appendix A. Selected results are 

shown in Figure 5.3-5.17.  

The optimal cost and computational time of the 10-node network for 1 and 4 VPNs at 

different number of tree paths are shown in Figure 5.3 and 5.4. For the case of the 10-node 

network, maximum hop-limit of 9 is chosen to observe the real effect of using a small 

number of links in candidate tree set which is not restricted by a hop-count constraint. 

Overall, the results establish the fact that as the number of paths increases, a computational 

time increases exponentially, while, the obtained solution converges closer to the optimal 

solution. Comparing results of 1 and 4 VPNs, the computational time has shown to be 

increasing with the number of VPNs. Besides, it is observed that the number of tree paths 

quirement increases with more number of VPNs. For a single VPN, the optimal solution 

-limit values in the proposed heuristics path 

selectio

re

can be reached at the tree set size of 180 trees with 0.33 seconds of CPU time; for 4 VPNs 

the optimal solution can be found at the tree set size of 250 trees with 1000 seconds of CPU 

time. For both cases, the number of candidate trees required to solve for the optimal solution 

has shown to be smaller than when all possible trees are included. 

The effect of imposing different hop

n is studied in the case of the 15-node network as illustrated in Figure 5.5. The hop-

count factor (δ) of 2 and 5 are used for a comparison. When δ=5, the optimal solution can be 

found at 3000 paths. However, when δ=2, the number of trees path required to compute for 

optimal solution reduces to 1000 paths and the solution can be obtained in less CPU time. 

With a small hop-count factor, the obtained solution will converge faster to the true optimum 

using  a  smaller  set  of  candidate  paths.   However,  if  the  hop-count  factor  is  too  small,  
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Figure 5.3 : Optimal cost versus CPU time of 1 VPN over the 10-node network 
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Figure 5.4 : Optimal cost versus CPU time of 4 VPN over the 10-node network 
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Figure 5.5 : Effect of hop-limit in heuristics path selection 

 

the optimization may not be able to reach a true optimum or may find it infeasible to find any 

solution. This implies that choosing the right value for hop-count factor in the heuristic path 

selection algorithm will greatly affect the goodness of the candidate sink-tree paths. 

Therefore, with the right value of the hop-count factor, the optimization procedure takes less 

effort and reaches the optimal solution faster. 

The advantage of the heuristics path selection can be more pronounced in the case of 

the 55-node network as illustrated in Figure 5.6 and 5.7. After a certain number of tree paths, 

the computational time swiftly rises to a high number. Yet, the optimal solution could be 

established at a smaller number of tree paths. With Symmetric demand (shown in Figure 

5.6), the true optimal solution can be best approximated with 600 sink-tree paths and takes 

almost 1 hour of computational time.    Figure  5.7  presents  the case of Asymmetric demand  
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Figure 5.7 : Optimal cost versus CPU time of 4 VPNs over the 55-node network 
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Figure 5.8 : Comparison of CPU time in symmetric and asymmetric demand cases 

 

0 500 1000 1500
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 104

O
pt

im
 C

os
t (

u
al

ni
t)

Topology design of 4 VPNs over 55-node network

Symmetric Demand
Asymmetric Demand

Number of candidate sink-tree paths

 

Figure 5.9 : Comparison of optimal cost in symmetric and asymmetric demand cases 
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under the same load. In this case, the optimal solution can be best approximated at 400 sink-

tree paths and it takes 2.8 hours of computational time. Even though, a smaller number of 

sink-tree paths may be used in the case of asymmetric demand, the optimization procedure 

finds it harder to solve for the optimum and, therefore, consumes more CPU time. This could 

clearly be seen in Figure 5.8 where the CPU time of symmetric and asymmetric demand 

cases is compared at different numbers of tree paths. At less than 400 number of tree paths, 

the com

equally in both directions across the network. Under the same load, when demand is 

asymmetric, traffic in one direction may be much larger, and may deplete capacity at several 

links. As a result, some demand may have to take a longer route to avoid such link which, in 

fact, requires more bandwidth and higher cost.       

Although, it has been shown so far that the computational time of the optimization 

procedure using the branch and bound algorithm increases when the candidate tree paths 

increases, in some cases, randomness in the computational time has been observed. This is 

due to the fact that the node fathoming process in the branch and bound algorithm depends 

on an estimated lower bound and a best solution found in each branch. Under different search 

spaces, this process responds differently based on the internal heuristics applied. Therefore, 

few cases show that the computational time sometimes does not necessary increase with a 

larger size of tree paths.     

putational time of both cases are comparable. However, when the number of tree 

paths increase, the computational time is much larger when demand is asymmetric. The 

optimal cost comparison is also made for symmetric and asymmetric demand as shown in 

Figure 5.9. The total capacity cost of routing asymmetric demand is clearly demonstrated to 

be larger than when demand is symmetric. For symmetric demand, traffic tends to spread out 
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5.3.2. Effect of Increasing the Number o

the effect of increasing the number of 

VPNs under different traffic load scenario. In this study, sy mand 

of multiple VPNs is generated and the link capacity limit is assigned based on a demand 

matrix to represent the correct load value. The load level is varied from light to heavy load 

within the values such that a feasible solution can still be found for each network topology. A 

complete numerical results is listed in Appendix A. Only selected cases will be illustrated to 

complete a discussion. 

Figure 5.10 shows the average computational time of multiple random symmetric 

demand sets over the 10-node network at 0.3 load. The ranges show the minimum and 

m o increase exponentially w

VPNs. Besides, the gap between the minimum and maximum CPU time recorded is found to 

be increasing when more random demand pairs are generated. The optimal cost, however, 

increases at a linear scale (see Figure 5.11). Different rate of cost increasing has been 

observed when the load is varied from 0.3 to 0.9. At a light load (ρ=0.3), this is quite 

predictable since capacity at many links has still not been fully utilized and traffic could still 

be routed over an optimal tree spanning over a group of edge nodes. Nevertheless, at a high 

load (when link capacity is smaller at ρ=0.9), routing the same demand traffic over a non-

optimal route (i.e. a longer route) introduced extra bandwidth requirement and cost. For 

asymmetri t becomes more significant as shown in Figure 5.12.    

Computational time is also compared at various load levels for symmetric demand in 

Figure 5.13. Slightly increase in CPU time is observed when load changes from 0.3 to 0.6. 

On the contrary, at 0.9 load, considerable increase in CPU time becomes significant. In case 

f VPNs 

The analysis is further conducted to study 

mmertric and asymmetric de

aximum CPU time. The CPU time is shown t ith the number of 

c demand, the cost incremen
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of Asymmetric demand (shown in Figure 5.14), th

larger in scale. The difference in computational time for symmetric and asymmetric demand 

is clearly illustrated in Figure 5.15. As the number of VPNs increases, the CPU time taken to 

find the optimal solution for asymmetric demand is much larger in scale than when demand 

is symmetric.     

   In addition, it further demonstrates that, when laying out more number of VPNs, the 

amount of additional capacity cost becomes larger. The optimization procedure also found it 

demand may have a larger amount of traffic sent in one direction than the other 

and causes link congestion. Therefore, demand may take a non-optimal route and introduces 

even more bandwidth usage especially at a high load. This effect is more pronounced as the 

number of VPNs increases. 

As before, when a large number of VPNs are simultaneously deployed on sink-tree 

paths, an increase in the computational time has been observed in cases of the 55 and 15-

node networks as shown in Figure 5.16 and 5.17, respectively. Note that, in some cases, 

under a high load scenario, the branch and bound search had exhausted the memory available 

and could not find the true optimal solution.   The  results  therefore  only  represent  the  best    

e CPU time increment become even much 

more difficult to simultaneous solve for the best optimal route configuration under a high 

load scenario, especially, when many VPNs are being considered. Therefore, a computational 

time is significantly increased comparing to a low load scenario.  

Overall, when demand is asymmetric, a large cost increase and longer computational 

time is observed especially at a high load scenario. Asymmetric demand has been found to 

not be able to achieve a good gain of bandwidth aggregation, when compared to symmetric 

demand, and, thus, results in higher bandwidth usage. When a network is highly loaded, 

symmetric 
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13Figure 5.  : Computational Time over the 10-node network at 

Different Load (Symmetric Demand)
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Figure 5.14 : Computational Time over the 10-node network at 

Different Load (Asymmetric Demand) 
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Figure 5.16 : Computational Time over the 55-Node Network at 

Different Load (Asymmetric Demand) 
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Figure 5.17 : Computational Time over the 15-node Network at 

Different Load (Symmetric Demand)

integer solution found (see Appendix A.)  At 0.9 load, when the number of VPNs increases from 

20 to 30 VPNs, the computational time has dramatically increased by nearly 300 percent. Due to 

memory limitations, for the 55-node network case, the number of VPNs can only be varied up to 

30 VPNs when the branch and bound technique is applied. This is also the case for the 15-node 

network, the number of VPNs can be varied up to 200 VPNs at a high load. These results imply 

that using a standard optimization approach to solve a VPN design problem utilizing a sink-tree 

paths may have a limit applicability in practice when a large number of VPNs are taking into 

account.    

 

5.4. Complexity of Multiple VPNs Design 

 The running time of the heuristic path selection algorithm includes the time spent in the 

node and link elimination process, tree generation process and tree ranking process. In node and 

link elimination process, each node is visit one-by-one and checked to see if the node and its 

associated links should be eliminated from the network. Therefore, this process only takes  
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)(NΘ  time for a N-node network. The tree generation process is done based on a decision-tree 

search principle which co tel s without duplications. 

fter all distinctive trees are generated, to check the hop-count limit, each tree must be traversed 

from an

mple y enumerates all possible spanning tree

A

y root node to all other nodes in the tree. Typically, the tree traversals could be done in 

)(NΘ . Therefore, if there are total of v number of distinctive trees, the hop-count constraint can 

be verified within )( Nv ⋅Θ  time. Subsequently, the tree ranking process will select a fixed size 

of tree set based on the number of links in a tree. Specifically, only u numbers of trees with the 

smallest number of links are selected from all feasible tree of size w. In the implementation, 

Quicksort is used to select such trees and the worst case performance for the selection process is 

)( 2wΘ . However, on the average, the selection could be done in ).(wΘ  The complexity of the 

tree generation process depends largely on the tree creation procedure which can be run in 

polynomial. Note that the heuristics tree selection algorithm could be done from time to time for 

a set of the all distinctive trees which could be generated once and reused for the network of 

interest. Therefore, given a set of all distinctive trees, the tree selection heuristics can be run in 

lts clearly prove the benefit of the tree selection 

heuristics in reducing the candidate set of sink-tree paths to be searched over and allowing the 

)( 2wΘ .   

 

5.5. Conclusion 

In this chapter, a tree selection heuristic is proposed to scale the VPNs design problem 

when sink-tree paths are utilized. The problem size is reduced by selecting a good candidate set 

of tree paths based on the fact that optimum trees tend to have less number of links in them. In 

the proposed heuristic, a sink-tree set is size-limit, which results in ranking trees based on the 

number of links used in a tree. Numerical resu
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optima

 

l solution to be obtained for a larger problem size. Nonetheless, when a large number of 

VPNs are considered to be layout simultaneously, the standard optimization approach is not 

practical, and, therefore, other solution approaches need to be found.    

 

 

89 



 

 

6.  Solution Algorithms  
 

Although, the complexity of the VPNs design model utilizing sink-tree paths could be 

reduced using a heuristics path selection algorithm, when a large number of VPNs are taken into 

account, solving the mathematical model using standard approach still consumes a considerable 

amount of time considering that the VPN planning and management must be 

 

done frequently. In 

order to

Ns design utilizing sink-tree paths modeled as a mixed-integer programming 

problem

 efficiently map a large number of traffic demands from many different VPNs onto an 

existing network topology while maintaining the optimal use of network resources in all time 

periods, a solution algorithm using a heuristics-based approach must be employed. In this 

chapter, a new heuristic termed the Minimum-Capacity Sink-Tree Assignment (MCSTA) is 

proposed to approximate the optimal bandwidth and sink-tree route assignment for multiple 

VPNs. The MCSTA algorithm and its variations are demonstrated to give a good approximation 

and sometimes yields the exact solution within a polynomial computational time.   

The VP

 falls into the class of many well-know problems in combinatorial optimization which 

are NP-complete to solve exactly. The problem involves enumerating on a large set of trees 

spanning over a group of edge nodes while optimizing for minimum bandwidth cost. This is 

equivalent to the Steiner tree problem which aims to find a minimum-cost tree connecting a 

subset of nodes. The Steiner tree problem is known to be NP-hard [45, 81]. A large body of 

literature exits on solution approaches for Steiner tree problems and its variants. Approaches 

include complete enumeration, dynamic programming, and branch-and-bound techniques in 

addition to various heuristic procedures.  
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One of the outstanding open questions in computational complexity theory has been 

“NP=P?”, i.e., whether the class of NP-complete problems admits a polynomial-time solution. 

The class of NP-complete problems represents a colossal collection of problems for which no 

polynomial-time algorithms are known to solve for an exact solution, including the Steiner tree 

problem. The NP-hardness of such problems can be overcome only by compromising the quality 

of the solution for the sake of being able find to sub-optimal solution within a reasonable 

computation time. Many approximation algorithms for optimization problems, therefore, seek to 

find a solution with a small multiplicative error over all instances within polynomial time 

according to the problem size. However, no polynomial-time approximation algorithm has a 

substantially better performance ratio unless something nearly equivalent to P=NP is true. In 

ther words, finding approximation algorithms for such problems with considerably better 

performan io

 

simultaneously optimized for multiple coexisting VPNs, a bandwidth saving over an aggregated 

link on a sink-tree path can be significant as compared to routing a demand over a traditional 

point-to-point path. When a group of traffic demands, going in the same direction, is routed on a 

sink-tree path ending at one egress router, both route and capacity assignment for such demand 

should be done differently than a traditional full-mesh design utilizing a point-to-point paths. 

An optimal layout and capacity assignment for multiple sink-trees found using a branch 

and bound technique, over a small scale problem, reveal notable features of the optimal-tree 

layout pattern. First, optimal sink-trees promote bandwidth aggregation by using many links in 

o

ce rat s is tantamount to nearly solving the “P=NP?” question. 

