119 research outputs found

    Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel

    Get PDF
    Surface roughness is an important quality in manufacturing, as it affects the product’s tribological, frictional and assembly characteristics. Turning stainless steel at low cutting speeds may result in a rougher surface due to built up edge formation, where as speed increases the surface roughness improves, due to the low contact time between the chip and the tool to allow bonding to occur.However, this increase in cutting speed produces higher tool wear rates, which increases the machining costs. Previous studies have indicated that savings in cost and manufacturing time are obtained when predicting the surface roughness, prior to the machining process. In this paper, experimental data are used to develop prediction models using Multiple Linear Regression and Artificial Neural Network methodologies. Results show that the neural network outperforms the linear model by a fair margin (1400%). Moreover, the developed Artificial Neural Network model has been integrated with an optimisation algorithm, known as Simulated Annealing (SA),this is done in order to obtain a set of cutting parameters that result in low surface roughness. A low value of surface roughness and the set of parameters resulting on it, are successfully yielded by the SA algorithm

    Tool wear monitoring in machining of stainless steel

    Get PDF
    monitoring systems for automated machines must be capable of operating on-line and interpret the working condition of machining process at a given point in time because it is an automated and unmanned system. But this has posed a challenge that lead to this research study. Generally, optimization of machining process can be categorized as minimization of tool wear, minimization of operating cost, maximization of process output and optimization of machine parameter. Tool wear is a complex phenomenon, capable of reducing surface quality, increases power consumption and increased reflection rate of machined parts. Tool wear has a direct effect on the quality of the surface finish for any given work-piece, dimensional precision and ultimately the cost of parts produced. Tool wear usually occur in combination with the principal wear mode which depends on cutting conditions, tool insert geometry, work piece and tool material. Therefore, there is a need to develop a continuous tool monitoring systems that would notify operator the state of tool to avoid tool failure or undesirable circumstances. Tool wear monitoring system for macro-milling has been studied using design and analysis of experiment (DOE) approach. Regression analysis, analysis of variance (ANOVA), Box Behnken and Response Surface Methodology (RSM). These analysis tools were used to model the tool wear. Hence, further investigations were carried out on the data acquired using signal processing and Neural networks frame work to validate the model. The effects of cutting parameters are evaluated and the optimal cutting conditions are determined. The interaction of cutting parameters is established to illustrate the intrinsic relationship between cutting parameters, tool wear and material removal rate. It was observed that when working with stainless steel 316, a maximum tool wear value of 0.29mm was achieved through optimization at low values of feed about 0.06mm/rev, speed of 4050mm/min and depth of cut about 2mm

    Advances and Trends in Non-conventional, Abrasive and Precision Machining

    Get PDF
    The work included in this book pertains to advanced abrasive and nonconventional machining processes. These processes are at the forefront of modern technology, with significant practical significance. Their importance is also made clear by the case studies that are included in the research that is presented in the book, pertaining to important materials and high-end applications. However, the particularities of these manufacturing processes need to be further investigated and the processes themselves need to be optimized. This is conducted in the presented works with significant experimental and modeling work, incorporating modern tools of analysis and measurements

    Indirect monitoring of surface quality based on the integration of support vector machine and 3D I-kaz techniques in the machining process

    Get PDF
    Improved machining process quality can contribute to sustainable manufacturing in terms of economic, environmental, and social sustainability. Reducing waste, increasing efficiency, and improving product quality can also help manufacturers to reduce costs and increase productivity rate. Machining is one of the common methods in industry and plays a central role in modern manufacturing. For many years, researchers have been studying monitoring methods to produce the best surface quality. The measurement involves three distinct techniques, which are categorised into quantitative and visualisation methods. Monitoring methods can be classified as either direct or indirect methods. The common method of measuring machining quality undergoes manufacturing bottlenecks, as it is constrained by human inspection and expensive equipment. A slow process leads to higher labour costs and a high risk of equipment damage to the workpiece. The present study aims to bridge this gap by leveraging the capabilities of 3D I-kaz and medium Gaussian SVM models to improve accuracy and classification rates for determining surface quality. The specific objectives are to analyse the impact of machining parameters on statistical analysis, classify acceleration signals for surface roughness identification using SVM, integrate SVM with 3D I-kaz to improve surface quality identification and validate its effectiveness through experiments. The quantification of signal processing for ductile iron, FCD450 material on cutting parameters: rotation speed with 1000–3026 rev/mm, feed rate of 120–720 mm/min, axial of 0.75–3.5 mm, and radial depth of cut (RDOC) is studied and validated through experiments under dry and minimum quantity lubrication (MQL) conditions. Surface roughness was measured to verify the acceleration signal, while Pearson’s correlation coefficient was used to evaluate the correlation strength between the acceleration signal and surface roughness. The calculated coefficient, r-value, was found to be 0.6543, which indicates a positive but nonlinear correlation between the acceleration signal and surface roughness. The kurtosis value measured from acceleration signals and surface roughness information was then used to classify the machining condition and identification of the surface quality. In the first experiment, the model displayed an accuracy of 84.87% and 84.57% in terms of F1 values. It was observed that by adjusting the hyperparameter, the model’s accuracy was augmented to 85.53% and its F1 score was enhanced to 84.93%. Additionally, the model was applied in the second experiment, resulting in an accuracy of 84.0%. Before the classification of machined surface condition, the condition is identified through the support vector machine (SVM) technique, and it was demonstrated that the condition could be demarcated into five different levels of surface quality. From the experimental test data, acceleration and average roughness (Ra)-based indicators are identified for correlation analysis. A relation is developed, which enables the prediction or identification of surface quality directly based on the selected based indicators (3D I-kaz coefficient) without having to inspect the milling process for surface roughness. It was demonstrated that the integration of the 3D I-kaz and SVM model resulted in an accuracy and F1 score of 96.0% and 96.3% respectively, suggesting that the quantification data is viable for surface quality identification. A monitoring experiment was conducted in this study to validate the identification of surface quality through the instantaneous surface roughness level obtained from the experiment. In conclusion, indirect monitoring of surface quality using vibration signals can quickly identify the surface quality using SVM and 3D I-kaz analyses, thus reducing the time and cost associated with manual inspection and allowing for its use in many other machining processes