6.1. Capacity and Route Assignment Criteria 

Over an infrastructure network in which multiple sink-tree routing paths are 
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common. Therefore, a tree-layout prefers to have large capacity allocated on less number of links 

rather than having many links with small capacity. Secondly, a large demand was shown to be 

inimum spanning tree when the bandwidth cost of all 

links are equal. Finally, a small demand is likely to be routed on a long-hop path where demand 

heading to the same destination will be merged and aggregated on large capacity links. As a 

result, a small demand may take a slightly longer route than a typical shortest path. Note that the 

ab

fers t a link on a minimum spanning tree as a “Spine Link”. 

aggregate as much as possible demands on “Spine Links”. A smaller demand may be aggregated 

r routed around it. This leads to a significant problem in sin

multiple VPNs demand. Intuitively, a large dem d, which is likely to consume more resources, 

having

e

d to approximate the optimal bandwidth and sink-tree route 

assignm

based on a sum of demand offered. Demand within each VPN is grouped based on its destination 

to be routed over a sink-tree path. A group of demand heading to the same destination which has 

the largest sum of bandwidth demand will be routed first. Each demand pair within the same 

possible path. However, the M hoo e pine links 

routed on a short-hop path over part of a m

ove observation is made given that the capacity cost is equal at all links.     

This chapter, hereby, re o 

Thus, the refined objective in routing VPNs demand using multipoint-to-point LSPs is to 

over it o k-tree route ordering for 

an

should be laid out first. The idea can be viewed as letting large flows go through main pipes 

 large capacity while leaving small flows to go through pipes having some left-over 

capacity.         

Taking into account of such patterns, the Minimum-Capacity Sink-Tr e Assignment 

(MCSTA) algorithm is propose

ent for multiple VPNs. The key aspect of the MCSTA algorithm is to route each sink tree 

group will also be routed based on its capacity. The largest demand is first routed over a shortest 

CSTA algorithm will c se to send the demand ov r s
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o e and destination nodes of n the minimum spanning tree if the cost can be justified. If the sourc

 increm

be multiplexed with an existing connection being in place on that link otherwise an incremental 

cost is merely the cost of a whole demand bandwidth at that link. Subsequently, a successive 

shortest path routing is performed, while, in every iteration, the cost on a minimum-cost path will 

be compared against the cost of routing the demand over spine links on minimum spanning tree 

route.  When an incremental cost can be justified, the route on spine links is prefer over a 

shortest path.        

MCSTA) Algorithm 

Given an infrastructure net

 entering and exiting. Each network link 

the demand are directly connected via a spine link, a demand will be sent through a spine link. 

For each pair of demand to be routed, an aggregated cost (incremental cost) will be recalculated 

at all links. Note that an ental cost can be calculated on each link given that a demand can 

 

6.2. Minimum-Capacity Sink-Tree Assignment (

work G of N nodes, where NM ⊆  are edge nodes having 

demand Ll∈  is asso  capacity cost ciated with lψ  

(measured in units of $ per Mbps), link capacity  and a utilization factorlC  lα  which limits the 

proportion of link capacity  to be allocated for VPN traffic. 

Demand matrices of all VPNs are grouped based on the egress node such that multiple 

demands flowing toward the same destination are routed together. Let  represents a VPN 

demand matrix 

lC

vD

V∈ν  which can be written as 
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efi  as t  vector

  (6.3) 
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⎢
⎢ k,4

⎦⎣ km,

egated bandwidth of demand

⎤⎡ vd

v
kB  v

kD   is d ned he aggr

v
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v
k

v
k

v
k

v
k

v
k dddddB ,,4,2,2,1 +++++=

or 

∑
∈

=
Mm

v
km

v
k dB ,  (6.4) 

egress demand vector  will be sorted in a decreasing order of the aggregated 

bandwidth . The egress vector  having the largest  will be the first to be routed. Each 

demand pair within a demand  will also be selected to be route based on its  bandwidth in 

decreasing order of bandwidth.  

Minimum tree spanning over  be a set of links 

on a minimum spanning tree path between edge node i and j such that  

The v
kD

v
kB v

kD v
kB

v
kD  v

kmd .

M edge nodes are determined.  Let kmSP ,
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∈

otherwise
Ll

l 0
 (6.5) 

Le

⎩
⎨
⎧ linkincludesSPif

s km1 ,=

t lk , epresent a bandwidth assignment of demand kD  over link lvβ r v L∈ . For each demand 

pai tal cos lkθ∇ of carrying a demand   is calculated on all links 

 v eqvd ψβ ⋅−+ )() ,,  (6.6) 

Function 

allocated over a network link as de d previously in Chap r 4. Note that if the bandwidth to 

be assigned on link exhaust the maximum allowable capacity

r v
kmd .  in v

kD , an incremen t )( ,
v v

kmd .

l∈L .  

l
v

lk
v

km
v

lklk eqv βθ =∇ }({ ,,

( )⋅  represents the mapping of offered demand bandwidth to an effective bandwidth 

scribe te

eqv

Ll∈  ll c⋅α  , then a large penalty 

cost is assigned so that the link is avoided.    

The total cost ( ) of carrying demand d  over a minimum spanning tree is, therefore, 

etermined by 

 
vv s⋅∇=

Ω

v
kε v

km.

d

)(
,

, l
SPs

lkk
kml

∑
∈

 ) 

Let kmMCP ,  denote the minimum cost path from source node m  to egress node k . A minimum-

v

 
,

, l
MCPh

lk
kml

θε (6.7

 is determined based on an increm m trix.  The total 

incremental cost ( ) of routing   over a minimum-cost path is given by   

v
k

v h⋅∇=

cost path kmMCP , ental cost lk ,θ∇ a

v
kτ v

kmd .

∑ )(
∈

 (6.8) 

where, 

θτ

⎩
⎨
⎧ ∈

=
otherwise

LllinkincludesMCPif
h km

l 0
1 ,  
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Initialization : 
For all VPNs V∈ν , links Ll , egress node Kk  ( MK ) ∈ ∈ ⊆

{  = 0;  v
lk ,β

 v
kD  = vD x   ΛT  where Λ = [ 1Λ 2Λ 3Λ … iΛ ]1xK    

                                iΛ = 1   if  i = k ,  otherwise iΛ = 0 
} 
For all node pairs (i, k)  
 Find a minimum spanning tree path  between node pair (i, k) kiSP ,

 
Begin : 
Let Φ = { 1v

kD  , 2v
kD  , 3v

kD , …, iv
kD  }

1 2 3 i
1x(M⋅V)    

           such that 1

1

v
kB  ≥ 2

2

v
kB  ≥ 3

3

v
kB ≥ … ≥ i

i

v
kB   where ∑

∈

=
Mm

v
km

v
k dB ,  

For each v
kD  in Φ  

{   Let  Θ = { d  , d d , …, d  }   such that d  ≥d  ≥ d ≥ … d  v
ki ,1 ki ,2 ki ,3 kim , 1xM  ki ,1 ki ,2 ki ,3 kim ,

v , v v v v  v ≥ v

  For each vd  in Θ ki,

    {     Let 0=v
kε ; 

  For all link Ll∈  
      { /* Calculate an incremental bandwidth and cost at all link */ 
   ∇ })()({ ,,,,

v
lk

v
km

v
lk

v
lk eqvdeqv βββ −+= ; 

   /* Check the capacity constraint */ 
   If lkli ,,     ll

v

v

v

kKi
c⋅≥∇+∑∑

∀−∈∀

αββ
}{

                θ ; Ω=∇ v
lk ,

        Else 

     l
v

lk
v

lk ϕβθ ⋅∇=∇ ,, ; 
     /* Calculate an incremental cost on a minimum spanning tree kiSP ,  path */ 

     l
v

lk
v
k

v
k , ; s⋅∇+= θεε

   } 
  
Cont.   

Figure 6.1 : The MCSTA Algorithm 
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Figure 6.2 : The MCSTA Algorithm (Cont.) 
 

 

The demand v
kmd .  is routed on a direct link with the total incremental cost of v

lk ,θ∇ , 

when there exists a direct link between ingress node m and egress node k which is on a m

spannin

k

β

  /*Choose a direct link on a minimum spanning tree*/ 
     If exist link (i, k) in kiSP ,  

    ; v
lk

v
lk

v
lk ,,, βββ ∇+=

  Else  
  {     /* Calculate total incremental cost on a minimum cost path */ 
   Find a minimum cost tree path  between (i, k) using Dijkstra’s shortest      kiMCP ,

               path algorithm; 

      Let ; )(
,

, l
MCPh

v
lk

v
k h

kml

⋅∇= ∑
∈

θτ

         /* Choose minimum spanning tree path */ 
   If     v

k
v
k τε ≤

    ,For each link l in SP   ,     let v
lk

v
lk

v
lk ,,, βββ ∇+= ; ki

   /* Choose minimum incremental cost path */ 
   Else 

    For each link l in kiMCP , ,  let v
lk

v
lk

v
lk ,,, βββ ∇+= ; 

  } 
} 
End 

inimum 

g tree kmSP , . Otherwise, a minimum spanning tree route is preferred over a minimum 

cost route.   Therefore, if v
k

v
k τε ≤ , a minimum spanning tree path kmSP ,  will be selected but if 

vv τε > ,  demand v  will be routed over a minimum cost path . The bandwidth usage 

lk , over each link is then updated for each demand pair in kD  before a successive demand 

routing is continued. The complete steps of the MCSTA algorithm are described in Figure 6.1.   

 

k kmd . kmMCP ,

v v
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6.3. Performance Analysis of the MCSTA Algorithm  

The goodness of the  is pa solution 

approximated by the MCSTA algorithm with the optim lution obt d from t roblem 

formulation of Chapter 4 with  heuris hapt  The com on will e made 

on a com ation time which is measured rm of CPU real-tim  second he ILP 

solution is obtain y running  7.1 I er on n Blade1

MHz processor a  gigabyte mory. STA algorithm runs on a standalone PC with 

Intel Pentium IV 2.6 GHz processor with hyper-threading technology and 768 Mbytes of 

memory e ff i m nd ic nd load 

values are generated over sever orks. I tudy link capacity is selected according 

to the total traffic demands off the net  rep t the corr ad valu mplete 

numerical results of the study are listed in Appendix B. Sam results are selected to establish a 

point of discussio

Table 6.1 illustrates th A cos mparison with the optimal cost at different 

numbers of VPNs on the 10-node network. At 0.6 load, the MCSTA cost clearly be seen to 

closely approxima op n r be s. tage of 

relative er less than 1 percent  demonstrated. At a small number of VPNs, an exact 

solution can be foun hen the  is hi ded, relati range  4 to 6 

percent. Notice that, the relative oes no uch h the  of VPNs. This is 

considered to be another desirable characteristic of the MCSTA algor in its ility to 

consistently produce a solution within a small r rror even for a large number of VPNs.  

Figure 6.3 (a) and (b) show the percentage of relative error at various load levels on 

networks of 10 and 15 nodes when the demand metric. Note that the extreme load values 

of  0.9 and  1.2 a orks. This is  to  

MCSTA algorithm  evaluated by com ring the 

al so aine he p

 the tree tics of C er 5. paris also b

put al  in te e in s. T

ed b  CPLEX nP solv  a Su 000 workstation with 750 

nd 2 s of me The MC

. Diff rent tra ic scenarios ncluding sym etric a asymmetr demand a

al netw n this s , the 

ered to work to resen ect lo e. Co

ple 

n. 

e MCST t in co

te the timal solutio  across diffe ent num r of VPN  A percen

ror can be

d. W  network ghly loa  the ve error s from

 error d t vary m  wit  number

ithm capab

elative e

 is sym

re  deliberately applied  to  the cases  of the 10 and 15-node netw
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 Figure 6.3 : The MCSTA

 

evaluate the performance of the algorithm when the capacity of several network links is driven to 

a saturated point. At the high load, for the 10-node network, the relative error is at less than 6 

percent, but a smaller error of less than 3.5 percent is observed for the 15-node network. At small 

loa

rk ca g sy  

0.6 load, the percentage of relative error is fairly small. 

t 0 ompa

of t

a feasible solution. It is not very often that over approximation of the MCSTA algorithm causes 

an infeasible set of route assignment. Under asymmetric demand, selected results at 0.9 load are 

ost all cases, the relative error is 

the 10-node network except for a single VPN case where the demand ordering does not have any       

(a) (b) 

 Approximation at Different Load Levels 

to medium d, the MCSTA performs relatively well especially for a small number of VPNs. It 

can be said that MCSTA performance is closely related to the traffic load and network size. Table 

6.2 shows the MCSTA approximation for the 55-node netwo rryin mmetric demand. At

 
A .9 load, the relative error does increase but remain relatively small c red to cases 

he 10 and 15-node networks. For a large and sparse, the MCSTA can give a close 

approximation even at a high load situation. However, for 5 VPNs, the MCSTA can not establish 

summarized in Table 6.3. In alm found to be within 4 percent for 
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Load # VPNs Optimal Cost MCSTA Cost %Error ILP CPU 

Time(sec) 
MCSTA CPU 
Time (sec) 

5 3,357 3,357 0.00 0.52 0.14 
10 6,624 6,639 0.23 8.5 1.50 
100 65,618 65,708 0.14 410 15.43 
200 133,679 133,869 0.14 2500 31.14 

0.6 

250 165,917 166,153 0.14 4700 38.54 
5 3,476 3,665 5.45 72 0.85 0.9 

10 6,770 7,156 120 5.70 1.92 
100 66,699 69,841 1800 19.39 4.71
200 136,147 141,733 4.10 4600 39.78 
250 168,614 176,279 4.55 9300 50.12 

Table 6.1 : MCSTA Approximation on the 10-node network with Symmetric Demand at 0.6 Load  

Load # VPNs Optimal Cost MCSTA Cost %Error ILP CPU MCSTA 
CPU Time 

 

Time(sec) (sec) 
1 2,909 2,909 0.00 2 0.14 
5 11,518 11,506 0.10 42 0.76 

10 25,439 25,431 0.03 24 1.62 
20 3.76 53,869 54,153 0.53 210 

0.6 

00 5.14 30 79,214 79,070 0.18 12
1 inf inf - - - 
5 11,711 inf - 3600 - 

10 25,568 26,120 2.16 2200 1.70 
20 53,962 54,532 1.06 4700 3.87 

0.9 

30 79,362 80,010 0.82 5000 5.53 

Tabl

MCSTA 
PU Time 
(sec) 

e 6.2 : MCSTA Approximation on the 55-node Network with Symmetric Demand 
 

Network # VPNs Optimal Cost MCSTA Cost %Error ILP CPU 
Time(sec) C

1 1,096 1,167 6.46 2.40 0.26 
50 57,901 60,011 3.64 3,600 16.65 
100 115,911 120,338 3.82 31,000+ 34.51 
150 174,814 181,429 3.78 9,700 49.82 

10 

200 231,839 240,214 3.61 31,000+ 65.67 
1 1,794 1,830 1.97 11.00 0.29 

50 83,979 85,070 1.30 2,100 15.81 
100 168,036 169,904 1.11 20,000 32.01 

15 

 150 128,832 130,268 1.11 8,700 23.50 
1 inf inf - - - 
5 11,113 11,351 2.14 280 0.75 

10 20,183 20,365 0.90 2300 1.42 
20 43,605 44,295 1.58 3700 3.00 

55 

30 71,858 72,097 0.33 57000 4.43 

Table 6.3: MCSTA Approximation for Asymmetric Demand at 0.9 Load 
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effect on the route assignment of the MCSTA. For the 15 and 55-node networks, the relative error 

is less than 2 and 2.5 percent respectively. Thus, the MCSTA performs relatively well even when 

the demand is asymmetric. Once more, the computational time of the MCSTA increases linearly 

with th

demand group  will use. Dem nd group  which has a large sum of the aggregated 

bandwidth B  is allowed to use a large capacity on al e links. There are several variations 

idering the resource usage level of each 

demand

e number of VPNs over the same network. Overall, the MCSTA performance is somewhat 

remarkable in being able to give a good approximation with a small relative error even at a large 

number of VPNs, within a short amount of computational time.                  

 

6.4. Variations of the MCSTA Algorithm 

The aggregated bandwidth v
kB  of demand group v

kD  used in the MCSTA algorithm, to 

select a group to be routed, is an indication of the amount of network bandwidth or resources that 

v v

k

on the MCSTA algorithm that can be developed by cons

kD a kD

v l spin

 group. A resource usage index km,∆  of demand pair ),( km  of Vvv ∈  VPN is defined as  

 km
v

km
v

km d ,,, Α⋅=∆  (6.9) 

where, kmA ,   is the average path length (measured in hops) between node pair ),( km . The index 

v

k

usage can be measured by v
k∆  as 

 

km,∆  is another measure of the estimated resource consumption when a demand pair  is 

admitted into a network. Hence, when a demand group D  is adm

),( km

v itted, the amount of resource 

∑
∈

∆=∆ v
km

v
k ,  (6.10) 

Mm
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One variation of the original MCSTA algorithm is to use the  index to indicate the ordering of 

the demand group . This approach is called the MCSTA_APL when the  index is measured 

using the average path length.    

 Another measure of resource usage is to apply a shortest path length instead of an 

average path length between node pair . Therefore  is then calculated by  

  (6.11) 

where,   is a shortest path length (measured in hops) between node pair .  In this case, 

 index for demand group can be derived as in equation 6.10. Hence, another variation of 

the MCSTA algorithm  a route ordering based on  index which is measured by a 

shortest path length, and therefore, is called the MCSTA_SPL algorithm. 

In both MCSTA_APL and MCSTA_SPL algorithms, a demand group  is first selected 

index. Then

based on  index. Hence, when dex is used to determine a route ordering, a large 

demand between node pair that is far apart is allowed to take the first best route. 

 The last variation of the MCSTA algorithm is to preserve the use of the aggregated 

bandwidth as a factor to determine ordering for demand group , but a route order within the 

same group is indexed by  which is calculate based on an average path length. This 

thm. 

The performance of different variations of the MCSTA algorithm are compared with the 

original MCSTA algorithm for various network sizes, load values, and demand characteristics. 

The percentage of relative error of the approximate solution to the optimal solution (obtained 

v
k∆

v
kD v

k∆

),( km v
km,∆

km
v

km
v

km Sd ,,, ⋅=∆

kmS , ),( km

v
k∆

v
kD

 is to perform v
k∆

v
kD

v
k∆  , each pair demand  v

kmd ,  within the group will also be routed in the order using 

v
km,∆ v

km,∆  in

v
kB v

kD

v
km,∆

approach is referred to as the MCSTA_DPL algori
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from solving ILP model based branch and bound technique) is used as a scale to compare all 

approximation algorithms. The complete numerical results for both symmetric and asymmetric 

demand are presented in Appendix C.  

Figure 6.4 (a)-(f) shows a performance comparison of different algorithms under 

symmetric demand load. At a low load, all algorithms can give a good approximation within 2 

percent of the relative error. Over the small network of 10 nodes at 0.3 load (shown in Figure 6.3 

(a) ), MCSTA, MCSTA

error for a small number of VPNs. Nonetheless, the relative error is likely to arise as the number 

of VPNs increases. The MCSTA_SPL seems to be the worst approximation among all and can 

not derive an exact solution even at a small number of VPNs. As the load increases from 0.3 to 

0.9, the relative error increases. This is also the case for the 15 and 55-node networks at high and 

low load situations. Note that for the heavy load case, the error goes down as the network size 

increases. Across the cases considered, no one scheme is consistently the best with the MCSTA 

and MCSTA_APL typically performing the best. 

Unlike the MCSTA_SPL, the MCSTA_APL is reliably demonstrated to be able to establish 

a good error bound. It also can give an exact solution at a small number of VPNs. Even though, 

the MCSTA_APL generally provides a solution slightly farther from the optimum when 

compared to the MCSTA, it can be shown to outperform the MCSTA in several cases at the high 

load situation. Therefore, using a resource usage index based on average path length to determine 

ecially at the high load s 

symmetric. By doing this, a node-pair separated by many hops away, carrying a large demand, is 

likely to use much bandwidth resources and will be the first to be packed onto a large pipe. This 

concept, therefore, has been illustrated in the MCSTA_APL cases.    On the other hand,  when the 

_APL and MCSTA_DPL yield an exact solution with zero percent relative 

the route ordering seems to work pretty well esp  situation when demand i
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  (a) (b) 

(c) (d) 
 

  (e)                                      (f) 

Figure 6.4 : Performance Comparison of Different Variations of MCSTA Algorithms (Symmetric Demand) 
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 (e) 
Figure 6.5 : Performance Comparison of Different Va ations of MCSTA Algorithms (Asymmetric Demand) 
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resource usage index is calculated based on a shortest path in the MCSTA_SPL, a demand 

ordering pattern does not favor a saving in total bandwidth cost across all VPNs. However, for a 

large and sparse network of 55-node case, an average path length is relatively close to the 

shortest path length, therefore, the MCSTA_SPL performs fairly well in this scenario. Based on 

this ob

es not seem to gain 

more a

servation, the shortest path, in many circumstances, is not a good measure to be used in 

determining a resource usage of each demand group. Combining the use of bandwidth aggregate 

and resource usage index based on average path length to determine the route ordering of a group 

demand and a pair-demand within the same group respectively, the MCSTA_DPL performs 

relative well in all most all cases but its performance still fall in between the MCSTA and 

MCSTA_APL.      

For an asymmetric demand, a comparison of the different algorithms is shown in Figure 

6.5 (a)-(f). When demand is asymmetric, traffic in both directions of a node-pair do not shares 

the same demand value, therefore, the load may not be balanced across all part of the network. 

The MCSTA_SPL shows somewhat similar performance as in symmetric demand case having the 

largest error in most cases. Under asymmetric demand, the MCSTA_APL do

dvantage in term of bandwidth cost saving over the original MCSTA algorithm. The 

MCSTA algorithm seems to be quite robust and more predictable when compared to other 

approximation methods.  

Disregarding the MCSTA_SPL approximation, a drawback of other approximations can 

be seen in the case of the 10-node network (shown in Figure 6.5 (a)-(b)). The error increases 

from less than 0.2 percent to about 4 percent range when the load increases to 0.9.  This 

observation points out the fact that, at a high load situation, after a capacity on spine links of 

spanning trees has been completely occupied, the MCSTA algorithm does not efficiently route 
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the left-off demand through an optimal route. When one closely examines the steps in the 

MCSTA algorithm, in every iteration, the cost of routing a demand over a minimum ost route 

given by a successive-shortest path computation is always compared with the cost of 

-c

using the 

ath passing through spine links. The path over spine links is always preferred and will be 

chosen first. When the capacity on

determ

p

 a spine link has filled up, the route assignment will be 

ined solely by the successive shortest path computation which, by itself, can not establish 

a good gain in bandwidth aggregation. Therefore, the approximate solution turns out to be farther 

from the optimal when a network is highly loaded. In fact, this can be more clearly illustrated by 

example in the case of the 15-node network. Initially, the spine links on a minimum spanning 

tree are chosen for all edge nodes as shown in Figure 6.6 (a).   Large demands between the edge  

 

7

1 2

5 6

 

Figure 6.6 : Spine Links Selected over a Minimum Spanning Tree 
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nodes {1, 2, 3, 4} and {5, 6, 7} must cross link 4-5. At a high load scenario, when the capacity 

k 4-5 is depleted, demand can not be routed over the minimum spanning trees since the tree 

 into two parts if link 4-5 is removed from the network.     As a result, the MCSTA 
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will rely mostly on a successive shortest-path route which generally routes demand through a 

minimu  path based on incremental link cost. In fact, a new spanning tree should be 

reassigned.    For example, when capacity on link 4-5 can not be assigned, a new spanning tree 

could be establish using links 5-11 and 10-11 instead of link 4-5.                 

Overall, th

m-cost

e MCSTA algorithm has demonstrated good performance in approximating the 

optimal solution within 6 percent or less error. The key advantage of the MCSTA algorithm over 

a traditional standard optimization technique for the mixed integer programming problem lies in 

the fact that the MCSTA algorithm can give a close approximation within a polynomial 

computational time. Nonetheless, the weakness of the MCSTA algorithm is also based on the fact 

that spine links selected from a minimum spanning tree, used in the algorithm, is determined on 

undirected link. Therefore, when demand is asymmetric, spine links on a minimum spanning tree 

may not be optimum over a group of edge nodes. In practice, the capacity allocation is typically 

done separately for each directional link. As a result, if one considers improving the performance 

of the MCSTA algorithm by choosing new spine links when capacity over some spine links is 

deplete

stion problem, network management may set aside a certain 

rtion of the network bandwidth to absorb congestion as well as for other management 

purposes. This could easily be done by setting the utilization factor

d, directional characteristics of link should be taken into account.       

To this extent, a VPNs design utlilizing sink-tree routing paths aims to aggregating a 

large demand on a small number of high-capacitated links. The bandwidth savings as well as cost 

reduction is achieved based on this perspective. However, when demand is concentrated on a few 

links, some part of the network may have link with almost none capacity available. As a result, 

network congestion is likely to occur, since the traffic load is not well balance across the 

network. To alleviate such conge

po

 lα  on each Ll∈  as 
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explained previously in Chapter 4. The utilization factor protects links from being overly 

bscribed and subject to potential congestion. In practice, a smaller value of su lα  may be 

a ed

 

6.5. Complexity of the MCSTA Algorithm 

ssign  to links connecting to core-routers than ones connecting to edge-routers.          

The MCSTA algorithm operates in three phases. First a set of minimum spanning tree 

routes is computed. Then, the groups of demands ending at the same egress node for all VPNs 

will be sorted in a decreasing order based on the total sum of required bandwidth of demand pair 

within each group. Within each group, a demand pair is also sorted in an increasing order of its 

required bandwidth. After that, the MCSTA algorithm will run iteratively for each demand pair 

by calculating an incremental link cost on every link and executing a successive shortest-path 

computation.  

On a network of N nodes and L links, a minimum spanning tree could be computed using 

Prim or Kruskal’s algorithm which has the worst case complexity of )( 2NΘ  and )( LlogL ⋅Θ  

respectively. Prim’s algorithm is chosen for this purpose. In the sortin

algorith

g operation, the quicksort 

m is employed.  Quicksort is considered to be the fastest sorting algorithm in practice 

with an average running time of )( GlogG ⋅Θ , where G is the number of items to be sorted. 

However, it can be shown to have a worst case complexity of )( 2GΘ .  In MCSTA operation, the 

number of items to be so number of demand groups for all VPNs. Given that 

there are V VPNs, each of which has a dem nd going to all  edge nodes, there are M 

demand group per VPN. The total number of dema  groups or 

 groups if all nodes are included. Therefore, the time bound for the sorting operation is 

. In the successive shortest-path computation, a classic Dijkstra’s shortest path 

rted is equal to the 

a M ⊂ N

nd groups is then equal to MV ⋅

NV ⋅

)( 22 NV ⋅Θ
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algorith

e of the es with 

the number s well as the number of nodes in the network. It may seem that the 

computational tim he MCSTA algorithm is bounded by the sorting operation. However, in 

practice, the  done over some repetitive values of demand bandwidth and takes rather a 

small amount of e. For this reason, the complexity of the MCSTA algorithm can be said to be 

bounded by .           

 

y attribute of the MCSTA 

algorith

m is applied over   a network with modified link cost. Dijkstra’s algorithm operates 

within )( 2NΘ  time. Since, each demand pair will be sequentially routed in order until all 

demand are put in place, all iterations will be take the total time of )( 2NVK ⋅⋅Θ  if there are K 

demand pairs to be routed for each VPN. As a result, the worst case performance of the MCSTA 

algorithm is )( 2NΘ + )( 22 NV ⋅Θ + )( 2NVK ⋅⋅Θ  which is )( 22 NV ⋅Θ  or )( 2NVK ⋅⋅Θ . This 

obviously exhibits the fact that the computational tim MCSTA algorithm increas

 of VPNs a

e of t

 sorting is

 tim

)( 2NVK ⋅⋅Θ

6.6. Summary 

 This chapter presents the MCSTA approximation algorithm and its variations to solve the 

multiple VPNs design problem utilizing sink-tree routing paths. One ke

m is the ordering of a group demand, i.e. traffic pairs ending at the same egress node, 

based on its aggregated capacity. Another key criteria is a selection of the route on a minimum 

spanning tree links for large demand when cost is justified against a minimum-cost route. The 

MCSTA algorithm has proved to be able to closely approximate the optimal solution within a 

polynomial computational time.  
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 is targeted to a 

group o

 the resul sourc d to be

ployed for a multipoint connection, the sam

information must be replicated for each point-to-point connection and therefore results in poor 

utilization of network bandwidth. Instead, multipoint connections should be routed over a 

distribution tree where only a single copy of information will be transmitted over any network 

link. In general, a distribution tree for multipoint connections utiliz

network resources is preferred. 