    Anomaly Detection in Time Series Data Using Support Vector Machines

    Get PDF
    Analysis of large data sets is increasingly important in business and scientific research. One of the challenges in such analysis stems from uncertainty in data, which can produce anomalous results. In this paper, we propose a method of anomaly detection in time series data using a Support Vector Machine. Three different kernels of the Support Vector Machine are analyzed to predict anomalies in the UCR public data set. Comparison of the three kernels shows that the defined parameter values of the RBF kernel are critical for improving the validity and accuracy in anomaly detection. Our results show that the RBF kernel of the Support Vector Machine can be used to advantage in detecting anomalies.The 2021 International Conference on Artificial Life and Robotics (ICAROB 2021), January 21-24, 2021, Higashi-Hiroshima (オンライン開催に変更

    Adaptive control optimization in micro-milling of hardened steels-evaluation of optimization approaches

    Get PDF
    Nowadays, the miniaturization of many consumer products is extending the use of micro-milling operations with high-quality requirements. However, the impacts of cutting-tool wear on part dimensions, form and surface integrity are not negligible and part quality assurance for a minimum production cost is a challenging task. In fact, industrial practices usually set conservative cutting parameters and early cutting replacement policies in order to minimize the impact of cutting-tool wear on part quality. Although these practices may ensure part integrity, the production cost is far away to be minimized, especially in highly tool-consuming operations like mold and die micro-manufacturing. In this paper, an adaptive control optimization (ACO) system is proposed to estimate cutting-tool wear in terms of part quality and adapt the cutting conditions accordingly in order to minimize the production cost, ensuring quality specifications in hardened steel micro-parts. The ACO system is based on: (1) a monitoring sensor system composed of a dynamometer, (2) an estimation module with Artificial Neural Networks models, (3) an optimization module with evolutionary optimization algorithms, and (4) a CNC interface module. In order to operate in a nearly real-time basis and facilitate the implementation of the ACO system, different evolutionary optimization algorithms are evaluated such as particle swarm optimization (PSO), genetic algorithms (GA), and simulated annealing (SA) in terms of accuracy, precision, and robustness. The results for a given micro-milling operation showed that PSO algorithm performs better than GA and SA algorithms under computing time constraints. Furthermore, the implementation of the final ACO system reported a decrease in the production cost of 12.3 and 29 % in comparison with conservative and high-production strategies, respectively

    Parametric Optimization of Taper Cutting Process using Wire Electrical Discharge Machining (WEDM)