7. VPNs Design Models for Multipoint Connections 
 

 

Two types of traffic connections may be carried over a VPN including point-to-point 

connections and multipoint connections. In a traditional point-to-point application, commonly 

known as unicast connection, sender and receiver have a one-to-one relationship. Many 

emerging applications are multipoint applications where a single data stream

f receivers at various locations and vice versa.  Examples of these applications are video 

conferencing, broadcast TV, groupware or computer-supported cooperative-work and etc. In 

multipoint connections, sender and receiver may have many-to-one, one-to-many or many-to-

many relationship. More specifically, multipoint connections include broadcast (point-to-

multipoint), merge (multipoint-to-point), composite (point-to multipoint and multipoint-to-point) 

and full multipoint (multipoint-to-multipoint) [69].  

Although multipoint connections can be supported using multiple point-to-point 

connections, ting level of network re e utilization can expecte  low. In other 

words, when point-to-point paths are em e 

ing minimum amount of 
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From a network design perspective, poin -po s we multipoint connections 

should be taken into account. Regardless of the point-to-point traffic, a network designer must 

efficiently map multipoint traffic to a candidate tree routes and wisely allocate bandwidth to each 

t-to int a ll as 

segment of a selected route corresponding to the traffic demand. For example, in a multipoint-to-

point connection, if only one source can be active at a time, the bandwidth allocated to a segment 

from the merge point to the downstream point is the maximum of all source-transmitted rates.  

to be minimized, a shortest p

incapab

a pair-wise 

basis, and bandwidth saving is only a by product when paths converge. Instead, one should try to 

e th g as much as possible such that packets are only duplicated 

e or converge (in case of point-to-multipoint and multipoint-to-point 

 traffic may be sent over a longer path than a 

o est path, the total distribution cost of all multipoint connections could be minimized.  For 

any arbitrary network, determining an optimal tree of minimum cost over a subset of nodes, such 

at  bandwidth constraint is satisfied, is, in fact, an NP-hard problem. 

apter, the VPN design m

particular, multipoint-to-point and point-to-multipoint connections are considered. The model, 

however, assumes that one tree is built for each multipoint-to-point or point-to-multipoint 

 of each service class within the same VPN and hour-period respectively. For a large 

umber of VPNs, the Minimum-Capacity Sink-Tree Assignment (MCSTA) algorithm will be 

pplied with slight modification to solve the VPNs design problem for multipoint connections.        

As stated earlier, when the capacity cost is ath algorithm is 

le of given an optimal distribution tree when bandwidth could be shared among group of 

sources and/or destinations. The shortest path algorithm aims to optimize cost on 

utilize a tre at exploits link-sharin

when paths diverg

connections, respectively). Even though some

sh rt

th  a

In this ch tended to includ ultipoint connections. In odel is ex e m

connection

n

a
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7.1. VPNs Design Model for Multipoint-to-Point Connections 

destination. Each source may send data to the destination node at an arbitrary rate, which is 

using a connection-oriented paradigm where an explicit tree path is being setting up for each 

multipoint-to-point . ology information 

and mu

In a multipoint-to-point connection, data from multiple sources is transferred to a single 

usually independent of those of other sources. Multipoint-to-point demand can be supported 

 group However, by using this paradigm, the complete top

ltipoint group membership and their bandwidth must be known in advance. It is important 

to note that the model does not address the dynamic characteristics of the multipoint demand 

where member may join and leave the network at any point in time.     

  The problem of multiple VPNs design for multipoint-to-point demand shares the same 

characteristics as the design for point-to-point demand utilizing sink-tree paths where a destined 

egress router is at the root of a tree and all ingress routers are at the leaves of a tree.  Hence, the 

VPNs design model with bandwidth aggregation (VPWBA) presented in Chapter 4 can be applied 

for a multipoint demand with a modification in capacity assignment. For example, in a 

multipoint-to-point connection, if only one source can be active at any time, the bandwidth 

allocated to any link on a sink-tree path is a maximum of all source-transmitted rates. Given that 

the sources ksDd ,,ν∈ within demand group Kk ∈  transmitted at the rate d
kshB ,,,ν  and sink-tree 

path kPp∈  is selected for service class Ss∈  of VPN Vv∈ and hour period Hh∈ , the 

bandwidth assignment l
ksh ,,,νβ  on link l L∈  for multipoint-to-point dem

 pld XB βγ ≤⋅⋅

and ending at 

Kk ∈ egress node can be derived as  

l
ksh

Pp
kshdpksh

k

,,,,,,,,,, ννν ∑
∈

 (7.1) 
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Note that the l
ksh ,,,νβ  has subscripts of Ss∈ , Vv∈ and Hh∈ to reflect the fact that 

bandwidth assignment is done separately for each service class within a VPN and an hour period, 

respectively. An equivalent bandwidth allocation  for  to find an actual link 

capacity allocation f ultipoint-to-point dema  of VPN 

and hour period 

 is calculated l
ksh ,,,νβ

or this m nd within service class Ss∈

Vv∈ Hh∈ .    

 ( )ss
l

kshv
l

ksh QoSTEqvEB ,,,,,,,, βν =  (7.2) 

The rest of the model remains the same as in VPBWA. Accordingly, the VPN design 

model for multipoint-to-point connection (VPMTP) can be stated as the following.    

 

VPMTP :  Minimize  
Ll

Y∗l l∑
∈

ψ  

Subject to : 
 
 (1) 1,,, =∑

∈
kshν

kPp

pX  ; for all V∈ν , Hh∈ , Ss∈ , Kk∈   

  
 (2)   l

ksh
Pp

p
kshd

d
ksh XB ,,,,,,,,, ννν β≤⋅⋅ ∑ l

p
k

,γ
∈

 

  ; for all V∈ν , Hh∈ , Ss∈ , Kk∈ , ksDd ,,ν∈  

 (2)  
  
 ( )ssvks QoSTEqv ,,, β=   l

ksh
l

hEB ,,,,,ν

 ; for all 
 

V∈ν , Hh∈ , Ss∈ , Kk ∈ , Ll∈  
 

 (3) l
ksh UEB ,,,, νν ≤∑ ∑

 

Ss Kk

l
h

∈ ∈

 ; for all V∈ν , Hh∈ , Ll ∈  

 
 (4) ; for all l

V

l
h YU ≤∑

∈ν
ν ,  Hh∈ , Ll∈  

 
 (5) lll CY ⋅≤ α  ; for all  Ll∈  
 

(6) {∈ }p
kshXν  ; for all 1,0,,, V∈ν , Hh∈ , Ss∈ , Kk ∈ , kPp∈   

 
(7) ; for all 0≥lY  Ll∈  
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The VPMTP model assum s that multiple distribution trees are used for all multipoint-to-

point demand within one VPN. Particularly, one distribution tree is intended for each multipoint-

to-point dema ding at one egress router of the same service class of a VPN. When demand is 

varied across multi-hour periods, a different distribution tree may be used for each hour period.     

 

7.2. VPNs Design Model for Broadcast Connections 

 
Numerous emerging multimedia applications use broadc

e

nd en

ast communications to distribute 

large bandwidth high-quality information to multiple destina

these applications are video/TV on demand, distance learning systems, newspaper publication 

and health care, etc. Therefore, broadcast demand soon will become a dominant portion of all 

traffic. Since broadcast demand has a potential to consume a large amount of bandwidth as well 

as require a guarantee on a minimum bandwidth allocation such that a degradation will not harm 

the quality of its transmission. Using multiple point-to-point routes for broadcast demand could 

be cost inefficient because a large amount of traffic must be replicated. Hence, constructing a 

in p

itted on any link on a distribution tree, a large bandwidth 

savings could be realized. Typically, a source will broadcast at a cer

has different capability in receiving the traffic. As a result, a broadcast traffic may be splitting 

out at different rates at the distribution points.  

ltipoin

tree c affic each participating source within one VPN. Another is to employ 

tions simultaneously. Samples of 

broadcast tree spanning all recipients is a far better strategy ractice. Since only a single 

replication of information is transm

tain rate but each recipient 

Here, the VPWBA design model is extended for broadcast demand. Two choices of 

broadcast-traffic layout are possible. First, a set of multiple point-to-mu t trees (or source-

based trees) could be used for all broadcast demand within one VPN. Each point-to-multipoint 

arries broadcast tr for 
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a single distribution tree for all broadcast traffic from all participating

Again,

7.2.1. Multiple Point-to-Multipoint Trees 

n m t trees paths (or a source-based tree paths) are used for 

t demand, the VPWBA design model could, again, be applied with a minor 

on. In this case, a gr p of dem in each VPN must be known in advance. Each 

u e will declare its transmission rate and all recipients intended to receive such information 

il re their maximum receiving rates. Different recipients may have different capabilities 

 receiv g broadcast traffic which, for  may pend  rece ver’s access link capacity, 

 capability, buffer size and so on.

recipient at the rate which is inimum ission rate and the recipient 

rate. Let  represents a broadcast demand matrix of VPN 

 sources within one VPN. 

 a distribution tree is intended for each service class and different distribution trees may be 

used over multi-hour periods. 

 

 
Whe ultiple point-to-multipoin

all broadcas

modificati ou and with

so rc

w l decla

in in example, de on i

processing  Therefore, broadcast traffic will transmit to any 

 a m  between a source transm

vD V∈νreceiving , which declares a 

on rate from a source (an ingress node) to its corresponding recipient (an egress node). 

 matrix which  is a directional transmission rate from an ingress node 

transmissi

vD  is a MxM v
mrd , Rr ∈  

( MR ⊆ ) to egress node  of VPN Mm∈ V∈ν . Then,  is a row vector of a broadcast demand 

(in term of transmission rate) from source 

v
rD

Rr ∈  of VPN V∈ν . 

 

  (7.3) 

where rr

],,,,,[ ,4,3,2,1,
v

mr
v
r

v
r

v
r

v
r

v
r dddddD =

0=vd  for all Rr ∈ .  ,
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Each broadcast demand v
rD  from each source will together be routed as a single entity on 

a source-based tree. For broadcast demand, the VPWBA design model can be rewritten such that 

the tree path rPp∈  represents a source-based tree or a tree rooted at a source node Rr ∈  and all 

recipients are at its leave nodes. From this perspective, a sink-tree path can still be applied, but, 

to route a demand in its reverse direction emerging from a root node (or a source node). 

Therefore, one tree path in p∈   is selected for each broadcast demand from any source node 

,,,

rP

Rr ∈  and path selection constraint can be written as       

 =∑ 1
∈ rPp

rshν
pX  (7.4) 

Typically, broadcast traffic flow from a source will be split out to a smaller flow when a 

tree pa r ion rate from source to each recipient, the amount of 

andwi

th dive ges. Based on a transmiss

b dth allocated on any link over a distribution tree is the maximum of all transmission rates 

from a source to all of its recipients. Given the source Rr ∈ , the broadcast traffic to all intended 

recipients in rsDd ,,ν∈  at the transmit rate of d
rshB ,,,ν for service class Ss∈  of VPN Vv∈ and 

hour period Hh∈ , the bandwidth assignment l
rsh ,,,νβ  on link Ll ∈  for broadcast demand from 

source Rr ∈  can be derived from  

l

Pp

pld
h

r

,, rshdprs XB ,,,,,,,, ννν βγ ≤⋅⋅ ∑ rsh
∈

 (7.5) 

gain, the  has subscripts of  l
rsh ,,,νβ Ss∈ , Vv∈ and Hh∈ to reflect the fact that a A

bandwidth assignment is done separately for each service class within a VPN and an hour period, 

respectively. Then, an equivalent bandwidth allocation is calculated for  to find the actual 

link capacity allocation for this multipoint-to-point demand within s ice class  of VPN 

and hour period .    

l
rsh ,,,νβ

erv Ss∈

Vv∈ Hh∈
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 ( )ss
l

rshv
l

rsh QoSTEqvEB ,,,,,,,, βν =  (7.6) 

The rest of the model remains the same as in VPBWA. Accordingly, the VPN design 

model 

l

for a broadcast demand over multiple point-to-multipoint broadcast tree paths (VPMBT) 

can be written as the following.   

 
 
VPMBT :  Minimize  

Ll

Y∗ l∑
∈

ψ  

 
Subject to : 
 
 (1) ; for all 1,,, =∑

∈ rPp

p
rshXν  V∈ν , Hh∈ , Ss∈ , Rr ∈   

(2)   

 ; for all 

  
l

rsh
Pp

p
rsh

l
dp

d
rsh

r

XB ,,,,,,,,,, ννν βγ ≤⋅⋅ ∑
∈

  

V∈ν , Hh∈ , Ss∈ , Rr ∈ , rsDd ,,ν∈   
  

( )ss
l

rshv
l

rsh QoSTEqvEB ,,,,,,,, βν =  (2)     
 ; for all V∈ν , Hh∈ , Ss∈ , Rr ∈ , Ll∈  
  

r

l
rsh UEB ,,,, νν ≤

∈ ∈

 all (3) 
s R
∑ ∑ ; for l

h
S

 V∈ν , h∈H , Ll∈  

  
 (4) Hhl

V

l
h YU ≤∑

∈ν
ν ,  ∈ , Ll∈  ; for all 

  
 (5) Ll∈  lll CY ⋅≤ α  ; for all  

 
(6) ; for all { }1,0,,, ∈p

rshXν  V∈ν , Hh∈ , Ss∈ , Rr ∈ , rPp∈   

; for all 
 
(7) 0≥lY  Ll∈  

 
 

    

VPMBT model assumes iple source-based trees are used for each broadcast 

dem t in on  VPN. Specific  distribution tree is intended for each broadcast 

The that mult

and wi h e ally, one
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demand originated from an ingress node within the same service class of a VPN. When demand 

is varied across lt  for each hour 

period.

 

A broadcast demand from multiple sources within one VPN could be transmitted using a 

single broadcast tree spanning over all nodes within the group. In here, the cast of the VPN 

design model for broadcast demand based on a single broadcast tree is denoted VPSBT. When a 

single broadcast tree is being used for all broadcast demand, the VPMBT design model could be 

employed with a modification in the path selection constraint. In particular, the model forces the 

use of a single tree path for all demand within the same service class and VPN. Therefore, the 

path selection criteria in the VPSBT design model can be written as    

 

a mu i-hour period, a different source-based tree may be used

 One could be aware of a similarity of VPMTP and VPMBT design models. The major 

difference lies on the fact that VPMTP makes use of a sink-tree ending at an egress node while 

VPMBT makes use of a source-based tree rooted at an ingress node. Hence, the same set of 

candidate tree path given by a heuristics path selection algorithm described in Chapter 5 could be 

used in both VPMTP and VPMBT design model. In spite of this, when a set of candidate tree 

paths is used in VPMBT design model, the same tree path is used to route a traffic in a reverse 

direction rooting at the source node instead of the destination node.      

7.2.2.  A Single Broadcast Tree 

 

1,, =∑
∈Pp

p
shν

Note that subscript Rr ∈  is dropped from

X  (7.7) 

 routing variable  since the same tree is selected 

for all demand emerging from all source nodes. Therefore, the model yields one distribution tree 

p
shX ,,ν
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for each service class within one VPN and hour period. Different distribution trees may be used 

over a mu our iod. 

In the VPSBT design, the same sed

from a candidate tree set will be derived es ns. For this n, when 

a heuristic path s ction a orithm co a se  tree paths p-count 

limitation constraint must be imposed on every source-d  to ensure t y traffic 

demand transmitted over a broadcast tr iol  delay req nt. The 

VPSBT design problem can  defined a

 
VPSBT :  Minimize  ∗

lti-h per

 path set is u  for all demand groups.  In fact, a path 

 for all sourc to all destinatio  reaso

ele lg mputes for t of candidate , a ho

estination pair hat an

ee will not v ate a maximum uireme

be s follows.    

ll Y
Ll
∑
∈

ψ

 
Subject to : 
 

(1) ; for all 

 

1,, =∑
∈Pp

p
shXν  V∈ν , Hh∈ , Ss∈   

  
 (2)   

Pp
drp

d
rsh XB ,,,,,, νν βγ ≤⋅⋅ ∑

∈

  ; for all 

l
rsh ,,

p
sh,,ν

l  

V∈ν , Hh∈ , Ss∈ , Rr ∈ , rs,,ν  Dd ∈
  

  (2)   s
r

rshv
l

sh QTqvEB ,,,,,,,ν  

; for a

⎜
⎝

⎛= ∑
∈

⎟soS  
⎠

⎞

R

lβE

 ll V∈ν , Hh∈ , Ss∈ , Ll∈  
  

 (3) ,,ν ≤∑
∈

; for al
h,ν  

Ss

l
sh UEB ll V∈ν , Hh∈ , Ll∈  

 (4) U ≤∑
∈ν

ν ,  ; for all l
V

l
h Y Hh∈ , Ll∈  

 
 (5)  ; for all  Ll∈  ll CY ⋅≤ α l

 
(6) ; for a{ }1,0,, ∈p

shXν  ll V∈ν , Hh∈ , Ss∈ , rPp∈   
 
(7)  ; for all L 0≥lY  l∈  
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7.3. VPNs ltipoint Co

VPNs design models for multipo nn plo o si find an 

optimum layou s well a t ent of m le ver a gi etwork 

infrastru re.  design p of , VPMBT  VP re implem  using 

AMPL and solved by he CPLEX 7.1 InP solver implementing branch and bound solution 

techniq e. Multipoint demand for different numbers of VPNs is generated at two selected load 

nk-tree paths. At different numbers of VPNs and load values, the cost of 

using s

some 

demand

Analysis of Design for Mu nnections 

int co ections are em yed t multaneously 

t a s capaci y assignm ultip VPNs o ven n

ctu The roblems  VPMTP  and SBT we ented

u

values of 0.3 and 0.9 to represent a low and high load scenario, respectively. The results of 

multipoint demand routed over tree paths are compared with when a point-to-point path is used.  

Table 7.1 shows the optimum cost of the VPMTP design of multipoint-to-point demand 

routed over multiple si

ink-tree paths is obviously shown to be much smaller than when point-to-point paths are 

being used. The percentage of cost savings over point-to-point paths for the 10, 15, and 55-node 

networks varied between 20 to 30 percent, 30 to 35 percent and 16 to 35 percent respectively. A 

larger cost savings has been realized especially when a network is highly loaded. For example, 

when load increases from 0.3 to 0.9, the total cost savings increases from 22.50 to 24.64 percent 

in case of 1 VPN over the 10-node network, and from 33.94 to 35.07 percent in case of 10 VPNs 

over the 55-node network. When multipoint-to-point demand is routed over point-to-point paths, 

a larger cost is presented as network load increases because traffic demand is likely to be 

replicated at many links possibly introducing congestion at several links. Therefore, 

 must be sent over diverted         

 

121 



 

 
Load Network #VPN VPMTP Design Point-to-Point % Cost Savings 

1                572                   738 22.50 
100           45,094               64,539 30.13 

10 

200           90,562             130,157 30.42 
1                685                 1,059 35.31 

100           65,856               95,004 30.68 

15 

200          134,540             195,248 31.09 
1             2,355                 3,588 34.36 

10           15,631               23,660 33.94 

0.3 

55 

20           42,077               50,534 16.73 
1                614                   815 24.64 

100           45,104               65,364 31.00 

10 

200           90,777             130,918 30.66 
1                742                 1,116 33.50 

100           65,853               95,004 30.68 

15 

200          134,534             195,248 31.10 
1  inf  inf non 

10           15,701               24,180 35.07 

0.9 

55 

17.84 20           42,311               51,496 

Table 7.1 : Multipoint-to-point Demand over Multiple Sink Trees 

Load Network #VPN VPMBT Design Point-to-Point % Cost Savings 

 

 

1 500 738 32.27 
100 45,164 64,539 30.02 

10 

200 90,497 130,157 30.47 
1 645 1,059 39.07 

100 65,573 95,004 30.98 

15 

200 134,292 195,248 31.22 
1 2,029 3,588 43.46 

10 15,683 23,660 33.72 

0.3 

55 

20 42,853 50,534 15.20 
1 534 815 34.43 

100 45,272 65,364 30.74 

10 

200 90,777 130,918 30.66 
1 706 1,116 36.77 

100 65 95,004 30.98 ,576 

15 

200 134,299 195,248 31.22 
1 inf inf non 

10 15,683 24,180 35.14 

0.9 

55 

20 42,894 51,496 16.70 

Table 7.2 : Broadcast Dem oveand r Multiple Point-to-Multipoint Trees  
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VPSBT Design VPMBT Design Poin oint 
 

t-to-P
ρ Network 

Cost Cost % Cost Saving Cost %Cost Saving 
10         382         500 23.62        738 48.27 
15         502            645 22.25     1,059 52.62 

0.3 

55      1,890      2,029 6.82     3,588 47.31 
10         507         534 5.18        815 37.82 
15         529         706 25.10     1,116 52.64 

0.9 

55  1,890 non  inf      inf non 

Table 7.3 : Br t Demand le Multipoint-to-Multipoint Tree   

 
oadcas over a sing

paths and use more resources than the optimum routes. However, in case of the 15-node network, 

the cost increment is not significant since several  alternate  paths  of  equivalent  cost  are  

For broadcast demand, the VPMBT design model is applied. Multiple source-based trees 

are selected for the broadcast demand of each VPN. As before, the comparison is made between 

t-to-point paths as shown in 

Table 7

VPMBT design and when point-to-point paths are employed. Overall, the VPSBT design results 

available  across all egress nodes. Thus, the percentage of cost saving only slightly increases at 

an increased load.       

VPMBT optimal cost and the cost of routing demand through poin

.2. The VPMBT design yields a smaller cost over a point-to-point path and the total cost 

saving falls between 15 to 43 percent. Similar results can be observed at a larger load value. An 

increase in the cost savings can be observed except for the 15-node network case where the load 

has a small effect on the cost savings. For instance, when the load increases from 0.3 to 0.9, the 

cost savings increases from 32.27 to 34.43 percent in the case of 1 VPN over the 10-node 

network, and 33.72 to 35.14 percent in the case of 10 VPNs over the 55-node network         

Table 7.3 shown the result of the VPSBT design when all broadcast demand within a 

VPN is aggregated over a single broadcast tree. It is clear demonstrated that the VPSBT design 

provides a good gain in bandwidth multiplexing and yields a smaller cost as compared to the 
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in approximately 5 to 25 percent savings in cost compared to the VPMBT design. The cost 

savings is due to the fact that when a single broadcast tree is employed, all broadcast demand 

om all sources can be multiplexed over a common links and therefore a high degree of 

bandwidth efficiency could be attained. The cost benefit of VPSBT design is more pronounced 

when compared with point-to-point paths and observed to range between 37 to 52 percent. These 

results further substantiate the applicability of the VPSBT design for broadcast demand over 

VPN. In contrast, utilizing point-to-point paths for broadcast demands is shown to poorly use 

network resources and very likely to introduce more congestion within the network. 

 

When dealing with a large number of VPNs, it may not be practical to solve the VPN 

design 

D  over link . For each demand pair  in , an incremental cost of carrying a 

demand

fr

7.4. MCSTA Approximation for Multipoint Connections 

problem using a standard optimization approach especially when multipoint demand is 

concerned. The large amount of computational resources and time may limit applicability of 

VPMTP, VPMBT and VPSBT design model since, in general, the problem of multipoint demand 

is more complex than that of a point-to-point demand. In this section, the MCSTA approximation 

will be applied to give cost estimation for VPMTP and VPMBT design model when multiple sink 

trees or source-based trees are considered. By nature, the MCSTA can directly be applied to 

multipoint demand cases with a minor modification in bandwidth assignment.     

For multipoint-to-point demand, let vβ represent a bandwidth assignment of demand 

k

lk ,

v Ll∈ v
kmd ,

v
kD )( ,

v
lkθ∇

  v
kmd ,  is calculated on all links Ll∈ .  

 l
v

lk
v

km
v

lk
v

lk eqvdmaxeqv ψββθ ⋅−=∇ })()},{({ ,,,,  (7.8) 
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In other words, an incremental cost at any link for demand v
kmd , is the amount of additional cost 

when the maximum between current bandwidth assignment vβ on link Ll∈  and the demand 

v
km

In case of broadcast demand, the demand rD  represent a matrix of transmission rate mrd ,  

emerging from a source Rr ∈  destined to Mm

lk ,

d , will be put on that link. The rest of the MCSTA algorithm ains the sam .   rem e

v v

∈  and, therefore, an incremental cost )( ,
v

lrθ∇ of 

carrying a demand  v
mrd ,  on link Ll∈  can be calculated as 

  (7.9) 

here, represent a bandwidth assignment of demand  over link . As before an 

incremental cost at any link for demand  is the amount of additional cost when the maximum 

l
v

lr
v

mr
v

lr
v

lr eqvdmaxeqv ψββθ ⋅−=∇ })()},{({ ,,,,

v
lr ,β v

rD  Ll∈w

v

between current bandwidth assignment lr ,β on link Ll

mrd ,

v ∈  and demand v
mrd ,  will be put on that 

link. Other parts of the MCSTA algorithm can be applied likewise.  

The MCSTA algorithm and its variations are evaluated numerically for the case of 

multipoint demand. The goodness of the algorithms was determined by comparing an 

approximation with the optimum solution given by branch and bound approach. Complete 

numerical results of MCSTA approximation for multipoint demand can be found in Appendix D. 

First, symmetric demand is considered as shown in Figure 7.1 where the percentage of relative 

error of various MCSTA approximations for multipoint-to-point demand is compared at different 

numbers of VPNs. At 0.3 load, a relative error is shown to be less than 1.2 percent and, for a 

single VPNs, the exact solution is given. The relative error increases at high load but is within 

2.5 percent approximately. The MCSTA approximation yields results inferior to its variations at 
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light load. However, at a 0.9 load, the MCSTA seems to give a better approximation across 

various number of VPNs.  

 

(a
Figure 7.1 : Multipoint-to-point Demand over Sink

 

Asymmetric demand cases are shown in F

approximation within 5 percent relative error ev

the MCSTA has proven to be consiste

network as in the 10-node network, the relative

) (b) 
 Trees on the 10-node network (Symmetric Demand) 

igure 7.2. Overall, the MCSTA can give a close 

en at highly loaded cases. The performance of 

nt and predictable in many cases. For a small and dense 

 error is less than 1.2 percent. On the other hand, 

MCST_SPL approximation yields a larger relative error than the other approximations for the 10 

and 15-node networks. For example, the relative error of the MCSTA_SPL can be as high as 7.32 

and 10.13 percent for the 10 and 15-node networks at 0.9 load. For the 55-node network, the 

results from MCSTA_SPL approximation are comparable to other approximations. Only, for a 

case of 5 VPNs at 0.9 load, the MCSTA_SPL give the best approximation with relative error of 

less than 1 percent.     

The approximation of the MCSTA algorithm for broadcast demand is shown in Figure 

7.3. In this case, the MCSTA algorithm yields a good approximation within 6 percent of relative 
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error and in several cases gives an exact solution. It is shown that for the 10-node network at 0.3 

load, the MCSTA algorithm give an inferior approximation among all. Nevertheless, at 0.9 load, 

it is shown to best approximate the optimum solution. It also demonstrates a good performance 

in case of the 15-node network at both low and high load situation. For the 55-node network, the 

MCSTA does not exhibit a good performance in comparison with other approximations and the 

MCST_SPL is shown to be the best across all number of VPNs. However, the error is relatively 

small (< 3%) for the 5

 

7.5. Conclusion  

 
In this chapter, the VPN design model is extended for multipoint demand traffic 

including multipoint-to-point and point-to-multipoint connections. The VPNs design model with 

bandwidth aggregation (VPWBA) presented in Chapter 4 can be applied for multipoint demand 

with some modification in capacity and route assignment. Specifically, three VPNs design 

models are constructed including (1) the model for multipoint-to-point connection utilizing sink 

trees (VPMTP), (2) the model for broadcast demand utilizing multiple source-based trees 

(VPMBT), and (3) the model for broadcast demand utilizing a single broadcast tree (VPSBT). The 

total capacity cost derived from VPMTP, VPMBT and VPSBT models is shown to be much 

smaller than when multipoint demand is routed over point-to-point paths where replication of 

information causes unnecessary use of network resources. Furthermore, the cost savings is 

own to be as high as 50 percent when a single broadcast tree is employed. These results clearly 

illustrate the advantage of utilizing a tree path for multipoint connection.     

With these VPN design models, a multipoint connection is supported within a 

connection-oriented paradigm where an explicit tree path is being setting up for each multipoint-

5-node network.    

sh
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to-point group. The use of such models for a multipoint connection requires that the complete 

topology information and multipoint group membership and their bandwidth must be known in 

advance. Moreover, the model does not address the dynamic characteristics of the multipoint 

demand where member may join and leave the network at any point in time.     