    Get PDF
    Significant technological advancement of wire electrical discharge machining (WEDM) process has been observed in recent times in order to meet the requirements of various manufacturing fields especially in the production of parts with complex geometry in precision die industry. Taper cutting is an important application of WEDM process aiming at generating complex parts with tapered profiles. Wire deformation and breakage are more pronounced in taper cutting as compared with straight cutting resulting in adverse effect on desired taper angle and surface integrity. The reasons for associated problems may be attributed to certain stiffness of the wire. However, controlling the process parameters can somewhat reduce these problems. Extensive literature review reveals that effect of process parameters on various performance measures in taper cutting using WEDM is also not adequately addressed. Hence, study on effect of process parameters on performance measures using various advanced metals and metal matrix composites (MMC) has become the predominant research area in this field. In this context, the present work attempts to experimentally investigate the machining performance of various alloys, super alloys and metal matrix composite during taper cutting using WEDM process. The effect of process parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension on various performance measures such as angular error, surface roughness, cutting rate and white layer thickness are studied using Taguchi’s analysis. The functional relationship between the input parameters and performance measures has been developed by using non-linear regression analysis. Simultaneous optimization of the performance measures has been carried out using latest nature inspired algorithms such as multi-objective particle swarm optimization (MOPSO) and bat algorithm. Although MOPSO develops a set of non-dominated solutions, the best ranked solution is identified from a large number of solutions through application of maximum deviation method rather than resorting to human judgement. Deep cryogenic treatment of both wire and work material has been carried out to enhance the machining efficiency of the low conductive work material like Inconel 718. Finally, artificial intelligent models are proposed to predict the various performance measures prior to machining. The study offers useful insight into controlling the parameters to improve the machining efficiency

    Simulation-based feed rate adaptation considering tool wear condition

    Get PDF
    The process forces generated in machining are related to a deflection of the milling tool, which results in shape deviations. In addition to process parameters like feed rate, width and depth of cut or cutting speed, the wear condition of the tool has a significant influence on the shape deviation during flank milling. In process planning it is important to take the tool condition and the ideal time for tool change into account when selecting the process parameters. An assistance system is being researched at the Institute of Production Engineering and Machine T ools (IFW) in cooperation with Kennametal Shared Services GmbH to support this task. T he assistance system adjusts automatically the feed rate considering a predefined maximum shape deviation. Additionally, it identifies an optimal moment for tool change. T he advantages of the system are particularly evident in planning of individual milling processes. T he assistance system is based on a combination of a material removal simulation and empirical models of the shape error. For this purpose, spindle currents as well as measured shape errors are stored in a database. T hese data are extended by the actual local cutting conditions calculated by a process-parallel material removal simulation. Afterwards, the data is transferred into process knowledge via a Support Vector Machine (SVM). Within a technological NC simulation before the start of manufacturing, the generated knowledge is applied to predict the shape error of the workpiece and to automatically adjust the feed rate. By adapting the feed rate, it is possible to control the tool life. T he required tool change is defined by specifying a limit for the permitted width of flank wear land. T he presented assistance system enables the prediction of the shape error parallel to the manufacturing process and the automatic determination of the feed rate as well as the ideal time for tool change

    Parametric Optimization of Taper Cutting Process using Wire Electrical Discharge Machining (WEDM)

    Get PDF
    Significant technological advancement of wire electrical discharge machining (WEDM) process has been observed in recent times in order to meet the requirements of various manufacturing fields especially in the production of parts with complex geometry in precision die industry. Taper cutting is an important application of WEDM process aiming at generating complex parts with tapered profiles. Wire deformation and breakage are more pronounced in taper cutting as compared with straight cutting resulting in adverse effect on desired taper angle and surface integrity. The reasons for associated problems may be attributed to certain stiffness of the wire. However, controlling the process parameters can somewhat reduce these problems. Extensive literature review reveals that effect of process parameters on various performance measures in taper cutting using WEDM is also not adequately addressed. Hence, study on effect of process parameters on performance measures using various advanced metals and metal matrix composites (MMC) has become the predominant research area in this field. In this context, the present work attempts to experimentally investigate the machining performance of various alloys, super alloys and metal matrix composite during taper cutting using WEDM process. The effect of process parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension on various performance measures such as angular error, surface roughness, cutting rate and white layer thickness are studied using Taguchi’s analysis. The functional relationship between the input parameters and performance measures has been developed by using non-linear regression analysis. Simultaneous optimization of the performance measures has been carried out using latest nature inspired algorithms such as multi-objective particle swarm optimization (MOPSO) and bat algorithm. Although MOPSO develops a set of non-dominated solutions, the best ranked solution is identified from a large number of solutions through application of maximum deviation method rather than resorting to human judgement. Deep cryogenic treatment of both wire and work material has been carried out to enhance the machining efficiency of the low conductive work material like Inconel 718. Finally, artificial intelligent models are proposed to predict the various performance measures prior to machining. The study offers useful insight into controlling the parameters to improve the machining efficiency

    Proceedings of the 4th International Conference on Innovations in Automation and Mechatronics Engineering (ICIAME2018)

    Get PDF
    The Mechatronics Department (Accredited by National Board of Accreditation, New Delhi, India) of the G H Patel College of Engineering and Technology, Gujarat, India arranged the 4th International Conference on Innovations in Automation and Mechatronics Engineering 2018, (ICIAME 2018) on 2-3 February 2018. The papers presented during the conference were based on Automation, Optimization, Computer Aided Design and Manufacturing, Nanotechnology, Solar Energy etc and are featured in this book
    corecore