Lastly, the MCSTA algorithm is extended to account for multipoint-to-point and 

broadcast demand with a minor modification in bandwidth assignment computation. The MCSTA 

algorithm demonstrates a good performance in closely approximating the optimum solution 

within 6 percent of relative error while having a polynomial computational time.      
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(a) (b) 

 (e) (f) 

(c) (d) 

 

 
Figure 7.2: MCSTA Approximations for Multipoint-to-Point Demand 
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 (a) (b)  

 (c) (d) 

(e) (f) 
 

Figure 7.3: MCSTA Approximation for Broadcast Demand 
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8. Research Summary 
 

8.1. Research Summary 

This thesis proposes mathematical formulations for the problem of VPN design in order 

to simultaneously find optimal VPNs logical topologies and their dimensions over a MPLS-like 

computed sink-tree paths (multipoint-to-point paths) over which VPN traffic is routed within a 

core network. In the model, different levels of bandwidth aggregation/multiplexing occur across 

different service classes and routes within one VPN, but not across different VPNs.  Numerical 

studies illustrate the fact that, ou ultiple logical sink trees, the 

number en bandwidth aggregation is 

conside d

path tree s

total capac

A thorough analysis of problem solutions reveals a notable fact that the optimal trees 

agree on using many common links when possible. The thesis, therefore, presents a tree selection 

heuristi  a

feasible sin

number of links used in a tree. The size-limit sink-tree set is chosen by ranking trees based on the 

 
In this chapter, the research is summarized on the VPN design model utilizing sink-tree 

paths. Then research contributions are summarized along with future possible directions.  

 

infrastructure network to carry multi-service, multi-hour traffic. The proposed model utilizes pre-

 by r ting VPNs traffic over m

 of label switch paths can be reduced. Moreover, wh

re  in a sink-tree design, demand is routed over a tree that is different from a shortest-

uch that link capacity can be shared among multiple connections, and, therefore, the 

ity cost is reduced.  

cs iming to scale the VPN design problem by choosing a small-but-good candidate set of 

k-tree paths. A proposed heuristic introduces a new selection criteria which limits the 
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number of 

obtained cl istic in reducing the candidate set of 

nk-tree paths to be searched over and allowing the optimal solution to be obtained within a 

reasona e

considered

considering be done quite frequently over a certain 

me period. Thus, a heuristics-based approach, Minimum-Capacity Sink-Tree Assignment 

(MCST

multiple V

(traffic pai sed on its aggregated capacity. Another key 

riteria is to use a route on a minimum spanning tree for a large traffic demand when the cost is 

justifie g

computatio

addition, v L, 

CSTA_SPL and MCSTA_DPL algorithms which employ a resource utilization index as criteria 

in ordering of a group demand. The resource utilization index is a measure of the amount of 

network resources consumed by a traffic demand when it is being admitted to the network. The 

MCSTA_APL uses an average path length while MCSTA_SPL uses the shortest path length 

between a node-pair to calculate the resource utilization index. The group demand which will 

consume the largest amount of network resources will be routed first. In the MCSTA_DPL, the 

aggregated capacity is used to determine a group ordering but a pair-demand to be routed will be 

ordered based on the resource utilization index. The MCSTA algorithm and its variations were 

links used in the tree, given that a hop-count limit is not violated. Numerical results 

early show the benefit of the tree selection heur

si

bl  time for realistic-size network. Nonetheless, when a large number of VPNs are 

 to be laid out simultaneously, a standard optimization approach may not be practical 

 that VPN planning and management may 

ti

A), is devised to approximate the optimal bandwidth and sink-tree route assignment for 

PNs. One key attribute of the MCSTA algorithm is the ordering of a group demand 

rs ending at the same egress node) ba

c

d a ainst a minimum-cost route. In the MCSTA, a series of successive shortest-path route 

n are done with incremental capacity link cost recomputed for each demand pair. In 

ariations of the MCSTA algorithm are considered including the MCSTA_AP

M
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shown 

time. 

multipo ifically, three VPNs design models 

are constructed

trees (V

(VPMB

(VPSBT

connec

VPNs 

connec

small r

8.2. Research Contributions 

• The design of multiple VPNs over MPLS-like infrastructure network, using sink-tree 

routing, is formulated as a mixed integer programming problem to simultaneously 

find VPNs logical topologies and their dimension to carry multi-service, multi-hour 

VPNs traffic.  

 

• A heuristic path selection algorithm is proposed to scale the VPN design problem by 

choosing a small-but-good candidate set of feasible sink-tree paths to solve the 

to be able to closely approximate the optimal solution within a polynomial computational 

Lastly, the VPN design model is extended for multipoint traffic demands including 

int-to-point and point-to-multipoint connections. Spec

 including (1) a design model for multipoint-to-point connection utilizing sink 

PMTP), (2) a design model for broadcast demand utilizing multiple source-based trees 

T), and (3) a design model for broadcast demand utilizing a single broadcast tree 

). Numerical study illustrates clear advantage of utilizing a tree path for multipoint 

tion in bandwidth savings over a traditional point-to-point path. When a large number of 

are concerned, the MCSTA algorithm can be slightly modified to include multipoint 

tions. It can be shown that MCSTA algorithm can establish a good approximation with a 

elative error while operating on a polynomial time scale.    

 

The major contributions of this dissertation are as follows 
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opt

 

• The minimum-Capacity Sink-Tree Assignment (MCSTA) algorithm is devised to 

approximate the optimal bandwidth and sink-tree route assignment for multiple 

VPNS in a polynomial computational time.  

 

• Variations of the MCSTA algorithm are considered including MCSTA_APL, 

MCSTA_SPL and MCSTA_DPL algorithms which employ a resource utilization index 

as criteria in a group demand ordering. 

 

• The VPN design model is extended for multipoint traffic demands including 

multipoint-to-point and point-to-multipoint connections. Multiple broadcast trees as 

well as a single broadcast tree are considered for point-to-multipoint connections.   

 

8.3. Future Works 

In the VPN design utilizing sink-tree paths, when capacity cost is sought to 

minimize, traffic demands are concentrated on a few links over tree paths which may 

introduce over utilization of capacity at a small number of links and could lead to 

network congestion problem, even though some links may have some capacity available. 

One solution is to use a link utilization factor to limit the capacity usage at all links 

especially links between core routers. This, however, may cause a difficulty in selecting a 

practical value of link utilization to be assigned to every link since a single value should 

imization problem over. The proposed heuristic introduces a new selection criteria 

which limits the number of links used in a tree.  
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not be used to all links. Another practical solution is to introduce a load balancing 

the maximum link utilization are also minimized across an entire network. Multi-

  The M m wn e approximation to the 

VPN design problem wever, at h ad scenario, capacity over selected spine links 

may be exhausted and the algorithm rely mainly on a um cost route computation 

on adju th aggregation 

as well as total capacity saving. As a result, the MCSTA algorithm may give a solution 

farther from the opti . One way rove the algo , especially for a heavy load 

scenario, is to resele w spine lin r the topolog ere links having unavailable 

capacity are removed. In practice, the link capacity allocation is typically done separately 

for each directiona  and it is ikely that capacity is exhausted only in one 

directio e, directional 

characteristics of link should be taking into account in a spine link selection.     

 The proposed VPN design m nd the MCST orithm may be extended for 

the case where som ting demand are already in place over existing topology and to 

find the minimum cost routing plan to carry additional traffic demand. One may consider 

adding extra capacity on existing and/or adding new capacitated links which the cost of 

ed to 

the design model. This may be appeared as a penalty cost function which allows the use 

of additional capacity on the link with no left-over capacity but at a higher cost.  

objective to the proposed VPN design m del such that capacity cost is minimized while o

objective optimization techniques should be applied.  

CSTA algorith has been sho to give a clos

. Ho igh lo

minim

sted incremental link cost which does not well promote the bandwid

mum to imp rithm

ct ne ks ove y wh

l link very l

n not both especially when traffic demand is asymmetric. Therefor

odel a A alg

e exis

adding acquiring additional capacity as well as the cost of link creation must be add
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  Lastly, the proposed VPN design may be extended for WDM infrastructure 

where a sink-tree path creation is possible. For WDM network, a switching cost at a 

merging/splitting po d a fixed s ost must be accounted for.     
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Appendix A: Performance of Path Selection Heuristics 
 

I. Effect of Increasing the Numbe r
 

c

 
r of T ee Paths 

No. Tree Paths Optimal Cost CPU Time (se ) 
50 2,553 0.13 
100 2,520 0.26 
150 2,520 0.26 
180 2,504 0.33 
200 2,504 0.38 
352 2,504 0.94 

Table A.1 : Symmetric Demand over the 10-node network (1 VPN) 

 
. T th O os CPU Time (seNo re ae P s p l Ctima t c) 

50 7,965 130 
100 7,478 120 
150 7,470 290 
180 7,384 300 
200 7,384 560 
250 7,354 1000 
300 7,354 1200 
352 7,354 2300 

Table A.2 : Symmetric Demand e 10-node network (4 VPNs) 

 
o. Tre aths Op l Cos CPU Time (sec

 over th

N e P  tima t ) 
50 7,668 1.40 
100 7,346 1.80 
500 7,073 5.80 

1000 6,995 5.80 
1500 6,958 7.30 
3000 6,932 9.40 
4000 6,932  12.00
5000 6,932 15.00 

Table A.3 : Symmetric Demand over the 15-Node Network (Hop Count Factor = 5)  
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No. Tre Optimal Cost U Tim ec) e Paths CP e (s

100 2 7,203 .20 
500 4 6,987 .30 

100 70 6,932 .60 
120 70 6,932 .50 
150 100 6,932 .00 
172 147 6,932 .00 

Table A.4 : Symmetric Demand over the 15- de Ne rk (H Cou ctor = 2)  

 
 

No two op nt Fa

No. Tree Paths Optimal Cost CPU Time (sec) 
50 32,465 4,500 
100 31,570 2,400 
200 31,194 5,000 
400 31,017 3,300 
6 400 30,972 ,000 
8 400 30,972 ,900 

100 0,9 5,50 3 72 00 
130 0 70 3 ,936 1 ,000 
1500 30,936 38,000 

Table A.5 : Symmetric Demand over the 55-Node Network  

 
 
 

al imNo. Tree Paths Optim  Cost CPU T e (sec) 
50 ,528 ,500  26 3
20 ,499 ,5000 25  3  
300 25,351 3,100 
400 25,008 6,900 
700 25,008 7,900 

1100 24,975 19,000 
1200 24,975 23,000 
130 4,975 37,000 0 2  

Table A.6 : A etr er N tw

 

 

 

symm ic Demand ov  the 55- ode Ne ork  
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II. 
 
 

 # VPNs 1 5 10 50 100 150 200 250 300 

Effect of Increasing the Number of VPNs 

 

Set-1 357 6,624 33,354 8 100,714 165,917 197,045 632 3, 65,61 133,679 
S 0 8 3 99,354  1 88 et-2 622 3,265 6,62  33,80 67,42  132,544 65,441 200,5

Optimum 
C

Set-3 693 3,435 6,792 5 65,5 516 16 ,964 
ost 

33,50 11 100,  133,490 5,445 199

Set-1 3.3 5 380 1100 2 4200 6900 0.33 7. 110 400 
Set-2 2.1 7 0 430 1200 2 3900 8500 0.26 5. 13 200 

CPU
Time
(sec

Set-3 3.1 9 390 1600 5200 6800 

 
 

) 
0.39 5. 84 2300 

Ta .7 : Symm emand e 1 de net or 0.3 Load
 

 
 

Netwo # V   

 over th 0-no w k at   ble A etric D

PNs 1 5 10 50 100 150 200 250 300rk 
ρ= 17 197,045 0.3 632 3,357 6,624 33,354 65,618 100,714 133,679 165,9
ρ=0.6 6 7 6,624 33,354 65,618 100,714 13 165,917 197,045 57 3,35 3,679 10 
ρ=0.9 7 6 6,770 34,005 66 9 102,420 05 3,47 ,69 136,147 168,614 non 
ρ=0 4 99,110 5 non .3 1,049 ,898 9,922 50,915 150,36 199,305 non 
ρ=0.6 1,049 4,898 9,922 50, 99,11  1 ,365 199,30 non 915 0 50 5 non 
ρ=0.9 1,051 4,898 9,922 50, 99,11  150,365 non non non 915 0

15 

ρ=1.2 1,053 4,898 9,931 50, 99,11  367 non non non 915 0 150,
Table  : Optimal or Sym Dem  over the 10 and 15-Node Networks at Various 

  

 
Netwo  VPNs 5 5 100  200 250 300 

 A.8  Cost  f metric and

Load

rk # 1 10 0 150  
ρ= 00 6900 0.3 0.33 3.3 7.5 110 380 1100 2400 42
ρ=0 0 8000 .6 0.52 3.3 8.5 110 410 1100 2500 47010 
ρ=0.9 0 0 72 560 0 2100 9300 non .64 12 180 4600 
ρ=0 0 12000 .3 2.1 18 40 530 420 23000 non non 
ρ=0 4400 0 non .6 2.6 17 84 980 1100 24000 non 
ρ=0.9 2.4 19 250  000 non non non 40 570 0 11

15 

ρ=1.2 16 2 560  000 non non non 2.3 3400 100 0 17
Table A.9 : CPU Time (seconds) fo me

Va  Load 

 
 

r Sym tric Demand over the 10 and 15-Node Networks at 

rious  
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1 5 10 20  # VPNs 30 

ρ=0.3 2,846 8 5,11,51 2 439 53,869 79,214 
ρ=0.6 909 18 5,43 53,869 79 2,  11,5 2 9 ,214 
ρ=0. inf 46 25,44 53,871 79,8  11,5 1 214 
ρ=0. inf 11 25,56 53,962 799  11,7 8 ,362 

Opti
C

ρ=0 inf 97 5,7 54,057 

mum 
ost 

.97  11,8 2 60 non 
ρ=0 1.5 11 210 .3  26 1900 
ρ=0 2 42 210 .6  24 1200 CPU 
ρ=0.8 inf 51 50 240 1100 
ρ=0.9 inf 3600 2200 4700 5000 

Time 
(sec) 

ρ=0.97 inf 12000 3600 9800 non 
Table A.10 :  Symmetric Demand over the 5 -Node Networ s

 
 # 1 50 200 2 300 

5 k at Variou  Load  

VPNs 50 100 1 50 
ρ 1,035 171,33 227,185 283  338,70=0.3 56,961 113,727 9 ,888 6 Optimum 

Cost 1,096 174,814 231,839 28  noρ=0.9  57,901 115,911 9,133 n 

ρ=0.3 0.61  0 610 14000  4500 520 230 0 25000 0 CPU Time 
) ρ= 2.4 310 + 970 31000+ 3  non (sec 0.9  3600 00 0 5000

Tab ad 

 
#  0 100 15 0 

le A.11 : Asymmetric Demand over the 10-node network at Various Lo

  VPNs 1 5 0 20

ρ=0.3 9 168,01,787 83,97 36 128,833  non  Optim
Cos ρ=0.9 94 ,979 168,0  128,832 on  

um 
t 1,7 83 36  n

ρ=0.3 1 50 150 00  100 2CPU T
(se ρ=0.9 9.4 2000 11 8700 on 

ime 
c)  000 n

Table A.12 : Asymmetric Demand over the 15-Node Network at Various Load  

 
 

 # VPNs 1 5 10 20 30 
ρ=0.3 2,980 10,961 20,139 43,39   7 71,663Optimum 

Cost ρ=0.9  inf 11,113 20 3,6 8  ,183 4 05 71,85

ρ=0 1.1 20 140 670 120  .3 00CPU
(

ρ=0 inf 280 230 3700 57  

 Time 
sec) 

.9 0 000

Table A.13 metric d o e 55- ode etwork at Va s Load 

 

 

 : Asym  Deman ver th N  N riou
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Appendix B: Performance MCST Algorithms 
 
 
I. Sym etric De  Scen
 

.3  ρ =

m mand ario 

ρ = 0  0.3 

# VPNs STA 
me (sec) Optimal Cost MCSTA Cost %Error  

# VPNs 
ILP CPU 

Time(sec) 
MC
Ti

CPU 

1 632 632 0.00  1 0.33 0.26 
5 3,357 3,357 0.00  5 3.30 0.62 

10 6,624 6,632 0.11   10 7.50 1.31 
50 33,35 0.08 4 33,382  50 110.00 7.10 
100 0.1 1  38 14.48 65,618 65,708 4  00 0.00 
 150 1 0.1 1  11 22.03 00,714 100,839 2  50 00.00 
200 1 1 24 29.28 33,679 33,869 0.14  200 00.00 
250 1 1 42 36.00 65,917 66,153 0.14  250 00.00 
 300 197,045 197,299 300 6900.00 0.13  43.29 

Table B.1 : Symmetric Demand over the 10-node Network at 0.3 load 

ρ = 0.6  ρ = 0.6 

# VPNs Optimal Cost MCSTA Cost %Error  
# VPNs 

ILP CPU 
Time(sec) 

MCSTA CPU 
Time (sec) 

1 657 661 0.59  1 0.52 0.14 
5 3,357 3,357 0.00  5 3.3 0.64 

10 6,624 6,639 0.23  10 8.5 1.50 
50 33,354 33,382 0.08    50 110 8.09
100 6 6 1  15.43 5,618 5,708 0.14  00 410 
 150 1 1 100,714 00,839 0.12  150 100 23.00 
200 133,679 133,869 0.14  200 2500 31.14 
250 165,917 166,153 0.14  250 4700 38.54 
 300 197,045 197,299 0.13  300 8000 45.65 

Table B.2 : Symmetric Demand over the 10-node Network at 0.6 load 

ρ = 0.9  ρ = 0.9 

# VPNs Optimal Co A Cost %Error  
# VPNs 

ILP CPU 
Tim

MCSTA CPU 
Time (sec) st MCST e(sec) 

1 non  1 705 non 0.64 non 
5 3,476 3,665 5.45    5 72 0.85

10 6,770 7,156 5.70  10 120 1.92 
50 34,005 35,676 4.92  50 560 10.21 
100 66,699 69,841 4.71  100 1800 19.39 
 150 102,420 107,474 4.93  150 2100 30.45 
200 136,147 141,733 4.10  200 4600 39.78 
250 168,614 176,279 4.55  250 9300 50.12 
 300 non 211,284 -  300 non 64.29 

Table B.3 : Symmetric Demand over the 10-node Network at 0.9 load 
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ρ = 0.6  ρ = 0.6 

# VPNs Optimal Cost MCSTA Cost %Error  
# VPNs 

ILP CPU 
Time(sec) 

MCSTA CPU 
Time (sec) 

1 1,049 1,076 2.57  1 2.6 0.12 
5 4,898 4,932 0.69  5 17 0.84 

10 9,922 10,113 1.92  10 84 1.67 
50 50,915 51,669 1.48  50 980 9.20 
100 99 4,110 100,425 1.33  100 400 18.10 
 150 25.53 150,365 152,346 1.32  150 11000 
200 199,305 201,630 1.17  200 24000 36.14 

Table B.4 : Symmetric Demand over the 15-node Network at 0.6 load 

ρ = 0.9   ρ = 0.9
# VPNs Optima MCST %E  

# VPNs 
ILP C

Time(
MCSTA 
Time (l Cost A Cost rror PU 

sec) 
CPU 

sec) 
1 1,051 1,078 2.52  1 2.4 0.14 
5 4,898 4,932 0.69  5 19 0.76 

10 9,922 10,113 1.92  10 40 1.65 
50 8.89 50,915 51,669 1.48  50 570 
100 99,110 100,425 1.33  100 2500 18.32 
 150 150 152,346 1.32  150 26.76 ,365 11000 
200 non 201,630 -  200 n no 36.85 

Table B.5 : Symmetric Demand over the 15-n tw loa

.2  ρ = 1

ode Ne ork at 0.9 d 

ρ = 1 .2 

# VPNs Optim MCST %  
# VPNs 

ILP CP
Time(se

MCSTA 
Time (sal Cost A Cost Error U 

c) 
CPU 
ec) 

1 1,053 1,053 0.00  1 2.3 0.15 
5 0.84 4,898 4,933 0.73  5 16 

10 9,931 10,260 3.32  10 3400 1.92 
50 50 51,900 1.93  50 9.40 ,915 2100 
100 99,110 101,444 2.35  100 0 560 18.87 
 150 150,367 153,748 2.25    150 17000 29.45
200 non 203,2 2  no 40.39 48 -  00 n 

Table B.6 : Symmetric Demand over the 15-node Network at 1.2 load 

.6  ρ =ρ = 0  0.6 

# VPNs A 
e (sec) Optimal Cost MCSTA Cost %Error  

# VPNs 
ILP C

Time(sec) 
MCST
Tim

PU CPU 

1 2,909 2,909 0.00  1 2 0.14 
5 11,518 11,506 0.10  5 42 0.76 

10 25,439 25,431 0.03  10 24 1.62 
20 53,869 54,153 0.53  20 210 3.76 
30 79,214 79,070 0.18  30 1200 5.14 

Table B.7 : Symmetric Demand over the 55-node Network at 0.6 load 
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ρ = 0.8  ρ = 0.8 

# VPNs Optimal Cost MCSTA Cost %Error  
# VPNs 

ILP  CPU  
Time (sec

MCSTA CPU 
) Time (sec) 

1 non 3,285   1 non 0.17 -
5 11,546 11,636 0.78  5 51 0.79 

10 25,441 25,431 0.04  10 50 1.60 
20 53,871 54,153 0.52  20 240 3.75 
30 79,214 79,070 0.18  30 1100 5.26 

Table B.8 : Symmetric Demand over

=  =

 the 55-node Network at 0.8 load 

ρ  0.9  ρ  0.9 

# VPNs Optima MCSTA %E  CPU
e(s

M  CPU 
T sec) l Cost  Cost rror  

# VPNs 
ILP

Tim
 
) ec

CSTA
ime (

1 non 3,347 -  1 non 0.20 
5 1 fe non 11,71  in asible -  5 3600 

10 8 26,1225,56 0 2.16  10 2200 1.70 
20 2 5 3.87 53,96  4,532 1.06  20 4700 
30 2 8 5.53 79,36  0,010 0.82  30 5000 

Table B.9 : Symmetric Demand over the 55-node Network at 0.9 load 

 

II. Asymmetric Demand Scenario 
 

 = 0.3   = 0.3ρ  ρ  

# VPN Op st A   C
(s

C U 
T ec) s timal Co MCST  Cost %Error  

# VPNs 
ILP PU M

Time ec) 
STA CP

ime (s
1 3  0.18 1,0 5 1,035 0.00  1 0.61 

50 56,96 5  1 7,007 0.08  50 520 14.01 
100 2 11   113,7 7 3,801 0.06  100 2,300 27.50 
 150 3 171,4   171,3 9 61 0.07  150 6,100 41.01 
200 55.71 227,185 227,439 0.11  200 14,000 
250 283,8 66.15 88 284,201 0.11  250 25,000 
 300 338,706 339,040 0.10  300 45,000 80.39 

Table B.10 :Asymmetric Demand over

 =  =

 the 10-node Network at 0.3 load 

ρ  0.9  ρ  0.9 

# VPNs Optim st A  % CP
(s

C U 
T ec)  al Co MCST  Cost Error  

# VPNs 
ILP U M

Time ec) 
STA CP

ime (s
1 1,096 0.26 1,167 6.46  1 2.40 

50 57,90 6  1 0,011 3.64  50 3,600 16.65 
100 1 12   115,9 1 0,338 3.82  100 31,000 34.51 
 150 49.82 174,814 181,429 3.78  150 9,700 
200 65.67 231,839 240,214 3.61  200 31,000+ 
250 289,133 298,887 3.37  250 45,000 80.98 
 300 non 357,190 no  300 non 96.64 n 

Table B.11 : Asymmetric Demand over the 10-node Network at 0.9 load 
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ρ = 0.3  ρ = 0.3 

# VP O s T  r # VPNs 
P C

(se
MC  CPU 
T c) Ns ptimal Co t MCS A Cost %Erro  IL PU 

Time c) 
STA

ime (se
1 87  91,7 1,817 1.71  1 .40 0.23 

50 79  2 .40 83,9  85,070 1.30  50 ,000 15
100 3 1  1 .96  168,0 6 69,904 1.11  100 1,000 29
 15 3 1  .53 0 128,8 3 30,268 1.11  150 8,700 21
200  .14  non 340,234 non  200 non 58

T

ρ = 0.9  ρ = 0.9 

able B.12 : Asymmetric Demand over the 15-node Network at 0.3 load 

# VPNs Optimal Cost MCSTA Cost %  
s 

ILP CPU 
me(

MCSTA CPU 
TiError # VPN Ti sec) me (sec) 

1 9 0 7  0.29 1,7 4 1,83 1.9 1 11.00 
50 79 85,070   2 5.81 83,9 1.30 50 ,100 1
100 3 1 4   2 2.01 168,0 6 69,90 1.11 100 0,000 3
 150 3 1 8   3.50 128,8 2 30,26 1.11 150 8,700 2
200 o 3 4   3.03 n n 40,23 non 200 non 6

Tabl  et em er 15 e  a ad

ρ = 0.3  ρ = 0.3 

e B.13 : Asymm ric D and ov  the -node N twork t 0.9 lo  

# VPNs Optimal Cost MCSTA Cost %Erro  
# VPNs 

ILP CPU 
Time(sec) 

MCSTA CPU 
Time (sec) r 

1  2,980 2,980 0.00 1 1.10 0.15 
5 1 1 9  0.70 10,96  10,97 0.0 5 20 

10  140 1.37 20,139 19,915 1.11 10 
20 7 43,2 3 0.42  2 670 2.73 43,39 1 0 
30 0  1 4.62 71,663 71,82 0.22 30 2000 

Tabl  et em er 55 e  a ade B.14 : Asymm ric D and ov  the -node N twork t 0.3 lo  

ρ = 0.9  ρ = 0.9 

# VPNs Optimal Cost MCSTA Cost %Error # VPNs Time(sec) 
A CPU 

Time (sec) 
 ILP CPU MCST

1 inf inf -  1 - 0.17 
5 11,113 11,351 2.14  5 280 0.75 

10 20,183 20,365 0.90  10 2300 1.42 
20 43,605 44,295  20 3700 3.00 1.58
30  5 4.43 71,858 72,097 0.33 30 7000 

Tab  A et m e 5 e  a ale B.15 : symm ric De a vnd o r the 5 -  Nnode twork t lo 0.9 d 
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Appendix C: Performance Comparison of MCST 
l t s  V at s

 
I. Symmetric Demand Scenario 
 

A gori hm and Its ari ion  
 

ρ = 0.3 
# 
Ns 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

%
ErroVP

 
r

1 632 632 0.00 632 0.00 632 0.00 632 0.00 
50 33,354 33,382 0.08 33,40 0.14 33,415 0.18 33,400 0.14 0 
100 65,618 65,708 0.14 65,738 0.18 65,755 0.21 65,738 0.18 
150 100,714 100,839 0.12 100 .16 100,912 0.20 100,878 0.16 ,878 0
200 133,679   1 1133,869 0.14 1 633,86 0.14 3  3,943 0.20 3  3,866 0.14 
250 165,917  1 1 16166,153 0.14 66,169 0.15 66,230 0.19 6,169 0.15 
300 1 19 19 0.14 197,045 197,299 0.13 97,313 0.14 7,377 0.17 7,313 

Table C.1 : Symmetric Demand over the 10-node Network at 0.3 Load 

 

ρ = 0.9 
# 

VPNs Cost MCST Error APL Error SPL Error DPL Error
Optimal % MCST % MCST % MCST % 

1 705 inf - Inf - inf - inf - 
50 34,005 35,676 4.92 36,041 5.99 36,667 7.83 35,807 5.30 
100 66,69 69,841 5 7. 5.26 9 4.71 70,333 5.4 71,941 86 70,207 
150 102,420 107,474  1 14.93 1 307,88 5.33 0 2 9,84 7.25 0  7,861 5.31 
200 1 1 14 1436,147 141,733 4.10 42,707 4.82 5,736 7.04 2,038 4.33 
250 1 1 1168,614 176,279 4.55 77,684 5.38 81,152 7.44 76,870 4.90 
300 non 211,284 - 212,391 - 216,333 - 211,714 - 

Table C.2 : Symmetric Demand over the 10-node Network at 0.9 Load  

ρ = 0.6 

 

# 
VPNs 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 1,049 1,076 2.57 1,076 2.57 1,092 4.10 1,076 2.57 
50 50,915 51,669 8 9   1.4 51,725 1.5 51,985 2.10 51,725 1.59 
100 99,110 100,425  5  1  1.33 100,54 1.45 1 501,03 1.94 00,545 1.45 
1  15 1   1 1 1550 0,365 52,346 1.32 52,436 1.38 53,422 2.03 2,436 1.38 
2  1   200 99,305 201,630 1.17 201,806 1.25 202,690 1.70 01,806 1.25 

Table C.3 : Symmetric Demand over -n tw t d the 15 ode Ne ork a 0.6 Loa  
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ρ = 1.2 
# 

VPNs 
Optimal 

Cost MCST 
% 

Error 
MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error 

1 1,0 1, 0.00 1,0 0.00 1,239 17.65 1,053 0.00 53 053 53 
50 50,915 51,900 1.93 51,936 2.00 52,537 3.18 51,929 1.99 
100 99,110 101,444 2.35 101,334 2.24 102,018 2.93 101,347 2.26 
150 150,367 153,748 2.25 153,799 2.28 154,693 2.88 153,818 2.30 
200 non 203,248 - 203,626 - 204,620 - 203,395 - 

Table C.4 : Symmetric Demand over the 15-node Network at 1.2 Load 

 

ρ = 0.6 
# 

VPNs 
Optimal 

Cost MCST 
% 

Error 
MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error 

1 2,909 2,909 0.00 2,909 0.00 2,927 0.65 2,909 0.00 
5 11,518 11,506 0.10 11,515 0.02 11,478 0.35 11,515 0.02 

10 25,439 25,431 0.03 25,494 0.21 25,603 0.65 25,494 0.21 
20 53,869 54,153 0.53 54,184 0.59 54,287 0.78 54,184 0.59 
30 79,214 79,070 0.18 78,986 0.29 79,220 0.01 78,986 0.29 

Table C.5 : Symmetric Demand over the 55-node Network at 0.6 Load  

 

ρ = 0.9 
# 

VPNs 
Optimal 

Cost MCST 
% 

Error 
MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error 

1 inf inf - inf - inf - inf - 
5 11,711 inf - inf - inf - inf - 

10 25,568 26,120 2.16 25,988 1.64 26,186 2.42 25,981 1.62 
20 53,962 54,532 1.06 54,640 1.26 54,628 1.23 54,590 1.16 
30 79,362 80,010 0.82 79,879 0.65 79,982 0.78 79,927 0.71 

Table C.6 : Symmetric Demand over the 55-node Network at 0.9 Load  

 

II. Asymmetric Demand Scenario 
 

ρ = 0.3 
# 

VPNs 
Optimal 

Cost MCST 
% 

Error 
MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 1,035 1,035 0.00 1,035 0.00 1,035 0.00 1,035 0.00 
50 56,961 57,007 0.08 56,993 0.06 56,991 0.05 56,993 0.06 
100 113,727 113,801 0.06 113,806 0.07 113,839 0.10 113,806 0.07 
150 171,339 171,461 0.07 171,456 0.07 171,515 0.10 171,456 0.07 
200 227,185 227,439 0.11 227,416 0.10 227,522 0.15 227,416 0.10 
250 283,888 284,201 0.11 284,144 0.09 284,235 0.12 284,144 0.09 
300 338,706 339,040 0.10 339,042 0.10 339,181 0.14 339,042 0.10 

Table C.7 : Asymmetric Demand over the 10-node Network at 0.3 Load 
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ρ = 0.9 
# Optimal % MCST % MCST % MCST % 

VPNs Cost MCST Error APL Error SPL Error DPL Error 
1 1,096 1,167 6.46 1,144 4.33 1,167 6.43 1,167 6.46 

50 57,901 60,011 3.64 60,229 4.02 60,796 5.00 60,157 3.90 
100 115,911 120,338 3.82 120,569 4.02 122,666 5.83 120,355 3.83 
150 174,814 181,429 3.78 182,484 4.39 184,939 5.79 181,951 4.08 
20 2 240,214 3.61 2   6  4 0 31,839 41,691 4.25 245,197 5.7 240,736 3.8
250 28 2 3  3  2  9,133 98,887 3.37 00,398 3.90 04,973 5.48 299,65 3.64
300 non 357,1 359, 364 35  90 - 659 - ,155 - 8,354 - 

Table s ic a r - et at a

.3

 C.8 : A ymmetr  Dem nd ove the 10 node N work  0.9 Lo d  

 

ρ = 0  
# 

VPNs 
O

Cost MCST Error APL Error SPL Error DPL Error 
ptimal % MCST % MCST % MCST % 

1 1,787 1,817 1.71 1,817 1.71 1,818 1.78 1,817 1.71 
50 83,979 85,070 1.30 85,181 1.43 85,904 2.29 85,181 1.43 
100 168,036 169,904 67 1.33 1.11 170,267 1.33 171,790 2.23 170,2
150 128,833 130,268 1.11 130,363 1.19 131,181 1.82 130,363 1.19 
200 non 340,234 - 340,510 - 342,768 - 340,510 - 

Table C.9 : Asymmetric Demand over the 15-node Network at 0.3 Load   

 

.9ρ = 0  
#

VP
Op

C M E
M

E   
 
Ns 

timal 
ost CST 

% 
rror 

CST 
APL 

% 
rror 

MCST 
SPL 

% 
Error

MCST 
DPL 

% 
Error

1 1,794 1,830 1.97 1,830 1.97 1,869 4.14  1,830 1.97
50 8 8   3,979 5,070 1.30 85,181 85,904 2.29 85,181 1.431.43 
1 1 1   00 68,036 69,904 1.11 170,267 1.33 171,790 2.23 170,267 1.33
1 1 1   1.1950 28,832 30,268 1.11 130,363 1.19 131,181 1.82 130,363
200 3   non 40,234 - 340,510 - 342,768 - 340,510 - 

Table C.10 : Asymmetric Demand over the 15-node Network at 0.9 Load  

ρ = 0.3 

 

# 
VPNs 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error 

1 2,980 2,980 0.00 2,980 0.00 2,980 0.00 2,980 0.00 
5 10,961 10,971 0.09 10,920 0.37 11,029 0.63 10,920 0.37 

10 20,139 19,915 1.11 19,877 1.30 19,877 1.30 19,877 1.30 
20 43,397 43,213 0.42 43,223 0.40 43,372 0.06 43,223 0.40 
30 71,663 71,820 0.22 71,877 0.30 72,030 0.51 71,877 0.30 

Table C.11 : Asymmetric Demand over the 55-node Network at 0.3 Load  
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ρ = 0.9 
# 
Ns 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL

% 
ror 

MCST 
SP

% 
rror

MCST 
DP

% 
rro L E r VP  Er L E

1 i i inf nf - nf - inf - inf -
50 11,113 11,351 2.14 ,369 ,423 .7 1,369 .311 2.30 11 2 8 1  2 0
100 ,18 6 0 ,3 ,3 .9 0, .720 3 20,3 5 0.9 20 40 0.78 20 80 0 8 2 340 0 8
150 ,60 9 8 ,4 ,6 .3 4, .743 5 44,2 5 1.5 44 48 1.93 44 46 2 9 4 378 1 7
200 71,8 3 , , .5 2 .458 72,097 0.3 72 080 0.31 72 276 0 8 7 ,153 0 1

Ta  C.12 mme D d ov e ode o 0.9 Lble : Asy tric eman er th  55-n Netw rk at oad 
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Appendix D : VPN Design for Multipoint Connections 
 

I. Multipoint-to-Point Demand 
 

# 
VPNs 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 483 483 0.00 483 0.00 483 0.00 483 0.00 
50 25,635 25,938 1.18 25,823 0.73 25,889 0.99 25,823 0.73 
100 50,440 50,999 1.11 50,896 0.90 50,944 1.00 50,896 0.90 
150 77,570 78,483 1.18 78,163 0.76 78,271 0.90 78,163 0.76 
200 103,171 104,447 1.24 103,984 0.79 104,097 0.90 103,984 0.79 
250 128,074 129,488 1.10 129,020 0.74 129,130 0.82 129,020 0.74 
300 151,908 153,630 1.13 153,173 0.83 153,085 0.77 153,173 0.83 

 

Table D.1 : Multipoint-to-point Demand over Sink Trees on the 10-Node Network  

at 0.3 Load (Symmetric Demand) 
 
 
 
 

# 
VPNs 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 584 590 0.88 590 0.88 598 2.24 590 0.88 
50 25,683 26,252 2.22 26,275 2.31 26,353 2.61 26,277 2.31 
100 50,437 51,376 1.86 51,365 1.84 51,510 2.13 51,398 1.90 
150 77,580 79,137 2.01 79,008 1.84 79,190 2.08 79,140 2.01 
200 103,371 105,291 1.86 105,417 1.98 106,066 2.61 105,332 1.90 
250 128,129 130,924 2.18 130,660 1.98 131,217 2.41 130,771 2.06 
300 152,079 155,202 2.05 154,835 1.81 155,151 2.02 154,792 1.78 

 

Table D.2 : Multipoint-to-point Demand over Sink Trees on the 10-Node Network  

 at 0.9 Load (Symmetric Demand) 
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ρ # 
VPNs 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 572 572 0.00 572 0.00 579 1.21 572 0.00 
100 45,094 45,585 1.09 45,565 1.04 45,595 1.11 45,565 1.04 
200 90,562 91,546 1.09 91,279 0.79 91,266 0.78 91,279 0.79 

0.3 

300 134,736 135,975 0.92 135,588 0.63 135,861 0.83 135,588 0.63 
1 614 617 0.52 614 0.00 659 7.32 617 0.52 

100 45,104 46,659 3.45 46,910 4.00 47,085 4.39 46,748 3.64 
200 90,777 94,036 3.59 93,752 3.28 94,318 3.90 93,963 3.51 

0.9 

300 134,835 138,306 2.57 138,290 2.56 139,063 3.14 138,120 2.44 
 

Table D.3 : Multipoint-to-point Demand over Sink Trees on the 10-Node Network  

(Asymmetric Demand) 

 
 
 
ρ # 

VPNs 
Optimal 

Cost MCST 
% 

Error 
MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 685 703 2.60 685 0.00 723 5.51 685 0.00 
50 33,589 34,567 2.91 34,738 3.42 35,175 4.72 34,738 3.42 
100 65,856 67,460 2.44 67,764 2.90 68,390 3.85 67,764 2.90 

0.3 

200 134,540 137,855 2.46 138,485 2.93 140,475 4.41 138,485 2.93 
1 742 776 4.56 772 3.97 817 10.13 772 3.97 

50 33,589 34,567 2.91 34,738 3.42 35,175 4.72 34,738 3.42 
100 65,853 67,460 2.44 67,764 2.90 68,390 3.85 67,764 2.90 

0.9 

200 134,534 137,855 2.47 138,485 2.94 140,475 4.42 138,485 2.94 
 

Table D.4 : Multipoint-to-point Demand over Sink Trees on the 15-Node Network  

(Asymmetric Demand) 

 

ρ # 
VPNs 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error 

1 2,355 2,355 0.00 2,355 0.00 2,355 0.00 2,355 0.00 
5 8,333 8,324 0.11 8,291 0.50 8,550 2.62 8,291 0.50 

0.3 

10 15,631 15,114 3.31 15,146 3.10 15,125 3.24 15,146 3.10 
1 inf inf non inf non  non inf non 
5 8,618 8,453 1.92 8,291 3.80 8,550 0.78 8,291 3.80 

0.9 

10 15,701 15,114 3.74 15,146 3.53 15,125 3.67 15,146 3.53 
 
Table D.5 : Multipoint-to-point Demand over Sink Trees on the 55-Node Network  

(Asymmetric Demand) 
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II. Point-to-Multipoint (Broadcast) Demand 
 

ρ # 
VPNs 

Optimal 
Cost MCST 

% 
Error 

MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 500 500 0.00 500 0.00 500 0.00 500 0.00 
100 45,164 45,658 1.09 45,545 0.84 45,516 0.78 45,545 0.84 
200 90,497 91,407 1.01 91,130 0.70 91,164 0.74 91,130 0.70 

0.3 

300 135,672 136,900 0.91 136,544 0.64 136,791 0.83 136,544 0.64 
1 534 552 3.33 552 3.33 552 3.33 552 3.33 

100 45,272 46,735 3.23 46,938 3.68 47,008 3.83 46,880 3.55 
200 90,777 93,876 3.41 94,361 3.95 94,910 4.55 94,466 4.06 

0.9 

300 136,472 138,933 1.80 139,403 2.15 140,148 2.69 139,433 2.17 
 

Table D.6 : Broadcast Demand over Multiple Point-to-Multipoint Trees  

on the 10-Node Network (Asymmetric Demand) 

 

 
ρ # 

VPNs 
Optimal 

Cost MCST 
% 

Error 
MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error

1 645 645 0.00 645 0.00 666 3.25 645 0.00 
50 33,101 33,925 2.49 34,101 3.02 34,569 4.43 34,101 3.02 
100 65,573 67,013 2.20 67,227 2.52 68,036 3.76 67,227 2.52 

0.3 

200 134,292 137,792 2.61 138,136 2.86 139,609 3.96 138,136 2.86 
1 706 745 5.50 776 9.99 779 10.43 745 5.50 

50 33,101 33,925 2.49 34,101 3.02 34,569 4.43 34,101 3.02 
100 65,576 67,013 2.19 67,227 2.52 68,036 3.75 67,227 2.52 

0.9 

200 134,299 137,792 2.60 138,136 2.86 139,609 3.95 138,136 2.86 
 

Table D.7 : Broadcast Demand over Multiple Point-to-Multipoint Trees  

on the 15-Node Network  (Asymmetric Demand) 

 

 
ρ # 

VPNs 
Optimal 

Cost MCST 
% 

Error 
MCST 
APL 

% 
Error 

MCST 
SPL 

% 
Error 

MCST 
DPL 

% 
Error 

1 2,029 2,029 0.00 2,029 0.00 2,029 0.00 2,029 0.00 
5 8,351 8,279 0.85 8,297 0.64 8,360 0.11 8,297 0.64 

0.3 

10 15,683 15,407 1.76 15,489 1.24 15,510 1.10 15,489 1.24 
1 inf inf non inf non inf non inf non 
5 8,531 8,279 2.95 8,297 2.74 8,360 2.01 8,297 2.74 

0.9 

10 15,683 15,407 1.76 15,489 1.24 15,581 0.65 15,489 1.24 
 

Table D.8 : Broadcast Demand over Multiple Point-to-Multipoint Trees  
on the 55-Node Network (Asymmetric Demand) 
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